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ABSTRACT. Motivated by a recent conjecture of the second author related to
the ternary partition function, we provide an elegant characterization of the
values by, (mn) modulo m where by, (n) is the number of m-ary partitions of
the integer n and m > 2 is a fixed integer.
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1. INTRODUCTION

Congruences for partition functions have been studied extensively for the last
century or so, beginning with the discoveries of Ramanujan [7]. In this note, we
will focus our attention on congruence properties for the partition functions which
enumerate restricted integer partitions known as m-ary partitions. These are par-
titions of an integer n wherein each part is a power of a fixed integer m > 2.
Throughout this note, we will let b,,,(n) denote the number of m-ary partitions of
n.

As an example, note that there are five 3-ary partitions of n =9 :

9, 3+3+3, 3+3+1+1+1,

3+1+1+1+1+1+1, 1+14+14+1+1+14+14+1+1
Thus, bg(g) = 5.

In the late 1960s, Churchhouse [3, 4] initiated the study of congruence properties
of binary partitions (m-ary partitions with m = 2). By his own admission, he did
so serendipitously. To quote Churchhouse [4], “It is however salutary to realise that
the most interesting results were discovered because I made a mistake in a hand
calculation!”

Within months, other mathematicians proved Churchhouse’s conjectures and
proved natural extensions of his results. These included Rgdseth [8] who extended
Churchhouse’s results to include the functions b,(n) where p is any prime as well as
Andrews [2] and Gupta [5, 6] who proved that corresponding results also held for
b (n) where m could be any integer greater than 1. As part of an infinite family
of results, these authors proved that, for any m > 2 and any nonnegative integer
n, byy(m(mn — 1)) =0 (mod m).

We now fast forward forty years. In 2012, the second author conjectured the fol-
lowing absolutely remarkable result related to the ternary partition function b3(n):

e For all n > 0, b3(3n) is divisible by 3 if and only if at least one 2 appears
as a coefficient in the base 3 representation of n.
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e Moreover, b3(3n) = (—1)/ (mod 3) whenever no 2 appears in the base 3
representation of n and j is the number of 1s in the base 3 representation
of n.

This conjecture is remarkable for at least two reasons. First, it provides a complete
characterization of b3(3n) modulo 3. Such characterizations in the world of
integer partitions are rare. Secondly, the result depends on the base 3 representation
of n and nothing else.

Just to “see” what the second author saw, let’s quickly look at some data related
to this conjecture.

n Base 3 Representation of n bs(3n) b3(3n) (mod 3)
1 1x 30 2 2
2 2 x 30 3 0
3 0x3%+1x3! 5 2
4 1x39+1x3t 7 1
5 2x3041x3! 9 0
6 0x3%+2x3! 12 0
7 1x3%+2x3! 15 0
8 2x304+2x3! 18 0
9 0x394+0x3 +1x32 23 2
10 1x3%4+0x3+1x32 28 1
11 2x39+0x3 41 x 32 33 0
12 0x3%4+1x34+1x 32 40 1
13 1x30+1x31+1x32 47 2
14 2x304+1x3'+1x32 54 0
15 0x39+2x3+1x32 63 0

In recent days, the authors succeeded in proving this conjecture. Thankfully, the
proof was both elementary and elegant. After just a bit of additional consideration,
we were able to alter the proof to provide a completely unexpected generalization.
We describe this generalized result, and provide its proof, in the next section.

2. THE FuLL RESULT

Our main theorem, which includes the above conjecture in a very natural way,
provides a complete characterization of b,,(mn) modulo m:

Theorem 2.1. Let m > 2 be a fized integer and let
n=ap+am+ -+ a;m’
be the base m representation of n (so that 0 < a; < m —1 for each i). Then
J
b (mn) = [[(ai +1)  (mod m).
i=0
Notice that the conjecture mentioned above is exactly the m = 3 case of Theorem
2.1.
In order to prove Theorem 2.1, we need a few elementary tools. We describe
these tools here.
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First, it is important to note that the generating function for b,,(n) is given by

(1) Ba) = ][ +—

oo L
Note that B,,(q) satisfies the functional equation
(1= q)Bm(q) = Bm(q™).
From here it is straightforward to prove that
by (mn) = by, (mn + 1)

for all 1 <7 < m — 1. Thus, we see that Theorem 2.1 actually provides a charac-
terization of b,,(IN) (mod m) for all N, not just for those N which are multiples
of m.

