
Robot Motion Planning

1 Introduction
The main problem is to find a path from one position or configu-
ration to another, without colliding with the environment. Planning
algorithms can be rated regarding different aspects.

Performance metrics for path planning algorithms:

• path length
• execution speed
• planning time
• safety (distance to obstacles)
• robustness to disturbances
• probability of success

To avoid long calculations in online processes, often an offline
pre-processing is done and a road-map is calculated. When the
manipulator is high-complex it is not possible to calculate the
road-map beforehand and thus probabilistic approaches are used.
Those perform sampling and create the road-maps with uncertain
data.

2 Configuration Space

2.1 Basics

Workspace: Reachable space of the end-effector.
Task space: Corresponds to the space where the robot’s task can
be naturally expressed.
Configuration: The smallest number of real-valued coordinates
to fully describe configurations of a robot. For example, a mobile
robot moves in directions x, y and can turn its yaw heading θ - a
configuration of this robot could be c = (1, 3, 30◦)T.
Configuration space (C-space): The space of all possible con-
figurations, that a robot can have in a certain workspace.
Dimension of the C-space/DoF: Minimum number of parameters
needed to specify the configuration. Because there can also be
angles in the topology of the C-space, it is usually not a Cartesian
space (e.g. 2π = 4π, cyclic repetition along angle axis).
Common robot models: Single points, single rigid bodies and
multiple rigid bodies with joints.
Non-holonomic robot: Robot, that cannot move freely on the con-
figuration space manifold because it is constrained in some way.
For example, a car cannot drive sideways.
Path: Continuous curve in configuration space C connecting two
configurations q and q′: τ : s ∈ [0, 1] → τ(s) ∈ C s.t. τ(0) = q and
τ(1) = q′

Trajectory: A trajectory is a path parametrized by time: τ : t ∈
[0, T] → τ(t) ∈ C. Possible constraints: smoothness, minimum
length, minimum time, ...

2.2 Calculate DoF

Calculate DoF of a single body:
DoF = total DoF of 3 fixed points - number of constraints (of the 3
fixed points, e.g. distances between points).
Alternative: Find DoF of one point, go the next one and apply con-
straints, go to the third point and apply constraints.

Calculate DoF for general robots:

• Open chains: add the DoF of each joint.
• Closed chains:

DoF = N(k − 1)−
n∑

i=1

(N − fi) = N(k − n− 1) +

n∑
i=1

fi

– N = 6 for 3D, N = 3 for 2D
– k = number of links (including ground link)
– n = number of joints
– fi = DoF of the ith joint

2.3 Parametrizations of configurations

Configuration: q = (position, orientation) = (x, y, z, ·). There exist
different ways how to parametrize orientations:

• Parametrization of orientations by rotation matrix:
R =

(r11 r12 r13
r21 r22 r23
r31 r32 r33

)
with det(R) = 1 and RTR = I (or

RRT = I), R ∈ SO(3)

Columns of R: coordinate axes of new coordinate system
Advantages: Rotation matrices can be embedded into a
SE(3) transformation matrix together with the position. Con-
catenation of transformations via matrix multiplication (for
SO(3) and SE(3)).
Drawback: over-parameterized

• Parametrization of orientations by Euler angles:
Different sequences of rotation axes exist, e.g. "Roll, Pitch,
Yaw" around x, y and z:

Rxyz(α, β, γ) = Rz(γ)Ry(β)Rx(α) =

=
(

cγ −sγ 0
sγ cγ 0
0 0 1

)(
cβ 0 sβ
0 1 0

−sβ 0 cβ

)(
1 0 0
0 cα −sα
0 sα cα

)

Problem: singularities (gimbal lock), easy to get wrong due
to many possible sequence conventions, harder to concate-
nate

• Parametrization of orientations by unit quaternions:
u = (cos(θ/2), nx sin(θ/2), ny sin(θ/2), nzsin(θ/2))

with ∥n∥ = 1.
Implementation of axis-angle representation with rotation
vector n and rotation angle θ:

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

Advantages: compact, no singularities, natural orienta-
tion representation, efficient computations (multiplication, in-
verse, etc)

2.4 Configuration space

C-space C: F ∪ Cobs

Free space F : All collision-free configurations (open subset of C).
Obstacle space Cobs: Set of configurations which lead to a colli-
sion with workspace obstacles (closed subset of C).
Semi-free space: A configuration q is semi-free if the robot placed
q touches the boundary, but not the interior of obstacles. F ∪ ∂Cobs

Determine free space: Discretize the configuration space and
check for each grid cell if the corresponding configuration leads
to a collision in the workspace (brute-force approach).

2.5 Point representation

In order to determine the C-space / free space of configurations,
a point representation can be useful. For example, if we have a
circular robot with radius r and some obstacles in the workspace,
the robot can be reduced to a point if the obstacle boundaries are
"blown up" by the radius of the robot. In other words, to get a
smaller representation of the robot without changing the properties
of the workspace, the obstacles have to get bigger. ⇒ Minkowski
sum algorithm

2.6 Collision Detection

Create a hull (circle, rectangle, convex hull, . . .) around an object
and perform a collision check. Circle: 1 distance calculation. Rect-
angle (axis aligned): 4 distance calculations.
Circle approach: Start with one big circle, perform check. If colli-
sion, split circle into smaller circles and repeat until minimum radius
is reached, else no collision.

3 Bug Algorithms

Bug algorithms are simple strategies that use local knowledge (e.g.
from sensor input) instead of global knowledge.

Assumptions:

• Robot is a point in a plane.
• Contact sensor to detect obstacle boundaries.

Basic idea: Move on a straight line towards goal and follow the
boundaries around obstacles.

3.1 Bug 0

1. Head towards the goal.
2. When hit point set, follow the wall until you can move towards

goal again (leave point).
3. Continue from 1.

Fails for certain obstacle shapes (e.g. spiral)!

3.2 Bug 1

1. Move towards goal on the m-line connecting qstart and qgoal.
2. If an obstacle is detected at a hit-point qHi , move left (or right)

along its boundary until you return to qHi again.
3. While circumnavigating the obstacle, calculate and save the

distance to the goal at any coordinate.
4. Determine the closest point to the goal on the boundary and

use it as a leave point qLi .
5. From qLi , go straight to the goal again on the m-line qLi and

qgoal.
6. If the line that connects qLi and the goal intersects the current

obstacle, then there is no path to the goal.

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

Worst case: LBug1 ≤ d(qstart, q) + 1.5

n∑
i=1

pi with pi being the

length of the contour of the i-th obstacle.
Best case: d(qstart, q).
Problems: Fails when started inside of closed obstacles and pos-
sibly changed approach vector to the goal (problematic when grab-
bing objects).

3.3 Bug 2

The m-line of Bug 2 does not change and it connects qstart and
qgoal.

1. Move towards goal on the m-line connecting qstart and qgoal.
2. If an obstacle is detected at a hit-point qHi , move left (or right)

along its boundary.
3. If a point on the m-line is found and it is closer to the goal

than qHi , use it as a leave point qLi .
4. From qLi , go straight to the goal again on the m-line.
5. If the robot re-encounters the original departure point qHi

from the m-line, then there is no path to the goal.

Fails when started inside of closed obstacles. Problematic shapes:

spirals. Worst case: LBug2 ≤ d(qstart, q)+0.5

n∑
i=1

nipi with ni be-

ing the number of times that the m-line hits the obstacle.

3.4 Tangential Bug

The robot is equipped with a (finite-range) radial distance sensor.
If an obstacle is encountered within the range of the sensor, the
robot changes its direction tangentially to the border of the obsta-
cle.

Essentially, the bug algorithms have two behaviors: Drive toward
a point and follow an obstacle.

dfollowed is the shortest distance between the boundary which had
been sensed and the goal. dreach is the distance between the goal
and the closest point on the followed obstacle that is within line of
sight of the robot.

4 Planners

In order to describe more complicated path planners, we need to
be able to specify the position of the robot and the (C-)space it
occupies. Gradients work by changing the repulsive potential as a
robot gets closer to an obstacle. The start point is given a medium
gradient potential, the end point is given a low gradient potential,
and the obstacles are given high gradient potentials. All the robot
needs to do is “roll down the hill.”

4.1 Brushfire Planner

The Brushfire Algorithm is a discrete version of the aforementioned
gradient algorithm and involves the use of a grid to determine the
potential of cells. It starts the fire at all boundaries of obstacles
and overall boundary and iterates through the grid. ”2” for cells
neighboring an obstacle and so on. When two weights meet, same
distance to obstacles is achieved (important for Voronoi).

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

4.2 Wave-Front Planner

Variation of the Brushfire algorithm. Using a grid it assigns a “1” to
each cell that has an obstacle (or part of an obstacle). The start
point is labeled “2” and the “wave” propagates from that point. Each
adjacent cell, if empty, is given an incrementally higher number un-
til all the cells have a number. If the goal has a number in its cell,
the goal is reachable in that many moves minus one. The algo-
rithm can also start from the goal towards the start.
Benefit: Avoids the local minima problem by planning one step at
a time on a grid.

