|
10 | 10 | */
|
11 | 11 | public class MinHeap<E> {
|
12 | 12 |
|
13 |
| - private Object[] elements; |
| 13 | + private Object[
8000
] elements; |
14 | 14 |
|
15 |
| - private int size; |
| 15 | + private int size; |
16 | 16 |
|
17 |
| - private final Comparator<? super E> comparator; |
| 17 | + private final Comparator<? super E> comparator; |
18 | 18 |
|
19 |
| - private static final int DEFAULT_INITIAL_CAPACITY = 11; |
| 19 | + private static final int DEFAULT_INITIAL_CAPACITY = 11; |
20 | 20 |
|
21 |
| - public MinHeap(int initialCapacity, Comparator<? super E> comparator) { |
22 |
| - this.elements = new Object[initialCapacity]; |
23 |
| - this.comparator = comparator; |
24 |
| - } |
| 21 | + public MinHeap(int initialCapacity, Comparator<? super E> comparator) { |
| 22 | + this.elements = new Object[initialCapacity]; |
| 23 | + this.comparator = comparator; |
| 24 | + } |
25 | 25 |
|
26 |
| - public MinHeap(int initialCapacity) { |
27 |
| - this(initialCapacity, null); |
28 |
| - }
10000
|
| 26 | + public MinHeap(int initialCapacity) { |
| 27 | + this(initialCapacity, null); |
| 28 | + } |
29 | 29 |
|
30 |
| - public MinHeap(Comparator<? super E> comparator) { |
31 |
| - this(DEFAULT_INITIAL_CAPACITY, comparator); |
32 |
| - } |
| 30 | + public MinHeap(Comparator<? super E> comparator) { |
| 31 | + this(DEFAULT_INITIAL_CAPACITY, comparator); |
| 32 | + } |
33 | 33 |
|
34 |
| - public MinHeap() { |
35 |
| - this(DEFAULT_INITIAL_CAPACITY, null); |
36 |
| - } |
| 34 | + public MinHeap() { |
| 35 | + this(DEFAULT_INITIAL_CAPACITY, null); |
| 36 | + } |
37 | 37 |
|
38 |
| - // heapify |
39 |
| - @SuppressWarnings("unchecked") |
40 |
| - public MinHeap(E[] arr) { |
41 |
| - int l = arr.length; |
| 38 | + // heapify |
| 39 | + @SuppressWarnings("unchecked") |
| 40 | + public MinHeap(E[] arr) { |
| 41 | + int len = arr.length; |
42 | 42 |
|
43 |
| - this.elements = new Object[l]; |
44 |
| - this.size = l; |
45 |
| - this.comparator = null; |
| 43 | + this.elements = new Object[len]; |
| 44 | + this.size = len; |
| 45 | + this.comparator = null; |
46 | 46 |
|
47 |
| - System.arraycopy(arr, 0, this.elements, 0, l); |
| 47 | + System.arraycopy(arr, 0, this.elements, 0, len); |
48 | 48 |
|
49 |
| - // 从最后一个非叶子节点开始,向前依次对数组中的元素进行自顶向下的堆化操作 |
50 |
| - // 时间复杂度: O(n) |
51 |
| - int nonLeaf = (size - 1) / 2; |
52 |
| - for (int i = nonLeaf; i >= 0; i--) { |
53 |
| - E element = (E) elements[i]; |
54 |
| - siftDown(i, element); |
55 |
| - } |
| 49 | + // 从最后一个非叶子节点开始,向前依次对数组中的元素进行自顶向下的堆化操作 |
| 50 | + // 时间复杂度: O(n) |
| 51 | + int nonLeaf = (size - 1) / 2; |
| 52 | + for (int i = nonLeaf; i >= 0; i--) { |
| 53 | + E element = (E) elements[i]; |
| 54 | + siftDown(i, element); |
56 | 55 | }
|
57 |
| - |
58 |
| - private void grow() { |
59 |
| - final Object[] newElementData = new Object[elements.length * 2]; |
60 |
| - System.arraycopy(elements, 0, newElementData, 0, elements.length); |
61 |
| - elements = newElementData; |
| 56 | + } |
| 57 | + |
| 58 | + private void grow() { |
| 59 | + final Object[] newElementData = new Object[elements.length * 2]; |
| 60 | + System.arraycopy(elements, 0, newElementData, 0, elements.length); |
