-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
737 lines (609 loc) · 23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Mostly copy-paste from torchvision references or other public repos like DETR:
https://github.com/facebookresearch/detr/blob/master/util/misc.py
"""
import os
import sys
import time
import math
import json
import random
import datetime
import subprocess
import numpy as np
import torch
import torch.distributed as dist
from collections import defaultdict, deque
from pathlib import Path
from torch import nn
from PIL import ImageFilter, ImageOps, Image, ImageDraw
def save_model(args, epoch, model,model_without_ddp, optimizer, loss_scaler):
output_dir = Path(args.output_dir)
epoch_name = str(epoch)
if loss_scaler is not None:
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
save_on_master(to_save, checkpoint_path)
else:
client_state = {'epoch': epoch}
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)
def clip_gradients(model, clip):
norms = []
for name, p in model.named_parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
norms.append(param_norm.item())
clip_coef = clip / (param_norm + 1e-6)
if clip_coef < 1:
p.grad.data.mul_(clip_coef)
return norms
def cancel_gradients_last_layer(epoch, model, freeze_last_layer):
if epoch >= freeze_last_layer:
return
for n, p in model.named_parameters():
if "last_layer" in n:
p.grad = None
def restart_from_checkpoint(ckp_path, run_variables=None, **kwargs):
"""
Re-start from checkpoint
"""
if not os.path.isfile(ckp_path):
return
print("Found checkpoint at {}".format(ckp_path))
# open checkpoint file
checkpoint = torch.load(ckp_path, map_location="cpu")
# key is what to look for in the checkpoint file
# value is the object to load
# example: {'state_dict': model}
for key, value in kwargs.items():
if key in checkpoint and value is not None:
try:
msg = value.load_state_dict(checkpoint[key], strict=False)
print("=> loaded '{}' from checkpoint '{}' with msg {}".format(key, ckp_path, msg))
except TypeError:
try:
msg = value.load_state_dict(checkpoint[key])
print("=> loaded '{}' from checkpoint: '{}'".format(key, ckp_path))
except ValueError:
print("=> failed to load '{}' from checkpoint: '{}'".format(key, ckp_path))
else:
print("=> key '{}' not found in checkpoint: '{}'".format(key, ckp_path))
# re load variable important for the run
if run_variables is not None:
for var_name in run_variables:
if var_name in checkpoint:
run_variables[var_name] = checkpoint[var_name]
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0):
warmup_schedule = np.array([])
warmup_iters = warmup_epochs * niter_per_ep
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters)))
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def bool_flag(s):
"""
Parse boolean arguments from the command line.
"""
FALSY_STRINGS = {"off", "false", "0"}
TRUTHY_STRINGS = {"on", "true", "1"}
if s.lower() in FALSY_STRINGS:
return False
elif s.lower() in TRUTHY_STRINGS:
return True
else:
raise argparse.ArgumentTypeError("invalid value for a boolean flag")
def fix_random_seeds(seed=31):
"""
Fix random seeds.
"""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
return seed
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.6f} ({global_avg:.6f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.6f}')
data_time = SmoothedValue(fmt='{avg:.6f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.6f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
sha = 'N/A'
diff = "clean"
branch = 'N/A'
try:
sha = _run(['git', 'rev-parse', 'HEAD'])
subprocess.check_output(['git', 'diff'], cwd=cwd)
diff = _run(['git', 'diff-index', 'HEAD'])
diff = "has uncommited changes" if diff else "clean"
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_distributed_mode(args):
# launched with torch.distributed.launch
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
# launched with submitit on a slurm cluster
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
# launched naively with `python main_dino.py`
# we manually add MASTER_ADDR and MASTER_PORT to env variables
elif torch.cuda.is_available():
print('Will run the code on one GPU.')
args.rank, args.gpu, args.world_size = 0, 0, 1
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29506'
else:
print('Does not support training without GPU.')
sys.exit(1)
dist.init_process_group(
backend="nccl",
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
torch.cuda.set_device(args.gpu)
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
dist.barrier()
setup_for_distributed(args.rank == 0)
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
class LARS(torch.optim.Optimizer):
"""
Almost copy-paste from https://github.com/facebookresearch/barlowtwins/blob/main/main.py
"""
def __init__(self, params, lr=0, weight_decay=0, momentum=0.9, eta=0.001,
weight_decay_filter=None, lars_adaptation_filter=None):
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum,
eta=eta, weight_decay_filter=weight_decay_filter,
lars_adaptation_filter=lars_adaptation_filter)
super().__init__(params, defaults)
@torch.no_grad()
def step(self):
for g in self.param_groups:
for p in g['params']:
dp = p.grad
if dp is None:
continue
if p.ndim != 1:
dp = dp.add(p, alpha=g['weight_decay'])
if p.ndim != 1:
param_norm = torch.norm(p)
update_norm = torch.norm(dp)
one = torch.ones_like(param_norm)
q = torch.where(param_norm > 0.,
torch.where(update_norm > 0,
(g['eta'] * param_norm / update_norm), one), one)
dp = dp.mul(q)
param_state = self.state[p]
if 'mu' not in param_state:
param_state['mu'] = torch.zeros_like(p)
mu = param_state['mu']
mu.mul_(g['momentum']).add_(dp)
p.add_(mu, alpha=-g['lr'])
def create_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": 1000,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
0.9,
0.999
],
"eps": 1e-8
}
},
"fp16": {
"enabled": True,
"loss_scale": 0,
"initial_scale_power": 7,
"loss_scale_window": 128
}
}
writer.write(json.dumps(ds_config, indent=2))
class MultiCropWrapper(nn.Module):
"""
Perform forward pass separately on each resolution input.
