
 1 

Comparing Downscaled LOCA and BCSD 
CMIP5 Climate and Hydrology Projections 
Release of Downscaled LOCA CMIP5 Hydrology  
 
 
 
Bureau of Reclamation 
California Energy Commission  
Climate Analytics Group Climate Central Lawrence  
Livermore National Laboratory NASA’s Ames Research Center, Moffett Field, CA  
Santa Clara University  
Scripps Institution of Oceanography  
U.S. Army Corps of Engineers  
U.S. Geological Survey  
Cooperative Institute for Research in Environmental Sciences 
 
 
 
 
 
 
 
 
 

 



 2 

Comparing Downscaled LOCA and BCSD CMIP5 
Climate and Hydrology Projections 
 
Release of Downscaled LOCA CMIP5 Hydrology  
 
 
 
June 2020 
 
 
 
 
Authors: 
Julie Vano, Joseph Hamman, Ethan Gutmann, Andrew Wood, Naoki Mizukami, Research 
Applications Laboratory, National Center for Atmospheric Research 
Martyn Clark, University of Saskatchewan  
David Pierce, Daniel Cayan, U.S. Geological Survey and University of California- San 
Diego/Scripps Institution of Oceanography 
Cameron Wobus, Lynker Technologies 
Kenneth Nowak, Bureau of Reclamation  
Jeffrey Arnold, U.S. Army Corps of Engineers 
 
 
 
 
 
 
 
Prepared for: 
Users of the downscaled CMIP5 Climate and Hydrology Projections available at http://gdo-
dcp.ucllnl.org/downscaled_cmip_projections .  
  

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections


 3 

Table of Contents 
Executive Summary ...................................................................................................... 8 

1. Introduction ............................................................................................................. 10 

2. About the Downscaled Projections ....................................................................... 12 

2.1 LOCA description ..........................................................................................................12 
2.2 BCSD description ..........................................................................................................12 
2.3 Summary of relevant LOCA/BCSD methodology differences ....................................13 
2.4 Comparison overview ...................................................................................................14 

3. Comparisons of LOCA and BCSD ......................................................................... 15 

3.1 Long-term 30-year annual averages ............................................................................15 
3.1.1. Synthesis .................................................................................................................................. 15 
3.1.2. Historical meteorological values (temperature, precipitation) .................................................. 20 
3.1.3. Historical hydrological values (ET, runoff, SWE) ..................................................................... 22 
3.1.4. Future climate conditions in meteorological values.................................................................. 27 
3.1.5. Future climate conditions in hydrologic values ......................................................................... 30 
3.1.6. Explanation of bias correction differences ............................................................................... 34 

3.2 Seasonal changes .........................................................................................................35 
3.2.1 Historical hydrographs ............................................................................................................... 36 
3.2.2 Future changes in hydrographs................................................................................................. 38 
3.2.3. Explanation of differences from seasonal precipitation ............................................................ 38 

3.3 Daily statistics ...............................................................................................................39 
3.3.1 Annual maximum precipitation and runoff ................................................................................. 40 
3.3.2. Flow duration ............................................................................................................................ 48 
3.3.3 Extreme runoff changes over time ............................................................................................ 51 
3.3.4 Wet day fractions ....................................................................................................................... 53 

3.4 Other notable differences .............................................................................................58 

4. Results in Context and Conclusions ..................................................................... 60 

5. References ............................................................................................................... 62 

Appendix A. Supplemental Figures ........................................................................... 66 

Appendix B. Interannual variability in precipitation ................................................. 75 

Appendix C. Future changes for a subset of individual GCMs for 4.5 (a) and 8.5 (b)
 ...................................................................................................................................... 77 

Appendix D. Seasonal simulation of historical and future changes in all 18 HUC2
 ...................................................................................................................................... 87 

Appendix E. Daily Streamflow Exceedance Probabilities in 43 basins in the 
Western CONUS .......................................................................................................... 90 

Appendix F. Maps of VIC parameters used in BCSD-VIC and LOCA-VIC. .............. 96 
  



 4 

Figures and Tables  
 
Table 1 Downscaled model simulations compared. ...................................................................14 
Figure 1 Ensemble average (23 GCMs) and differences between BCSD and LOCA for five 
hydroclimate variables. .............................................................................................................16 
Figure 2 Ensemble average (23 GCMs) change signals for RCP 4.5. .......................................18 
Figure 3 Ensemble average (23 GCMs) change signals for RCP 8.5. .......................................19 
Figure 4 Historical mean annual temperature differences. ........................................................21 
Figure 5 Historical mean annual precipitation differences. ........................................................22 
Figure 6 Historical mean annual evapotranspiration differences. ..............................................25 
Figure 7 Historical mean annual runoff differences. ..................................................................26 
Figure 8 Historical mean annual SWE differences. ...................................................................27 
Figure 9 Changes in annual temperature for 23-model ensembles. ..........................................29 
Figure 10 Changes in annual precipitation for 23-model ensembles. ........................................30 
Figure 11 Changes in annual evapotranspiration for 23-model ensembles. ..............................31 
Figure 12 Changes in annual runoff for 23-model ensembles. ..................................................33 
Figure 13 Changes in annual SWE for 23-model ensembles. ...................................................34 
Figure 14 Changes in annual precipitation for 23-model ensembles .........................................35 
Figure 15 Location of HUC2 watersheds. ..................................................................................36 
Figure 16 Historical and future HUC2 basin runoff. ...................................................................37 
Figure 17 Direct comparisons with GCMs. ................................................................................39 
Figure 18 Annual maximum precipitation differences. ...............................................................41 
Figure 19 Changes in annual maximum precipitation. ...............................................................42 
Figure 20 Change signals in annual maximum precipitation for RCP 8.5. .................................43 
Figure 21 Ensemble averaged projected change (%) in 99th percentile precipitation. ...............44 
Figure 22 Annual maximum runoff (mm) differences. ................................................................45 
Figure 23 Change in annual maximum runoff for RCP 4.5. .......................................................46 
Figure 24 Change in annual maximum runoff for RCP 8.5. .......................................................48 
Figure 25 Basins evaluated for flow duration. ............................................................................49 
Table 2 Basins Evaluated for Flow Durations. ...........................................................................50 
Figure 26 Daily Streamflow Exceedance Probability. ................................................................51 
Figure 27 Trends in frequency of extreme runoff events for RCP 8.5. .......................................52 
Figure 28 Historical space-time autocorrelations. ......................................................................53 
Figure 29 Historical Wet Day Fraction. ......................................................................................55 
Figure 30 Change in Wet Day Fraction for RCP 4.5. .................................................................56 
Figure 31 Change in Wet Day Fraction for RCP 8.5. .................................................................57 
Figure 32 Direct GCM comparison of wet days. ........................................................................58 
  



 5 

Abbreviations and Acronyms 
BCSD – Bias-Correction and Spatial Disaggregation 
BCCA – Bias-Correction Constructed Analogs 
CMIP – Climate Model Intercomparison Project 
CONUS – COnterminous United States 
ET – Evapotranspiration 
GCM – Global Climate Model (or General Circulation Model) 
GDO – Green Data Oasis 
LOCA – LOcalized Constructed Analogs 
RCP – Representative Concentration Pathways 
SWE – Snow Water Equivalent 
VIC – Variable Infiltration Capacity hydrologic model 
 
 
Acknowledgements 
Support for this report was provided by the U.S. Department of Interior's Bureau of Reclamation 
Science and Technology Program and by the U.S. Army Corps of Engineers National Climate 
Preparedness and Resilience Program. Support for generating the underlying downscaled 
climatology and hydrology was provided by the U.S. Army Corps of Engineers National Climate 
Preparedness and Resilience Program. Peer review was provided by Daniel Broman 
(Reclamation), Christopher Frans (U.S. Army Corps of Engineers), and Stacey Archfield (U.S. 
Geological Survey). Their thorough review is greatly appreciated.   
 
 
Citations of these Projections: 
 
When publishing research based on projections from this archive, please include two 
acknowledgements:  

1. Acknowledge the superseding effort:  

a. For Coupled Model Intercomparison Project phase 3 (CMIP3), the following is language 
suggested by the CMIP3 archive hosts at the Program for Climate Model Diagnosis and 
Intercomparison (PCMDI):  

“We acknowledge the modeling groups, the Program for Climate Model Diagnosis and 
Intercomparison (PCMDI), and the World Climate Research Programme (WCRP) 
Working Group on Coupled Modelling (WGCM) for their roles in making available the 
WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of 
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PCMDI also requests that in first making reference to the projections from this archive, 
please first reference the CMIP3 dataset by including the phrase “the World Climate 
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Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 
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refer to the CMIP3 data with terms such as “CMIP3 data,” “the CMIP3 multi-model 
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(https://pcmdi.llnl.gov/mips/cmip5/docs/CMIP5_modeling_groups.pdf). In addition, an 
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Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling 
groups (listed in Table XX of this paper) for producing and making available their model 
output. For CMIP, the U.S. Department of Energy's Program for Climate Model 
Diagnosis and Intercomparison provides coordinating support and led development of 
software infrastructure in partnership with the Global Organization for Earth System 
Science Portals.”  
where “Table XX” of your paper should list the models and modeling groups that 
provided the data you used. In addition, it may be appropriate to cite one or more of the 
CMIP5 experiment design articles listed on the CMIP5 reference page.  