| 61 | + elements = newElementData; |
| 62 | + } |
| 63 | + |
| 64 | + @SuppressWarnings("unchecked") |
| 65 | + private int compare(E a, E b) { |
| 66 | + if (comparator != null) { |
| 67 | + return comparator.compare(a, b); |
| 68 | + } else { |
| 69 | + return ((Comparable<? super E>) a).compareTo(b); |
62 | 70 | }
|
63 |
| - |
64 |
| - @SuppressWarnings("unchecked") |
65 |
| - private int compare(E a, E b) { |
66 |
| - if (comparator != null) { |
67 |
| - return comparator.compare(a, b); |
68 |
| - } else { |
69 |
| - return ((Comparable<? super E>) a).compareTo(b); |
70 |
| - } |
| 71 | + } |
| 72 | + |
| 73 | + /** |
| 74 | + * 向堆中添加元素 |
| 75 | + * |
| 76 | + * @param element 待添加元素 |
| 77 | + */ |
| 78 | + public void add(E element) { |
| 79 | + // assert element is not null |
| 80 | + if (elements.length == size) { // 存储小顶堆数据项的数组已满 |
| 81 | + grow(); |
71 | 82 | }
|
72 | 83 |
|
73 |
| - /** |
74 |
| - * 向堆中添加元素 |
75 |
| - * |
76 |
| - * @param element 待添加元素 |
77 |
| - */ |
78 |
| - public void add(E element) { |
79 |
| - // assert element is not null |
80 |
| - if (elements.length == size) { // 存储小顶堆数据项的数组已满 |
81 |
| - grow(); |
82 |
| - } |
83 |
| - |
84 |
| - elements[++size] = element; |
| 84 | + elements[++size] = element; |
85 | 85 |
|
86 |
| - // 自底向上进行堆化操作 |
87 |
| - int index = size - 1; |
88 |
| - if (index != 0) { |
89 |
| - siftUp(index, element); |
90 |
| - } |
| 86 | + // 自底向上进行堆化操作 |
| 87 | + int index = size - 1; |
| 88 | + if (index != 0) { |
| 89 | + siftUp(index, element); |
91 | 90 | }
|
92 |
| - |
93 |
| - /** |
94 |
| - * 自底向上的堆化操作 |
95 |
| - * |
96 |
| - * @param k 上浮元素在数组中的索引,通常是 this.size - 1 |
97 |
| - * @param element 待上浮的元素 |
98 |
| - */ |
99 |
| - @SuppressWarnings("unchecked") |
100 |
| - private void siftUp(int k, E element) { |
101 |
| - |
| 91 | + } |
| 92 | + |
| 93 | + /** |
| 94 | + * 自底向上的堆化操作 |
| 95 | + * |
| 96 | + * @param k 上浮元素在数组中的索引,通常是 this.size - 1 |
| 97 | + * @param element 待上浮的元素 |
| 98 | + */ |
| 99 | + @SuppressWarnings("unchecked") |
| 100 | + private void siftUp(int k, E element) {<
F438
/div> |
| 101 | + |
| 102 | +/* |
102 | 103 | while (k > 0) {
|
103 | 104 | int parent = parentIndex(k);
|
104 |
| - E p = (E) elements[parent]; |
| 105 | + e p = (e) elements[parent]; |
105 | 106 |
|
106 | 107 | if (compare(element, p) >= 0) {
|
107 | 108 | break;
|
108 | 109 | }
|
109 |
| - elements[k] = parent; |
| 110 | + elements[k] = parentl |
110 | 111 |
|
111 | 112 | k = parent;
|
112 | 113 | }
|
| 114 | +*/ |
113 | 115 |
|
114 |
| - elements[k] = element; |
115 |
| - } |
| 116 | + for (int parent = parentIndex(k); |
| 117 | + k > 0; |
| 118 | + k = parent) { |
116 | 119 |
|
117 |
| - /** |
118 |
| - * 取出堆顶元素 |
119 |
| - * |
120 |
| - * @return 堆顶元素 |
121 |
| - */ |
122 |
| - @SuppressWarnings("unchecked") |
123 |
| - public E poll() { |
124 |
| - if (size == 0) { |
125 |
| - return null; |
126 |
| - } |
127 |
| - final E min = (E) elements[0]; |
| 120 | + E p = (E) elements[parent]; |
128 | 121 |
|
129 |
| - elements[0] = elements[--size]; |
130 |
| - elements[size + 1] = null; // let GC do its work |
| 122 | + if (compare(element, p) < 0) { |
| 123 | + elements[k] = p; |