5 Classical path planning

Using offline pre-processing and exact environment knowledge in
order to do the path planning beforehand and save online perfor-
mance, we distinguish:

• roadmaps
• cell decomposition
• potential field

5.1 Roadmaps (with exact knowledge)

Idea: Represent the connectivity of the free space in a network of
1D curves.

Using this network, paths can be calculated using graph-search al-
gorithms, for example.
Advantage: Roadmap has to be constructed once if the topology
of the workspace (i.e. obstacle positions) does not change.
Disadvantage: Roadmaps can be not very efficient in dynamic en-
vironments.

5.1.1 Visibility Graph

The visibility graph applies to 2D spaces with polygonal obstacles.
Nodes: qinit (start) and qgoal (goal) and obstacle vertices.
Edges: Two nodes are connected with an edge if the connecting
line is an obstacle edge or does not intersect with an obstacle.
Time O(n3), space O(n2).

The visibility graph can contain useless edges. This can be re-
solved by constructing the reduced visibility graph, where only
edges are kept that are separating or supporting lines between
two obstacles (or lines on the border of obstacles).

5.1.2 Voronoi Diagram

The goal of the Voronoi diagram is to find paths that maximize the
distance to the obstacles. Therefore, the roadmap lines can be
curved.
Time O(n logn), space O(n).

To construct the Voronoi diagram, one can use the Brushfire algo-
rithm, which calculates a distance map on a grid:

• Grid initialization: free space = 0, obstacle space = 1
• For each point in the grid, it assigns the distance to the clos-

est obstacle point.
• Every point, where the distance to two (or more) different ob-

stacles is the same, lies on the Voronoi diagram.

→ "Wavefront from obstacles, Voronoi diagram where two wave-
fronts meet."

5.2 (Vertical) Cell Decomposition

Idea: Decompose the free space into simple cells and represent
the connectivity of the free space F by the adjacency graph of
these cells (mostly in 2D).

It is called an exact cell decomposition if the union of all cells is
exactly F , meaning there is no overlap between cells. The shape
of the cells can be triangles, trapezoids, ...

5.2.1 Trapezoidal Decomposition

Free space is decomposed into trapezoids and triangles. Then,
the adjacency graph of the cells is calculated.
Time O(n logn), space O(n).

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

The planner searches the adjacency graph to determine the path
of nodes. Then the planner constructs the point to point path, one
trapezoid at a time, by connecting the midpoints of the vertical ex-
tensions to the centroids of each trapezoid. To connect the start
and goal points, simply draw a straight line to the vertical exten-
sions’ midpoints of the appropriate trapezoids.

5.2.2 Boustrophedon Decomposition

Points on the obstacles, from which a separating line can be drawn
in the upper and lower direction are called critical points. Then, an
exhaustive walk through the critical points is performed in order to
obtain a connectivity graph.

5.3 Cell Decomposition in higher dimensions

5.3.1 The Halting Problem

Completeness: A complete algorithm finds a path if one exists
and reports no otherwise.

Is it possible to determine whether a program will stop or will it run
forever?
Suppose an algorithm H that can decide whether X will halt. By
proof by contradiction, it can be shown that such an algorithm H

cannot exist. Furthermore, it can be shown that not all planning
algorithms are complete.
But: Combinatorial algorithms (cell decomposition, visibility graphs
& Voronoi diagrams) are completed since they cover every single
point in Cfree. → Motivates the use of combinatorial algorithms of
rhigher dimensions.

5.3.2 Extension of vertical Cell Decomposition

Extension of vertical CD to n dimensions:

1. Pick a dimension xi.
2. Sweep the configuration space using a (n-1)-dimensional

plane orthogonal to xi. Stop when critical connectivity events
happen. When such a change happens, a new (n-1)-
dimensional slice is produced.

3. Repeat for the (n-1)-dimensional slices
4. Sweeping yields convex n-cells, (n-1)-cells, ... (with a n-

cell being a n-dim. polytope sandwiched between (n-1)-dim.
slices).

5.3.3 k-d tree

Tree like data structure useful for finding points with certain prop-
erties. Construction:

1. Pick dimension i, pick a point with coordinates x.
2. Split the points based on xi (greater or less than).
3. Repeat the above two steps recursively.

Note: depth = logn if balanced; construction takes O(kn logn)

time.
Disadvantage: If the environment changes the k-d tree needs to
be fully recomputed.

5.4 Approximate Cell Decomposition

Idea: The free space F is represented by a collection of non-
overlapping cells whose union is contained in F .
Cells usually have simple, regular shapes. It facilitates the hier-
archical space decomposition. Examples are Quadtrees (2D) and
Octrees (3D):

• Splitting stops if node is empty or full (e.g. up to 95%).
• Advantage: If the environment changes only some nodes

need to be recomputed (not the whole tree).

5.5 Potential Field Method

Idea: Define a potential function over the free space that has a
global minimum at the goal and follow the steepest descent of the
potential function (gradient descent).

Obstacles are surrounded by a repulsive field and the goal location
by an attractive field. Ideal potential field:

• Global minimum at the goal.
• No local minima.

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

• Grows to infinity near obstacles.
• Is smooth.

Advantage: Easy to compute.
Disadvantage: Possible local minima (where robot gets stuck) and
no consideration of dynamic constraints in their initial form (forces
can be too high for the robot).

Attractive component: A linear potential function results in a con-
stant velocity (gradient) and thus an overshoot at the goal. That
is why a quadratic function is better suited since the minimum is
reached with a velocity of 0. Generally, it is combined with a linear
function at a distance d∗ so that the gradient (which corresponds
to the velocity) is not too large for the robot.

Uatt(q) =


1

2
ζd2(q, qgoal), d(q, qgoal) ≤ d∗goal

d∗goalζd(q, qgoal)−
1

2
ζ(d∗goal)

2, d(q, qgoal) > d∗goal

∇Uatt(q) =

 ζ(q − qgoal), d(q, qgoal) ≤ d∗goal
d∗goalζ(q − qgoal)

d(q − qgoal)
, d(q, qgoal) > d∗goal

Repulsive component: Q∗: Radius around obstacle where the
repulsive force acts. D(q): Distance to obstacle.

Urep(q) =


1

2
η

(
1

D(q)
− 1

Q∗

)2

, D(q) ≤ Q∗

0, D(q) > Q∗

∇Urep(q) =

η

(
1

Q∗ − 1

D(q)

)
1

D2(q)
∇D(q), D(q) ≤ Q∗

0, D(q) > Q∗

6 Roadmapping with Random Sampling
Problem with classical approaches: Running time increases ex-
ponentially with the dimension of the C-Space. Modelling the free
space becomes an arduous task.

Instead of looking at the whole space, sampling based methods are
usually more efficient because they only require point-wise evalu-
ations. They are probabilistically complete (+), meaning the prob-
ability that they will produce a solution approaches 1 as more time
is spent. By reducing the map to samples, it will be easier to find
a solution path since the computation effort is reduced and they
can be applied to high-dimensional C-spaces (+). However, they
are not as robust as methods with full knowledge of the space and

cannot determine if there is no solution to the path planning prob-
lem.

Sampling uniformly in 2D and 3D has to be correctly parametrized!
Cases:

• Unit line, square, cube: Pick a random number r ∈ [0, 1] for
each dimension.

• Sample in interval [a, b]: (b− a)r + a, r ∈ [0, 1].
• Angle: Pick angle θ uniformly at random from [0, 2π].
• Rotations: Depends on the representation, in axis-angle no-

tation the axis and the angle are sampled separately.

6.1 Multi-Query

A multiple query approach tries to capture the connectivity of the
free space as good as possible with the goal to answer multiple,
different queries for paths very fast.
Assumption: static obstacles.

6.1.1 PRM - Probabilistic Roadmaps

Basic steps for constructing PRMs:

1. Sample vertices (uniformly) and keep vertices that do not col-
lide with obstacles (= milestones).

2. Find neighbour vertices/milestones with
k-nearest neighbour or
neighbours within a specified radius.

3. Connect neighbouring vertices with edges (lines) (and check
for collisions on connecting line using e.g. discretized line
search).

4. Add vertices and edges until roadmap is dense enough.

Query processing:

1. Connect qstart and qgoal with the graph (check for collisions
on connecting line).

2. Search a path from qstart to qgoal in the graph.

Drawback 1: PRMs don’t perform well when there are narrow pas-
sages (→ you probably won’t end up with a fully connected graph).
Solution 1: Expansion

• Further sampling (→ increase number of nodes).
• Resampling with a random walk (when an obstacle is hit,

continue in a random direction until a maximum length L is
reached).

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

• Bridge Sampling which focuses on generating samples in
narrow passages.

• OBPRM.

Drawback 2: Many abrupt velocity changes due to the typical zick-
zack paths.
Solution 2: Smooth the resulting path.

Advantages of PRMs:

• Probabilistically complete.
• Apply easily to high-dimensional C-space.
• Fast queries (with enough preprocessing).

Homotopic paths: Two paths with the same endpoints are homo-
topic if one can be continuously deformed into the other. A homo-
topic class of paths contain all paths that are homotopic to one an-
other. Homotopy ensures that after the path correction, the space
topology gets visited from the same side as originally planned. (If
during the merging process the path goes through an object, it is
not considered homotopic.)