2. Second, generally acknowledge this archive as “Downscaled CMIP3 and CMIP5 Climate and 
Hydrology Projections” archive at: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections . To 
reference specific statistically downscaled climate and hydrology data from the archive, please 
use the following references:  

a. for BCSD CMIP3 climate: Maurer, E.P., L. Brekke, T. Pruitt, and P.B. Duffy, 2007. Fine-
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https://www.usbr.gov/watersmart/docs/west-wide-climate-risk-assessments.pdf. 

c. for BCSD CMIP5 climate: Provide citation to: Reclamation, 2013. Downscaled CMIP3 
and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, 
Comparison with Preceding Information, and Summary of User Needs. U.S. Department 
of the Interior, Bureau of Reclamation, 104 p., available at: http://gdo-
dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_ climate.pdf .  

d. for BCSD CMIP5 hydrology: Reclamation, 2014. Downscaled CMIP3 and CMIP5 
Hydrology Projections - Release of Hydrology Projections, Comparison with Preceding 
Information, and Summary of User Needs. U.S. Department of the Interior, Bureau of 

https://pcmdi.llnl.gov/mips/cmip5/docs/CMIP5_modeling_groups.pdf
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections
https://www.usbr.gov/watersmart/docs/west-wide-climate-risk-assessments.pdf
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_%20climate.pdf
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_%20climate.pdf
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Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014. Statistical Downscaling Using 
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Executive Summary 
This memorandum describes and compares climatology and hydrology outputs created with the 
LOcalized Constructed Analogs (LOCA) method of empirical-statistical downscaling [Pierce et 
al., 2014] and the Bias Correction and Spatial Disaggregation (BCSD) [Wood et al., 2004] 
method. The descriptions and comparisons are made from downscaled climatology generated 
for the Conterminous United States (CONUS) and hydrology generated using climatology from 
LOCA and BCSD to drive the Variable Infiltration Capacity (VIC) hydrologic model [Liang et al., 
1996, Gao et al., 2010]. Hydrologic variables are the chief focus here: evapotranspiration (ET), 
runoff (surface + baseflow), snow water equivalent (SWE), along with the meteorological 
variables temperature and precipitation both for individual projections and ensemble averages. 
Modeled output is presented as long-term 30-year annual averages (section 3.1), seasonal 
changes (3.2), and daily statistics (3.3).  

The objective of this report is to summarize the overall, not exhaustively specific, performance 
of the two methods for select climatological and hydrologic variables as an aid to researchers 
and practitioners who will use the modeled outputs. We have not diagnosed and explained all 
model behavior seen across the methods nor ranked the methods based on these performance 
comparisons. Researchers and practitioners are reminded again to make their selection of 
downscaling method(s) based on all of their requirements. 

We found both LOCA- and BCSD-based datasets realistically reproduce the mean climate state 
of the observational dataset they are trained on.  In most historical comparisons, these two 
methods provide similar results though we highlight locations and variables where differences 
arise (Figure 1).  In particular, differences, especially in hydrologic variables, can be frequently 
attributed to the observational dataset used to train the downscaling method.  For example, 
these methods differ in the number of days with precipitation, which can substantially affect ET.  
Differences in modelled runoff between LOCA and BCSD in the historical period (1970-1999) 
can be substantial but they are consistent with the differences between modelled runoff using 
their respective training observation datasets.  

For the future projections, the two methods generally provide similar patterns of change.  Here 
the future period is defined as (2070-2099). Differences across hydrologic variables from the 
methods vary with location and variable of interest, and can be substantial.  LOCA generally has 
less change in ET and runoff (Figure 2,3), and relatively less runoff in the future, likely resulting 
from the fact that LOCA has less change in average precipitation compared to BCSD, 
particularly in mountain regions and the Southeast. This difference is largely due to the bias 
correction the two methods use.  Bias correction approaches can modify the climate change 
signal (i.e., relative difference between historical and future simulations) as a side-effect.  LOCA 
intentionally attempts to preserve the original global climate model (GCM)-projected changes in 
precipitation during bias correction, while BCSD applies a bias correction based on historical 
values alone, which shifts the multi-decadal future change based on how GCM variability 
compares to the observed historical variability.  Notably, LOCA explicitly projects changes in 
daily statistics, such as the number of wet days, based on GCM projected changes, and these 
can alter the changes in ET and runoff. 

Future projections with both methods indicate more extreme precipitation and runoff and more 
frequent extreme events.  The development of LOCA was driven in part by a desire to better 
represent changes in extreme precipitation compared to an earlier constructed analog method, 
BCCA [Maurer et al., 2010].  We find that there is less variability across GCMs in LOCA's 
change in extreme precipitation magnitudes relative to BCSD; LOCA generally projects more of 
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an increase in extreme precipitation magnitudes outside of mountain regions than BCSD, but, 
like BCSD, it also projects a step-change between historical and future periods in the frequency 
of extreme events, which is likely to be a statistical artifact. For some daily statistics, e.g., wet 
day fraction, LOCA predicts more changes than BCSD because BCSD does not explicitly 
predict changes at the daily time scale.  

Comparisons for future conditions include ones for RCP 4.5 and RCP 8.5, confirming again that 
modeled differences in precipitation across downscaling methods are generally smaller than 
differences across the two emissions scenarios; differences in temperature are even smaller 
than for precipitation. Similarly, direct comparisons across individual GCMs reveal that the 
differences between GCMs are often much larger than the differences between LOCA and 
BCSD downscaling methods, particularly for changes in mean precipitation.  

It is important to note that both methods are direct statistical downscaling of GCM precipitation 
and temperature. While the differences between them may be relatively small, if a GCM does 
not represent important aspects of the regional climate, the downscaled projected changes may 
not be reliable either. Users are encouraged to explore the physical meaning behind any 
changes projected to understand the reliability of those projections. Further, each downscaled 
GCM projection (regardless of GCM or downscaling method) should be considered a possible 
future not a specific prediction. 

This report adds to existing information provided in “Downscaled CMIP3 and CMIP5 Climate 
Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding 
Information, and Summary of User Needs” [Reclamation, 2013] and its Addendum “Release of 
Downscaled CMIP5 Climate Projections (LOCA) and Comparison with Preceding Information” 
[Reclamation, 2016].  For more complete descriptions of the Climate Model Intercomparison 
Project (CMIP) archives and LOCA and BCSD methods, please refer to these earlier reports 
and original method citations listed below in Section 2 About the Downscaled Projections.    
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1. Introduction 
The purpose of this memorandum is to present an overview of the representation of hydrology 
provided in a new set of hydrologic projections derived from the LOCA downscaling method and 
the VIC hydrologic model. This memorandum pays particular attention to the differences 
between these new hydrologic projections and previous projections based on the BCSD 
downscaling method. The differences between the downscaled datasets are briefly outlined so 
those using the information can better understand how the downscaling method selected might 
affect their application. 

The hydrologic projections of future climate provided at the Green Data Oasis (GDO) site [gdo-
dcp.ucllnl.org] are derived with a chain of models that links global climate models (GCMs) to 
regional downscaling methods to hydrologic models. GCMs simulate climate change at typical 
spatial resolutions of 100 km or more, which is too coarse to capture local changes in 
meteorology and hydrology.  To provide climate change information that represents local-scale 
features of importance to water resources, GCM output is often downscaled to a finer spatial 
resolution.  Downscaling can be done in multiple ways (see overviews provided by Wilby et al. 
[2004]; Fowler et al. [2007]; Gutmann et al. [2014]; Mearns et al. [2014]) that include statistical 
methods, which rely on observed statistical relationships between coarse- and fine-spatial 
resolution datasets, and dynamical methods, which use regional climate models with global 
climate model boundary conditions to represent process-based physical relations between 
scales. Both approaches are useful. Statistical methods are computationally efficient but are 
trained on historical data, and so might have trouble simulating conditions far outside historical 
norms. Dynamical methods attempt to simulate more physics and processes and so may do a 
better job simulating conditions different than historically seen, but require considerably more 
computational resources, which limits their feasibility in creating large-ensemble, high-resolution 
downscaled climatology datasets. Dynamical methods are also not free of assumptions 
regarding how historical conditions will be carried into the future, since important physical 
parameterizations (for items such as cloud behavior or the simulation of the boundary layer) are 
usually selected based on comparison with historical data in the region of interest, and then 
assumed to be the most realistic parameterization for future conditions. 

In this memorandum we focus on two widely used statistical methods: LOcalized Constructed 
Analogs (LOCA) [Pierce et al., 2014] and the Bias-Correction and Spatial Disaggregation 
(BCSD) [Wood et al., 2004], developed with a range of support from U.S. federal and state 
agencies. Downscaled projections using both the LOCA and BCSD methodologies have been 
produced over the Conterminous United States (CONUS) and are now archived at https://gdo-
dcp.ucllnl.org. The domain actually extends slightly beyond CONUS to cover the Canadian 
portions of the Columbia and Milk river basins. Throughout this memorandum, we focus on this 
region of overlap, but it is important to note that the LOCA dataset actually extends to cover 
more of Canada and Mexico too.   

While these two methods represent two relatively similar approaches in a diverse landscape of 
downscaling methods, they are not identical. As such, it is important to recognize what 
differences exist and understand the impact such differences might have on hydrologic 
projections.  

In this memorandum, we evaluate the representation of current climate in both the LOCA and 
BCSD datasets, as well as the representation of projected changes in these datasets. All 
statistical methods are trained on a historical dataset. LOCA was trained on Livneh et al. [2015] 
(referred to as "Livneh" throughout), while BCSD was trained on Maurer et al. [2002] (referred to 

https://gdo-dcp.ucllnl.org/
https://gdo-dcp.ucllnl.org/
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as "Maurer" throughout). Differences between Livneh and Maurer are also noted along with their 
effect on the downscaled output and subsequent VIC hydrology simulations. In Section 3.1, we 
evaluate long-term annual averages of temperature, precipitation, evapotranspiration (ET), 
runoff (surface + baseflow), and snow water equivalent (SWE) representations. We first present 
the historical differences between LOCA and BCSD alongside the differences between their 
training observation datasets (Maurer and Livneh) for context. Then, we present changes in 
these hydroclimate variables in the projected future climate averaged across GCMs and from a 
sub-sample of individual GCMs.  In section 3.2, we then focus on basin specific seasonal cycles 
of two-digit Hydrologic Unit Code (HUC2) aggregated values.  In Section 3.3, we evaluate daily 
statistics for precipitation and runoff, including the flow duration curve for streamflow as routed 
through a channel network to streamflow locations presented in an earlier report [Reclamation, 
2014]. 
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2. About the Downscaled Projections 
The LOCA and BCSD downscaling methods are described in detail in the earlier texts 
referenced below.  We provide only a short explanation here. 

2.1 LOCA description 

The LOCA dataset is an important resource for the water resource management community. 
LOCA provides the primary source of downscaled data in the Fourth National Climate 
Assessment [USGCRP, 2018] and Fourth California State Climate Assessment [Pierce et al., 
2018]. It represents a substantial increase in spatial resolution (from 1/8th to 1/16th degree grid 
spacing, from about 12 km to 6 km) and is designed to improve spatial and temporal aspects of 
previous analog methods. In particular, it uses local spatial patterns, and has a bias correction 
method that includes a frequency-dependent correction to improve the simulation of natural 
climate variability and attempts to preserve the original GCM-predicted change in the bias-
corrected result [Pierce et al., 2015]. Spatial analog approaches translate regional patterns to 
local-scale features through regional pattern matching – where they identify the best-matching 
historical days (e.g., 30 days) as compared to coarsened observations and use these to 
describe the local-scale spatial relationship for each grid point being downscaled. In addition, 
LOCA selects the single best analog based on the nearest grid cells from a pool of analogs 
selected based on the larger regional pattern. In this LOCA dataset, the observation dataset 
used to develop these relationships is Livneh et al. [2015], and the training period used is 1950-
2005. To provide hydrologic variables (including ET, runoff, SWE, among others), the 
downscaled climate information is used to run the VIC hydrologic model, version 4.2.c, at 1/16th 
degree grid spacing. The VIC hydrologic model configuration used was developed in Livneh et 
al. [2013], which used model parameters calibrated over many years on a 1/8th degree grid and 
moved them to a 1/16th degree grid with a few modifications.  The LOCA approach and dataset 
are described in more detail in:   

• Pierce et al. [2014; 2015] – research articles that describe the method 
• Reclamation [2016] - Reclamation report addendum that includes the LOCA release notes 

and comparison with preceding information 
• http://loca.ucsd.edu 

2.2 BCSD description 

The BCSD dataset is the foundation of many previous studies. It was first released in 2007 
(BCSD CMIP3) and was updated in 2013 (BCSD CMIP5), see references below. Similar to 
LOCA it uses statistical relationships to connect coarse model output to local scale observations 
where relationships are built using the distribution of observations at each individual grid point 
being downscaled. BCSD bias corrects the GCM data using monthly quantile mapping 
[Panofsky and Brier, 1968] derived from the historical period for each grid point. BCSD then 
selects a month from the historical record to use for the daily weather sequences and rescales 
them to match the quantile-mapped monthly total. Rescaling is multiplicative for precipitation 
and additive for temperature. In this BCSD dataset, the observation dataset used to develop 
these relationships is Maurer et al. [2002], which has a grid spacing of 1/8th degree, about 12 
km, and the training period used is 1950-1999. To provide hydrologic variables, the downscaled 
climate information is used to run the VIC hydrologic model, though these earlier datasets use 
an earlier VIC version 4.1.2 at 1/8th degree grid spacing. While the version of VIC used in the 
BCSD and LOCA projections differs, tests of the different versions in the upper Colorado River 
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basin revealed differences in their output to be negligible when identical forcing and parameters 
are used. The approach and dataset are described in more detail in:   

• Wood et al. [2004] – research article that describes the method 
• Maurer et al. [2007] – release notes for BCSD CMIP3 climate 
• Reclamation [2011] – report on BCSD CMIP3 hydrology 
• Reclamation [2013] – report on BCSD CMIP5 climate  
• Reclamation [2014] – report on BCSD CMIP5 hydrology 

2.3 Summary of relevant LOCA/BCSD methodology differences 

• Timescales: BCSD, as implemented here, is intrinsically a monthly approach, using 
monthly GCM data and historical analog months to produce daily weather. LOCA is 
intrinsically a daily approach, downscaling each GCM model day using historical analog 
days. BCSD can therefore produce downscaled daily data even if the original GCMs only 
provided monthly data (as was common in the older CMIP3 dataset, released ca. 2010) 
and is less influenced by systematic GCM errors in the simulated time sequence of daily 
weather.  However, it does not simulate changes on a daily timescale, such as the 
projected changes in the number of wet days and mean precipitation on wet days seen 
in most GCMs along the West Coast of the CONUS. LOCA directly simulates daily 
changes predicted by the GCM, but will also inherit any systematic errors in the 
sequence of daily weather simulated by the GCM. 

• Analog matching: BCSD uses domain-wide analog months, picked randomly from the 
historical observations and then scaled at each grid point so that the monthly mean 
matches the spatially interpolated monthly value from the GCM. LOCA uses a multi-
scale matching approach, where the selected historical analog is the best match to the 
model value in both the synoptic-scale wider region around the point being downscaled 
and in a 1°x 1° box around the point being downscaled. BCSD will therefore tend to 
preserve observed spatial relationships across the domain, but will not change those 
spatial relationships in response to GCM projections.  LOCA preserves the GCM’s 
spatial relationships across the domain, and can track future changes in those 
relationships if the GCM dictates such changes. 

• Multi-variate Bias Correction: In BCSD, monthly temperature and precipitation are 
bias corrected independently. In LOCA, daily temperature is bias corrected separately 
depending on the presence or absence of precipitation. This is done to better simulate 
the temperature at which precipitation occurs, which is important for simulating 
snowpack. The joint temperature/precipitation bias correction is less important for a 
monthly approach such as BCSD, since the observed historical months used as analogs 
in BCSD already have daily temperature/precipitation relations that are consistent with 
observations (by definition). 

• Bias Correction Method: BCSD and LOCA have different approaches to bias 
correction, which affects the results. BCSD uses quantile mapping on the monthly 
values, which, as has been noted in a number of previous studies, can alter the original 
GCM projections of precipitation change (e.g., Maraun, 2013; Maurer and Pierce, 2014; 
Cannon et al., 2015; Pierce et al., 2015; Switanek et al., 2017). LOCA uses PresRat 
(“preserves ratio”), which, as the name suggests, attempts to preserve the original GCM-
predicted precipitation change, and is one of several newer bias correction techniques 
that attempt to avoid having short-timescale variability affect the multi-decade climate 
change signal (e.g., Li et al., 2010; Michelangeli et al., 2009; Haerter et al., 2011).  
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• Domain: In these specific implementations, BCSD and LOCA cover different domains 
with different spatial resolutions.  The BCSD dataset is limited to CONUS, with 
extensions to cover the Canadian portion of the Columbia and Milk river basins, while 
the LOCA dataset (like the Livneh dataset) covers large portions of southern Canada 
and Northern Mexico as well. BCSD is on a 1/8th degree grid, while LOCA was created 
on a 1/16th degree grid.  

2.4 Comparison overview 

This memorandum is focused on comparisons between the two hydrology datasets; for that 
reason, only global climate models (GCMs) available for both (Table 1) are used.  This includes 
23 GCMs that have a single run r1i1p1 for each GCM for CMIP5 projections.  Five models in the 
LOCA data archives are excluded because they do not have BCSD data available for all 
comparisons.  Four models, CCSM4, GISS-E2-R, CESM1-CAM5, and FGOALS-g2, are also 
excluded as they used different historical period simulations in the BCSD and LOCA products 
(described in section 3.4).  As a result, the comparisons between LOCA and BCSD are not 
influenced by differences in the driving GCMs, and there are enough other GCMs that these 
exclusions are not expected to substantially influence the ensemble average. For both 
meteorology and hydrology we refer to the Maurer and Livneh meteorology datasets and to the 
VIC hydrologic simulations forced with them as “observed”. We refer to meteorology and VIC 
hydrologic simulations from the GCM historical period as “modeled historical”.  
Table 1 Downscaled model simulations compared. 

ACCESS1-0 HadGEM2-CC 
bcc-csm1-1 HadGEM2-ES 
bcc-csm1-1-m inmcm4 
CanESM2 IPSL-CM5A-MR 
CESM1-BGC MIROC-ESM 
CMCC-CM MIROC-ESM-CHEM 
CNRM-CM5 MIROC5 
CSIRO-Mk3-6-0 MPI-ESM-LR 
GFDL-CM3 MPI-ESM-MR 
GFDL-ESM2G MRI-CGCM3 
GFDL-ESM2M NorESM1-M 
HadGEM2-AO   

Details of the home institutions that provided output used in this study for each of the listed 
models can be found at https://pcmdi.llnl.gov/mips/cmip5/docs/CMIP5_modeling_groups.pdf. 
  

https://pcmdi.llnl.gov/mips/cmip5/docs/CMIP5_modeling_groups.pdf
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3. Comparisons of LOCA and BCSD 
This section compares and contrasts the LOCA and BCSD datasets, focusing on large scale 
hydro-climatological features; other differences may be apparent at finer scales. As seen in the 
figures below, in general, the patterns are very similar (such that spatial averages often appear 
identical).  When, however, values are investigated for particular locations or more specific time 
periods, differences are larger.  Figures below are intended to display examples.  Underlying 
data is available at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections for further 
exploration. Plotting and analysis scripts used here are available at 
https://github.com/NCAR/LOCA_Downscaling_Analysis. 

3.1 Long-term 30-year annual averages  

Annual averages are shown across the CONUS and the time periods are defined for the 
historical as 1970 to 1999 and the future as 2070 to 2099.  For comparison purposes, LOCA 
datasets are aggregated to the same 1/8th degree grid as BCSD datasets1.  Figures below 
demonstrate downscaling output for averages from the 23-ensemble members and for a subset 
of individual GCMs.  This subset is included as examples throughout, but similar plots could be 
drawn for each of the 23. 

3.1.1. Synthesis  

This memorandum includes a variety of figures to compare and contrast the performance of 
LOCA and BCSD downscaling methods for different hydroclimate variables, using output from a 
range of GCMs and two emission scenarios.  We begin by showing three synthesis figures that 
include only ensemble averages, the composition of which is described in subsequent sections.  
While such a broad synthesis is valuable, it is also important to recognize that averages are 
composed of individual models, particularly because hydrologic evaluations that use these 
downscaled datasets are a collection of individual model simulations, which are then evaluated 
as an ensemble (hydrology is not simulated using the ensemble average of temperature and 
precipitation).   

The synthesis figures show historical (Figure 1) and future changes (Figure 2, 3) for five 
hydroclimate variables.  Each figure has the 23-member ensemble of modeled GCM output 
downscaled using BCSD on the left column, downscaled using LOCA in the middle, and the 
difference between LOCA and BCSD on the right.  This structure is maintained in subsequent 
figures throughout.  We usually display differences as total magnitudes, instead of percent 
changes, but have plotted percent changes in some cases to convey relative differences as well 
(see Appendix A). 

Figure 1 provides a synthesis of the historical ensemble averages across meteorological 
(temperature and precipitation) and hydrologic (ET, runoff, and SWE) variables for each 
downscaling method and their differences.  Hydrologic variables of ET, runoff, and SWE are 
output from different implementations of the VIC hydrologic model (e.g., different resolutions 
and historical datasets).  These plots have similar spatial patterns to the observed and modeled 
historical simulations (described more in section 3.1.2 and 3.1.3).  This side-by-side comparison 
shows that the LOCA (and Livneh) VIC representation generates less runoff and more ET than 
the BCSD (and Maurer) VIC projections across much of the United States.  In the Columbia 

 
1 Regridding done using CDO’s remapcon operator.  This is a first order conservative remapping.   

https://github.com/NCAR/LOCA_Downscaling_Analysis
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River basin, however, there is a decrease in ET in LOCA-VIC relative to BCSD-VIC, with some 
corresponding increases in runoff.  In the Canadian portion in particular, the large decrease in 
precipitation in LOCA relative to BCSD leads to a lower ET, runoff, and SWE in VIC output, this 
is attributed to the substantial differences in this region between Maurer and Livneh observation 
datasets.  

 

Figure 1 Ensemble average (23 GCMs) and differences between BCSD and LOCA for five 
hydroclimate variables. BCSD (left column) and LOCA (middle) and their differences (right). Historical 
period is 1970-1999.  
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Figures 2 and 3 provide an overview of average change signals for BCSD and LOCA for two 
emissions scenarios. Generally, temperatures increase everywhere for both methods, with 
changes between downscaling methods being mixed throughout the country (the change 
surface is less smooth in LOCA due to the analog selection process in LOCA and BCSD’s 
reliance on the interpolated GCM temperature signal). Across both methods, precipitation 
tended to increase in the higher latitudes and decline in the Southwest. BCSD typically has 
greater increases and less pronounced decreases than LOCA, particularly in the western 
mountains, which is a result of the quantile mapping bias correction used in BCSD (as 
discussed in section 3.1.6). ET follows a similar pattern in both datasets, with less of a 
consistent difference between the two, though ET also typically has more of an increase and 
less of a decrease in BCSD compared to LOCA. Runoff declines in the mountains and in places 
of decreased precipitation generally in both BCSD and LOCA. However, in some mountain 
ranges in Wyoming and Canada, substantial increases in precipitation in BCSD result in 
increases in projected runoff.  SWE declines everywhere, most prominently in the mountains, 
with LOCA having greater SWE declines in the East and BCSD having greater declines in the 
western portion of the domain, especially the Canadian portion of the Columbia.   

Overall, change signals and differences between downscaling are amplified with greater 
emissions – i.e., change signals and differences for RCP 8.5 (Figure 3) are greater than for 
RCP 4.5 (Figure 2). 
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Figure 2 Ensemble average (23 GCMs) change signals for RCP 4.5.  Changes between the historical 
period (1970-1999) and future period (2070-2099) for an ensemble of datasets generated with 23 GCMs 
using RCP4.5 emission trajectories.Plots in the left column are differences from datasets downscaled 
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using BCSD, the middle column are differences downscaled using LOCA, and the right column are 
differences (LOCA – BCSD) of the change signal between the two. 

 
Figure 3 Ensemble average (23 GCMs) change signals for RCP 8.5. Similar to Figure 2, but for RCP 
8.5 instead of 4.5. 
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3.1.2. Historical meteorological values (temperature, precipitation) 

For 30-year mean annual temperatures and precipitation, both methods demonstrate similar 
patterns across the CONUS in comparisons to historical simulations from GCMs in both the 
ensemble average and the observational datasets and for three individual models (Figures 4 
and 5) and all 23 models (not shown). On a continental scale, for long-term averages, both 
methods demonstrate fidelity. The observed dataset “OBS” on the top row of Figure 4 and 5, are 
indistinguishable from the ensemble averages in Figure 1, and downscaled output from 
individual GCMs show little difference relative to each other (see Figures A1, A2). 

Difference plots (Figures 4, 5) between the observations and individual models make the 
differences that do exist more apparent (whereas, Figures A1a and A2a magnitude plots look 
identical). The differences between GCM historical simulations and the observational datasets 
of Maurer or Livneh (rows 2-4) demonstrate similar patterns across downscaling methods 
(comparing plots between the left and middle column within a row in Figures 4 and 5) than 
across GCMs (comparing plots within a column). We expect these plots to have differences 
because of natural variability – but difference plots allow us to see the nature of these 
differences better than total magnitude (shown in Appendix A) and how different they are in 
LOCA and BCSD. For temperature in particular, the colorscale is stretched such that very small 
differences, much less than 1°C, are visible (Figure 4). The differences between downscaling 
methods (right column) are consistent across individual GCMs and also appear in the 
differences between observational datasets (top row, right column). The high degree of 
similarity between these LOCA-BCSD plots, and between these plots and the top row right 
column (differences between observation datasets) illustrate the influence of the observational 
datasets in downscaling method comparisons. The one notable departure from this pattern is 
the Canadian portion of the Columbia River basin.  In this basin, LOCA is consistently drier than 
the Livneh observations across all GCMs, and BCSD is wetter than the Maurer observations 
across all GCMs (Figure 5).  

The consistent differences between the LOCA and BCSD datasets appears as the fine-scale 
polka dot like features surrounding individual weather stations that were presumably treated 
differently in the Livneh and Maurer datasets (or absent in one). This polka dot correspondence 
is present in both the temperature dataset (Figure 4) and the precipitation dataset (Figure 5).  
There are particularly exaggerated differences in southern Florida and throughout the mountain 
west in which the dots blend together. Note the polka dots are in the exact same place and 
relative magnitude in the top row comparing Maurer and Livneh datasets as they are in the 
lower rows comparing BCSD and LOCA datasets. This is an important point because many of 
the following differences between datasets likely stem from the differences between the Maurer 
and Livneh datasets themselves rather than the downscaling method. Users should understand 
how their system would be represented when using either the Maurer or Livneh dataset as 
“observations” before trying to evaluate the expected effect of LOCA or BCSD dataset in their 
analysis. A climate change analysis should never be performed comparing a projected future 
climate from one product (e.g., LOCA) from the historical representation of another (e.g., 
Maurer). Note at times there are squiggly lines across BCSD plots related to the HUC2 
boundaries; BCSD was implemented independently for each HUC2 and as a result there can be 
artifacts on the boundaries in a continental domain analysis (discussed again in section 3.4).  

For information on interannual variability, see Appendix B. 
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Figure 4 Historical mean annual temperature differences. Observations (top row) for both BCSD (left 
column, Maurer) and LOCA (middle column, Livneh). The three individual model examples (rows 2-4) are 
differences between the modeled historical period and observations specific to the dataset used by the 
downscaling method. The third column is the total difference (LOCA – BCSD) for observations (row 1) 
and downscaled GCMs (row 2-4).  All values are averages from 1970-1999.  
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Figure 5 Historical mean annual precipitation differences. Identical format to Figure 4, except for 
precipitation instead of temperature (for percent differences, see Appendix A). 

3.1.3. Historical hydrological values (ET, runoff, SWE) 

We explore comparisons using the hydrologic variables ET, runoff, and SWE computed with VIC driven 
by BCSD and by LOCA for the CONUS domain. The VIC hydrologic model versions used differed 
(BCSD used 4.1.2, LOCA used 4.2.c) but differences between these two versions have been evaluated 
and are small, especially relative to other factors in this comparative evaluation. The more substantial 
differences in hydrology are driven by observational dataset differences and their respective grid sizes.   

As with temperature and precipitation, 30-year annual mean ET, runoff, and SWE, hydrology as 
evaluated over the historical period compares closely to hydrology forced with the historical 
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datasets (Maurer and Livneh respectively). On a continental scale, for long-term 30-year 
averages, both methods show little difference relative to each other (i.e. all figures appear 
similar, see Appendix A). However, on a finer scale, important differences exist (Figures 6, 7, 8). 
In particular, the higher-resolution of LOCA (6 vs. 12 km) results in mountain-top grid-cells with 
more precipitation and colder temperatures and thus more average SWE (Figure 8), which can 
sustain snowpack and runoff later into the summer.   

Difference plots (Figures 6, 7, 8) between VIC simulations run with observations and those run 
with downscaled historical GCM output are used to illustrate the differences that are present.  
As mentioned before, we would not expect these two representations of the historical period to 
be identical because of natural variability.  As with temperature and precipitation, hydrologic 
simulation differences relative to their respective observation dataset are smaller between 
downscaling methods (within the same row) than differences between historical GCM 
simulations (within the same column).  Larger differences exist between VIC simulations run 
with the Maurer dataset and simulations run with the Livneh dataset (top right). Livneh-based 
simulations compared to Maurer show substantially more ET in the non-coastal eastern CONUS 
and less ET in the mountains of the Pacific and interior Northwest. Differences between LOCA-
BCSD for simulations run with individual downscaled GCMs are largely similar to differences 
between the observational datasets (right column).  Again, this illustrates the influence of the 
observational dataset used to train the statistical downscaling.   

One of the factors that differs between the Livneh and Maurer observational datasets is a 
substantial increase in wet day fraction observed in the Livneh dataset.  This increase stems in 
part from the increased number of grid cells which require interpolation between station 
observations in Livneh’s 1/16th degree dataset (see section 3.3.4 for a more in-depth look at wet 
day fraction).  More wet days have competing effects: first they result in more light precipitation 
events for which precipitation is more likely to remain in the vegetation canopy or soil surface 
and evaporate before reaching the sub-surface. However, wet days also result in an effective 
decrease in solar radiation to the surface because they imply the presence of clouds. In VIC 
simulations in particular, the MTCLIM [Thornton and Running, 1999] algorithm used to generate 
forcing variables for VIC estimates the presence of clouds based on the occurrence of 
precipitation, and thus decreases shortwave radiation more in datasets with higher wet day 
fraction. Especially in dry areas and months, the BCSD method occasionally needs to handle 
the case where the selected analog month experienced no precipitation, but the model month 
being downscaled did. In this event BCSD distributes the model precipitation across all days in 
the month (though not uniformly), yet this yields a month with all wet days, which would affect 
the MTCLIM solar radiation estimates and VIC’s evapotranspiration estimates in such locations. 
This approach differs from the original implementations of BCSD, described in Harding et al. 
[2012]. To avoid such wet-day impacts, BCSD was designed to find appropriate resampling 
patterns in an iterative fashion when the sample month lacked adequate wet-days to support the 
desired downscaled precipitation total. 

As with ET, the runoff simulated by VIC differs more when comparing the two observation 
datasets then either of the downscaling methods differ from the observation-based simulations 
(Figure 7). The differences across GCMs (looking down a column) are greater than the 
differences between the downscaling method in comparison to their respective observation-
based simulation. Also, the differences between LOCA and BCSD derived runoff (right column) 
are very similar to the differences between the two observation-based simulations regardless of 
the GCM used.  



 24 

The large differences in runoff between simulations likely results from the change in 
precipitation patterns in the Livneh and Maurer datasets. The Livneh dataset has lower intensity 
precipitation compared to Maurer, especially in high elevations in the West (see section 3.3.1 on 
Annual Maximum precipitation for more details). This could be due to interpolation requirements 
between the datasets operating differently at their different grid spacings. The decrease in 
intensity results in a decrease in runoff over much of the CONUS domain. There are also very 
large differences in the Canadian portion of the Columbia River basin (also shown in figures in 
Livneh et al. [2014]), most likely due to a change in the stations and the reference climate 
normal used [Livneh et al. 2015].   

Last, differences between LOCA and BCSD VIC modeled SWE are presented in Figure 8. As 
with other variables, there is a consistency between the observational based differences and the 
downscaled climate differences.  Across all datasets, LOCA-VIC simulates a greater mean SWE 
in the mountain ranges in the western CONUS and in New England compared to BCSD-VIC. In 
New England and the western CONUS, this difference matches the differences between Livneh-
VIC and Maurer-VIC and likely stems from subtle differences in seasonal precipitation and 
temperature, for example, there is slightly more precipitation in New England in Livneh than in 
Maurer (Figure 5). However, in the Canadian portion of the Columbia, LOCA-VIC models 
substantially less SWE than BCSD-VIC. This comes from three places: Livneh-VIC has less 
SWE than Maurer-VIC in this region (brown in top right figure). Second, LOCA-VIC has a little 
less SWE than Livneh-VIC (brown in middle column difference plots); finally, BCSD-VIC has a 
little more SWE than Maurer-VIC (green in left column difference plots).  

Overall, the majority of differences are apparent in observational datasets – as is demonstrated 
by the top row of Figures 4, 5, 6, 7, and 8 being very similar to the ensemble averages and 
differences in Figure 1. 
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Figure 6 Historical mean annual evapotranspiration differences.  Identical format to Figure 5, except 
for ET instead of precipitation.   
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Figure 7 Historical mean annual runoff differences. Identical format to Figure 5, except for runoff 
instead of precipitation.  
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Figure 8 Historical mean annual SWE differences. Identical format to Figure 5, except for SWE instead 
of precipitation.   

3.1.4. Future climate conditions in meteorological values  

In addition to historical comparisons, we evaluated the future climate changes in each of the five 
variables (temperature and precipitation in this section; ET, runoff, and SWE in section 3.1.5).  
Figures below show changes for LOCA and BCSD between the historical (1970-1999) and 
future period (2070-2099) for RCP 4.5 and 8.5 (Figure 9 and 10). The magnitude of these 
changes (right column) are displayed next to differences between RCP 4.5 and 8.5 (bottom row) 
for context. The influence of downscaling method on the magnitude of changes in future 
projections is most apparent when averaged across ensembles (right column in Figures 9 and 
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10). We also show changes over a subset of individual GCM responses (see figures in 
Appendix C). As mentioned earlier, we show these to reinforce the importance of recognizing 
how individual model responses differ from the ensemble average.   

Future temperature projections show consistent warming across both downscaling methods, 
with RCP 8.5 (high emissions) scenario being about 2-3oC warmer than RCP 4.5 (medium 
emissions) scenario (Figure 9). Differences between downscaling methods are much less than 
differences between RCPs. BCSD has smoother changes than LOCA, resulting in locations 
being hotter and others being drier throughout the country, though notably, these differences 
are relatively small. The spatial heterogeneity in LOCA is a product of the observation dataset, 
the analog selection process in LOCA, and BCSD’s use of the interpolated GCM changes for 
temperature. Note also that the broad spatial patterns for a given GCM are consistent between 
methods. For example, both BCSD and LOCA show more warming over the regions that are 
represented in the GCM with higher elevation terrain relative to the surrounding region in 
MIROC5 (and ACCESS1-0 to a lesser extent), see for example the warmer region around 40N, 
-110E in Figure C1.  This is most likely due to an elevation dependent warming in the GCM that 
follows the GCM terrain, caused by the snow albedo feedback and other processes. 

Future precipitation projections across downscaling methods (Figure 10, C2) show similar 
patterns in change signals with the higher latitudes becoming wetter and lower latitudes drier, 
though LOCA is consistently drier than BCSD (brown areas in the right column of Figure 10).  
This is shown with individual GCMs as well (Figure C2), though the pattern is less clear 
because increases are interspersed. Both downscaling methods show similar differences 
between RCP 4.5 and 8.5 (bottom row, Figure 10).  These differences are similar in magnitude 
to differences between downscaling methods (right column, Figure 10).  
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Figure 9 Changes in annual temperature for 23-model ensembles. Differences between future 
changes (2070-2099) and historical (1970-1999) for the ensemble average for RCP 4.5 (top row) and 
RCP 8.5 (middle row) for both BCSD (left column) and LOCA (middle column). The third column is the 
total difference (LOCA – BCSD) between downscaling methods. The bottom row is the total difference 
between RCPs.  
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Figure 10 Changes in annual precipitation for 23-model ensembles. Format similar to Figure 9, but 
for precipitation instead of temperature. 

3.1.5. Future climate conditions in hydrologic values 

For hydrologic variables, the magnitude of the climate change signal is influenced by 
downscaling methods and their associated hydrologic model configuration. The extent of these 
changes, however, depends on the particular location and variable of interest. As with changes 
in meteorology, there are more similarities between LOCA-VIC and BCSD-VIC for the same 
GCM than from LOCA-VIC (or BCSD-VIC) for different GCMs.  

For future projections of ET (Figure 11, C3), on average, both BCSD-VIC (left column) and 
LOCA-VIC (middle column) show similar patterns: ET increases in most locations except for in 
the lower latitudes where precipitation is also decreasing. These changes are larger with higher 
emissions (i.e., RCP 8.5 changes are greater than RCP 4.5), but the spatial patterns are the 
same. These changes generally mimic the changes present in precipitation (Figure 10), with 
some modulation by local land surface characteristics, e.g., the southern Mississippi River.  
LOCA-VIC projects less of an increase and more of a decrease than BCSD-VIC as indicated by 
the dominance of brown colors in the LOCA-BCSD plots (Figure 11, right column), though 
exceptions appear in the Northeast and some locations in the western mountains. Individual 
models (Appendix C) show considerably more variability; however, the ET response to climate 
change differs more depending on GCM (differences between rows) than it does between 
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downscaling methods (differences between left and middle column for the same row), and the 
change signal mirrors the change signal in the precipitation signal in each individual GCM 
(Appendix C). One notable exception to the tight coupling between precipitation change and ET 
change is in the upper Columbia River basin. In this region, ET is more energy limited than in 
other regions, as such the change in precipitation has less of a direct effect on ET than the 
change in temperature does. For example, with ACCESS1-0, LOCA projects a decrease in 
precipitation, while LOCA-VIC projects an increase in ET. While this is the most notable 
example, similar patterns can be seen across higher latitude mountains. This is also evident in 
runoff as will be discussed next.  

 
Figure 11 Changes in annual evapotranspiration for 23-model ensembles.  Differences between the 
historical period (1970-1999) and future period (2070-2099) for RCP 4.5 (row 1) and 8.5 (row 2) for BCSD 
(left) and LOCA (middle) and the differences between LOCA and BCSD (right).  Row 3 is the difference 
between RCP 8.5 and 4.5.  

For runoff (Figure 12 and c4), again, both downscaling methods have similar patterns (left and 
middle columns) with notable exceptions in the western mountains. LOCA-VIC has less 
increase in runoff than BCSD-VIC in the East. Moreover, considerable variability exists in the 
western mountains, with a more consistent decrease in future runoff in LOCA-VIC, particularly in 
the upper Missouri and upper Snake river basins (Montana, Idaho). The relatively sharp border 
between the CONUS and Canada in the Columbia River basin is concerning, with similar effects 
in both LOCA and BCSD, though this is less pronounced in BCSD. The cause of this sharp 
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border likely stems from changes in the statistics of precipitation products in this region due in 
part to differences in precipitation measurement networks, and possibly due to changes in the 
VIC parameters across the border. 

Individual GCMs (Figure C4) generally show less increase for LOCA-VIC and more decrease, 
relative to BCSD-VIC (more browns in right column), but here there is some variation across 
GCMs, particularly in the southern half of the United States. The Columbia River basin (inland of 
the first coast range), much of the interior mountain ranges in the western CONUS, and New 
England all have consistently less runoff in LOCA-VIC than BCSD-VIC. This is consistent with 
the patterns noted in ET, in which energy limited environments have increases in ET regardless 
of changes in precipitation. In addition, the smaller increases in precipitation projected by LOCA 
in these regions means that the increase in ET overwhelms the increase in precipitation, 
resulting in a net decrease in runoff. In BCSD, there is a much larger and more consistent 
increase in precipitation in these regions that arises from the quantile mapping bias correction 
(see section 3.1.6.) as a result, the increase in ET is not sufficient to counter the increase in 
precipitation, and there are some increases in runoff (also noted in Lukas et al. [2014] and 
Reclamation [2011]). Because the changes in temperature in both BCSD and LOCA are very 
similar, the increase in ET in these environments is similar in both LOCA and BCSD, and as a 
result, the smaller increase in precipitation in LOCA translates into a decrease or smaller 
increase in runoff.  
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Figure 12 Changes in annual runoff for 23-model ensembles.  Similar format to figure above but for 
runoff (surface runoff + baseflow) instead of ET.  

Future projected changes in SWE (Figures 13 and C5), show declines across the CONUS, with 
sharper declines in RCP 8.5 compared to RCP 4.5.  SWE changes are similar in LOCA-VIC and 
BCSD-VIC, with exceptions again in the western mountains. Some mountain locations have 
greater SWE with LOCA-VIC and others with BCSD-VIC, and these locations are not always 
consistent across GCMs (right column), with the exception that in the Canadian portion of the 
Columbia River basin and the northern interior mountain ranges of the CONUS, LOCA-VIC 
projects less of a decrease in SWE than BCSD-VIC (Figure 13 and C5), particularly in RCP 8.5. 
This may be due to higher spatial resolution in Livneh and LOCA. This higher spatial resolution 
permits the Livneh dataset, and thus LOCA, to resolve the colder mountain tops better, and 
results in more areas for which the warmer temperatures alone are insufficient to cause as 
much of a decrease in SWE.  The VIC model represents sub-grid variability through the use of 
multiple snow elevation bands within a grid cell, so the link is not as direct as it would be in other 
hydrologic models; however, these bands feed into a single common soil column, so it is not a 
complete hydrological representation of sub-grid elevation. 
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Figure 13 Changes in annual SWE for 23-model ensembles.    Similar format to figure above but for 
SWE. 

3.1.6. Explanation of bias correction differences 

BCSD and LOCA methods treat bias correction differently, resulting in different precipitation 
projections seen between the two datasets in Figs. 2 and 3. GCM-projected precipitation 
changes by the end of the century show increases across much of the northern part of the 
CONUS and decreases in Texas and the Southwest, as shown in the left column of Figure 14 
for RCP 8.5. The middle column shows the difference between the BCSD downscaled result 
and the original CMIP5 result, while the right column shows the analogous difference for the 
LOCA downscaled result. The LOCA process attempts to preserve the original CMIP5-predicted 
precipitation change, while the BCSD bias correction method allows it to be altered. As 
described in Maurer and Pierce [2014], the quantile mapping bias correction used in BCSD 
changes the long-term (multi-decadal) climate change signal seen in the CMIP5 dataset 
depending on how the monthly GCM variability compares to observations, since the short 
timescale variability is stronger and quantile mapping draws no distinction between variability on 
short and long timescales. The result is that BCSD shows an overall shift towards wetter 
projections in most of the western half of the CONUS and parts of the Eastern CONUS  
Changes in runoff are about twice the magnitude in precipitation in most of the Southwestern 
CONUS (i.e., the precipitation elasticity is about 2 [Sankarasubaramanian et al., 2001]), so a 
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~2-8% shift towards wetter projections as seen in BCSD could shift the original CMIP5 runoff 
projections by ~4-16%.  

There is not a consensus on the degree to which bias correction and downscaling approaches 
need to capture the raw GCM change signal.   Some would argue that statistical downscaling 
should preserve the GCM signal, because it is based on physics, while others would argue that 
the GCM change signal is based on very low-resolution representation of those physics and 
there should be no expectation that changes in, e.g. orographic precipitation, or local air 
temperature due to land-atmosphere interactions should remain the same as in the original 
GCM. A review of some relevant bias correction issues is given in Maraun [2016].  

 

Figure 14 Changes in annual precipitation for 23-model ensembles.  Model-projected changes (%) in 
yearly precipitation, 2070-2099 with respect to 1970-1999, in RCP 4.5 and 8.5 emissions scenarios. Left 
column: multi-model ensemble averaged results from the original 23 CMIP5 GCMs (raw). Middle column: 
difference (percentage points) between the LOCA result and the CMIP5 GCMs. Right column: difference 
(percentage points) between the BCSD result and the CMIP5 result. All fields have been bilinearly 
interpolated to a common 1°x 1° grid for computing the difference. 

3.2 Seasonal changes  

Seasonal changes in when water arrives and is in rivers and streams has considerable impact 
on society and ecosystems.  To evaluate seasonal changes, we compare runoff averages within 
each HUC2 (Figure 15) in each month of the year.  These differences are driven by a number of 
factors, though largely driven by seasonal precipitation changes, which we explore in more 
detail in section 3.2.3. 
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3.2.1 Historical hydrographs  

 
Figure 15 Location of HUC2 watersheds.  We provide six examples from HUC2s below. All 18 HUC2s 
appear in Appendix D.   

When comparing seasonal hydrographs between methods (Figure 16), in general, the 
downscaled-based VIC datasets are more similar to their respective observational-based VIC 
dataset than they are to each other.  In the left column, dark solid lines represent runoff 
simulated by VIC using historical observations from Livneh (dark blue) and Maurer (dark 
orange), and lighter lines represent the ensemble of historical GCMs run with LOCA (blue) and 
BCSD (orange). Differences between the dark and lighter line of the same color illustrate how 
close the GCM downscaled VIC ensemble mean matches observation-based VIC simulations.   

In some locations (e.g., HUC 14), the historical observation-based datasets are relatively 
similar, while in other locations (e.g., HUC 5, 9, 11) they are very different. Most notable 
differences occur in the winter and spring. In most regions and months (exceptions in HUC 1 
and 13) Livneh and LOCA-VIC have less runoff than Maurer and BCSD-VIC. The only HUC in 
which the downscaled VIC simulations are more similar to each other than they are to their 
respective observational-based VIC simulation is HUC 15. This may be a result of the difficulty 
in simulating both the hydrology and the meteorology in the desert southwest. In this region, 
GCMs do not simulate the North American monsoon well, and features that typically lead to the 
development of a local snowpack, e.g. the Mogollon rim, are not resolved either.  
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Figure 16 Historical and future HUC2 basin runoff.  Runoff (unrouted) aggregated by USGS HUC2 by 
month.  Six examples above.  For all 18, see Appendix D.  The left column compares historical values 
from observations (dark line) and 23-ensemble GCM averages (lighter line) for 1970-1999.  The middle 
column compares the same historical values (solid line) with future values of the same ensemble from 
RCP 8.5 from 2070-2099 (dotted line) for LOCA (blue) and BCSD (orange) downscaling.  The right 
column shows the simulated climate change signal (i.e., differences between the historical and future 
ensemble means). Values are in mm, averaged across the watershed area. 

 

So
ut

h 
At

la
nt

ic
 

G
ul

f 
 

O
hi

o 
So

ur
is

 R
ed

 
R

ai
ny

 
Ar

ka
ns

as
 

W
hi

te
 R

ed
 

U
pp

er
 

C
ol

or
ad

o 
Pa

ci
fic

 
N

or
th

w
es

t 



 38 

3.2.2 Future changes in hydrographs  

The changes in BCSD-VIC and LOCA-VIC runoff across HUC2s (Figure 16, middle and right 
columns and Appendix D) also shows seasonal patterns are similar between downscaling 
methods, particularly in snowmelt dominated regions.  However, the magnitude of the change is 
highly variable.  In some regions, (e.g., HUCs 10, 12, 14, 16, 17, 18) the climate change signal 
is relatively similar, but in some regions, the magnitude of the climate change signal differs 
substantially, and even changes sign between the LOCA-VIC and BCSD-VIC projections. For 
example, in HUC 3, the BCSD-VIC ensemble average projects an increase or very little change 
in discharge throughout the year, whereas the ensemble average projection in LOCA-VIC is a 
decrease throughout the year.  In some cases, the differences between projections may be due 
to the higher resolution LOCA-VIC simulations better resolving topography, or to LOCA’s ability 
to capture the original GCM-predicted change in daily sequences of meteorology, which is not 
found in BCSD due to the use of historical analog months. In other cases, the comparisons may 
be complicated by differences in the VIC model parameters used in the two simulations.  
Changes in the VIC model parameters can result in changes in the climate change signal as 
expressed in hydrological variables [Mendoza et al., 2015], and not changing the model 
parameters could result in a model calibrated for the statistics of the Maurer dataset, while being 
driven by meteorology with the statistics of the Livneh dataset. In LOCA-VIC, the parameter set 
is extremely similar to that used in BCSD-VIC, with minor adjustments made by the Livneh 
parameter set, but not a complete basin by basin recalibration (Appendix F). The best approach 
to take is an area of active research. It is not clear that either of these change signals should be 
considered more accurate, and the variability between GCMs remains larger than the variability 
between downscaling methods.   

3.2.3. Explanation of differences from seasonal precipitation 

Precipitation changes by the end of the century have a seasonal signature in CMIP5 GCMs. 
GCMs show increases across much of the northern part of the CONUS in boreal winter (Dec-
Jan-Feb; DJF) and spring (Mar-Apr-May; MAM), and decreases in summer (Jun-Jul-Aug; JJA) 
across the Midwest and Pacific Northwest, as shown in the left column of Figure 17 for the RCP 
8.5 scenario, with more modest changes in autumn (Sep-Oct-Nov; SON). The seasonal 
changes are larger than the yearly averaged results (Figure 14) because of partial cancellation 
of the wet winter signal with the dry summer changes. The middle column of Figure 17 shows 
the difference between the BCSD downscaled result and the original CMIP5 result, while the 
right column shows the analogous difference for the LOCA downscaled result. BCSD shows an 
overall shift towards wetter projections in the western half of the CONUS, particularly in winter 
and spring. (Alterations of the CMIP5-projected changes are also seen in the extreme 
southwest in summer and autumn in both LOCA and BCSD, however those regions are 
extremely dry during that part of the year, so the estimated changes measured in percent are 
subject to large sampling variability.) The shift can be large compared to the original CMIP5 
prediction of change; for example, in DJF the CMIP5 GCMs project about a 25% increase in 
precipitation in the upper Midwest, and the additional increase in BCSD is about 15%. This is 
also reflected in a greater change signal in BCSD vs. LOCA (e.g., HUC 9 above and HUC 10 in 
Appendix D).  
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Figure 17 Direct comparisons with GCMs.  Model-projected changes (%) in seasonal – Dec-Jan-Feb 
(DJF), Mar-Apr-May (MAM), Jun-Jul-Aug (JJA), Sep-Oct-Nov (SON) – precipitation, 2070-2099 with 
respect to 1970-1999, in the RCP 8.5 emissions scenario. Left column: multi-model ensemble averaged 
raw GCM results from the original 23 CMIP5 GCMs. Middle column: difference between the BCSD result 
and the CMIP5 GCMs. Right column: difference between the LOCA result and the CMIP5 result. All fields 
have been bilinearly interpolated to a common 1°x 1° grid for computing the difference. 

3.3 Daily statistics 

While most of this memorandum focuses on annual and seasonal time scales, differences in 
daily time scale statistics are also important to understand. LOCA was developed in part to 
more explicitly represent changes in extreme daily events, while BCSD inherits the monthly 
sequence of meteorology from the GCM and relies on historical weather sequences for daily 
features. Daily values in hydrology (and associated meteorology) are compared between LOCA-
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VIC and BCSD-VIC to better understand how they represent extremes (annual maximum 3.3.1, 
flow duration 3.3.2, and how extremes change over time 3.3.3). Because daily meteorology can 
influence seasonal statistics of ET and runoff, we briefly present the percent of days where 
precipitation occurs (wet day fraction 3.3.4) and how it changes in future projections. 

3.3.1 Annual maximum precipitation and runoff 

To compare how extreme values differ between BCSD and LOCA, we compare the mean 
annual maximum precipitation (Figures 18, 19, 20) and runoff (Figures 22, 23, 24) for the 
historical period (1970-1999) (Figures 18, 22) and how these values differ in the future period 
(2070-2099) for RCP 4.5 (Figures 19, 23) and RCP 8.5 (Figures 20, 24).  