| 124 | + } else { |
| 125 | + break; |
| 126 | + } |
131 | 127 |
|
132 |
| - // 自顶向下进行堆化操作 |
133 |
| - E element = (E) elements[0]; |
134 |
| - siftDown(0, element); |
| 128 | + } |
135 | 129 |
|
136 |
| - return min; |
| 130 | + elements[k] = element; |
| 131 | + } |
| 132 | + |
| 133 | + /** |
| 134 | + * 取出堆顶元素 |
| 135 | + * |
| 136 | + * @return 堆顶元素 |
| 137 | + */ |
| 138 | + @SuppressWarnings("unchecked") |
| 139 | + public E poll() { |
| 140 | + if (size == 0) { |
| 141 | + return null; |
137 | 142 | }
|
| 143 | + final E min = (E) elements[0]; |
| 144 | + |
| 145 | + elements[0] = elements[--size]; |
| 146 | + elements[size + 1] = null; // let GC do its work |
138 | 147 |
|
139 |
| - /** |
140 |
| - * 自顶向下的堆化操作 |
141 |
| - * |
142 |
| - * @param k 待下沉堆顶元素的数组索引,为 0 |
143 |
| - * @param element 待下沉的堆顶元素 |
144 |
| - */ |
145 |
| - @SuppressWarnings("unchecked") |
146 |
| - private void siftDown(int k, E element) { |
| 148 | + // 自顶向下进行堆化操作 |
| 149 | + E element = (E) elements[0]; |
| 150 | + siftDown(0, element); |
147 | 151 |
|
148 |
| - int half = size / 2; |
149 |
| - while (k < half) { |
150 |
| - int child = leftChildIndex(k); |
151 |
| - E c = (E) elements[child]; |
| 152 | + return min; |
| 153 | + } |
| 154 | + |
| 155 | + /** |
| 156 | + * 自顶向下的堆化操作 |
| 157 | + * |
| 158 | + * @param k 待下沉堆顶元素的数组索引,为 0 |
| 159 | + * @param element 待下沉的堆顶元素 |
| 160 | + */ |
| 161 | + @SuppressWarnings("unchecked") |
| 162 | + private void siftDown(int k, E element) { |
| 163 | + |
| 164 | + int half = size / 2; |
| 165 | + while (k < half) { |
| 166 | + /*int child = leftChildIndex(k); |
| 167 | + E minChild = (E) elements[child]; |
152 | 168 |
|
153 | 169 | int right = child + 1;
|
154 |
| - if (right < size && compare(c, (E) elements[right]) > 0) { |
155 |
| - c = (E) elements[child = right]; |
| 170 | + if (right < size && compare(minChild, (E) elements[right]) > 0) { |
| 171 | + minChild = (E) elements[child = right]; |
156 | 172 | }
|
157 | 173 |
|
158 |
| - if (compare(element, c) <= 0) { |
| 174 | + if (compare(element, minChild) <= 0) { |
159 | 175 | break;
|
160 | 176 | }
|
161 |
| - elements[k] = c; |
| 177 | + elements[k] = minChild; |
162 | 178 |
|
163 |
| - k = child; |
164 |
| - } |
| 179 | + k = child;*/ |
165 | 180 |
|
166 |
| - elements[k] = element; |
167 |
| - } |
| 181 | + int left = leftChildIndex(k); |
| 182 | + int right = left + 1; |
| 183 | + |
| 184 | + if (right < size) { |
| 185 | + E minChild = compare((E) elements[right], (E) elements[left]) < 0 |
| 186 | + ? (E) elements[right] |
| 187 | + : (E) elements[left]; |
| 188 | + } |
168 | 189 |
|
169 |
| - private int parentIndex(int index) { |
170 |
| - return (index - 1) / 2; |
171 |
| - } |
172 | 190 |
|
173 |
| - private int leftChildIndex(int index) { |
174 |
| - return 2 * index + 1; |
175 | 191 | }
|
176 | 192 |
|
| 193 | + elements[k] = element; |
| 194 | + } |
| 195 | + |
| 196 | + private int parentIndex(int index) { |
| 197 | + return (index - 1) / 2; |
| 198 | + } |
| 199 | + |
| 200 | + private int leftChildIndex(int index) { |
| 201 | + return 2 * index + 1; |
| 202 | + } |
| 203 | + |
177 | 204 |
|
178 | 205 | }
|
0 commit comments