|
| 1 | +namespace DiffSharp |
| 2 | + |
| 3 | +[<AutoOpen>] |
| 4 | +module AvgPoolExtensions = |
| 5 | + |
| 6 | + type Tensor with |
| 7 | + /// <summary>Applies a 1D average pooling over an input signal composed of several input planes, returning the max indices along with the outputs.</summary> |
| 8 | + /// <param name="kernelSize">The size of the window to take a max over.</param> |
| 9 | + /// <param name="stride">The stride of the window. Default value is kernelSize.</param> |
| 10 | + /// <param name="padding">The implicit zero padding to be added on both sides.</param> |
| 11 | + member a.avgpool1d(kernelSize:int, ?stride:int, ?padding:int(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 12 | + let stride = defaultArg stride kernelSize |
| 13 | + let padding = defaultArg padding 0 |
| 14 | + //let ceil_mode = defaultArg ceil_mode false |
| 15 | + //let count_include_pad= defaultArg count_include_pad true |
| 16 | + Shape.checkCanAvgpool1d a.dtype a.shape kernelSize stride padding |> ignore |
| 17 | + Tensor.Op |
| 18 | + { new UnaryOp("avgpool1d") with |
| 19 | + member _.fRaw(a) = a.AvgPool1D(kernelSize, stride, padding(* , ceil_mode, count_include_pad *)) |
| 20 | + member t.ad_dfda(a, ad, f) = ad.avgpool1d(kernelSize, stride, padding(* , ceil_mode, count_include_pad *)) |
| 21 | + member _.fd_dfda(a, f, fd) = fd.avgpoolReverse1d(a, kernelSize, stride, padding(* , ceil_mode, count_include_pad *)) |
| 22 | + } |
| 23 | + a |
| 24 | + |
| 25 | + member internal a.avgpoolReverse1d(originalInput:Tensor, kernelSize:int, ?stride:int, ?padding:int(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 26 | + let stride = defaultArg stride kernelSize |
| 27 | + let padding = defaultArg padding 0 |
| 28 | + //let ceil_mode = defaultArg ceil_mode false |
| 29 | + //let count_include_pad= defaultArg count_include_pad true |
| 30 | + Tensor.Op |
| 31 | + { new UnaryOp("avgpoolReverse1d") with |
| 32 | + member _.fRaw(a) = a.AvgPoolReverse1D(originalInput.primalRaw, kernelSize, stride, padding(* , ceil_mode, count_include_pad *)) |
| 33 | + member _.ad_dfda(a, ad, f) = ad.avgpoolReverse1d(originalInput, kernelSize, stride, padding(* , ceil_mode, count_include_pad *)) |
| 34 | + member _.fd_dfda(a, f, fd) = fd.avgpool1d(kernelSize, stride, padding(* , ceil_mode, count_include_pad *)) |
| 35 | + } |
| 36 | + a |
| 37 | + |
| 38 | + /// <summary>Applies a 1D average pooling over an input signal composed of several input planes, returning the max indices along with the outputs.</summary> |
| 39 | + /// <param name="kernelSize">The size of the window to take a max over.</param> |
| 40 | + /// <param name="stride">The stride of the window. Default value is kernelSize.</param> |
| 41 | + /// <param name="padding">The implicit zero padding to be added on both sides.</param> |
| 42 | + /// <param name="kernelSizes">The sizes of the window to take a max over.</param> |
| 43 | + /// <param name="strides">The strides of the window. Default value is kernelSize.</param> |
| 44 | + /// <param name="paddings">The implicit zero paddings to be added on both sides.</param> |
| 45 | + member a.avgpool2d(?kernelSize:int, ?stride:int, ?padding:int, ?kernelSizes:seq<int>, ?strides:seq<int>, ?paddings:seq<int>(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 46 | + let kernelSizes, strides, paddings = Shape.resolve2dMaxPoolSizes kernelSize kernelSizes stride strides padding paddings |
| 47 | + //let ceil_mode = defaultArg ceil_mode false |
| 48 | + //let count_include_pad= defaultArg count_include_pad true |
| 49 | + Shape.checkCanAvgpool2d a.dtype a.shape kernelSizes strides paddings |> ignore |
| 50 | + Tensor.Op |
| 51 | + { new UnaryOp("avgpool2d") with |