With this information in hand, we now prove a small number of lemmas which
we will use in our proof of Theorem 2.1.

Lemma 2.2. For|z| <1,
1—2z™m

(e Zkojkil (mod m).

k=1

Proof. This elementary congruence can be proven rather quickly using well-known
mathematical tools. We begin with the geometric series identity

Differentiating both sides yields

1 - k—1
oo 2
k=1

We then multiply both sides by 1 — ™ and simplify as follows:

7(11__27;2 = i kab=t —am i kah=1
k=1 k=1
= i kak—t — i (k —m)xh1
k=1 k=m+1
P 3
k=1 k=m+1
= zm: kz*=1  (mod m)
k=1

Lemma 2.3. Let ¢ be the m* root of unity given by ¢ = €>™/™. Then

) LI (N
l_qu_ 1_q7n .

k=0
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Proof. Using geometric series and elementary series manipulations, we have

m—1 1 m—1 oo .
1;)1_&(1 - k:();C !
m—1
— ( Ckr T ngr r
k=0 \r|m r{m
m—1 oo
_ ch(]m jm_|_ Z chr r
k=0 j=0 k=0 r{m
m—1 1

= using facts about roots of unity

|
Lemma 2.4. Let Ty, (q) := >, >0 bm(mn)q™. Then
Tm 7 Pm
(@)= 1= . (9)
Proof. As in Lemma 2.3, let ¢ = €>™/™. Note that
Tm(q™) = Z by (mn)g™"
n>0
1 -
- E (Bm(q) +Bm(<Q)+"' +B7n(C 1(]))
[e ] 1 1 m—1 1
= (i =2
j=117q m ot
_ 1 ﬁ 1
1_qmj:11_qm7
thanks to Lemma 2.3. Lemma 2.4 then follows by replacing ¢ by gq. |

We now combine these elementary facts from the lemmas above to prove one last
lemma. This lemma will, in essence, allow us to “move” from considering T, (q)
modulo m to a new function modulo m which makes the result of Theorem 2.1
transparent.

Lemma 2.5. Let Um(Q) = H]Oio (1 + quj + 3q2mj 4+t mq(m—l)mj) _ Then
Tn(q) = Un(g) (mod m).

Proof. Lemma 2.5 will follow if we can prove that %@ -Un(q) =1 (mod m), and
this will be our means of attack. Thankfully, this follows from a novel generating
function manipulation which we demonstrate here. Using (1) and Lemma 2.4, we
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know that
1
Un
T 0@
= (=g [Ta=a") T (1+20™ + 3¢ +- -+ mgt=0")
j=1 =0
oo oo Jj+1
— 2 _ m? 1- qm
= (1-9) H(l qam) H —————— (mod m) thanks to Lemma 2.2
j=1 =0 (1 - qm )
B
H?i1 1—q™
= 1.

We can now utilize all of the above results to prove Theorem 2.1.

Proof. First, we remember that

Z b (mn)q" = Tin(q) = Un(q) (mod m).
n>0

So we simply need to consider U,,(q) modulo m to obtain our proof. Note that
oo
Un(e) = ]I (1 +2¢™ +3¢7™ 4+ +mq(m71)m]> '
3=0
If we expand this product as a power series in g, then each term of the form ¢" can

occur at most once (because the terms g™ are serving as the building blocks for
the unique base m representation of m). Thus, if

n:a0+a1m+~'+ajmj,
then the coefficient of ¢™ in this expansion is
J
H(ai +1) (mod m).

=0
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