The inputs corresponding to a single resolution are clubbed and single
forward is run on the same resolution inputs. Hence we do several
forward passes = number of different resolutions used. We then
concatenate all the output features and run the head forward on these
concatenated features.
"""
def __init__(self, backbone, head=None):
super(MultiCropWrapper, self).__init__()
# disable layers dedicated to ImageNet labels classification
backbone.fc, backbone.head = nn.Identity(), nn.Identity()
self.backbone = backbone
if head is None:
self.head = nn.Identity()
else:
self.head = head
def forward(self, x, mask_ratio=None, return_backbone_feat=False):
# convert to list
if mask_ratio != 0:
t = 0
_out,loss,out_mask,ids_restore,clip_tezheng = self.backbone(x, mask_ratio)
t = _out.size(0)
output_new = self.head(_out)
return output_new,loss,out_mask,ids_restore,t,clip_tezheng
else:
_out = self.backbone(x, mask_ratio)
output_new = self.head(_out)
return output_new
def get_params_groups(model):
regularized = []
not_regularized = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
# we do not regularize biases nor Norm parameters
if name.endswith(".bias") or len(param.shape) == 1:
not_regularized.append(param)
else:
regularized.append(param)
return [{'params': regularized}, {'params': not_regularized, 'weight_decay': 0.}]
def has_batchnorms(model):
bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm)
for name, module in model.named_modules():
if isinstance(module, bn_types):
return True
return False
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output
class PCA():
"""
Class to compute and apply PCA.
"""
def __init__(self, dim=256, whit=0.5):
self.dim = dim
self.whit = whit
self.mean = None
def train_pca(self, cov):
"""
Takes a covariance matrix (np.ndarray) as input.
"""
d, v = np.linalg.eigh(cov)
eps = d.max() * 1e-5
n_0 = (d < eps).sum()
if n_0 > 0:
d[d < eps] = eps
# total energy
totenergy = d.sum()
# sort eigenvectors with eigenvalues order
idx = np.argsort(d)[::-1][:self.dim]
d = d[idx]
v = v[:, idx]
print("keeping %.2f %% of the energy" % (d.sum() / totenergy * 100.0))
# for the whitening
d = np.diag(1. / d**self.whit)
# principal components
self.dvt = np.dot(d, v.T)
def apply(self, x):
# input is from numpy
if isinstance(x, np.ndarray):
if self.mean is not None:
x -= self.mean
return np.dot(self.dvt, x.T).T
# input is from torch and is on GPU
if x.is_cuda:
if self.mean is not None:
x -= torch.cuda.FloatTensor(self.mean)
return torch.mm(torch.cuda.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)
# input if from torch, on CPU
if self.mean is not None:
x -= torch.FloatTensor(self.mean)
return torch.mm(torch.FloatTensor(self.dvt), x.transpose(0, 1)).transpose(0, 1)
def compute_ap(ranks, nres):
"""
Computes average precision for given ranked indexes.
Arguments
---------
ranks : zerro-based ranks of positive images
nres : number of positive images
Returns
-------
ap : average precision
"""
# number of images ranked by the system
nimgranks = len(ranks)
# accumulate trapezoids in PR-plot
ap = 0
recall_step = 1. / nres
for j in np.arange(nimgranks):
rank = ranks[j]
if rank == 0:
precision_0 = 1.
else:
precision_0 = float(j) / rank
precision_1 = float(j + 1) / (rank + 1)
ap += (precision_0 + precision_1) * recall_step / 2.
return ap
def compute_map(ranks, gnd, kappas=[]):
"""
Computes the mAP for a given set of returned results.
Usage:
map = compute_map (ranks, gnd)
computes mean average precsion (map) only
map, aps, pr, prs = compute_map (ranks, gnd, kappas)
computes mean average precision (map), average precision (aps) for each query
computes mean precision at kappas (pr), precision at kappas (prs) for each query
Notes:
1) ranks starts from 0, ranks.shape = db_size X #queries
2) The junk results (e.g., the query itself) should be declared in the gnd stuct array
3) If there are no positive images for some query, that query is excluded from the evaluation
"""
map = 0.
nq = len(gnd) # number of queries
aps = np.zeros(nq)
pr = np.zeros(len(kappas))
prs = np.zeros((nq, len(kappas)))
nempty = 0
for i in np.arange(nq):
qgnd = np.array(gnd[i]['ok'])
# no positive images, skip from the average
if qgnd.shape[0] == 0:
aps[i] = float('nan')
prs[i, :] = float('nan')
nempty += 1
continue
try:
qgndj = np.array(gnd[i]['junk'])
except:
qgndj = np.empty(0)
# sorted positions of positive and junk images (0 based)
pos = np.arange(ranks.shape[0])[np.in1d(ranks[:,i], qgnd)]
junk = np.arange(ranks.shape[0])[np.in1d(ranks[:,i], qgndj)]
k = 0;
ij = 0;
if len(junk):
# decrease positions of positives based on the number of
# junk images appearing before them
ip = 0
while (ip < len(pos)):
while (ij < len(junk) and pos[ip] > junk[ij]):
k += 1
ij += 1
pos[ip] = pos[ip] - k
ip += 1
# compute ap
ap = compute_ap(pos, len(qgnd))
map = map + ap
aps[i] = ap
# compute precision @ k
pos += 1 # get it to 1-based
for j in np.arange(len(kappas)):
kq = min(max(pos), kappas[j]);
prs[i, j] = (pos <= kq).sum() / kq
pr = pr + prs[i, :]
map = map / (nq - nempty)
pr = pr / (nq - nempty)
return map, aps, pr, prs