8000 new docs fix · JElchison/plotly.r-docs@0356423 · GitHub
[go: up one dir, main page]

Skip to content

Commit 0356423

Browse files
committed
new docs fix
1 parent 7cc6113 commit 0356423

File tree

160 files changed

+8486
-22494
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

160 files changed

+8486
-22494
lines changed

ggplot2/2021-08-04-2D-Histogram.Rmd

Lines changed: 105 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,105 @@
1+
---
2+
name: 2D-Histogram
3+
permalink: ggplot2/geom_density2d/
4+
description: How to make 2D-Histogram Plots plots in ggplot2 with Plotly.
5+
layout: base
6+
thumbnail: thumbnail/histogram2d.jpg
7+
language: ggplot2
8+
page_type: u-guide
9+
display_as: statistical
10+
order: 5
11+
output:
12+
html_document:
13+
keep_md: true
14+
---
15+
16+
```{r, echo = FALSE, message=FALSE}
17+
knitr::opts_chunk$set(message = FALSE, warning=FALSE)
18+
```
19+
### Basic 2D Graph
20+
Source: [Brett Carpenter from Data.World](https://data.world/brettcarpenter/craft-beer-data)
21+
22+
```{r}
23+
library(plotly)
24+
beers <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/beers.csv", stringsAsFactors = FALSE)
25+
26+
p <- ggplot(beers, aes(x=abv, y=ibu)) +
27+
geom_density2d() +
28+
labs(y = "bitterness (IBU)",
29+
x = "alcohol volume (ABV)",
30+
title = "Craft beers from American breweries")
31+
32+
ggplotly(p)
33+
```
34+
35+
### Filled
36+
Since each of the lines (in the above graph) shows a different "level", setting "fill = stat(level)" allows for a filled graph.
37+
38+
```{r}
39+
library(plotly)
40+
41+
beers <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/beers.csv", stringsAsFactors = FALSE)
42+
43+
p <- ggplot(beers, aes(x=abv, y=ibu)) +
44+
stat_density2d(aes(fill = stat(level)), geom="polygon") +
45+
labs(y = "bitterness (IBU)",
46+
x = "alcohol volume (ABV)",
47+
title = "Craft beers from American breweries")
48+
49+
ggplotly(p)
50+
```
51+
52+
### Preset Colourscale
53+
["Viridis" colourscales](https://ggplot2.tidyverse.org/reference/scale_viridis.html) are designed to still be perceptible in black-and-white, as well as for those with colourblindness. It comes with five colourscales, selected using the option= parameter: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default), and "cividis" (or "E").
54+
55+
```{r}
56+
library(plotly)
57+
beers <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/beers.csv", stringsAsFactors = FALSE)
58+
59+
p <- ggplot(beers, aes(x=abv, y=ibu)) +
60+
stat_density2d(aes(fill = stat(level)), geom="polygon") +
61+
scale_fill_viridis_c(option = "plasma") +
62+
theme(legend.position = "magma") +
63+
labs(y = "bitterness (IBU)",
64+
x = "alcohol volume (ABV)",
65+
title = "Craft beers from American breweries")
66+
67+
ggplotly(p)
68+
```
69+
70+
### Customized Colourscale
71+
You can also set your own colour gradients by defining a high and low point.
72+
```{r}
73+
library(plotly)
74+
beers <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/beers.csv", stringsAsFactors = FALSE)
75+
76+
p <- ggplot(beers, aes(x=abv, y=ibu)) +
77+
stat_density2d(aes(fill = stat(level)), geom="polygon") +
78+
scale_fill_gradient(low = "lightskyblue1", high = "darkred") +
79+
theme(legend.position = "none") +
80+
labs(y = "bitterness (IBU)",
81+
x = "alcohol volume (ABV)",
82+
title = "Craft beers from American breweries")
83+
84+
ggplotly(p)
85+
```
86+
87+
### Overlaid Points
88+
I use variable "style2" to filter out the six most common beer styles. This way, we can see that the cluster of beers in the top right (i.e. more bitter and higher alcohol content) are IPAs - perhaps unsurprisingly.
89+
90+
```{r}
91+
library(plotly)
92+
library(dplyr)
93+
beers <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/beers.csv", stringsAsFactors = FALSE)
94+
95+
p <- ggplot(beers, aes(x=abv, y=ibu)) +
96+
geom_density2d(alpha=0.5) +
97+
geom_point(data=filter(beers, !is.na(style2)), aes(colour=style2, text = label), alpha=0.3) +
98+
labs(y = "bitterness (IBU)",
99+
x = "alcohol volume (ABV)",
100+
title = "Craft beers from American breweries",
101+
colour = "Beer types")
102+
103+
ggplotly(p)
104+
```
105+

ggplot2/2021-08-04-2D-Histogram.md

Lines changed: 0 additions & 313 deletions
This file was deleted.

0 commit comments

Comments
 (0)
0