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Abstract 

Background:  Transcription factors bind DNA in specific sequence contexts. In addi‑
tion to distinguishing one nucleobase from another, some transcription factors can 
distinguish between unmodified and modified bases. Current models of transcription 
factor binding tend not to take DNA modifications into account, while the recent few 
that do often have limitations. This makes a comprehensive and accurate profiling 
of transcription factor affinities difficult.

Results:  Here, we develop methods to identify transcription factor binding sites 
in modified DNA. Our models expand the standard A/C/G/T DNA alphabet to include 
cytosine modifications. We develop Cytomod to create modified genomic sequences 
and we also enhance the MEME Suite, adding the capacity to handle custom alpha‑
bets. We adapt the well-established position weight matrix (PWM) model of transcrip‑
tion factor binding affinity to this expanded DNA alphabet. Using these methods, we 
identify modification-sensitive transcription factor binding motifs. We confirm estab‑
lished binding preferences, such as the preference of ZFP57 and C/EBPβ for methylated 
motifs and the preference of c-Myc for unmethylated E-box motifs.

Conclusions:  Using known binding preferences to tune model parameters, we 
discover novel modified motifs for a wide array of transcription factors. Finally, we 
validate our binding preference predictions for OCT4 using cleavage under targets 
and release using nuclease (CUT&RUN) experiments across conventional, methylation-, 
and hydroxymethylation-enriched sequences. Our approach readily extends to other 
DNA modifications. As more genome-wide single-base resolution modification data 
becomes available, we expect that our method will yield insights into altered transcrip‑
tion factor binding affinities across many different modifications.
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Background
Different cell types in one organism exhibit distinct gene expression profiles, despite 
sharing the same genomic sequence. Epigenomic regulation is essential for this phe-
nomenon and contributes to the maintenance of cellular identity. In that regard, 
covalent DNA cytosine modifications have an important role in gene regulation in a 
number of eukaryotic species, including mice and humans [1]. The best-studied cyto-
sine modification is 5-methylcytosine (5mC), which entails the addition of a methyl 
group to the 5′  carbon of cytosine. Widely known for its effect on gene expression, 
5mC occurs in diverse genomic contexts [2, 3].

Active demethylation of methylcytosine to its unmodified form proceeds through 
successive oxidation to 5-hydroxymethylcytosine (5hmC), 5-formylmethylcytosine 
(5fC), and 5-carboxylmethylcytosine (5caC) [4, 5], mediated by ten-eleven transloca-
tion (TET) enzymes [6] (Additional file 1: Fig. S1). While 5hmC has less genome-wide 
abundance than 5mC, it is nonetheless recognized as a stable modification  [7]. Fur-
thermore, 5hmC is increasingly implicated in gene regulation processes [8]. We know 
less about 5fC and 5caC, largely because they are even less abundant than 5hmC [9].

In mouse embryonic stem cells (mESCs), 5fC accounts for only 0.0014% of cytosine 
bases [10], while 5caC accounts for a miniscule 0.000335% [4] compared to nearly 3% 
of 5mC [4] and 0.055% of 5hmC [10]. Hence, fewer studies investigate the genome-
wide distribution and functions of 5fC and 5caC [11–13]. In fact, 5fC and 5caC are 
often regarded as mere intermediates of the demethylation cascade. Nevertheless, 
while it remains uncertain if 5fC and 5caC do play a distinctive and pan-tissue reg-
ulatory function, several lines of evidence suggest that they too can modulate gene 
expression [8].

Although these covalent cytosine modifications do not alter DNA base pairing, they 
do protrude into the major and minor grooves of DNA and impact other aspects of 
DNA conformation [14]. These effects can influence the DNA binding of transcription 
factors [15, 16]. Many transcription factors prefer specific motifs, enabling the sequence 
specificity of transcriptional control  [17]. The position weight matrix (PWM) model 
allows the computational identification of transcription factor binding sites by charac-
terizing the position-specific preference of a transcription factor over the A/C/G/T DNA 
alphabet [18].

Just as transcription factors distinguish one unmodified nucleobase from another, 
some transcription factors distinguish between unmodified and modified bases. For 
example, some transcription factors, such as MeCP2, bind to methyl-CpG [19]. This type 
of non-sequence-specific modified nucleobase binding, however, occurs only in specific 
protein families [20].

A few transcription factors have well-characterized modification preferences. For 
example, both C/EBPα and C/EBPβ have increased binding activity in the presence of 
central CpG methylation, formylation, or carboxylation of their canonical binding motif 
(consensus: TTGC|GCAA​). Both DNA strands contribute and hemi-modification leads 
to a reduced effect [21]. 5hmC inhibits binding of C/EBPβ, but not C/EBPα [21]. ZFP57 
also prefers methylated motifs, specifically in the context of a completely centrally meth-
ylated TGC​CGC(R) heptamer (C indicates methylation on the positive strand and G on 
the negative strand) [22, 23].
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Additional methylation often occurs in ZFP57 motifs with a final guanine residue 
as the core binding site  [23]. Crystallography and fluorescence polarization analyses 
further confirm this preference  [24]. ZFP57 has successively decreasing affinity for 
the oxidized forms of 5mC [24]. In contrast, the basic helix-loop-helix (bHLH) family 
transcription factor c-Myc, has a strong preference for unmethylated E-box motifs, 
often preferring the fully unmethylated CAC​GTG​ hexamer [25, 26]. Many other bHLH 
transcription factors also demonstrate such a preference [27–31].

Other transcription factors also have methylation sensitivity  [32]. Protein binding 
microarray data demonstrate that central CpG-methylated motifs have strong binding 
activity for multiple transcription factors [15]. Interestingly, these data also show that 
methylated motifs often differ from the unmethylated sequences that those transcrip-
tion factors usually bind. Some transcription factors may even show increased bind-
ing in the presence of 5caC  [33]. In Arabidopsis thaliana, among 327  transcription 
factors, 248 (76%) exhibited sensitivity to covalent DNA modifications, with 14 pre-
ferring modified DNA [34].

Transcription factors act as both readers and effectors of methylation  [20]. They 
may bind to a modified base to prevent its modification or, in some instances, to 
increase the likelihood of its modification. Alternatively, transcription factors could 
bind to reverse an existing modification. These scenarios could occur in different 
genic contexts, potentially mediated by different motif groups. Even factors within 
the same family may have differences in modified binding preferences, conferring 
additional specificity or assisting in stable protein-DNA complex formation. This reg-
ulatory interplay [20, 35] highlights the need for additional genome-wide characteri-
zations of transcription factor binding preferences in the context of modified DNA.

The role of modified DNA in transcription factor binding has motivated the devel-
opment of a computational framework to elucidate and characterize altered motifs. A 
comprehensive in  vitro analysis, coupled with selected follow-up crystal structures, 
revealed the mechanistic basis for some 5mC interactions [36]. A random forest [37, 
38] combined genomic and methylation data [39] to predict transcription factor bind-
ing. Those predictions, however, did not attempt to predict the preference of factors 
for methylated DNA [39]. The MethMotif database enumerates methylated transcrip-
tion factor motifs [40].

Most recently, Grau et  al. [41] analyze an expanded alphabet genome from whole 
genome bisulfite sequencing (WGBS) data, for 5mC only. Their focus differs from 
ours, however. They emphasize that their models go beyond PWMs, the standard 
model to describe transcription factor DNA-binding specificities and allow for intra-
motif dependencies. Their comparisons mainly focus on classification performance 
bench-marking in differentiating bound versus unbound sequences. Song et  al. [42] 
demonstrate an in  vitro method to assess modification-specific preferences of all 
cytosine states. They demonstrate distinct preferences of both symmetric and hemi-
modifications. Hernandez-Corchado et al. [43] also recently provide a joint model of 
accessibility and methylation. They use this model to explore a large number of chro-
matin immunoprecipitation-sequencing (ChIP-seq) datasets, assessing many tran-
scription factor binding site preferences for 5mC.
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Existing work has often indirectly analyzed the impact of modified bases on binding, 
focused on improved motif elucidation itself, or often categorized modified binding 
preferences in a largely binary fashion. Mostly, when modeling the affinity of transcrip-
tion factors for DNA sequences, previous work has not treated modified nucleobases as 
first-class objects akin to unmodified nucleobases, adding artificial distinctions unlikely 
to reflect the underlying biophysical interactions. There has been a dearth of large-scale 
comprehensive analyses including modified motifs. Also, there has been an absence of 
specific experimental follow-up to predicted motif preferences, directly detecting modi-
fied bases.

Here, we describe methods to analyze covalent DNA modifications and their effects 
on transcription factor binding sites by introducing an expanded epigenetic DNA alpha-
bet. While others proposed expanding the genomic alphabet in other ways [44], we (in 
our earlier preprint of this work) [45] and Ngo et al. [46, 47] first proposed expanding it 
in this context for facilitating bioinformatic analyses of cytosine modifications. Unlike 
our work, however, Ngo et  al. [46] focused on motif identification in this expanded 
alphabet. We, rather, leverage existing tools to focus on downstream consequences, 
such as distinct groups of modified-preferring motifs and specific predictions of modi-
fied binding preferences. We introduce Cytomod, a software to integrate DNA modifi-
cation information into a single genomic sequence and we detail the use of extensions 
to the Multiple EM for Motif Elicitation (MEME) Suite [48] to analyze 5mC and 5hmC 
transcription factor binding site sensitivities. We validate our predictions for the tran-
scription factor OCT4 by providing conjoint cleavage under targets and release using 
nuclease (CUT&RUN) [49, 50] datasets across conventional, methylated-, and hydrox-
ymethylated-enriched sequences. Our results especially highlight that most factors can 
bind in both unmodified and modified contexts, to varying extents and often with differ-
ent groups of motifs. While it was previously known that DNA methylation affects bind-
ing, here, we show that modified motifs are considerably more complex than previously 
appreciated and that many new motifs with varied modified binding preferences exist, to 
different extents across a variety of transcription factors.

Results
Expanded‑alphabet genomes facilitate the analysis of modified base data

We created an expanded-alphabet genome sequence using oxidative (ox) and conven-
tional WGBS maps of 5mC and 5hmC for naive ex vivo mouse CD4+ T cells [51]. We 
expand the standard A/C/G/T alphabet, adding the symbols m (5mC), h (5hmC), f (5fC), 
and c  (5caC). We also designed and implemented symbols for the reverse strand, pre-
serving information of complements (Methods). This allows us to more easily adapt 
existing computational methods, that work on a discrete alphabet, to work with epige-
netic cytosine modification data.

Next, we generated individual modified genomes across four replicates of combined ox 
and conventional WGBS data [51] and for a variety of modified base calling thresholds. 
These calibrated modified genomes allowed us to accurately assess transcription factor 
binding site affinities, for both 5mC and 5hmC. We elaborate upon these base calling 
thresholds and their use in creating calibrated genomes in the next subsection and in 
Comparing motif modifications, using hypothesis testing. In order to construct modified 
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genome sequences, specific to the varied epigenetic state of a cell type, we designed the 
Cytomod software. It allows us to rapidly construct combined threshold-specific modi-
fied genomes, using single-base resolution data. Modified genomes with our expanded 
alphabet allowed us to deploy our methods across large datasets including those from 
Encyclopedia of DNA Elements (ENCODE) [52].

We used these modified genome sequences as the basis for the extraction of genomic 
regions implicated by ChIP-seq data for all assessed transcription factors. These modi-
fied sequences have a central role not just in our method, but also in enabling bioin-
formatic analyses of modifications more generally (Discussion). Using the thresholds 
discovered in the murine analyses, we created conventional 5mC maps for the human 
K562 erythroid leukemia cell line [53, 54], from ENCODE WGBS data.

In addition to creating new standalone software to instantiate our expanded alphabet 
concept, we also updated the MEME Suite [48] and associated software, implementing 
the ability to work with custom alphabets, such as our expanded epigenomic alphabet. 
We created the MEME::Alphabet Perl module as part of the implementation. Others 
can use this module to rapidly obtain suitable expanded-alphabet definitions, making it 
easier to extend older code bases. This Perl module does not create expanded alphabets 
or expanded alphabet genome sequences but rather provides capabilities for other Perl 
software to read and handle biomolecular sequences with expanded alphabets. Moreo-
ver, it provides a reference for implementing the same capabilities in other programming 
languages. These changes allow comprehensive analyses of epigenetic states, including 
their impacts on transcription factor binding, with support for any additional modified 
bases. Furthermore the software improvements make all future MEME Suite tools com-
patible with expanded alphabets, enabling continuing innovation and insights in these 
areas.

Our methods yield suitable base‑calling thresholds for downstream analyses

We constructed expanded-alphabet modified genomes, making discrete calls from the 
continuous output of our modification calling pipeline. The pipeline produced floating-
point numbers in  [0,  1] indicating the strength of evidence for a modification at each 
position. We determined whether to call a base modified or not by comparing the output 
values to a threshold value fixed across the whole genome (Comparing motif modifica-
tions, using hypothesis testing).