6.1.2 OBPRM - Obstacle-Based PRM

Obstacle-based PRMs are constructed by sampling only close to
obstacles.

Basic idea (for workspace obstacle S):

1. Find a point in S’s C-obstacle (robot placement colliding with
S).

2. Select a random direction in C-space.
3. Find a free point in that direction.
4. Find boundary point between them using binary search (col-

lision checks).

6.2 Single-Query PRM

Single query planners try to solve a single query as fast as possi-
ble, without trying to cover the whole free space.

Idea: Grow two trees from Start and Goal configurations. Ran-
domly sample nodes around existing nodes. Connect a node in
the tree rooted at Start to a node in the tree rooted at Goal. →
Expansion + Connection.

Expansion + Connection:

1. Expand trees from Start and Goal.
2. Pick a node x with probability 1/w(x) (w(x): number of

nodes within certain radius, including node x)
3. Randomly sample k points (y1, ..., yk) around x.

4. Add sample yi with weight w(yi) and probability 1/w(yi) to
the tree if

• 1

w(yi)
>

1

w(x)
⇔ w(yi) < w(x).

• yi is collision free.
• yi can see x.

5. If a pair of nodes from start tree and goal tree are close and
can see each other, then connect them and terminate.

Termination condition: The program iterates between Expansion
and Connection, until

• two trees are connected, or
• max. number of expansion & connection steps is reached.

Drawback: If no connection possible, the algorithm expands
and does not terminate if no maximal number of steps is speci-
fied.

6.3 Coverage, Connectivity, ϵ,α,β - Expansive-
ness

For narrow passages the number of the milestones (vertices) used
is essential. How do you how many vertices are actually needed?
Typical issues of PRMs are coverage and connectivity.

Coverage: The coverage is good if the milestones are distributed
in such a way that (almost) any point in the free C-space can be
connected to one milestone via a straight line.

Connectivity: The connectivity is good if every milestone is reach-
able from any other milestone. Especially with narrow passages,
the connectivity can be hard to capture.

Expansiveness: The coverage and connectivity are character-
ized by the (ϵ, α, β)-expansiveness of the space. The free space
F is (ϵ, α, β)-expansive if F is ϵ-good and for each subset S of F ,
its β-lookout is at least α fraction of S. If the C-space is expansive,
then a roadmap can constructed efficiently with good connectivity
and coverage.

Burschka-Style:
Definitions:

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

• reach(x) ⊆ F : Visibility set of point x, i.e. all configurations
in free space F that can be connected to x by a straight-line
path in F .

• reach(G): The space that can be seen from any point in a
set G.

• µ(G) : Volume/area of some set G.
• β-lookout(S): Subset of point in S that can see at least β

fraction of F \ S.

Approach:

1. Find point x ∈ F with smallest µ(reach(x)). Then:

S = reach(x)

2. Every free configuration sees at least ϵ fraction of the free
space:

ϵ =
µ(S)

µ(F)
∈ (0, 1]

The corresponding configuration is called ϵ-good.
3. Choose some subset A ⊆ S that can reach a lot and has an

easy to calculate area.
4. α =

µ(A)

µ(S)
∈ (0, 1]

5. β-lookout (not really according to the definition, but best way
to do it in the exam):

β =
µ(reach(A) \ S)

µ(F \ S) ∈ (0, 1]

The goal is to keep α and β balanced. Larger parameters = lower
cost of constructing a roadmap with good connectivity and cover-
age.

Using these values, the number n of samples that is needed for a
good connectivity can be calculated:

n =
8 ln(8

ϵαγ
)

ϵα
+

3

β
,

where 1 − γ (success rate) measures the probability that the uni-
formly sampled milestones have the correct connectivity (γ ∈
(0, 1], failure rate).

Hsu’s paper & Rickert’s lecture: A free space F is (α, β, ϵ)-
expansive, if it satisfies these conditions:

1. A free space F is ϵ-good if for every x ∈ F , µ(reach(x)) ≥
ϵ · µ(F).

2. The β-lookout of a set S ⊂ F is the set of points in S that see
a β-fraction of F \ S:

β−lookout(S) = {q ∈ S | µ(reach(q) \ S) ≥ β · µ(F \ S)}.

3. (ϵ, α, β)-expansive: F is (ϵ, α, β)-expansive if it is ϵ-good
and each of its subsets S has a β-lookout with a volume of
at least α · µ(S):

µ(β-lookout(S)) ≥ α · µ(S).

With ϵ, α, β ∈ (0, 1], reach(·) as the set of visible points of a point
and µ(·) denoting the volume of a set of points.

