-
|
I'm using RAG-Anything and was able to embed a few documents. How can I "fire up" the LightRAG interface to handle the data I have processed using RAG-Anything? |
Beta Was this translation helpful? Give feedback.
Replies: 1 comment
-
|
🚀 Great question! RAG-Anything and LightRAG can work together seamlessly. Here's how to access your processed data through the LightRAG interface: 🔧 Method 1: Direct Instance AccessAfter processing documents with RAG-Anything, you can access the underlying LightRAG instance: from raganything import RAGAnything, RAGAnythingConfig
# Initialize RAG-Anything
config = RAGAnythingConfig(working_dir="./rag_storage")
rag = RAGAnything(config=config, llm_model_func=your_llm, embedding_func=your_embedding)
# Process your documents
await rag.process_document_complete(
file_path="document.pdf",
output_dir="./output"
)
# Access the LightRAG instance directly
lightrag_instance = rag.lightrag
# Now you can use LightRAG methods directly
result = await lightrag_instance.aquery("Your query here")
print(result)📊 Method 2: Using Existing StorageIf you've already processed documents, you can initialize LightRAG pointing to the same storage: from lightrag import LightRAG, QueryParam
# Point to the same working directory
lightrag = LightRAG(
working_dir="./rag_storage", # Same as RAG-Anything working_dir
llm_model_func=your_llm_function,
embedding_func=your_embedding_function
)
# Query your processed data
result = await lightrag.aquery(
"What are the key insights from the processed documents?",
param=QueryParam(mode="hybrid")
)🔍 Method 3: Graph Visualization InterfaceFor visual exploration of your knowledge graph: # After processing with RAG-Anything
from lightrag.utils import EmbeddingFunc
import networkx as nx
# Access the graph data
graph_data = rag.lightrag.chunk_entity_relation_graph
# Create visualization
def visualize_knowledge_graph():
G = nx.Graph()
# Add nodes and edges from your processed data
for entity in graph_data.entities:
G.add_node(entity.name, **entity.properties)
for relation in graph_data.relations:
G.add_edge(relation.source, relation.target,
weight=relation.strength)
return G
# Generate and display graph
graph = visualize_knowledge_graph()⚙️ Method 4: Custom Query InterfaceBuild a simple interface to interact with your processed data: import asyncio
class RAGInterface:
def __init__(self, rag_anything_instance):
self.rag = rag_anything_instance
self.lightrag = rag_anything_instance.lightrag
async def interactive_query(self):
print("🤖 RAG-Anything Interactive Interface")
print("Type 'exit' to quit")
while True:
query = input("\n📝 Enter your query: ")
if query.lower() == 'exit':
break
try:
# Use different query modes
hybrid_result = await self.lightrag.aquery(query, mode="hybrid")
print(f"\n🔍 Hybrid Search Result:\n{hybrid_result}")
except Exception as e:
print(f"❌ Error: {e}")
# Usage
interface = RAGInterface(rag)
await interface.interactive_query()🛠️ Configuration AlignmentMake sure your LightRAG configuration matches RAG-Anything settings: # Check RAG-Anything config
print(f"Working directory: {rag.config.working_dir}")
print(f"Enable image processing: {rag.config.enable_image_processing}")
# Configure LightRAG with same settings
lightrag_config = {
"working_dir": rag.config.working_dir,
"enable_image": rag.config.enable_image_processing,
"enable_table": rag.config.enable_table_processing,
"chunk_token_size": rag.config.chunk_token_size,
"chunk_overlap_token_size": rag.config.chunk_overlap_token_size
}🚨 Troubleshooting Common Issues
# Ensure paths match exactly
assert rag.config.working_dir == lightrag.working_dir
pip install lightrag networkx matplotlib plotly
# Use streaming queries for large datasets
async def stream_query(query):
for chunk in await lightrag.aquery_stream(query):
yield chunk📈 Advanced Integration ExampleHere's a complete example combining both systems: import asyncio
from raganything import RAGAnything, RAGAnythingConfig
from lightrag import LightRAG
async def full_rag_workflow():
# Step 1: Process documents with RAG-Anything
config = RAGAnythingConfig(
working_dir="./unified_rag_storage",
enable_image_processing=True,
enable_table_processing=True
)
rag_anything = RAGAnything(config=config)
# Process your documents
await rag_anything.process_folder_complete("./documents")
# Step 2: Access via LightRAG interface
lightrag = rag_anything.lightrag
# Step 3: Advanced querying
queries = [
"Summarize the main topics across all documents",
"What are the key relationships between entities?",
"Find contradictions or inconsistencies in the data"
]
results = {}
for query in queries:
result = await lightrag.aquery(
query,
mode="hybrid",
only_need_context=False
)
results[query] = result
return results
# Run the workflow
results = await full_rag_workflow()
for query, result in results.items():
print(f"Query: {query}")
print(f"Result: {result}\n{'-'*50}\n")💡 Pro Tips
The key is that RAG-Anything builds on top of LightRAG, so you can access the underlying LightRAG instance directly or create a new one pointing to the same storage directory! 🎯 Let me know if you need help with any specific integration scenario! |
Beta Was this translation helpful? Give feedback.
🚀 Great question! RAG-Anything and LightRAG can work together seamlessly. Here's how to access your processed data through the LightRAG interface:
🔧 Method 1: Direct Instance Access
After processing documents with RAG-Anything, you can access the underlying LightRAG instance: