1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "provenance" : [],
7
+ "authorship_tag" : " ABX9TyOPTFE36tjCuSWE+KQiRFpr" ,
8
+ "include_colab_link" : true
9
+ },
10
+ "kernelspec" : {
11
+ "name" : " python3" ,
12
+ "display_name" : " Python 3"
13
+ },
14
+ "language_info" : {
15
+ "name" : " python"
16
+ }
17
+ },
18
+ "cells" : [
19
+ {
20
+ "cell_type" : " markdown" ,
21
+ "metadata" : {
22
+ "id" : " view-in-github" ,
23
+ "colab_type" : " text"
24
+ },
25
+ "source" : [
26
+ " <a href=\" https://colab.research.google.com/github/CodingCoffee-01/python_tutorial/blob/master/pytorch_tutorial.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type" : " code" ,
31
+ "execution_count" : 1 ,
32
+ "metadata" : {
33
+ "id" : " OmyiwdFQTR6G"
34
+ },
35
+ "outputs" : [],
36
+ "source" : [
37
+ " import torch\n " ,
38
+ " \n " ,
39
+ " # Create a tensor\n " ,
40
+ " x = torch.tensor([1, 2, 3])"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type" : " code" ,
45
+ "source" : [
46
+ " # Dynamic computation\n " ,
47
+ " y = x + 2\n " ,
48
+ " z = y * 3\n " ,
49
+ " \n " ,
50
+ " print(\" x=\" ,x)\n " ,
51
+ " print(\" y=\" ,y)\n " ,
52
+ " print(\" z=\" ,z)"
53
+ ],
54
+ "metadata" : {
55
+ "colab" : {
56
+ "base_uri" : " https://localhost:8080/"
57
+ },
58
+ "id" : " Ju82isbuTlAX" ,
59
+ "outputId" : " 29cec62a-ebc1-4587-ec94-ef0d91bb8d1f"
60
+ },
61
+ "execution_count" : 6 ,
62
+ "outputs" : [
63
+ {
64
+ "output_type" : " stream" ,
65
+ "name" : " stdout" ,
66
+ "text" : [
67
+ " x= tensor([1, 2, 3])\n " ,
68
+ " y= tensor([3, 4, 5])\n " ,
69
+ " z= tensor([ 9, 12, 15])\n "
70
+ ]
71
+ }
72
+ ]
73
+ },
74
+ {
75
+ "cell_type" : " code" ,
76
+ "source" : [
77
+ " # importing torch\n " ,
78
+ " import torch\n " ,
79
+ " \n " ,
80
+ " # creating a tensors\n " ,
81
+ " t1=torch.tensor([1, 2, 3, 4])\n " ,
82
+ " t2=torch.tensor([[1, 2, 3, 4],\n " ,
83
+ " [5, 6, 7, 8],\n " ,
84
+ " [9, 10, 11, 12]])\n " ,
85
+ " \n " ,
86
+ " # printing the tensors:\n " ,
87
+ " print(\" Tensor t1: \\ n\" , t1)\n " ,
88
+ " print(\"\\ nTensor t2: \\ n\" , t2)\n " ,
89
+ " \n " ,
90
+ " # rank of tensors\n " ,
91
+ " print(\"\\ nRank of t1: \" , len(t1.shape))\n " ,
92
+ " print(\" Rank of t2: \" , len(t2.shape))\n " ,
93
+ " \n " ,
94
+ " # shape of tensors\n " ,
95
+ " print(\"\\ nRank of t1: \" , t1.shape)\n " ,
96
+ " print(\" Rank of t2: \" , t2.shape)\n " ,
97
+ " \n " ,
98
+ " print(\" t1+3 :\" ,t1+3)"
99
+ ],
100
+ "metadata" : {
101
+ "colab" : {
102
+ "base_uri" : " https://localhost:8080/"
103
+ },
104
+ "id" : " byu2p9kRURl6" ,
105
+ "outputId" : " d26fc4c6-7ed3-426f-ab7b-7b43e82fbd76"
106
+ },
107
+ "execution_count" : 5 ,
108
+ "outputs" : [
109
+ {
110
+ "output_type" : " stream" ,
111
+ "name" : " stdout" ,
112
+ "text" : [
113
+ " Tensor t1: \n " ,
114
+ " tensor([1, 2, 3, 4])\n " ,
115
+ " \n " ,
116
+ " Tensor t2: \n " ,
117
+ " tensor([[ 1, 2, 3, 4],\n " ,
118
+ " [ 5, 6, 7, 8],\n " ,
119
+ " [ 9, 10, 11, 12]])\n " ,
120
+ " \n " ,
121
+ " Rank of t1: 1\n " ,
122
+ " Rank of t2: 2\n " ,
123
+ " \n " ,
124
+ " Rank of t1: torch.Size([4])\n " ,
125
+ " Rank of t2: torch.Size([3, 4])\n " ,
126
+ " t1+3 : tensor([4, 5, 6, 7])\n "
127
+ ]
128
+ }
129
+ ]
130
+ }
131
+ ]
132
+ }
0 commit comments