Theorems:

• Probability of achieving good connectivity increases expo-
nentially with the number of milestones (in an expansive
space). If (ϵ, α, β) decreases, then there is a need to in-
crease the number of milestones (to maintain good connec-
tivity).

• Probabilistic completeness: In an expansive space, the prob-
ability that a PRM planner fails to find a path when one exists
goes to 0 exponentially in the number of milestones (~run-
ning time).

γ =
8

ϵα
exp

(
− ϵα

8

(
n− 3

β

))
∝ exp(−kn), k ∈ R

Limitations in practice: It does not tell you when to stop growing
the roadmap. A planner stops when either a path is found or max
steps are reached.

Methods to improve connectivity:

• Increase number of nodes: Uniform sampling. The connec-
tivity increases exponentially with the number of nodes.

• Random walk: If collision, randomly change direction until
max. path length reached. → Increases chance to get sam-
ples in narrow passage.

• Path correction: Allow paths through obstacles and push
them to the boundaries later. → Increases chance to get
paths through narrow passage.

• Obstacle-based sampling (e.g. OBPRM): Sample close to
obstacles. → Increases chance to get samples in narrow
passage.

6.4 RRT - Rapidly Exploring Random Trees

A roadmap is likely to have a lot of useless information stored if we
want to run a single query.

RRTs without obstacles simply grow trees from a point. Basically,
they try to connect new points to the closest part of the existing
ones with a linear search. The tree evolves iteratively over time.
With obstacles, they try to extend the tree as much as possible, in
case of collision with one, they stop at the collision point and gen-
erate a new node. In order to control the expansion of the tree, a
growth limit ∆q for the maximum length of the edges can be imple-
mented, where the target node gives the direction, but the actual
implemented node is constrained by ∆q. Another way to steer the
growth is by increasing the probability of generating new nodes
near of qgoal, so that the tree expands in that direction.

Procedure:

1. Initialize tree with qstart as first node.
2. Sample a random point qs (every n-th iteration, choose

qgoal).
3. Find the closest neighbor qn in tree.
4. Add points on the connecting line between qs and qn to the

tree.
• With step width d.
• Checkpoints for collision with obstacles.

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

• Stop when a collision is detected.
5. Repeat steps 2 - 5 until qgoal is reached.

Note: For faster execution, a bi-directional tree can be generated
that grows from qstart and qgoal.

6.4.1 Kinodynamic RRT

For solving problems for systems with differential constraints (like
non-holonomic motion constraints), kinodynamic RRT can be
used. Standard PRM and RRT cannot be applied here. Kin-
odynamic RRT grows the tree respecting the differential con-
straints.

6.4.2 RRT*

Since RRT (and also PRM) are not optimal, we have to ”re-wire”
the graph structure to gain optimality.
Procedure: For each new sample qn, check its logn neighborhood
and if there are better paths from qstart to qn, pick that path.
This is an asymptotically optimal sampling based algorithm, be-
cause as the number of samples goes to infinity, an optimal path
from qstart to qgoal is obtained.

7 Probabilistic Robotics

7.1 Kalman Filter

A Kalman filter is an optimal estimator, i.e. infers parameters of
interest from indirect, inaccurate and uncertain observations. It is
recursive so that new measurements can be processed as they
arrive. If the noise is Gaussian the Kalman filter is optimal, i.e. it
minimizes the mean square error of the estimated parameters.
So in practice, you interpret your robots state as a normal (gaus-
sian) distribution with mean and variance. Besides the estimate for
the state x you also have some estimate for the uncertainty in your
value for x that is represented through a normal distribution and
its variance / covariance matrix P . You also model your sensors
with white noise (gaussian, zero-mean).

Requirements for optimality:

• Linear system and measurement model
• Gaussian and zero-mean measurement and process noise

Illustrative: The more certain the initial estimate is, the higher and
narrower the peak. The greater the noise (amount of error), the
faster the peak spreads.

Kalman Gain:

• Kk = 0: R → ∞ or P−
K = 0, i.e. trust in measurement is

very low or trust in model is very high.
• Kk = 1: R = 0 or P−

K → ∞, i.e. trust in measurement is
very high or trust in model is very low.