A grid search for transcription factor binding thresholds at 0.01 increments allowed us 
to determine suitable thresholds (0.3 and 0.7) for further investigation (Additional file 1: 
Fig. S2). Overall, this grid search demonstrated the suitability of a wide range of thresh-
olds, indicating the range for which one can adequately maintain both specificity and 
sensitivity of modified binding detection. For example, de novo analyses of C/EBPβ con-
firmed the preference for methylated DNA, with methylated motifs having much greater 
central enrichment than their unmethylated counterparts, at both the  0.3  (Fig.  1) and 
0.7 thresholds (Fig. 2).

We show the assessments at different thresholds not for comparing against each other, 
but to demonstrate the robustness of our results to varying the threshold. At both the 
minimum and the maximum of our modified base calling threshold calibration, we can 
elucidate expected modified motif preferences. In both cases, the expected motif has 

https://metacpan.org/pod/MEME::Alphabet
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strong central enrichment across ChIP-seq peaks. Only the central region of these motif 
enrichment analyses are relevant. The bounding of suitable thresholds provided by the 
grid search analysis will likely prove useful for assessing future datasets as well.

Hypothesis testing reveals altered transcription factor binding preferences

Expanded‑alphabet analysis shows results consistent with known preferences

We used a hypothesis testing approach on the expanded-alphabet sequence to exam-
ine the preferences of transcription factors for modified or unmodified DNA. First, we 

Fig. 1  C/EBPβ (GSM91​5179 [55]; 11 434 ChIP-seq peaks) CentriMo analysis of de novo and JASPAR motifs 
(Methods). Depicts female replicate 2 of the combined WGBS and oxWGBS data [51] at a 0.3 modification 
threshold. A The CentriMo result with the JASPAR C/EBPβ motif (orange), top Discriminative Regular 
Expression Motif Elicitation (DREME) unmethylated C/EBPβ motif (blue), and DREME methylated motifs (red, 
cyan, and green). B Sequence logo of the JASPAR C/EBPβ motif. C Sequence logo of the top DREME 
unmodified motif. D Sequence logo of the top DREME methylated motif. E Sequence logo of the second 
DREME methylated motif. F Sequence logo of the third DREME methylated motif. Listed p-values computed 
by CentriMo [56]. For consistency, we depict the JASPAR sequence logo using MEME’s relative entropy 
calculation and colouring

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM915179
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analyzed three transcription factors with previously known methylation or hydroxy-
methylation sensitivities. ZFP57  [23] and C/EBPβ  [21] show a preference for methyl-
ated DNA, while c-Myc prefers unmethylated DNA [25, 26]. Additionally, C/EBPβ has 
reduced affinity for hydroxymethylated DNA [21].

We used the known preferences as controls to calibrate our modification-calling 
thresholds and to validate our approach. We used c-Myc as the positive control for an 
unmethylated binding preference  [25, 26]. As positive controls for methylated binding 
preferences, we used both ZFP57 and C/EBPβ [21–24] (Detection of altered transcrip-
tion factor binding in modified genomic contexts).

Fig. 2  C/EBPβ (GSM91​5179 [55]; 11 434 ChIP-seq peaks) CentriMo analysis of de novo and JASPAR motifs 
(Methods). Depicts female replicate 2 of the combined WGBS and oxWGBS data [51] at a 0.7 modification 
threshold. A the CentriMo result with the JASPAR C/EBPβ motif (orange), top DREME unmethylated C/
EBPβ motif (blue), and DREME methylated motifs (red, cyan, and green). B Sequence logo of the JASPAR 
C/EBPβ motif. C Sequence logo of the top DREME unmodified motif. D Sequence logo of the top DREME 
methylated motif. E Sequence logo of the second DREME methylated motif. F Sequence logo of the third 
DREME methylated motif. Listed p-values computed by CentriMo [56]. For consistency, we depict the JASPAR 
sequence logo using MEME’s relative entropy calculation and colouring

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM915179
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In this hypothesis testing framework, we tested all known unmodified transcription 
factor binding motifs against all possible 5mC and 5hmC modifications at all CpG dinu-
cleotides. That is, for each unmodified and modified version of all motifs, across every 
transcription factor, we assessed the motif ’s expected DNA binding affinity using the 
adjusted central enrichment p-value from CentriMo [56] (Detection of altered transcrip-
tion factor binding in modified genomic contexts). For this analysis, we included motifs 
of interest from de novo results, and we partially or fully changed the base at a given 
motif position to each modified base, to comprehensively assess its affinity  (Table  3; 
Comparing motif modifications, using hypothesis testing). To compare all binding 
affinities, we subtracted the log10-transformed p-value of the modified motif from the 
unmodified motif. Positive values for this difference represented a preference for the 
modified motif, while negative values represented a preference for the unmodified.

The expected transcription factor binding preferences for c-Myc, ZFP57, and C/EBPβ 
held across all four biological replicates of WGBS and oxWGBS data and for all inves-
tigated modified nucleobase calling thresholds (Fig. 3). The thresholds we investigated, 
representing modification confidence, varied from  0.01–0.99  inclusive, at 0.01 incre-
ments. We also obtained the same results for multiple different ChIP-seq replicates 
for these three transcription factors  (Additional file  1: Fig. S2). Perturbations of bind-
ing assessments, such as peak-calling stringency (Additional file 1: Fig. S3) and required 
degree of motif statistical significance  (Additional file  1: Fig. S4) demonstrated the 
robustness of our results.

None of the c-Myc log  p-value differences exceeded zero, confirming that c-Myc 
favours unmodified E-box motifs over modified c-Myc motifs. Two methylated motifs 
had the greatest increase in predicted binding affinity for C/EBPβ: TTGmGCAA​ and 
TTGC1TCA​ (see Tables 1 and 3 for an overview of modified base notation). As expected, 
ZFP57 favours binding to modified nucleobases over their unmodified counterparts. The 
well-known TGCm1m1 motif [23] had one of the greatest increases in predicted binding 
affinity of ZFP57 for modified DNA.

While ZFP57 had a strong preference for methylated DNA, we also observed a notice-
able preference for hydroxymethylated DNA (Fig. 4F). CentriMo quantifies these prefer-
ences [56], both in terms of p-value significance, and in terms of the centrality of motif 
concentration (Detection of altered transcription factor binding in modified genomic 
contexts).

CentriMo reported  328 of  393 total ZFP57 methylated motifs with a score >0 
(median:  171.2; max:  2292, exemplifying the strong preference; Motif cluster-
ing of modified binding preferences) across all our assessed ZFP57 datasets. This 
included motifs from mESCs, from both our previously mentioned BC8/CB9 Stro-
gantsev et  al.  [23] datasets, and 2  motifs, both scoring positively, from Quenneville 
et al. [22] (Fig. 4F). Hydroxymethylated CpGs had a substantially smaller increase in 
binding affinity than methylated motifs (Fig. 3), but still greater than the completely 
unmethylated motif. CentriMo reported  291 of  435 total ZFP57 hydroxymethylated 
motifs with a score >0 (median: 152.4; max: 1379) across all motifs in our BC8/CB9 
datasets (Fig. 4F). Our Quenneville et al. [22] analysis did not reveal any sufficiently 
significant hydroxymethylated motifs of any score. Most modified motifs that scored 
above zero, however, had at least one 5mC and one 5hmC nucleobase (Fig.  4F, red 
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Fig. 3  Relationship between unmodified versus modified motif statistical significance of central enrichment 
(from CentriMo [56]) and modified base calling thresholds across different WGBS and oxWGBS specimens, 
in mice [51]. We compare each unmodified motif, at each threshold, to its top three most significant 
modifications for c-Myc and C/EBPβ, but only the single most significant modification for ZFP57. The 
displayed motif pairs changes at individual thresholds, depending on which motif pairs stay in the top 
three. See Tables 1 and 3 for an overview of modified base notation. Sign of value indicates preference 
for the unmodified (negative) motif or the modified (positive) motif. Rows: single ChIP-seq replicates for a 
particular transcription factor target, one each of A c-Myc (mESCs; Krepelova et al. [57]), B ZFP57 (CB9 mESCs; 
Strogantsev et al. [23]), and C C/EBPβ (C2C12 cells; ENCFF​001XUT). Columns: replicates of WGBS and oxWGBS 
(mouse CD4+ T cells; Kazachenka et al. [51])

Table 1  The expanded epigenetic alphabet. This includes the known modifications to cytosine 
and symbols for each guanine complementary to a modified nucleobase. Symbol colours indicate 
recommended display colour in representations such as genome browser tracks

Covalent cytosine modification Complement

Abbreviation Name Symbol Name Symbol

5mC 5-Methylcytosine Guanine:5-methylcytosine

5hmC 5-Hydroxymethylcytosine Guanine:5-hydroxymethylcytosine

5fC 5-Formylcytosine Guanine:5-formylcytosine

5caC 5-Carboxylcytosine Guanine:5-carboxylcytosine

https://www.encodeproject.org/search/?searchTerm=ENCFF001XUT%20ChIP%20Musculus
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motifs). Therefore, our expanded-alphabet methodology recapitulates the observation 
that ZFP57 has the greatest binding affinity for motifs containing 5mC, followed by 
5hmC, and then by unmodified cytosine [24].

Overall, these positive control results for known binding preferences allowed us to 
select thresholds sufficient to accurately assess modified binding preferences regard-
less of tissue-specific differences in modification frequency. This led us to discover 
novel modified motifs, across the wider array of transcription factors to follow.

Expanded‑alphabet analysis enables comparisons across a wide array of transcription factors

Similarities in protein structure of transcription factors might form a useful cate-
gorical framework for expectations regarding modified base affinity. To that end, we 
looked for shared preferences among families of transcription factors for modified or 
unmodified bases in both the mouse and the human data. Mostly, we defined families 
with TFClass [58, 59] (Assessment of transcription factor familial preferences).

We and others [27–31] have found a consistent preference for unmethylated bind-
ing motifs across a broad selection of bHLH transcription factors. Some motifs for 
bHLH transcription factors had a putatively modified preference versus their unmod-
ified JASPAR counterparts. Unmodified de  novo motifs we generated for the same 
transcription factors, however, consistently had more significant p-values (Additional 
file 1: Fig. S7). This suggests that, as expected, these transcription factors usually pre-
ferred the unmodified motif. The leucine-zipper subfamily of bHLH transcription fac-
tors, however, had a subset of motifs that preferred to bind in a modified context. 
For example, both USF1 and USF2 preferred to bind in unmodified and modified 
contexts, to differing extents, and had mixed binding preferences within motif clus-
ters (Fig. 4D; Discussion).

Many zinc finger family motifs displayed a propensity toward modified motifs, but 
not all. EGR1/ZIF268/NGFI-A, a Cis2–His2 zinc finger, showed a moderate binding 
preference for methylated DNA, with multiple positively scoring hypothesis pairs, 
including some >100 . These very high scores indicate an exceptionally strong pre-
dicted binding preference for the modified, over the unmodified, nucleobases.

(See figure on next page.)
Fig. 4  Modified versus unmodified motifs, combining score and cluster information, for selected 
transcription factors. These plots come from non–spike-in calibrated data, for the 500 bp regions surrounding 
peak summits. We clip scores beyond ±4000 and plot them at the threshold to maximize dynamic range 
where most scores occur. Some combinations of the displayed hypothesis pairs had multiple data points (for 
example, multiple identical hypothesis pairs, but for different data sub-types or stringencies). We aggregated 
these data points by plotting the maximum score. Below each plot is an asymmetric, diverging, colour 
scale that further highlights modification-preferring motifs. The colour scales are identical across plots. We 
depict a larger selection of transcription factors in Additional file 1: Fig. S7. A FEZF2 and C/EBPβ. B Individual 
motifs illustrating the range of preferences found for C/EBPβ in K562. Left: the least modified-preferring 
motif (score = −2177.28 ); centre: a motif lacking substantial preference (score = 2.36 ); right: the most 
modified-preferring motif (score = 3785.86 ). C JUND and JUN. D USF1 and USF2. E c-Myc. F ZFP57. G OCT4. 
H Individual motifs illustrating the range of preferences found for OCT4. Left: the least modified-preferring 
motif (score = −762.53 ); centre: a motif lacking substantial preference (score = 2.22 ); right: the most 
modified-preferring motif (score = 518.01 ). I The most highly significant and centrally enriched DREME motif, 
for OCT4 hmC-Seal CUT&RUN in mESCs (replicate 1). See Tables 1 and 3 for an overview of modified base 
notation
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Fig. 4  (See legend on previous page.)
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Conversely, ZNF384/CIZ/TNRC1 of the same sub-family, present in both our mouse 
and human analyses, had only weak evidence of a preference for binding modified DNA, 
with only a single hypothesis pair scoring above 10 (Additional file 1: Fig. S2). We suspect 
this factor intrinsically has the ability to bind in both unmodified and modified contexts, 
perhaps with a weak modified preference. This would likely hold across quite different 
tissue types. Unlike most of our analyzed transcription factors, this result occurred at a 

Fig. 4  continued
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significant level in both our mouse and human datasets, allowing us to form this more 
general conclusion.

While we can use our methods to analyze and group transcription factors by their 
families, few clear signals of strong preferences nicely stratify in this manner. This sug-
gests that complex preferences tend to outweigh family-specific patterns. Factors such as 
local epigenetic state or tissue type likely play a larger role in locus-specific transcription 
factor binding.

Our hypothesis testing confirms C/EBPβ’s dichotomous binding preferences

C/EBPβ provides an excellent test case for the impact of modified bases on transcription 
factor binding because of its dichotomous preferences for 5mC versus 5hmC [21]. Our 
method recapitulated this preference, across all ChIP-seq datasets, for all replicates of 
oxidative and conventional WGBS. Methylated motif pairs generally had positive ratios, 
whereas hydroxymethylated motif pairs had negative ratios (Additional file 1: Fig. S4).

One positive strand, hemi-methylated motif  (TTGmGTCA​), presented an exceptional 
case. Surprisingly, we observed a preference for the unmodified motif over its hemi-
methylated motif. Unlike the consensus C/EBPβ motif. Unlike the consensus motif, this 
motif corresponds to the chimeric C/EBP|CRE octamer. This chimeric transcription 

Fig. 4  continued
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factor has a more modest preference toward its methylated DNA motif [21]. Nonethe-
less, we would still have expected a weak preference for the hemi-methylated motif, over 
its unmodified counterpart. Additionally, we found greater enrichment for hemi-meth-
ylation than complete methylation, which contradicts findings of both strands contrib-
uting to the preferential binding of C/EBPβ  [21]. This may arise from technical issues 
with hemi-methylation in our modified sequence, or because our methods have greatest 
accuracy only within specific cell types or contexts.

Many transcription factors bind in modified and unmodified contexts, with variable motif 

preferences

We analyzed 144  transcription factors to characterize their overall motifs and their 
affinities to methylated and hydroxymethylated DNA. Leveraging our hypothesis testing 
approach and normalized CentriMo-based scoring methods, we assessed all detected 
motifs, and specifically characterize their likely binding affinities. Our analyses revealed 
that several factors bind in both modified and unmodified contexts  (Fig.  4). Unlike 
prior analyses which often aimed to binarize binding preferences, our results highlight 
that most factors can bind in both contexts, albeit to varying extents and with different 
motifs.

For example, protein binding microarray analyses have led to the conclusion that bind-
ing of the transcription factor JUND is “uniformly inhibited by 5mC” [60]. Overall, these 
data accord well with our results, for which almost all tested hypothesis pairs  (37/44) 
showed an unmethylated preference. Nevertheless, closer inspection of these prior 
analyses reveals that they contain a small group of motifs where JUND showed a slight 
preference for 5mC  [60]. Specifically, at least  8 cytosine-containing motifs have 5mC 
z-scores above zero, with at least 3 such motifs having scores of close to 30. Similar find-
ings applied to 5hmC. This indicates that JUND likely has at least some preference for 
hydroxymethylated motifs, despite mostly preferring to bind in unmodified contexts.

In our analysis, JUND showed a preferences for binding to  7 motifs (including one 
hydroxymethylated motif ) if the motifs were methylated (Fig. 4C). JUN, a transcription 
factor related to JUND, showed similar preferences (Fig. 4C).

FEZF2 appeared to have two completely different motifs, with no overlap in their pref-
erences for modified versus unmodified cytosine (Fig. 4A). Indeed, removing modifica-
tion information from modified-preferring FEZF2 motifs led to a single motif cluster, 
distinct from the main unmodified motif clusters. Therefore, two distinct motif classes 
for FEZF2 appear to exist.

Many of the motifs we found, across a wide array of transcriptions factors including 
those discussed above, were novel. Many motif groups, especially when viewed as col-
lapsed or root motifs, often have similarity with previously reported motifs. Nonethe-
less, within these motif groups, we often find additional variations, as well as a number 
of entirely new motif groups, for most transcription factors.

More than half of the transcription factors we assessed bound almost or entirely exclu-
sively in unmodified contexts (Additional file 1: Fig. S7). Specifically, if we limit our anal-
ysis to transcription factors without even a single slightly positive motif, 49.3% of factors 
had all tested hypothesis pairs score below zero. This varied across our overall dataset, 
with other factors having some occasional modified preferences. Overall, we assessed a 



Page 15 of 46Viner et al. Genome Biology  (2024) 25:11	

total of 144 distinct transcription factors, across all datasets. Grouping these by modifi-
cation preference, with each factor potentially in multiple groups to reflect the possibil-
ity of mixed preferences, we found:

•	 Seventy-one transcription factors appeared to bind only to unmodified motifs. Each 
transcription factor in this grouping had no positively scoring motifs.

•	 Fourteen transcription factors appeared to bind predominantly to modified motifs. 
Each transcription factor in this grouping had motifs with an upper quartile score ≥0

.
•	 Nine transcription factors had no clear modified motif preferences. Each transcrip-

tion factor in this grouping had no motifs with a score outside of [−50, 50] , excepting 
those transcription factors where every motif scored positively. Of these transcrip-
tion factors, 5 had three or fewer significant motifs.

Modified‑base CUT&RUN validates our predictions for OCT4

While OCT4 bound to a number of motifs in an unmodified context, some OCT4 
motifs preferred binding in both methylated and hydroxymethylated states. A preference 
of OCT4 for methylated motifs has previously been reported [36], but we are unaware 
of any reports of a preference of OCT4 for hydroxymethylated sequences. Interestingly, 
those hydroxymethylated motifs appeared to predominantly cluster either on their own, 
or with the canonical OCT4 homo- and hetero-dimer motifs, rather than mixing with 
other motif groups, such as those belonging to methylated motifs or co-factors.

We validated our OCT4 predictions, by performing CUT&RUN [49, 50] experiments 
in mESCs, with conventional, bisulfite-converted, and hmC-Seal-seq [61] library prepa-
rations. These three sets of library preparations allowed us to characterize the modifica-
tion states of OCT4-bound fragments across both methylated and hydroxymethylated 
contexts.

We observed that OCT4 has a strong preference to bind in a hydroxymethyl-
ated context, in line with our predictions. When comparing unconverted, con-
ventional CUT&RUN to hmC-Seal-seq CUT&RUN, OCT4 and similar de  novo 
motifs were preferentially bound in hydroxymethylated context  (Fig.  5; top DREME 
motif: p = 4.5× 10−149 ; top OCT4 motif: p = 2.5× 10−13 ) than in the unmodified con-
text  (top DREME motif:  p = 4.1× 10−104 ; top OCT4 motif:  p = 1.1× 10−8 ), all with 
comparable or greater motif centrality. These motifs also had at least similar preferences 
for binding in a methylated context (Additional file 1: Fig. S6).

The predicted cluster that included the canonical POU5F1B JASPAR motif (MA0792.1) 
also showed enrichment for 5hmC motifs. Overall, our findings suggest that OCT4 spe-
cifically binds hydroxymethylated nucleobases, in concert with methylated and unmodi-
fied binding sites.

Discussion
We developed a method for creating modified genomic sequences at suitable thresholds, 
using our tool Cytomod. We have added expanded alphabet capabilities to the widely 
used MEME Suite [48], a set of software tools for the sequence-based analysis of motifs. 

https://jaspar.genereg.net/matrix/MA0792.1
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This included extending several of its core tools, including: MEME [64], DREME [65], 
and CentriMo [56], used in a unified pipeline through MEME-ChIP [66]. We undertook 
further extension of all downstream analysis tools and pipelines, and most of the MEME 
Suite [48] now supports arbitrary alphabets. Our approach has yielded a much greater 
understanding of transcription factor’s affinities and motifs in a modified genomic 

Fig. 5  CentriMo [56] results for replicate 1 of OCT4 CUT&RUN in mESCs. Motifs include the top three DREME 
motifs with colour indicating rank: first (red); second (purple), third, where applicable (dark green). Motifs also 
include the top non-POU5F1 JASPAR motif (cyan), and the JASPAR POU5F1B motif (orange). Both of these 
motifs come from the JASPAR 2020 [62] core vertebrate set. We generated these results using 500 bp regions 
centred upon the summits of MACS 2 [63] peaks generated from those CUT&RUN fragments ≤120 bp. 
We called peaks using IgG controls and without any spike-in calibration (Data processing). Listed p-values 
computed by CentriMo [56]. For consistency, we depict the JASPAR sequence logo using MEME’s relative 
entropy calculation and colouring. A bisulfite-converted (methylated; 2797 CUT&RUN peaks) sequences. 
B hmC-Seal (3974 CUT&RUN peaks) sequences. Also depicts the top MEME [64] de novo motif (blue). 
C Sequence logo of the POU5F1B motif (MA0792.1). D Sequence logo of the top DREME de novo motif

https://jaspar.genereg.net/matrix/MA0792.1
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context. We validated our novel OCT4 binding site predictions, generating new high-
quality binding site data, in both unmodified and modified genomic contexts.

We devised a hypothesis testing approach to enable more accurate comparisons 
between unmodified and modified motifs. Hypothesis testing, with equal central region 
widths and relative entropies, leads to more interpretable results than the standard 
CentriMo analyses, in that it permits a direct comparison of centrality p-values. These 
p-values help assess the statistical significance of the motif within the central region of 
its detected binding enrichment—a strong indicator of direct DNA binding  [56]. We 
often observed the expected outcomes for many replicates of conventional CentriMo 
runs with de novo motifs, such as with C/EBPβ (Figs. 1 and 2) and ZFP57 (Additional 
file 1: Fig. S5). We encountered instances, however, in which de novo CentriMo analy-
ses did not show the expected motif binding preference. This occurred for c-Myc and 
for a small subset of ZFP57 CentriMo results pertaining to de novo motifs, despite the 
hypothesis testing robustly corroborating its expected preference for unmethylated 
DNA (Additional file 1: Fig. S2). Overall, our hypothesis testing framework allows for a 
more accurate comparison than a direct assessment of de novo motifs, which would be 
less well-controlled for technical biases.

Prior to our introduction of the expanded epigenetic alphabet concept, it was not 
possible to perform direct, non-subsequent analyses to assess modified bases like 5mC 
in motifs that leverage standard algorithms (such as for motif elucidation) or existing 
engineering (such as comprehensive analysis pipelines). While some of the transcrip-
tion factors examined had previously known preferences for modified or unmodified 
cytosines, the motifs found here are, in effect, completely new, due to this expanded 
alphabet allowing the joint consideration of cytosine modification status and multiple-
base sequence specificity.

Without the expansion of the alphabet, one cannot directly use motifs to search for nor 
distinguish between any unmodified or modified bases. As such, our analyses and motifs 
result directly from this expansion, and all our results demonstrate quantified elucida-
tion of expanded alphabet motifs. One can see this most emphatically in our validation 
results, where we show that we can directly detect motifs pertaining to bound chromatin 
fractions specifically containing the predicted modification of interest (Fig. 5).

Various biochemical complexities increase the difficulty of mapping cytosine modifi-
cations. These complexities include strand biases [9], populations of cells with different 
modifications at the same locus, and hemi-methylation [67]. Our use of Maximum Like-
lihood Methylation Levels (MLML)  [68] to provide consistent estimators of modifica-
tion, our relative entropy normalization, and our controlled hypothesis testing approach 
all help to minimize the impact of these challenges.

Cytosine modifications occur most frequently at CpG dinucleotides. Nevertheless, 
non-CpG 5mC nucleobases still exist, particularly in mESCs [69, 70]. Within a popula-
tion of cells, at a given locus, unmodified nucleobases and different kinds of modified 
nucleobases often co-occur [9].

Our methods ensure the comprehensive analysis of non-CpG modifications. While 
this can result in some modified hypotheses being unlikely to occur in some cell 
types, we can still evaluate and score those hypotheses in an unbiased and tissue-spe-
cific manner. Therefore, some motifs shown may be unlikely to occur but will usually 
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tend to have scores near 0. One can interpret such scores as a weak preference, should 
that motif be present. Our DNAmod database catalogues these and many other DNA 
modifications [71].

We suspect that the inability of de novo analyses to reveal modified binding pref-
erences primarily arises from being unable to integrate modified and unmodified 
motifs. Our de  novo analyses cannot compensate for the large differences in modi-
fied versus unmodified background frequencies. De novo analysis involves some form 
of optimization or heuristic selection of sites—an inherently variable process. Modi-
fied motifs have particular characteristics that differ from most unmodified motifs. 
Most notably, they necessarily differ from the overall and likely local sequence back-
grounds, as a result of the low frequency of modifications. Conversely, an unmodified 
genome sequence has a comparably uniform nucleobase background, and unmodi-
fied motifs usually appear within local sequence of highly similar properties to the 
motifs themselves  [72]. Accordingly, without specifically accounting for these con-
founds, modified motifs can get lost within a background of irrelevant unmodified 
motifs or one might not find comparable sets of motifs. Also, modified motifs that a 
de novo analysis finds might not be comparable to any unmodified counterpart. This 
may arise from the potential pairs of motifs having substantially different lengths, 
often with the modified motifs having significantly shorter length. Comparing motifs 
having sequence properties that often indicate a poor-quality motif also remains 
difficult. These properties include repetitious motifs, or off-target motifs, such as 
zingers—common contaminant motifs similar to CTCF, ETS, JUN, and THAP11 [73]. 
Hypothesis testing, with relative entropy normalization, can mitigate these concerns. 
Possibly, however, we often simply observe bona fide, but non-canonical, motifs. 
Non-canonical binding sites have far more abundance and importance than generally 
appreciated [74]. Therefore, while our approach can yield biologically relevant modi-
fied de novo motifs, one should not rely solely on these motifs’ binding preferences 
to conclusively establish a factor’s preference for modified DNA. Our hypothesis 
testing approach, however, helps mitigate the above biases, allowing for more robust 
comparisons.

Our method is robust in the face of parameter perturbations. There exists an inher-
ent trade-off between a lower and higher modification calling threshold. The low 
threshold may yield more modified loci but potentially introduce false positives, while 
a higher threshold may prove too stringent to detect modified base binding prefer-
ences. Nonetheless, expanded-alphabet motif analysis across a broad range of modi-
fied base calling thresholds consistently led to the same expected results, across three 
transcription factors and a number of ChIP-seq and bisulfite sequencing replicates 
(Additional file 1: Fig. S2). We selected a lower threshold of 0.3, based primarily on 
the observation of increased variance and decreased apparent preference for unmeth-
ylated DNA for c-Myc below this threshold, across multiple replicates (Additional 
file 1: Fig. S2). We also selected an upper threshold of 0.7, based primarily on the rapid 
decrease in relative affinity for methylated over unmethylated motifs in ZFP57 (Fig. 3) 
and, to a lesser extent, C/EBPβ (Additional file 1: Fig. S4). Furthermore, modification 
of peak calling stringency for a set of ZFP57 datasets did not negatively impact our 
ability to detect the affinity of ZFP57 for methylated DNA (Additional file 1: Fig. S3).
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The consistency of our controls (c-Myc, ZFP57, and C/EBPβ) provides confidence in 
the ability of our method to detect and accurately characterize the effect of modified 
DNA on transcription factor binding. We applied our method to a diverse array of ChIP-
seq data in order to identify biologically meaningful binding preferences. We were also 
able to confirm OCT4 binding preferences, by generating new experimental data.

We found that motifs often enriched for hemi-modified, as opposed to completely 
modified binding sites. These hemi-modified motifs often had more central enrichment, 
as measured by CentriMo, than those with complete modification of a central CpG dinu-
cleotide (Figs. 1 and 2). This appears surprising, because in vitro experiments have dem-
onstrated that each modification usually has an additive effect for transcription factors 
that prefer modified DNA, resulting in completely modified motifs having the greatest 
affinity  [21, 24]. This might imply that the hemi-methylated motifs arise from techni-
cal artifacts, either in the bisulfite sequencing data or from the methods used. Alter-
natively, the hemi-methylation events we detect may arise from asymmetric binding 
affinities of transcription factors for 5mC (and 5hmC). ZFP57, for example, has known 
asymmetric recognition of 5mC, with negative strand methylation more important than 
positive strand methylation in the TGCC​GC motif [24]. In addition, there exists evidence 
for a preference for hemi-methylation of the C/EBP half-site |GmAA [60]. Therefore, the 
hemi-methylated motifs observed in some of our analyses, especially for C/EBPβ, may 
represent bona fide preferences. This would accord with similar findings in an independ-
ent analysis [42]. Nevertheless, further work is needed to determine whether the hemi-
methylated motifs we discover reflect an actual biological preference.

There exist few high-quality single-base resolution datasets of 5hmC, 5fC, and 5caC. 
We had previously attempted analyses using DNA modification data that did not have 
single-base resolution, such as from assays like methylation DNA immunoprecipitation 
(MeDIP) [75], that did not employ single-base resolution methods [76]. A lack of single-
base resolution makes it difficult to create a discrete genome sequence with a reasonable 
abundance of the modification under consideration without biasing the sequence. This 
makes downstream analyses of transcription factor binding uninformative. Therefore, it 
is essential to have single-base resolution data, for any modifications that one wishes to 
analyze. Additionally, many single-base resolution datasets use some form of reduced 
representation approach that enriches CpGs, because this allows sequencing at reduced 
depth, while still capturing many DNA modifications. The use of reduced representa-
tion bisulfite sequencing (RRBS) data can lead to confounding factors, due to the non-
uniform distribution of methylated sites surveyed. Accordingly, we recommend avoiding 
similar enrichment approaches for use with our framework.

The ChIP-seq data we used were not generated in the same cell type as the WGBS and 
oxWGBS data. While cell type specificity might cause confounding effects, we consist-
ently observed the expected preferences in transcription factor binding for the expected 
modification affinities across multiple ChIP-seq replicates, often in different cell types. 
Therefore, we expect that using ChIP-seq and WGBS data from different cell types will 
lead to meaningful results.

Although we predominantly observed the expected transcription factor binding pref-
erences, in some limited instances we did not. For example, we found that USF1 and 
USF2 appear to have a subset of 5mC- and 5hmC-preferring motifs  (Fig.  4D). This 
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contradicts previous in  vitro work  [77], which showed that USF1 prefers to bind nei-
ther 5mC nor 5hmC. Additionally, the same study suggested that while TCF3, a tran-
scription factor related to USF1 and USF2, can undergo a conformational shift to bind 
to 5hmC, USF1 cannot. The in vitro work largely derived from structural preferences, 
however: it “only focused on the most obvious, steric and hydrogen bonding effects...
[more] complex methods are required to explain [their] subtler [protein binding micro-
array] results”  [77]. Nonetheless, in their data, some of the C versus 5hmC and 5mC 
versus 5hmC z-score plots depict a few significant motif pairs with near equal preference 
for versus against hydroxymethylation. This indicates that their more general conclusion 
may not accurately sum up all of their data either; our results are more in accord than it 
would appear at first glance.

Our results for USF1 only had a single weakly positive-scoring motif containing a 
hydroxymethylated base: AAAhYAmA. This motif had only a slight preference to bind 
over its unmodified counterpart. This preference may instead have arisen primarily from 
the methylated base near the end of the motif. The low score might indicate that there 
is no strong preference; it could also suggest a technical artifact. All our other modified-
preferring motifs for USF1 preferred to bind in a methylated context, with most show-
ing only weak preferences. This stood in contrast to the many methylated motifs that 
showed strong preferences for their unmodified counterparts. Overall, these results sug-
gest that not all USF1 motifs tend to bind in unmodified contexts, even if most of them 
may do so. USF2, however, has a non-negligible number of motifs that appear able to 
bind in a hydroxymethylated context, having 5hmC motifs that scored above zero.

Our limited assessment of transcription factor preferences across different fami-
lies did not yield clear conclusions. Despite previous findings for specific families, like 
bHLH factors tending to prefer to bind to unmodified DNA [27–31], most conclusions 
in this area are ambiguous [40–42, 78]. One reason for this is the different motif groups 
that prefer unmethylated versus methylated binding for many transcription factors. This 
tends to confound binary categorization even for individual transcription factors. Across 
a whole family of transcription factors, making this binary call becomes even more diffi-
cult. Even closely related transcription factors, like USF1/2, often have different degrees 
of preferences and variable motifs. A second reason is observation bias with regards to 
transcription factors for which one can find binding data. There is a particular depletion 
of binding data for the large number of zinc finger transcription factors. This bias may 
account, at least partially, for the often observed greater number of unmodified-prefer-
ring factors [20, 36]. For an unbiased assessment of transcription factors across families, 
we need data on a less biased set of transcription factors [36, 79, 80].

The MEME Suite’s  [48] new custom alphabet capability permits further down-
stream analyses of modified motifs. Our custom alphabet is provided together with 
this software and is available both from the MEME Suite webpage and as the stan-
dalone MEME::Alphabet package. For example, one can find individual motif 
occurrences with Find Individual Motif Occurrences (FIMO) [81] or conduct path-
way analyses with Gene Ontology for MOtifs (GOMO)  [82]. Alternatively, one 
can use FIMO results for pathway analyses through tools like Genomic Regions 
Enrichment of Annotations Tool (GREAT) [83] or Biological Enrichment of Hidden 
Sequence Targets (BEHST)  [84]. For further interpretation of the results, one can 

https://metacpan.org/pod/MEME::Alphabet
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use downstream pathway analysis tools, such as Enrichment Map [85, 86]. This per-
mits inference of implicated genomic regions and biological pathways.

We designed all of our software so that others can readily extend our approach 
to additional DNA modifications. Technology now allows the detection of a num-
ber of DNA modifications  [71] at high resolution, such as 5-hydroxymethyluracil 
(5hmU), 5-formyluracil (5fU), 8-oxoguanine (8-oxoG), and 6-methyladenine (6mA), 
many of which occur in diverse organisms  [87–89]. We provide recommendations 
for the nomenclature of these modified nucleobases, among others  (Additional 
file  2: Appendix A [90, 91]). We used these recommendations in our database of 
DNA modifications, DNAmod  [71]. The Global Alliance for Genomics and Health 
(GA4GH)  [92] has also adopted these recommendations for use in sequence align-
ment/map (SAM) and binary alignment/map (BAM) formats [93].

For representation of sequence data with modifications as input to neural network 
architectures, one could use our expanded alphabet. One could use this for either 
modified motif elucidation or for overall classification of a transcription factor’s pro-
pensity to bind modified bases. Naively, one could encode the expanded epigenetic 
alphabet by simply extending the standard one-hot DNA encoding, as long used in 
motif elucidation  [94], to add our additional symbols. Without additional changes, 
however, we would not recommend this approach because of the substantial dispar-
ity in modified base frequencies.

For representing expanded epigenetic alphabet data, we would suggest using 
an approach where significantly lower frequency of modified bases compared to 
unmodified has a lower impact. One might instead encode all nucleobases as vec-
tors representing their functional groups, as recently done in a similar unmodified 
context  [95]. Alternatively, one might adapt recent work which designed filters to 
create sparse codes, similar to images, that can effectively encode DNA motifs [96]. 
This work constructs the encoding from PWMs, as we do for unmodified bases. It 
uses a one-hot encoding for DNA, but should allow for the incorporation of altered 
background frequencies. These approaches likely have more resilience to biases in 
this expanded alphabet context, while still enabling the ready application of modern 
neural networks to modified nucleobase data.

It will be important to characterize modified binding affinities in  vivo, in addi-
tion to the more abundant in vitro approaches, such as high-throughput systematic 
evolution of ligands by exponential enrichment (HT-SELEX) [97] and DNA affinity 
purification sequencing (DAP-seq)  [34]. While the in  vitro approaches contribute 
to our improved understanding of the underlying biophysics, only in  vivo analy-
ses can directly assess the actual cellular binding events that lead to differences in 
gene expression pattern. By using available ChIP-seq data, our work contributes 
to this effort and bolsters it by providing transcription factor CUT&RUN datasets 
that directly assess unmodified and modified binding states. These data represent a 
unique type of experiment, one needed to fully understand the role of methylation 
and hydroxymethylation in transcription factor binding.
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Conclusions
We provide a framework for transcription factor binding motif analyses on sequences 
containing DNA modifications. Our approach’s ability to reproduce known transcrip-
tion factor binding affinities and the validation of our predictions for OCT4 suggest 
that these methods meaningfully predict the modification sensitivity of transcription 
factors. One can use our approach to analyze a wide array of transcription factors 
across diverse sets of epigenetic modifications, in any organism for which suitable 
data exist. The existence of specific transcription factor binding motifs whose rec-
ognition is driven by cytosine modifications may explain why transcription factors 
bind specific repetitive element loci, as opposed to every genome-wide iteration of 
the motif. Our work provides an initial foundation towards a better understanding of 
this important aspect of motif specificity.

Methods
Our combinatorial and statistical approach to assess the impact of DNA modifications 
uses an expanded epigenetic alphabet to harness existing the powerful motif analysis 
workflows of the MEME Suite [48] and Regulatory Sequence Analysis Tools (RSAT) 
matrix-clustering [98] (Fig. 6). We report each step of this process, in detail, in 
the subsections below, outlining every processing step of our analysis methods.

An expanded epigenetic alphabet

To analyze DNA modifications’ effects upon transcription factor binding, we devel-
oped a model of genome sequence that expands the standard A/C/G/T alphabet. Our 
model adds the symbols m (5mC), h (5hmC), f (5fC), and c (5caC). This allows us to 
more easily adapt existing computational methods, that work on a discrete alphabet, 
to work with epigenetic cytosine modification data.

Each symbol represents a base pair in addition to a single nucleotide, implicitly 
encoding a complementarity relation. Accordingly, we add four symbols to repre-
sent  G when paired with modified  C  (Table  1): 1  (G:5mC), 2  (G:5hmC), 3  (G:5fC), 
and 4 (G:5caC). This ensures that complementation remains a lossless operation. The 
presence of a modification alters the base pairing properties of a complementary gua-
nine  [14], which this also captures. We number these symbols in the same order in 
which the TET enzyme acts on 5mC and its oxidized derivatives  (Additional file  1: 
Fig. S1) [5].

Many cytosine modification-detection assays only yield incomplete information of 
a cytosine’s modification state. For example, conventional bisulfite sequencing alone 
determines modification of cytosine bases to either 5mC or 5hmC, but cannot resolve 
between those two modifications  [5]. Even with sufficient sequencing to disambigu-
ate all modifications, we require statistical methods to infer each modification from 
the data, resulting in additional uncertainty. To capture common instances of modi-
fication state uncertainty, we also introduce ambiguity codes: z/9 for a cytosine of 
(completely) unknown modification state, y/8 for a neither hydroxymethylated nor 
methylated cytosine, x/7 for a hydroxymethylated or methylated cytosine, and w/6 
for a formylated or carboxylated cytosine  (Table  2). These codes are analogous to 
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those defined by the Nomenclature Committee of the International Union of Bio-
chemistry already in common usage, such as for unknown purines  (R) or pyrimi-
dines (Y) [99, 100].

Cytomod: method for creation of an expanded‑alphabet genome sequence

Like most epigenomic data, abundance and distribution of cytosine modifications varies 
by cell type. Therefore, we require modified genomes for a particular cell type and would 

Fig. 6  Overall workflow of all main software employed for our analyses. Cylinders: datasets; rectangles: 
processes
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not necessarily expect downstream analyses to generalize. Accordingly, we first need to 
construct a modified genome that pertains to the organism, assembly, and tissue type we 
wish to analyze. This modified genome uses the described expanded alphabet to encode 
cytosine modification state, using calls from single-base resolution modification data.

To do this, we created a Python program called Cytomod. It loads an unmodified 
assembly and then alters it using provided modification data. It relies upon Genome-
data [101] and NumPy [102] to load and iterate over genome sequence data. Cytomod 
can take the intersection or union of replicates pertaining to a single modification type. 
It also allows one to provide a single replicate of each type, and potentially to run it mul-
tiple times to produce multiple independent replicates of modified genomes. It permits 
flagging of ambiguous input data, such as when only possessing conventional bisulfite 
sequencing data, therefore yielding only x/7 as modified bases. Cytomod additionally 
produces browser extensible data (BED) [103, 104] tracks for each cytosine modification, 
for viewing in the University of California, Santa Cruz (UCSC) [103] (Fig. 7), or Ensembl 
genome browsers [105].

We subjected the unaligned, paired-end, BAM files output from the sequencer to a 
standardized internal quality check pipeline. Widely known to work well, we selected 
Bismark [109] for alignment [110, 111]. We use the following processing pipeline: sort 

Table 2  Ambiguous bases for uncertain modification states. The MEME Suite recognizes these 
ambiguity codes in the same manner as the ambiguous bases already in common usage, such as R 
for A or G in the conventional DNA alphabet

Ambiguous nucleobase Complement

Symbol Possible bases Symbol Possible bases

w f, c 6 3, 4

x m, h 7 1, 2

y C, f, c 8 G, 3, 4

z C, m, h, f, c 9 G, 1, 2, 3, 4

Fig. 7  Differential cytosine modification status in naive mouse T cells for a 25 kbp region (within cytoband 
17qB1) surrounding Zfp57 and Mog. This UCSC Genome Browser [103] display includes RepeatMasker [106] 
regions, CpG islands [107], GENCODE [108] genes, and calls for modified nucleobases h (5hmC), m (5mC), 
x (5mC/5hmC), z (C with unknown modification state), 1 (G:5mC), 2 (G:5hmC), 7 (G:5mC/5hmC), and 9 (G:C 
with unknown modification state)
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the unaligned raw BAM files in name order using Sambamba  [112] (version  0.5.4); 
convert the files to FASTQ  [113], splitting each paired-end (using BEDTools  [114] 
version  2.23.0 bamtofastq); align the FASTA files to NCBI m37/mm9 using Bis-
mark  [109] (version 0.14.3), which used Bowtie 2  [115–117], in the default directional 
mode for a stranded library; sort the output aligned files by position (using Sambamba 
sort); index sorted, aligned, BAMs (SAMtools  [93] version  1.2 index); convert 
the processed BAM files into the format required by MethPipe, using to-mr; merge 
sequencing lanes (using direct concatenation of to-mr output files) for each speci-
men (biological replicate), for each sex, and each of WGBS and oxWGBS; sort the out-
put as described in MethPipe’s documentation (by position and then by strand); remove 
duplicates using MethPipe’s duplicate-remover; run MethPipe’s methcounts 
program; and finally run MLML [68]. After alignment, we excluded all random chromo-
somes. We use modifications called beyond a specified threshold (as described below) as 
input for Cytomod (with Genomedata [101] version 1.36.dev-r0).

In bulk data, usually one considers a base modified or not using some threshold, above 
which one “calls” a particular modified base or set of possible modifications. There exist 
several ways to perform modified base calling, generally first involving computing a pro-
portion of modification, at a specific position. We use the MLML [68] method to do this. 
Then, we must decide the value sufficient to call a modification downstream.

MLML [68] outputs maximum-likelihood estimates of the levels of 5mC, 5hmC, and 
C, between 0 and 1. It outputs an indicator of the number of conflicts—an estimate of 
methylation or hydroxymethylation levels falling outside of the confidence interval com-
puted from the input coverage and level. An abundance of conflicts can indicate the 
presence of non-random error [68]. We assign z/9 to all loci with any conflicts, regard-
ing those loci as having unknown modification state. Our analysis pipeline accounts for 
cytosine modifications occurring in any genomic context. It additionally maintains the 
data’s strandedness, allowing analyses of hemi-modification.

Mouse expanded‑alphabet genome sequences

We used conventional and oxidative WGBS data generated for naive CD4+  T  cells, 
extracted from the spleens of C57BL/6J mice, aged 6 weeks–8 weeks. The dataset 
authors obtained a fraction enriched in CD4+ T cells, by depletion of non-CD4+ T cells 
by magnetic labelling, followed by fluorescence-activated cell sorting to get the CD4+, 
CD62L+, CD44low, and CD25– naive pool of T  cells. We previously published these 
data [51] as part of the BLUEPRINT project [118] (GSE94​674 [119]; GSE94​675 [120]). 
We analyzed biological replicates separately, 2 of each sex.

For our mouse datasets, we aligned sequencing reads with Bowtie  2  [115–117] ver-
sion 2.2.4. We used MethPipe  [121] (development version, commit 36553​60 [122]), to 
process the data.

We used our mouse datasets to calibrate our modified base calling thresholds. 
MLML [68] combines the conventional and oxidative bisulfite sequencing data to yield 
consistent estimations of cytosine modification state. In our case, with two inputs per 
mouse run (WGBS and oxWGBS), we obtain values of 0, 1, or 2. We created modified 
genomes using a grid search, in increments of 0.01, for a threshold  t, for the levels of 
5mC (m) and 5hmC (h), as described in Fig. 8.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94674
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94675
https://github.com/smithlabcode/methpipe/commit/3655360
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We use half of the threshold value for assignment to x/7, since we consider that con-
sistent with the use of the full threshold value to call a specific modification. Namely, 
if t suffices to call 5mC or 5hmC alone, m+ h ≥ t ought suffice to call x/7.

Fig. 8  Conditions on the MLML [68] confidence levels of 5mC (m) and 5hmC (h) in relation to a 
threshold t that lead to the calling of different modified nucleobases. We call a modification if m or h equal 
or exceed the threshold. These base assignments assume that MLML had no conflicts for the locus under 
consideration. If any conflicts occur, we use z as the base, irrespective of the values of m or h. We depict bases 
for the positive strand only, and complement those occurring on the negative strand, as outlined in Tables 1 
and 2

Table 3  Illustrative examples of possible changes made to convert unmodified motifs to specific 
modified counterparts, for downstream hypothesis testing. We use stacked letters like simple 
sequence logos. At these positions, N represents any base frequencies other than the base being 
modified. These make up the other positions in the motif’s PWM. 

C

N → m indicates that a position 
containing cytosine is modified by setting all base frequencies other than m to 0 and setting the 
frequency of m to 1. Conversely, 

C

N
N
→

h

N
G indicates that a position containing cytosine is modified 

by replacing the frequency apportioned to C with h, leaving the other base frequencies at that 
position unmodified. We portray the second base of each dinucleotide as having a frequency of 1. 
This second base, however, could also comprise different bases of various frequencies, including the 
base shown

Modification description Unmodified motif Modified motif

Full CpG modification to 5mC C

N
G m1

Full CpG modification to 5hmC C

N
G h2

Partial CpG modification to 5hmC C

N
G h

N
2

Partial CpG hemi-modification to 5hmC C

N
G h

N
G

Full CpT modification to either 5mC or 5hmC C

N
T xT
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Human expanded‑alphabet genome sequence

Using publicly available ENCODE WGBS data  (ENCFF​557TER and ENCFF​963XLT), 
we created K562 (RRID:​ CVCL_​0004) modified genome for the GRCh38/hg38 assembly 
at 0.3 and 0.7 stringencies. WGBS data alone does not differentiate 5mC and 5hmC. As 
the data cannot differentiate between these states, one might represent them as x. None-
theless, we represent modified bases from the WGBS data as m, both for convenience, 
and because, in most cases, these positions are just methylated. We processed these 
datasets, as previously described. We aligned human datasets with Bowtie 2 [115–117] 
version 2.2.3 and processed with MethPipe [121] (release version 3.4.2 [123]).

Cytomod performance

Generally, one needs to run Cytomod only once per analysis project, so we did not focus 
on improving runtime performance. For the analyses of hundreds of ChIP-seq datasets 
undertaken here, outside of development, initial tests, and threshold calibration, we only 
had to run Cytomod four times. In other words, we only needed four modified genome 
sequences to complete most of our work, two per each selected threshold, one for the 
mouse genome and one for the human genome. Since future work will likely not require 
further Cytomod development and threshold calibration, others using Cytomod would 
not need to run it more than a few times either. Nonetheless, Cytomod performs quickly 
already, considering each run produces a complete modified genome assembly.

Typically, Cytomod completes work on an ∼3 Gbp genome in considerably less than 
8 h on a single core of an Intel Xeon E5-2650 v2 2.6 GHz Linux workstation, and it uses 
less than 24 GB of RAM. Cytomod requires output disk storage space of approximately 
the same size as the unmodified input assembly. We benchmarked some specific illus-
trative runtimes. First, creating a modified GRCh38/hg38 assembly with 1 modification 
track (x; WGBS data only) took Cytomod 3 h 15 min 26 s. Second, creating a modified 
NCBI m37/mm9 assembly with 4 modification tracks (m, h, x, z; both WGBS and oxW-
GBS data) took 4 h 14 min 40 s.

Detection of altered transcription factor binding in modified genomic contexts

Following creation of expanded-alphabet genome sequences, we performed transcrip-
tion factor binding site motif discovery, enrichment, and modified-unmodified compari-
sons. Here, we use mouse assembly NCBI m37/mm9 for all murine analyses, since we 
wanted to make use of all Mouse ENCODE [124] ChIP-seq data  (RRID:​ CVCL_​0188) 
without re-alignment nor lift-over. Specifically, we used the Mus musculus Illumina (San 
Diego, CA, USA) iGenome [125] packaging of the UCSC NCBI m37/mm9 genome. This 
assembly excludes all alternative haplotypes as well as all unreliably ordered, but chro-
mosome-associated, sequences (the so-called “random” chromosomes). While ideal for 
downstream analyses, that assembly does not suffice for aligning data ourselves. Exclu-
sion of these additional pseudo-chromosomes might deleteriously impact alignments, by 
resulting in the inclusion of spuriously unique reads. Therefore, we used the full UCSC 
NCBI m37/mm9 build when aligning to a reference sequence. For our human datasets, 
we used GRCh38/hg38, with all K562 ENCODE datasets.

We used all K562 peak calls, processed as outlined below, from Human ENCODE 
ChIP-seq data, from preliminary data processed for Karimzadeh et  al. [126]. We 

https://www.encodeproject.org/files/ENCFF557TER
https://www.encodeproject.org/files/ENCFF963XLT/
https://scicrunch.org/resolver/RRID:CVCL_0004
https://github.com/smithlabcode/methpipe/releases/tag/v3.4.2
https://scicrunch.org/resolver/RRID:CVCL_0188
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briefly recapitulate the processing steps here. First, they align the raw reads with Bow-
tie 2 [115–117] (version 2.2.3). Then, they then de-duplicate reads using SAMtools [93] 
(version  0.1.19) and filter for those with a mapping quality of greater than  10 using 
option -bq 10. Finally, they call peaks without any control, using MACS 2 [63] (ver-
sion  2.1.0) callpeak and options --qvalue 0.001 --format BAM --gsize 
hs --nomodel --call-summits.

We updated the MEME Suite  [48] to work with custom alphabets, such as our 
expanded epigenomic alphabet. Additionally, we created the MEME::Alphabet Perl 
module to assist with its internal functionality. We incorporated these modifications 
into MEME Suite version 4.11.0.

We characterize modified transcription factor binding sites using MEME-ChIP  [66]. 
It allows us to rapidly assess the main software outputs of interest: MEME  [64] and 
DREME [65], both for de novo motif elucidation; CentriMo [56, 127], for the assessment 
of motif centrality; SpaMo [128], to assess spaced motifs (especially relevant for multi-
partite motifs); and FIMO [81].

We mainly focus upon CentriMo [56] for the analysis of our results. It permits infer-
ence of the direct DNA binding affinity of motifs, by assessing a motif ’s local enrich-
ment. In our case, we scan peak centres with PWMs, for the best match per region. We 
generate the PWMs used from MEME-ChIP, by loading the JASPAR 2014  [129, 130] 
core vertebrates database, in addition to any elucidated de novo motifs from MEME or 
DREME. CentriMo counts and normalizes the number of sequences at each position of 
the central peaks to estimate probabilities of central enrichment. CentriMo smooths and 
plots these estimates, using a one-tailed binomial test to assess the significance of central 
enrichment [56].

MEME-ChIP  [66] can yield repetitive motifs, without masking of low complex-
ity sequences. Existing masking programs do not support modified genomes, and we 
accordingly mask the assembly, prior to modification with Cytomod. We use this mask-
ing only for downstream motif analyses. We use Tandem Repeat Finder (TRF)  [131] 
(version 4.07b in mice and 4.09 in humans) to mask low complexity sequences. We used 
the following parameters: 2 5 5 80 10 30 200 -h -m -ngs, from published TRF 
parameter optimizations [132]. For version 4.09, to ensure compatibility with GRCh38/
hg38 or larger future genomes, we increased the maximum “expected” tandem repeat 
length to 12 000 000 , adding -l 12.

We ran MEME-ChIP [66], against Cytomod genome sequences for regions pertaining 
to ChIP-seq peaks from transcription factors of interest. For this analysis, we used the 
published protocol for the command-line analysis of ChIP-seq data [133]. We employed 
positive controls, in two opposite directions, to assess the validity of our results. We 
use c-Myc as the positive control for an unmethylated binding preference [25, 26]. For 
this control, we used ChIP-seq data from a stringent streptavidin-based genome-wide 
approach with biotin-tagged Myc in mESCs from Krepelova et  al. [57]  (GSM11​71648 
[134]). Also, we used murine erythroleukemia and CH12.LX Myc Mouse ENCODE 
samples (ENCFF​001YJE and ENCFF​001YHU). Conversely, we used both ZFP57 and C/
EBPβ as positive controls for methylated binding preferences [21–24]. For C/EBPβ, we 
used Mouse ENCODE ChIP-seq data, conducted upon C2C12 cells (ENCFF​001XUT) or 
myocytes differentiated from those cells (ENCFF​001XUR and ENCFF​001XUS). Also, we 

https://metacpan.org/pod/MEME::Alphabet
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1171648
https://www.encodeproject.org/files/ENCFF001YJE
https://www.encodeproject.org/files/ENCFF001YHU/
https://www.encodeproject.org/search/?searchTerm=ENCFF001XUT%20ChIP%20Musculus
https://www.encodeproject.org/search/?searchTerm=ENCFF001XUR%20ChIP%20Musculus
https://www.encodeproject.org/search/?searchTerm=ENCFF001XUS%20ChIP%20Musculus
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used one replicate of ZFP57 peaks provided by Quenneville et al. [22]. When process-
ing this replicate, we used the same parameters as for our other ZFP57 samples, except 
for employing default MACS stringency (q = 0.05 ). The reduced peak calling stringency 
allowed us to ensure sufficient peaks for this older, lower-coverage, dataset. We con-
structed a ZFP57 BED file using BEDTools [114] (version 2.17.0) to subtract the control 
influenza hemagglutinin (HA) ChIP-seq (GSM77​3065 [135]) from the target (HA-tagged 
ZFP57: GSM77​3066 [136]). We retain only target regions with no overlap with any fea-
tures implicated by the control file, yielding 11 231 of 22 031 features.

Modified binding preferences of ZFP57

We used ZFP57 ChIP-seq data, provided by Strogantsev et  al. [23]  (GSE55​382 [137]), 
to examine the modified binding preferences of that transcription factor. Strogantsev 
et  al. [23] derived these 40  bp single-end reads from reciprocal F1 hybrid Cast/EiJ × 
C57BL/6J mESCs (BC8: sequenced C57BL/6J mother × Cast father and CB9: sequenced 
Cast mother × C57BL/6J father).

We re-processed the ZFP57 data to obtain results for NCBI m37/mm9. We performed 
this re-processing similarly to some of the Mouse ENCODE datasets, to maximize con-
sistency for future Mouse ENCODE analyses. We obtained raw FASTQs using Sequence 
Read Archive (SRA) Toolkit’s fastq-dump. Then, we aligned the FASTQs using Bow-
tie  [115] (version 1.1.0; bowtie -v 2 -k 11 -m 10 -t --best --strata). We 
sorted and indexed the BAM files using Sambamba [112]. Finally, we called peaks, using 
the input as the negative enrichment set, using MACS  2  [63] (version  2.0.10) call-
peak, with increased stringency ( q = 0.00001 ), with parameters: --qvalue 0.00001 
--format BAM --gsize mm. This resulted in 90 478 BC8 and 56 142 CB9 peaks.

We used the ChIPQC  [138] Bioconductor  [139] package to assess the ChIP-seq 
data quality. We used the two control and two target runs for each of BC8 and CB9. 
Then, we used ChIPQC(samples, consensus=TRUE, bCount=TRUE, sum-
mits=250, annotation="mm9", blacklist="mm9-blacklist.bed.gz", 
chromosomes=chromosomes). We set the utilized list of mouse chromosomes to 
only the canonical 19 autosomal and 2 sex chromosomes. Using a blacklist, we filtered 
out regions that appeared uniquely mappable but empirically show artificially elevated 
signal in short-read functional genomics data. We obtained the blacklist file from the 
NCBI m37/mm9 ENCODE blacklist website (https://​sites.​google.​com/​site/​anshu​
lkund​aje/​proje​cts/​black​lists)  [52]. The BC8 data had 13.7%  fraction of reads in peaks 
(FRiP) and the CB9 data had 9.12%  FRiP. Additionally, we performed peak calling at 
the default q = 0.05 . This resulted in many more peaks for both BC8  (197  610  peaks; 
27.6% FRiP) and CB9 (360 932 peaks; 19.7% FRiP). The CB9 sample had a smaller frac-
tion of overlapping reads in blacklisted regions (RiBL). At the default peak calling strin-
gency, BC8 had an RiBL of 29.7%, while CB9 had only 8.38%. This likely accounts for our 
improved results with the CB9 replicate (Additional file 1: Fig. S2).

Additionally, we analyzed three ZFP57 ChIP-seq replicates (100 bp paired-end reads) 
pertaining to mESCs in pure C57BL/6J mice  [140]. We paired each replicate with an 
identically conducted ChIP-seq in a corresponding sample, which lacked ZFP57 expres-
sion (ZFP57-null controls).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM773065
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM773066
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55382
https://sites.google.com/site/anshulkundaje/projects/blacklists
https://sites.google.com/site/anshulkundaje/projects/blacklists
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For the pure C57BL/6J data, we used the same protocol as for the hybrid data, except 
for the following three differences. First, instead of input as the negative control, we used 
the ZFP57-null ChIP-seq data. We ran Bowtie in paired-end mode (using -1 and -2). 
Second, we omitted the Bowtie arguments --best --strata, which do not work in 
paired-end mode. Instead, we added -y --maxbts 800, the latter of which we set with 
--best’s value, in lieu of the default threshold of 125. Third, we set MACS to paired-
end mode (option -f BAMPE). This resulted in very few peaks, however, when pro-
cessed with the same peak-calling stringency as the hybrid data (at most 1812 peaks) and 
FRiP values under 2%. Even when we used the default stringency threshold, we obtained 
at most 4496 peaks, with FRiP values of around 4.5%. Nonetheless, we still observed the 
expected preference for methylated motifs (Additional file 1: Fig. S2).

Processing of additional OCT4 and n‑Myc datasets

We additionally used OCT4 and n-Myc ChIP-seq data, from Yin et  al. [36]  (GSE94​
634 [141]). Except as indicated below, we processed these in the same manner as our 
ZFP57 data. For these transcription factors, we used mouse data for three conditions 
per factor. These conditions consist of a wild-type sample, a triple-knockout sample for 
TET1+TET2+TET3, and a triple-knockout sample for DNMT1+DNMT3A+DNMT3B. 
OCT4 has two antibodies, both replicated, across all three conditions. Because of 
pooling of both replicates for one antibody in the TET triple-knockout condition, this 
leads to 3 conditions× 2 antibodies× 2 replicates− 1 pooled replicate = 11  OCT4 
samples. The n-Myc came from only a single antibody, resulting in 
3 conditions× 2 replicates = 6  samples. We used the provided IgG samples as nega-
tive controls for peak calling for this dataset. As discussed previously [36], we also called 
peaks for matching samples against each of their mouse, rabbit, and goat IgG samples.

Comparing motif modifications, using hypothesis testing

To directly compare various modifications of motifs to their cognate unmodified 
sequences, we adopted a hypothesis testing approach. One can derive motifs of inter-
est from a de novo result that merits further investigation. Often, however, researchers 
identify motifs of interest using prior expectations of motif binding preferences in the 
literature, such as for c-Myc, ZFP57, and C/EBPβ. For every unmodified motif of inter-
est, we can partially or fully change the base at a given motif position to some modified 
base (Table 3).

To directly compare modified hypotheses to their cognate unmodified sequences 
robustly, we tried to minimize as many confounds as possible. We fixed the CentriMo 
central region width (options --minreg 99 --maxreg 100). We also compensated 
for the substantial difference in the background frequencies of modified versus unmodi-
fied bases. Otherwise, vastly lower modified base frequencies can yield higher probabil-
ity and sharper CentriMo peaks, since when CentriMo scans with its “log-odds” matrix, 
it computes scores for nucleobase b with background frequency f(b) as

log
Pr (b)

f(b)
.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94634
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94634
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To compensate for this, we ensured that any motif pairs compared have the same 
length and similar relative entropies. To do this, we used a larger motif pseudocount 
for modified motifs (using CentriMo option  --motif-pseudo). We computed the 
appropriate pseudocount, as described below, and provided it to iupac2meme. We set 
CentriMo’s pseudocount to 0, since we had already applied the appropriate pseudocount 
to the motif. We seek to normalize the average relative entropies of the PWM columns 
between two motifs.

The relative entropy (or Kullback-Leibler divergence), DRE , of a motif m of length |m|, 
with respect to a background model b over the alphabet A, of size |A|, is [142]

For each position, i, in the motif, the MEME Suite adds the pseudocount parameter, α , 
times the background frequency for a given base, j, at the position: m′

ij = mij + αbj . This 
omits the effective number of observed sites, which the MEME Suite also accounts for, 
essentially setting it to 1.

Accordingly, to equalize the relative entropies, we needed only substitute  m′
i j for 

each mi j in Eq. 1 and then isolate α . In this process, we solve for α , by equating DRE for 
the unmodified motif with that of the modified motif, substituting as above, while hold-
ing α for the unmodified motif constant. If we proceed in this fashion, however, our pseu-
docount would depend upon the motif frequency at each position and the background of 
each base in the motif. Instead, we can make a number of simplifying assumptions that 
apply in this particular case. First, the unmodified and modified motifs we compare dif-
fer only in the modified bases, which in this case, comprise only C or G nucleobases, with 
a motif frequency of 1. Additionally, we set the pseudocount of the unmodified motif to 
a constant 0.1 (CentriMo’s default). Thus, the pseudocount for a single modified base is 
the value α , obtained by solving, for provided modified base background frequency bm 
and unmodified base frequency bu:

Equation 2 only accounts for a single modification, however, on a single strand. For 
complete modification, we also need to consider the potentially different background 
frequency of the modified bases’ complement. Thus, for a single complete modification, 
with modified positions m1 and m2 and corresponding unmodified positions u1 and u2 , 
modified base background frequencies bm1 , bm2 , and unmodified base frequencies bu1 , 
bu2 , we obtained

We numerically solved for α in Eq.  3 for each modified hypothesis, using fsolve 
from SciPy  [143]. Finally, we may have multiple modified positions. We always either 

(1)DRE(m, b) =

|m|−1
∑

i=0

|A|−1
∑

j=0

(

mij log2

(

mij

bj

))

.

(2)1+ αbm log2

(

1+ αbm

bm

)

= 1+ 0.1bu log2

(

1+ 0.1bu

bu

)

.

(3)
1+ α bm1 log2

(

1+ αbm1

bm1

)

+ 1+ αbm2 log2

(

1+ αbm2

bm2

)

= 1+ 0.1bu1 log2

(

1+ 0.1bu1
bu1

)

+ 1+ 0.1bu2 log2

(

1+ 0.1bu2
bu2

)

.



Page 32 of 46Viner et al. Genome Biology  (2024) 25:11

hemi-modify or completely modify all modified positions, so the pseudocount is the 
product of modified positions and the α value from Eq. 3.

The pseudocount obtained in this fashion does not exactly equalize the two motif ’s rel-
ative entropies, since we do not account for the effect that the altered pseudocount has 
upon all the other positions of the motif. It does, however, exactly equalize the relative 
entropies per column (RE/col, as defined by Bailey et al. [142]) of the modified versus 
unmodified motifs, which suffices to ensure correctly normalized comparisons.

Then, we performed hypothesis testing for an unmodified motif and all possible 
5mC/5hmC modifications of all CpGs for known modification-sensitive motifs for 
c-Myc, ZFP57, and C/EBPβ. These modifications consist of the six possible combinations 
for methylation and hydroxymethylation at a CpG, where a CpG is not both hemi-meth-
ylated and hemi-hydroxymethylated. These six combinations are: mG, C1, m1, hG, C2, 
and h2. For c-Myc, we constructed modified hypotheses from the standard unmodified 
E-box: CAC​GTG​. For ZFP57, we tested the known binding motif, as both a hexamer (TGC​
CGC​) and as extended heptamers  (TGC​CGC​R and TGC​CGC​G)  [22, 23]. We additionally 
tested motifs that occurred frequently in our de  novo analyses, C(C/A)TGm1(C/T) 
(A). We encoded this motif as the hexamer MTGCGY​ and heptamers, with one addi-
tional base for each side: CMTGCGY​ and MTGC​GYA​. This encoding permitted direct com-
parisons to the other known ZFP57-binding motifs of the same length. Finally, for C/
EBPβ we tested the modifications of two octamers: its known binding motif  (TTG​CGC​
AA) and the chimeric C/EBP|CRE motif (TTG​CGT​CA) [21].

Using CentriMo, we assessed motifs for their centrality within their respective ChIP-
seq datasets. Then, we computed the ratio of CentriMo central enrichment p-values, 
adjusted for multiple testing [56], for each modified/unmodified motif pair. For numeri-
cal precision, we computed this ratio as the difference of their log values returned by 
CentriMo. This determines if the motif prefers a modified (positive) or unmodified (neg-
ative) binding site.

We conducted hypothesis testing across all four replicates of mouse WGBS and 
oxWGBS data, for a grid search of modified base calling thresholds. The levels output 
by MLML [68], allowed us to obtain these thresholds. We interpret these values as our 
degree of confidence for a modification occurring at a given locus. We conducted our 
grid search from 0.01–0.99 inclusive, at 0.01 increments. Finally, we plotted the ratio of 
CentriMo p-values across the different thresholds, using Python libraries Seaborn [144] 
and Pandas  [145]. We used IPython [146] and IGV [147] during initial testing and 
data exploration. We also used GNU Parallel [148] throughout our workflow. Then we 
extended this combinatorial hypothesis testing approach, across all JASPAR and de novo 
motifs from our Mouse and Human ENCODE datasets, at our  0.3 and  0.7 selected 
thresholds.

Assessment of transcription factor familial preferences

We used TFClass [58, 59] (downloaded November 8, 2017) to categorize and group ana-
lyzed transcription factors into families and super-families. We used Pronto [149] (ver-
sion 0.2.1) to parse the TFClass ontology files.

For transcription factors either not categorized at time of analysis or that yielded 
inexact matches, we manually assigned them to families and super-families. We 
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performed curation by searching one or more of GeneCards  [150], Genenames.
org  [151], UniProt  [152], Gene3D [153], InterPro  [154], Pfam [155], SMART [156], 
and SUPERFAMILY [157].

We manually re-named a number of transcription factors in the family assignment 
to match the names used elsewhere in our data, largely removing hyphens for con-
sistency, creating a group for POLR2A, and adding a number of missing transcrip-
tion factors. The following factors (with asterisks denoting any suffix and slashes 
denoting synonymous factors) underwent this manual annotation: RAD21, REC8, 
SCC1, ZC3H11*, CHD*, NELFE, PAH2, SIN3*, PIAS*, ZMIZ*, KLHL, HCFC*, 
EP300, TCF12, TIF1*/TRIM24/TRIM28/TRIM33, SMC*, KAT2A/GCN5, and 
SMARCA4/BRG1.

We aggregated all hypothesis testing results across either mouse or K562 data-
sets distinctly. Grouped by modification type (m or h), we aggregated across strin-
gency (0.3 or 0.7), replicate of origin, and unmodified hypothesis. When comparing 
a modified hypothesis pair to its unmodified counterpart, different replicates of data 
may produce different scores. In this instance, to aggregate multiple similar hypoth-
esis tests, we took the maximum absolute value score. For each transcription factor, 
we retained only the most statistically significant (“top-1”) or top three most statis-
tically significant (“top-3”) hypothesis pairs. We omitted hypothesis pairs that lack 
statistical significance ( p-value ≥ 0.05).

Motif clustering of modified binding preferences

We used RSAT matrix-clustering [98] to hierarchically cluster similar motifs. 
For each transcription factor, we clustered each of its unmodified motifs, alongside 
their modified counterparts. These motifs matched the set of hypothesis pairs for 
that factor.

We partitioned each transcription factor’s motifs into unmodified-preferring 
( score < −ǫ ), modified-preferring ( score > ǫ ), and those without any substantive 
preference (−ǫ ≤ 0 ≤ ǫ ). Here, we set ǫ = 5 , to ignore any near-neutral preferences.

After this, we removed duplicate hypothesis pairs, selecting only those with 
the scores furthest away from zero. Then, we plotted these clusters, annotated 
by their score, in a treemap  [158] plot. We created this plot using R  [159] (ver-
sion 3.5.1) ggplot2’s [160] treemapify [161] and Python (version 2.7.15) Pandas (ver-
sion 0.22.0) [145] data structures through rpy2 [162] (version 2.8.6).

We designed a colour scheme to highlight motifs with strong preferences. To do 
this, we used white for scores of 80, above or below zero (namely, from −80 to 80). 
This represented an expansion of disregarded motif from the ǫ = 5  threshold used 
above. We also kept the colour ramp linear within a score of 20 on either side of 0. 
Outside of this range around the centre, the ramp becomes logarithmic.

To further highlight the rarer and lower scores occurring for motifs preferring to 
bind in modified contexts, we altered the mid-point of the colour scheme. To do 
this, we re-centred the colour scheme, shifting it −10 , thereby biasing it towards 
modified contexts, in shades of red. The re-centring offset skews the entire colour 
scheme toward red hues, including moving the white regions accordingly.
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Validation of our OCT4 findings, using CUT&RUN

After finding that OCT4 had a number of both methyl- and hydroxymethyl-preferring 
motifs, we performed CUT&RUN [49, 50] on mESCs, targeting OCT4. We also per-
formed CUT&RUN for a matched IgG, for use as a background during peak calling. 
We performed CUT&RUN on mESCs, targeting OCT4. We subjected the resultant 
DNA to 3 workflows: conventional library preparation for sequencing on an Illumina 
platform, bisulfite sequencing, and Nano-hmC-Seal-seq [61]. Using a NovaSeq 6000 
(Illumina), we sequenced the resulting libraries from the 3 workflows, using a paired-
end  2× 150 bp read configuration (Princess Margaret Genomics Centre, Toronto, 
ON, Canada).

Cell lines

Using feeder-free conditions, we grew male E14 murine embryonic stem cells  [163] 
on 10 cm plates gelatinized with 0.2% porcine skin gelatin type A (Sigma, St. Louis, 
MO, USA) at 37 ◦ C and 5% CO2. The ES-E14TG2a (E14) embryonic stem cells were 
a gift from the Fazzio lab  (RRID:​ CVCL_​9108). We cultured cells in N2B27+2i 
media  [164]. Briefly, this media contains DMEM/F12  [165] (Sigma) and Neurobasal 
media (ThermoFisher, Waltham, MA, USA), supplemented with 0.5×  B27 (Invitro-
gen, Waltham, MA, USA), 1× N-2 Supplement, 50 µmol/l 2-mercaptoethanol (Ther-
moFisher), 2mmol/l  glutamine (ThermoFisher), Leukemia Inhibitory Factor (LIF), 
3 µmol/l  CHIR99021 glycogen synthase kinase (GSK) inhibitor (p212121, Boston, 
MA, USA), and 1 µmol/l  PD0325091 mitogen-activated protein kinase/extracel-
lular signal-regulated kinase kinase (MEK) inhibitor (p212121). We passaged cells 
every 48 h using trypsin (Gibco, Waltham, MA, USA) and split them at a ratio of ∼1:8 
with fresh medium. We conducted routine anti-mycoplasma cleaning (LookOut 
DNA Erase spray, Sigma) and screened cell lines by PCR to confirm no mycoplasma 
presence.

CUT&RUN assay

We performed CUT&RUN as described elsewhere  [166–168] using recombi-
nant Protein A-micrococcal nuclease (pA-MN). Briefly, we extracted nuclei from ∼
4  500  000 embryonic stem cells using a nuclear extraction buffer comprised of 
20mmol/l  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-KOH  [169], 
pH  7.9; 10mmol/l  KCl; 0.5mmol/l  spermidine; 0.1% Triton X-100; 20% glycerol; 
and freshly added protease inhibitors. We bound the nuclei to  500 µl pre-washed 
lectin-coated concanavalin A magnetic beads (Polysciences, Warrington, PA, 
USA). Then, we washed beads in binding buffer ( 20mmol/l  HEPES-KOH, pH  7.9, 
10mmol/l  KCl, 1mmol/l CaCl2 MnCl2). We pre-blocked immobilized nuclei with 
blocking buffer ( 20mmol/l HEPES, pH 7.5, 150mmol/l NaCl, 0.5mmol/l  spermidine, 
0.1% bovine serum albumin (BSA), 2mmol/l  EDTA, fresh protease inhibitors). We 
washed the nuclei once in wash buffer ( 20mmol/l HEPES, pH 7.5, 150mmol/l NaCl, 
0.5mmol/l spermidine, 0.1% BSA, fresh protease inhibitors). Following this, we incu-
bated nuclei in wash buffer containing primary antibody (anti-Oct4, Diagenode 

https://scicrunch.org/resolver/RRID:CVCL_9108
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(Denville, NJ, USA) cat no. C15410305 or anti-IgG, Abcam (UK) cat. no. ab37415; 
RRID:​ AB_​26319​96) for 1 h at 4 ◦ C with rotation. Then, we incubated in wash buffer 
containing recombinant pA-MN for 30min at 4 ◦ C with rotation.

Using an ice-water bath, we equilibrated samples to 0 ◦ C and added 3mmol/l CaCl2 to 
activate pA-MN cleavage. Then, we performed sub-optimal digestion, at 0 ◦ C for 30min . 
As described in Step 31 of Skene et al. [50], we intentionally conducted digestion at a 
temperature lower than optimal, to prevent otherwise unacceptable background cleav-
age levels  [49, 50]. We chelated digestion with 2XSTOP+ buffer ( 200mmol/l  NaCl, 
20mmol/l  EDTA, 4mmol/l  ethylene glycol-bis(β-aminoethyl ether)  N ,N ,N ′,N ′-

-tetraacetic acid (EGTA), 50 µg/ml  RNase A, 40 µg/ml  glycogen, and 1.5 pg  MNase-
digested Saccharomyces cerevisiae mononucleosome-sized DNA spike-in control).

After RNase A treatment and centrifugation, we released and separated genomic 
fragments. We digested protein using proteinase K. Finally, we purified DNA using 
phenol:chloroform:isoamyl alcohol extraction, followed by ethanol precipitation.

Library preparation for bisulfite sequencing

We prepared our bisulfite sequencing library using 30 ng of CUT&RUN DNA. We used 
the Ultra II Library Preparation Kit (New England Biolabs (Canada) (NEB), cat. no. 
E7645L) following manufacturer’s protocol, with some modifications. In brief, after end-
repair and A-tailing, we ligated NEBNext methylated adapters for Illumina (NEB, cat. 
no. E7535) at a final concentration of 0.04 µmol/l onto the DNA, followed by incuba-
tion at 20 ◦ C for 20min . Post adapter incubation, we subjected adapters to USER enzyme 
digestion at 37 ◦ C for 15min prior to clean up using AMPure XP Beads (Beckman Coul-
ter, cat. no. A63881).