| 52 | + member _.fRaw(a) = a.AvgPool2D(kernelSizes, strides, paddings(* , ceil_mode, count_include_pad *)) |
| 53 | + member _.ad_dfda(a, ad, f) = ad.avgpool2d(kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 54 | + member _.fd_dfda(a, f, fd) = fd.avgpoolReverse2d(a, kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 55 | + } |
| 56 | + a |
| 57 | + |
| 58 | + member internal a.avgpoolReverse2d(originalInput:Tensor, ?kernelSize:int, ?stride:int, ?padding:int, ?kernelSizes:seq<int>, ?strides:seq<int>, ?paddings:seq<int>(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 59 | + let kernelSizes, strides, paddings = Shape.resolve2dMaxPoolSizes kernelSize kernelSizes stride strides padding paddings |
| 60 | + //let ceil_mode = defaultArg ceil_mode false |
| 61 | + //let count_include_pad= defaultArg count_include_pad true |
| 62 | + Tensor.Op |
| 63 | + { new UnaryOp("avgpoolReverse2d") with |
| 64 | + member _.fRaw(a) = a.AvgPoolReverse2D(originalInput.primalRaw, kernelSizes, strides, paddings(* , ceil_mode, count_include_pad *)) |
| 65 | + member _.ad_dfda(a, ad, f) = ad.avgpoolReverse2d(originalInput, kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 66 | + member _.fd_dfda(a, f, fd) = fd.avgpool2d(kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 67 | + } |
| 68 | + a |
| 69 | + |
| 70 | + /// <summary>Applies a 3D average pooling over an input signal composed of several input planes, returning the max indices along with the outputs.</summary> |
| 71 | + /// <param name="kernelSize">The size of the window to take a max over.</param> |
| 72 | + /// <param name="stride">The stride of the window. Default value is kernelSize.</param> |
| 73 | + /// <param name="padding">The implicit zero padding to be added on both sides.</param> |
| 74 | + /// <param name="kernelSizes">The sizes of the window to take a max over.</param> |
| 75 | + /// <param name="strides">The strides of the window. Default value is kernelSize.</param> |
| 76 | + /// <param name="paddings">The implicit zero paddings to be added on both sides.</param> |
| 77 | + member a.avgpool3d(?kernelSize:int, ?stride:int, ?padding:int, ?kernelSizes:seq<int>, ?strides:seq<int>, ?paddings:seq<int>(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 78 | + let kernelSizes, strides, paddings = Shape.resolve3dMaxPoolSizes kernelSize kernelSizes stride strides padding paddings |
| 79 | + //let ceil_mode = defaultArg ceil_mode false |
| 80 | + //let count_include_pad= defaultArg count_include_pad true |
| 81 | + Shape.checkCanAvgpool3d a.dtype a.shape kernelSizes strides paddings |> ignore |
| 82 | + Tensor.Op |
| 83 | + { new UnaryOp("avgpool3d") with |
| 84 | + member _.fRaw(a) = a.AvgPool3D(kernelSizes, strides, paddings(* , ceil_mode, count_include_pad *)) |
| 85 | + member _.ad_dfda(a, ad, f) = ad.avgpool3d(kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 86 | + member _.fd_dfda(a, f, fd) = fd.avgpoolReverse3d(a, kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 87 | + } |
| 88 | + a |
| 89 | + |
| 90 | + member internal a.avgpoolReverse3d(originalInput:Tensor, ?kernelSize:int, ?stride:int, ?padding:int, ?kernelSizes:seq<int>, ?strides:seq<int>, ?paddings:seq<int>(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 91 | + let kernelSizes, strides, paddings = Shape.resolve3dMaxPoolSizes kernelSize kernelSizes stride strides padding paddings |
| 92 | + //let ceil_mode = defaultArg ceil_mode false |
| 93 | + //let count_include_pad= defaultArg count_include_pad true |
| 94 | + Tensor.Op |
| 95 | + { new UnaryOp("avgpoolReverse3d") with |
| 96 | + member _.fRaw(a) = a.AvgPoolReverse3D(originalInput.primalRaw, kernelSizes, strides, paddings(* , ceil_mode, count_include_pad *)) |
| 97 | + member _.ad_dfda(a, ad, f) = ad.avgpoolReverse3d(originalInput, kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 98 | + member _.fd_dfda(a, f, fd) = fd.avgpool3d(kernelSizes=kernelSizes, strides=strides, paddings=paddings(* , ceil_mode=ceil_mode, count_include_pad=count_include_pad *)) |
| 99 | + } |
| 100 | + a |
| 101 | + |
| 102 | + type dsharp with |
| 103 | + /// <summary>Applies a 1D average pooling over an input signal composed of several input planes, returning the max indices along with the outputs.</summary> |
| 104 | + /// <param name="input">The input tensor.</param> |
| 105 | + /// <param name="kernelSize">The size of the window to take a max over.</param> |
| 106 | + /// <param name="stride">The stride of the window. Default value is kernelSize.</param> |
| 107 | + /// <param name="padding">The implicit zero padding to be added on both sides.</param> |
| 108 | + static member avgpool1d(input: Tensor, kernelSize:int, ?stride:int, ?padding:int(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 109 | + input.avgpool2d(kernelSize=kernelSize, ?stride=stride, ?padding=padding(* , ?ceil_mode=ceil_mode, ?count_include_pad=count_include_pad *)) |
| 110 | + |
| 111 | + /// <summary>Applies a 2D average pooling over an input signal composed of several input planes, returning the max indices along with the outputs.</summary> |
| 112 | + /// <param name="input">The input tensor.</param> |
| 113 | + /// <param name="kernelSize">The size of the window to take a max over.</param> |
| 114 | + /// <param name="stride">The stride of the window. Default value is kernelSize.</param> |
| 115 | + /// <param name="padding">The implicit zero padding to be added on both sides.</param> |
| 116 | + /// <param name="kernelSizes">The sizes of the window to take a max over.</param> |
| 117 | + /// <param name="strides">The strides of the window. Default value is kernelSize.</param> |
| 118 | + /// <param name="paddings">The implicit zero paddings to be added on both sides.</param> |
| 119 | + static member avgpool2d(input: Tensor, ?kernelSize:int, ?stride:int, ?padding:int, ?kernelSizes:seq<int>, ?strides:seq<int>, ?paddings:seq<int>(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 120 | + input.avgpool2d(?kernelSize=kernelSize, ?stride=stride, ?padding=padding, ?kernelSizes=kernelSizes, ?strides=strides, ?paddings=paddings(* , ?ceil_mode=ceil_mode, ?count_include_pad=count_include_pad *)) |
| 121 | + |
| 122 | + /// <summary>Applies a 2D average pooling over an input signal composed of several input planes, returning the max indices along with the outputs.</summary> |
| 123 | + /// <param name="input">The input tensor.</param> |
| 124 | + /// <param name="kernelSize">The size of the window to take a max over.</param> |
| 125 | + /// <param name="stride">The stride of the window. Default value is kernelSize.</param> |
| 126 | + /// <param name="padding">The implicit zero padding to be added on both sides.</param> |
| 127 | + /// <param name="kernelSizes">The sizes of the window to take a max over.</param> |
| 128 | + /// <param name="strides">The strides of the window. Default value is kernelSize.</param> |
| 129 | + /// <param name="paddings">The implicit zero paddings to be added on both sides.</param> |
| 130 | + static member avgpool3d(input: Tensor, ?kernelSize:int, ?stride:int, ?padding:int, ?kernelSizes:seq<int>, ?strides:seq<int>, ?paddings:seq<int>(* , ?ceil_mode: bool, ?count_include_pad: bool *)) = |
| 131 | + input.avgpool3d(?kernelSize=kernelSize, ?stride=stride, ?padding=padding, ?kernelSizes=kernelSizes, ?strides=strides, ?paddings=paddings(* , ?ceil_mode=ceil_mode, ?count_include_pad=count_include_pad *)) |
| 132 | + |
0 commit comments