Prediction step

Mean x̂−
k+1 = Ax̂k +Buk

Covariance σ2
3 = σ2

1 + σ2
2 P−

k+1 = APkA
⊤ +Q

Update step

Kalman Gain Kk = P−
k H⊤(HP−

k H⊤ +R)−1

Mean x̂k = x̂−
k +Kk(zk −Hx̂−

k)

Covariance 1

σ2
3

=
1

σ2
1

+
1

σ2
2

Pk = (I −KkH)P−
k

with

x̂ ∈ RN state estimate mean
x̂− ∈ RN predicted state estimate mean
A ∈ RN×N state-transition model
u ∈ RM control input
B ∈ RN×M control-input model
P ∈ RN×N state covariance matrix
Q ∈ RN×N process noise covariance matrix
K ∈ RN×Z Kalman gain
R ∈ RZ×Z measurement noise covariance matrix
z ∈ RZ measurement
H ∈ RZ×N observation model / measurement matrix

7.1.1 Observability

O =


H

HA1

...
HAn−1


The system is observable if rank(O) = n (i.e. n linearly indepen-
dent rows). n is the dimension of the state vector x.

7.1.2 Difficulties

• Presence of the unknown and unmeasurable noise vectors
v(k) (observation noise) and w(k) (process noise / model
error).

• The state in general can not be directly observed from the
outputs, H may not be invertible.

7.2 Extended Kalman Filter

The (first order) EKF allows to use non-linear system models for
Kalman Filtering and is a sub-optimal extension of the original KF
algorithm. The EKF adapts techniques from calculus, namely mul-
tivariate Taylor Series expansions, to linearize the functions f and
h around a working point (use the means).

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

Prediction step

Mean x̂−
k+1 = f(x̂k, uk, 0)

Covariance P−
k+1 = APkA

⊤ +WQW⊤

Update step

Kalman Gain Kk = P−
k H⊤(HP−

k H⊤ + V RV ⊤)−1

Mean x̂k = x̂−
k +Kk(zk − h(x̂−

k , 0))

Covariance Pk = (I −KkH)P−
k

with

xk+1 = f(xk, uk, wk) ∈ RN state transfer function

wk ∈ RN process noise

A =
∂f

∂xk
∈ RN×N Jacobian of f with respect to xk

W =
∂f

∂wk
∈ RN×N Jacobian of f with respect to wk

zk = h(xk, vk) ∈ RZ measurement function

vk ∈ RZ measurement noise

H =
∂h

∂xk
∈ RZ×N Jacobian of h with respect to xk

V =
∂h

∂vk
∈ RZ×Z Jacobian of h with respect to vk

Missing here: EKF for SLAM

7.3 Unscented Kalman Filter

Instead of using first order approximations of the Taylor series
(EKF), the unscented filter extends to the second (or higher) order
approximations. EKF may cause significant error for highly nonlin-
ear systems because local linearity assumptions break down when
the higher order terms become significant.

The idea of the UKF is to produce several sampling points (Sigma
Points) from the current state and noise distributions. Then, prop-
agating these points through the nonlinear map to get a more ac-
curate estimation of the mean and covariance of the mapping re-
sults.

The main assumption here is the unscented transformation, which
allows to calculate statistics about a random variable that has un-
dergone a nonlinear transformation by saying that it is easier to
approximate a probability distribution than an arbitrary nonlinear
function. The estimates of the mean and covariance are accurate
to the second order of the Taylor series expansion of the the nonlin-
ear map. In this way, it avoids the need to calculate the Jacobian,
hence incurs only the similar computation load as the EKF.

Initialization

State mean x̂0 = E(x0)

Mean vector x̂a
0 =

[
x̂⊤
0 0 0

]⊤

Contains mean values of state (x), process noise (v) and measurement
noise (n). xa

t = [x⊤
t , v⊤t , n⊤

t]

Covariance matrix P a
0 =


P0 0 0

0 Q 0

0 0 R


Covariance matrices of state P0, process noise Q and measurement noise
R.

Prediction step
(a) Computing sigma points

Sigma points χa
k−1 =

[
x̂a
k−1 x̂a

k−1 ±
√

(nx + λ)P a
k−1

]
(b) Time update

Sigma points (χx
k)

− = f(χx
k−1, χ

v
k−1)

State mean x̂−
k =

2nx∑
i=0

W
(m)
i (χx

i,k)
−

Covariance P−
k =

2nx∑
i=0

W
(c)
i

[
(χx

i,k)
− − x̂−

k

] [
(χx

i,k)
− − x̂−

k

]⊤
Update step

Predicted meas. Y −
k = h((χx

k)
−, χn

k−1)

Meas. mean ŷ−
k =

2nx∑
i=0

W
(m)
i Y −

i,k

Meas. cov. Pykyk =

2nx∑
i=0

W
(c)
i

[
Y −
i,k − ŷ−

k

] [
Y −
i,k − ŷ−

k

]⊤
Cross cov. Pxkyk =

2nx∑
i=0

W
(c)
i

[
χx−
i,k − x̂−

k

] [
Y −
i,k − ŷ−

k

]⊤
Kalman Gain Kk = PxkykP

−1
ykyk

State mean x̂k = x̂−
k +Kk(yk − ŷ−

k)

Covariance Pk = P−
k −KkPykykK

⊤
k

Notation

xa = [x⊤, v⊤, n⊤], χa = [(χx)⊤, (χv)⊤, (χn)⊤]⊤

na = nx + nv + nn : Dimension of x, v and n.