We bisulfite-converted adapter-ligated CUT&RUN DNA using Zymo Research EZ 
DNA Methylation Kit (Zymo, Irving, CA, USA, cat. no. D5001) following the alterna-
tive protocol for the Infinium Methylation Assay (Illumina). Briefly, we added 5 µl  of 
M-Dilution buffer to purified adapter-ligated DNA, and adjusted total sample volume 
to 50 µl with sterile molecular grade water. We incubated samples at 37 ◦ C for 15min , 
prior to the addition of 100 µl of CT Conversion Reagent. We further incubated sam-
ples, prior to purification, at ( 95 ◦ C for 30 s , 50 ◦ C for 60min ) for 16 cycles, then at 4 ◦ C 
for at least 10min , following the manufacturer’s protocol. Finally, we eluted samples in 
23 µl molecular grade water.

We amplified the bisulfite-converted DNA using 2× HiFi HotStart Uracil+ ReadyMix 
(KAPA, Wilmington, MA, USA, cat. no. KK2801), and unique dual index primers (NEB, 
cat. no. E6440S) in a final volume of 50 µl . We performed this using the following PCR 
program: 98 ◦ C for  45 s , followed by 17 cycles of: 98 ◦ C for 15 s , 65 ◦ C for 30 s , 72 ◦ C 
for 30 s , and final extension at 72 ◦ C for 60 s . We purified and dual size selected amplified 
libraries using AMPure (Beckman Coulter, ON, Canada) XP Beads at 0.6× to 1.0× bead 
ratio, eluted in a volume of 20 µl.

Library preparation for hmC‑Seal sequencing

We performed library preparation using the NEB Ultra II Library Preparation Kit (NEB, 
cat. no. E7645L) on 30 ng CUT&RUN DNA, as per the manufacturer’s protocol, with the 

https://scicrunch.org/resolver/RRID:AB_2631996
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below modifications. In brief, after end-repair and A-tailing, we purified adapter ligated 
DNA using AMPure XP Beads at a 0.9× ratio and eluted in 11.5 µl sterile water.

We added three spike-in DNA controls to the adapter ligated DNA to assess spe-
cific enrichment of modified DNA fragments. Controls consisted of 0.2 ng/µl working 
stocks of unmethylated and methylated Arabidopsis DNA spike-in controls from the 
Diagenode DNA methylation control package (cat. no. C02040012). They also included 
the 5hmC spike-in control DNA (amplified from the APC promoter) from the Active 
Motif Methylated DNA standard kit (Active Motif, cat. no. 55008). We combined 0.3 ng 
of each spike-in DNA in a final volume of 4.5 µl per experimental sample. We mixed the 
adapter ligated DNA with the spike-in DNA mix. Then we aliquoted 1.6 µl of this mix 
into a separate PCR tube and stored it at −20 ◦ C, as an input control.

We 5hmC-glucosylated the remaining 14.4 µl  CUT&RUN DNA mixed with spike-
in controls, as previously described  [61], with the below modifications. Briefly, we 
1:1  diluted a 3 µmol/l  stock of uracil diphosphate (UDP)-azide-glucose (Active Motif, 
cat. no. 55020) in 1×  phosphate-buffered saline (PBS) to establish a working stock 
of 1.5 µmol/l for Mastermix preparation. We prepared a 20 µl glucosylation Mastermix 
per experimental sample consisting of the following: 14.4 µl  CUT&RUN DNA mixed 
with spike-in controls, 50 µmol/l HEPES (pH 8.0), 25mmol/l  MgCl2, 0.1mmol/l UDP-
azide-glucose and 1  U of T4  Phage β-glucosyltransferase (NEB, cat. no. M0357L). We 
incubated the mix for 1 h at 37 ◦ C, to promote glucosylation.

Then, we performed biotinylation of azide-labelled 5hmC residues of the glucosylated 
DNA fragments. In sterile water, we prepared 20mmol/l  dibenzocyclooctyne-PEG4-
biotin conjugate (Bioscience, cat. no. CLK-A105P4-10) and stored it in one-time use 
aliquots at −20 ◦ C, to avoid freeze-thaw. We mixed 20 µl  of glucosylated DNA with 
1.8 µmol/l  dibenzocyclooctyne-PEG4-biotin in a final reaction volume of 22 µl , then 
incubated 2 h at 37 ◦ C to promote biotinylation. Then, we prepared MicroSpin P-30 Gel 
Columns (Bio-Rad, Hercules, CA, USA, cat. no. 7326223), following the manufacturer’s 
protocol, and used them to purify total DNA fragments from reaction components. 
Briefly, we loaded the sample onto the column, then centrifuged 4min at 1000×g to 
elute purified DNA sample in 22 µl of Tris buffer.

To specifically capture biotinylated 5hmC DNA fragments, we prepared 2×  binding 
and washing (B&W) buffer (10mmol/l Tris-HCl, 10mmol/l EDTA, 2mol/l NaCl). Using 
20 µg of MyOne Streptavidin C1 Dynabeads (ThermoFisher, cat. no. 65001), we re-sus-
pended in 0.2ml of 1×  B&W buffer per experimental sample to wash beads. We sub-
jected beads to 3 total washes, then re-suspended to a final volume of 22 µl per sample 
in 2× B&W buffer. We added 22 µl of purified total DNA fragments to 22 µl of washed 
beads, then incubated  15min under gentle rotation to promote streptavidin-biotin 
binding.

To isolate beads containing streptavidin-bound biotinylated DNA fragments, we incu-
bated them on magnet for 3min . Then, we washed the beads 3  times with 1×  B&W 
buffer to remove non-biotinylated DNA fragments lacking 5hmC. Finally, we re-sus-
pended the beads in 50 µl of low TE buffer.

We conducted quantitative PCR (qPCR) to compare enrichment of 5hmC spike-in 
after biotin enrichment relative to input sample stored earlier. qPCR in the form of a 
10 µl reaction consisted of 1× SYBR Fast qPCR Mastermix (KAPA, cat. no. KK4601), 
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1 µl of template DNA, and primers at a final concentration of 0.3 µmol/l . We set up dif-
ferent reactions for each primer set to detect each spike-in control DNA separately. We 
used template-specific forward and reverse primers. For 5hmC, we quantified spike-in 
DNA fragment from the Active Motif Methylated DNA standard kit. We also quantified 
the methylated or unmethylated Arabidopsis DNA spike-in controls from the Diagen-
ode DNA Methylation Control package kit. We amplified with the following PCR pro-
gram: 98 ◦ C for 30 s , followed by 40 cycles of 98 ◦ C for 30 s and 60 ◦ C for 15 s (with image 
capture), ending with melt curve analysis.

To generate bead-free template for library DNA amplification, we established PCR 
reaction mix containing 0.3 µmol/l of unique dual index primers (NEB, cat. no. E6440S), 
1× NEBUltra II Q5 MM, and DNA/bead template for a final volume of 100 µl per sam-
ple. We split samples into 2× 50 µl reactions and amplified using the following PCR 
program: 98 ◦ C for 30 s , followed by 5 cycles of 98 ◦ C for 10 s , 60 ◦ C for 75 s , ending with 
a hold at 4 ◦ C. Then, we transferred reaction tubes to a magnetic rack and transferred 
bead-free supernatant to new PCR tubes. To amplify DNA libraries for a maximum 
of 16 cycles total (including initial 5 cycles), we used the same PCR conditions for the 
bead-free template. Then, we dual size selected DNA libraries using AMPure XP beads 
at 0.7× to 1.0× ratio, as described in the library preparation for bisulfite sequencing.

Sample sequencing

We performed library preparation of 5 ng of CUT&RUN DNA, following the NEB 
Ultra  II Library Preparation Kit  (cat. no. E7645L) manufacturer’s protocol. We used 
different NEB dual indices for each sample  (Table  4). We sequenced all libraries on a 
NovaSeq 6000 sequencing system using a SP flow cell run in standard mode, with 
paired-end 2×150 bp read length configuration. This allowed us to obtain the desired 
number of reads per sample (Table 4).

Data processing

We performed base calls using Real-Time Analysis (RTA) (version 3.4.4). Using bcl2fastq 
(version 2.20), we converted Binary Base Call (BCL) files to FASTQ files.

Table 4  CUT&RUN samples used in our experiments, with their sequencing technique, indices, and 
target read details. Target reads represent the number of single-end equivalent Illumina passing-
filter read estimates we sought to obtain

Sample name Technique i7 Index i5 Index Target reads 
(millions of single 
reads)

OCT-4_Pool_1 CUT&RUN TCT​AGG​AG AGG​TCA​CT 40

OCT-4_Pool_2 CUT&RUN TGC​GTA​AC GAT​AGG​CT 40

IgG_Pool_1 CUT&RUN CTT​GCT​AG GGA​GAT​GA 20

OCT-4_Pool_1_BS CUT&RUN-BS AGC​GAG​AT GAT​ACT​GG 180

OCT-4_Pool_2_BS CUT&RUN-BS TAT​GGC​AC TCT​CGC​AA 180

IgG_Pool_1_BS CUT&RUN-BS GAA​TCA​CC CTT​CGT​TC 40

Oct-4_hmeseal_rep_1 CUT&RUN-5hmC GTA​AGG​TG GCA​ATT​CG 150

Oct-4_hmeseal_rep_2 CUT&RUN-5hmC CGA​GAG​AA TCT​CTT​CC 150
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We processed the CUT&RUN sequences as follows. Before alignment, we trimmed 
adapter sequences with fastp (version  0.19.4)  [170]. We assessed sequencing data 
quality using FastQC (version  0.11.8)  [171], Picard  [172] (version  2.6.0) Collect-
InsertSizeMetrics, QualiMap  [173] (version  2.2) bamqc, Preseq  [174] (ver-
sion  2.0.0) bound_pop and lc_extrap, DeepTools  [175] (version  3.1.3), and 
MultiQC [176] (version 1.7). For tools requiring Java, we used Java SE 8 Update 45. 
For tools requiring, Python we used version 2.7.12, except as otherwise noted.

We aligned reads to GRCm38/mm10 with Bismark [109] (version 0.22.3; for 5mC or 
5hmC sequences). Bismark used Bowtie 2 [115–117] (version 2.4.1; also directly used 
for conventional sequences), SAMtools [93] (version 1.10), and BEDTools [114] (ver-
sion 2.29.2). We used Bismark’s default parameters, save those controlling output des-
tinations and use of multiple cores, and parameters passed to Bowtie 2, as described 
below.

We used Bowtie  2 parameters as recommended  [177], excepting increasing align-
ment sensitivity, and specifying implied or default parameters. Therefore, we used the 
parameters -D 20 -R 6 -N 1 -L 18 -i S,1,0.25 for increased sensitivity, 
slightly more so than the --very-sensitive-local preset. We used -I 10 for 
a minimum fragment length of 10 bp and -X 700 for a maximum fragment length 
of 700 bp, as recommended [50, 177]. This range of fragment lengths included those 
we selected for during library preparation (30 bp–280 bp). We also used the param-
eters --local --phred33 --no-unal --no-discordant --no-mixed. For 
alignments used for calculating the spike-in coefficient, we did not permit dovetailing 
(--no-dovetail) nor overlaps (--no-overlap), as recommended [50].

For post-processing, we used Sambamba  [112] (version  0.7.1), including mark-
ing duplicates. Where applicable, we performed spike-in calibration as described by 
Meers et al. [177].

For our final OCT4 results, we did not use our S. cerevisiae spike-in calibrated data. 
In the unmodified context, the spike-in calibrated data made little difference. In the 
modified context, insufficient modified bases in the spike-in probably prevented us 
from properly calibrating.

We called peak summits using MACS  2  [63] (version  2.1.2). We ensured that the 
input only included reads with insert sizes ≤120 bp , as recommended  [50, 177], by 
using DeepTools [175] (version 3.1.3) alignmentSieve.

For data not calibrated with spike-in, we used MACS  2 callpeak, specify-
ing treatment and control inputs and outputs as usual. We used the additional 
MACS  2 parameters, --buffer-size 1000000 --format BAMPE  --gsize 
mm --qvalue 0.05 --call-summits --bdg --SPMR.

For spike-in calibrated data, we used advanced MACS sub-commands, constructed 
to yield a peak calling scheme that worked well for CUT&RUN datasets. Specifically, 
we used pileup on BAMPE input, then bdgopt to multiply by the scaling factor 
defined by the spike-in calibration. Then, we added a pseudocount of  1.0 to mimic 
the default workflow, using bdgcmp, specifying --pseudocount 0.0 --method 
qpois, followed by bdgpeakcall, with --cutoff − ln(0.05)/ ln(10) . This cutoff 
parameter represented the usual q-value cutoff of 0.05 converted to −log10 space.
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For bisulfite-converted data, we extracted and called peaks only upon methylated 
reads (filtering through Sambamba using Bismark’s added “XM:Z:” tag). We regarded all 
hmC-Seal-seq reads as completely hydroxymethylated.

Finally, we used MEME-ChIP (version  4.11.2.1, with Perl version  5.18.1)  [66], with 
DREME  [65], as previously described, on TRF-masked genome (same parameters as 
before, using version  4.9). For this particular processing, we used SAMtools  [93] ver-
sion 1.3.1 and BEDTools [114] version 2.27.1.
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