λ : Composite scaling parameter.

W : Weights

Weights

W
(m)
0 =

λ

nx + λ

W
(c)
0 =

λ

nx + λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

λ

2(nx + λ)
, i = 1, . . . , 2nx

7.4 Bayes Filter

Assumptions:

• Markov property: P (xk|xk−1, . . . , x0) = P (xk|xk−1)

• Observation: P (yk|xk, . . . , x0) = P (yk|xk)

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

Given:

• Measurements: y1:k = y1, . . . , yk

• Control inputs: u0:k−1 = u0, . . . , uk−1

• Dynamic model (e.g. motion model): P (xk+1|xk, uk)

• Prior probability: P (x0)

• Sensor model: P (yk|xk)

Compute:
Most likely state x at time k given commands u0:k−1 and measure-
ments y1:k−1(posterior distribution)

P (xk|y1:k, u0:k−1) =
P (yk|xk, y1:k−1, u0:k−1)P (xk|y1:k−1, u0:k−1)

P (yk|y1:k−1, u0:k−1)

= ηk P (yk|xk)︸ ︷︷ ︸
observation

∫
xk−1

P (xk|uk−1, xk−1)︸ ︷︷ ︸
state prediction

P (xk−1|y1:k−1, u0:k−2)︸ ︷︷ ︸
recursive instance

dxk−1

Without measurements, only prediction:

P (xk) =

∫
xk−1

P (xk|xk−1, uk−1)P (xk−1)dxk−1

7.5 Particle Filter

The state representations of the Bayes and Kalman filter are re-
stricted to probability density or Gaussian functions. They also
cannot model multiple hypotheses in their initial form, for example
the uncertainty when a robot could be in one of multiple locations.
(Multi-hypothesis KF could do that, but it’s only a combination of
multiple KFs).

The particle filter uses a population of randomly initialized parti-
cles to track high-likelihood regions of the state space. The basic
procedure is:

1. If no initial distribution is given, start with a uniform sample
distribution.

2. Apply motion model to particles by sampling from the corre-
sponding distribution.

3. After observing the measurement, weight each particle by its
likelihood for the observation.

4. Resampling: Generate a new set of samples by weighted
random selection from the current set of particles.

5. Repeat from 2.

At any time, the distribution is represented by the weighted set of
particles.

Particle Deprivation: There are not particles in the vicinity of the
correct state.

• Occurs as the result of the variance in random sampling. An
unlucky series of random numbers can wipe out all particles
near the true state. This has non-zero probability to happen
at each time → will happen eventually.

• Popular solution: Add a small number of randomly generated
particles when resampling.

Problem with Resampling: Resampling induces loss of diver-
sity. The variance of the particles decreases, the variance of the
particle set as an estimator of the true belief increases.

• Solution 1: Resample only when effective sample size is low.
• Solution 2: Low-variance-sampling.

cba 2022 https://github.com/MichaelGrupp/RobotMotionPlanning_summary
TU München - Fakultät für Informatik - Robotics, Cognition, Intelligence

https://github.com/MichaelGrupp/RobotMotionPlanning_summary

	Introduction
	Configuration Space
	Basics
	Calculate DoF
	Parametrizations of configurations
	Configuration space
	Point representation
	Collision Detection

	Bug Algorithms
	Bug 0
	Bug 1
	Bug 2
	Tangential Bug

	Planners
	Brushfire Planner
	Wave-Front Planner

	Classical path planning
	Roadmaps (with exact knowledge)
	Visibility Graph
	Voronoi Diagram

	(Vertical) Cell Decomposition
	Trapezoidal Decomposition
	Boustrophedon Decomposition

	Cell Decomposition in higher dimensions
	The Halting Problem
	Extension of vertical Cell Decomposition
	k-d tree

	Approximate Cell Decomposition
	Potential Field Method

	Roadmapping with Random Sampling
	Multi-Query
	PRM - Probabilistic Roadmaps
	OBPRM - Obstacle-Based PRM

	Single-Query PRM
	Coverage, Connectivity, , , - Expansiveness
	RRT - Rapidly Exploring Random Trees
	Kinodynamic RRT
	RRT*

	Probabilistic Robotics
	Kalman Filter
	Observability
	Difficulties

	Extended Kalman Filter
	Unscented Kalman Filter
	Bayes Filter
	Particle Filter