As with previous statistics, the LOCA and BCSD datasets both mimic the statistics of the 
observation dataset they were trained with during the historical period. The LOCA dataset have 
lower mean annual maximum precipitation compared to BCSD in the historical period (Figure 
18), the right column has more brown values than green particularly in California and the 
Canadian portion of the Columbia River basin. The pattern of differences between BCSD and 
LOCA across GCMs (different rows) are consistent with differences in the observational dataset 
(top row) indicating differences are largely driven by the observational dataset used in the 
downscaling, with the biggest differences being in California and areas in Canada. In addition to 
the differences between Livneh and Maurer, the BCSD dataset seems to exaggerate these 
differences slightly, with increases in the mean annual maximum precipitation compared to the 
Maurer dataset.  
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Figure 
18 Annual maximum precipitation differences.  BCSD (left), LOCA (middle) and LOCA-BCSD (right) 
from observations (top row) averaged across all GCMs (row 2), and three individual GCMS (rows 3-5) 
averaged from 1970-1999. 



 42 

 
Figure 19 Changes in annual maximum precipitation.  RCP 4.5. BCSD (left), LOCA (middle) and 
LOCA-BCSD (right). Differences between 1970-1999 and 2070-2099 averaged across all 23 GCMs (row 
1), and three individual GCMs (rows 2-4). 
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Figure 20 Change signals in annual maximum precipitation for RCP 8.5.  Similar to the previous 
figure but for RCP 8.5 instead of 4.5.  

In future projections, both methods show an increase in annual maximum precipitation in both 
RCP 4.5 (Figure 19) and RCP 8.5 (Figure 20) with increases in RCP 8.5 being greater than in 
RCP4.5. As with mean annual precipitation, the change in extreme precipitation in BCSD is 
associated with areas of higher topography (e.g. Figure 20, top left panel), while the changes in 
extreme precipitation in LOCA are more widely distributed. The differences between ensemble 
mean values for LOCA and BCSD are smaller than the change signal in most of the domain, 
though they are larger locally, for example the southern great plains, Eastern Colorado, and 
New Mexico.  In contrast, when looking at individual GCMs the differences are comparable to 
the change signal (Figures 19, 20 bottom three rows). The changes in BCSD are associated 
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with increases in mean precipitation (e.g. the southwestern CONUS in CanESM2), and while 
LOCA often has similar associations, it is not as tightly coupled with changes in the mean 
because it works directly with the daily GCM output.  

Changes in future extreme precipitation in the LOCA and BCSD downscaled datasets are 
ultimately driven by changes projected in the CMIP5 GCMs. These fields are compared in 
Figure 21. The left column shows the mean projected change (%) in 99th percentile precipitation 
in the 23 CMIP5 GCMs being downscaled, for the cold (Nov through Apr) and warm (May 
through Oct) seasons separately, for the RCP 8.5 scenario. The middle column shows the 
difference (percentage points) between the CMIP5 result and the analogous BCSD result, while 
the right column shows the difference for LOCA. Only days when precipitation is >= 1 mm/day 
are included in the analysis. The original CMIP5 data shows widespread increases in 99th 
percentile precipitation across most of the CONUS, with particularly large increases in the upper 
Midwest in the cold season and California during the warm season. Both LOCA and BCSD 
reproduce this pattern but with some modifications, with BCSD showing a substantially smaller 
change in California during the warm season than the CMIP5 models, and, to a lesser extent, 
the Southeastern seaboard and extreme Southwest during the cold season. LOCA has a 
reduced change compared to CMIP5 in Florida. The RCP 4.5 data show similar spatial patterns, 
although with reduced amplitude compared to RCP 8.5.  

 
Figure 21 Ensemble averaged projected change (%) in 99th percentile precipitation.  Values in the 
CMIP5 GCMs, 2070-2099 with respect to 1970-1999, for the RCP 8.5 scenario (left column).  The upper 
row shows results for the cold season (NDJFMA), the lower row shows results for the warm season 
(MJJASO).  Difference (percentage points) between the analogous BCSD projected change (middle 
column) and LOCA (right column) in 99th percentile precipitation with respect to the CMIP5 raw GCM 
result. All fields have been bilinearly interpolated to a common 1°x 1° grid for computing the difference. 
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Figure 22 Annual maximum runoff (mm) differences.  BCSD (left), LOCA (middle) and LOCA-BCSD 
(right) averaged across all GCMs (row 1) and three individual GCMS (rows 2-4).  Only monthly runoff was 
available for Maurer so observations are not shown. All values are averages from 1970-1999. 

The differences in mean annual maximum runoff generally follow the same patterns as mean 
annual maximum precipitation (Figure 22). In particular, the mean annual maximum runoff is 
generally similar, and the areas in which there are substantial differences, California and the 
Canadian portion of the Columbia River basin are the same as the BCSD and LOCA 
precipitation datasets.  However, there are more consistently lower maximum runoff amounts in 
the western mountains in the LOCA-VIC dataset in the historical period compared to BCSD-VIC 
(Figure 22). This is likely related to the differences in mean annual precipitation (Figure 5) and 
the hydrograph in snowmelt dominated regions (Figure 16 HUCs 14 and 17), which have less 
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peak seasonal streamflow in LOCA-VIC than in BCSD-VIC.  This may also be related to the 
higher elevation, colder snowpack in LOCA-VIC and delays in snowmelt occurring in the model 
which spreads the snowmelt out over a longer time period thus decreasing peak flows, and 
delays it to time periods when potential ET is greater and vegetation is more actively transpiring. 
In addition, the land surface model processes may play a more important role in modulating 
runoff in the central CONUS, with sharp spatial gradients evident in, e.g., North Central 
Kentucky, or Western Iowa (Figure 22) that are not present in the mean annual maximum 
precipitation patterns (Figure 18), and are most likely driven by hydrologic processes and spatial 
variations in model parameters.  

 
Figure 23 Change in annual maximum runoff for RCP 4.5.  Similar to Figure 19, but for annual 
maximum runoff, instead of annual maximum precipitation. 

The changes in mean annual maximum runoff in LOCA-VIC and BCSD-VIC (Figure 23, 24) 
closely follow the changes in mean annual maximum precipitation in LOCA and BCSD (Figures 
19, 20), with some sharp spatial gradients caused by the VIC land surface properties evident in 
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the ensemble mean. As with precipitation, both methods show an increase in mean annual 
maximum runoff in both RCP 4.5 (Figure 23) and RCP 8.5 (Figure 24, with changes in RCP8.5 
being greater than changes in RCP 4.5. The spatial patterns of changes in VIC runoff projected 
with individual GCMs (bottom three rows) closely follow the spatial pattern of changes in 
precipitation from those individual GCMs. The ensemble mean changes (top row), however, 
show larger than average increases in a few regions in the central and western CONUS in both 
LOCA-VIC and BCSD-VIC, for example in Southern Nebraska, Northern Kansas, Western 
Arizona.  These spatial patterns are most likely linked to the VIC hydrologic model parameters 
in these regions, as there are very few changes in extreme precipitation here. These features 
are more pronounced in the LOCA-VIC dataset in the central CONUS, and in the BCSD-VIC 
dataset in the northern interior mountains. This is due to the combination of model parameters 
and changes in extreme precipitation in the two datasets.  Model parameters are likely 
responsible for the sharp features in the central CONUS, where BCSD has relatively little 
change in extreme precipitation compared to LOCA (Figures 23, 24).  The changes in the 
northern interior mountains may be due more to the sharp gradients in changes in extreme 
precipitation in BCSD in these regions compared to LOCA.  Both features need to be 
investigated further to understand the causes of the changes in extreme runoff before any 
confidence can be placed in them.  
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Figure 24 Change in annual maximum runoff for RCP 8.5.  Similar to the previous figure but for RCP 
8.5 instead of 4.5. 

3.3.2. Flow duration 

To better understand streamflow differences, especially daily high and low values, we compare 
the daily flow duration curves based on routed runoff from LOCA-VIC and BCSD-VIC in several 
western basins.  These daily flow values have not been bias corrected and these basins are not 
consistently calibrated.  Some basins have likely been calibrated by one researcher or another 
over the years, but no detailed catalog of the calibrations exists.  In addition, different 
researchers have used different calibration strategies, so the calibrations that have been 
performed are not consistent, and in some regions no calibration has been performed at all. 
Therefore, the modeled flows should not be expected to capture historical magnitudes 
accurately (careful considerations would need to be made before using simulations in 
operations models).  The routing is done with a network routing scheme [Mizukami et al., 2016] 
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that uses the USGS geospatial fabric [Viger, 2014]. This provides an identical network setup 
and routing algorithm and thus allows a direct comparison between the two datasets so that 
differences are attributable to the differences in forcing datasets and hydrologic model 
configuration.  Even though the routed flows to not match observations, these values give us a 
general sense of how the two datasets differ by looking at relative differences.  We present 
results for 43 basins in the CONUS (Figure 25, Table 2) for the historical (1970-1999) and future 
(2070-2099) for RCP 4.5 and 8.5.  These basins were selected as they are the same locations 
identified in Reclamation [2014].   

 
Figure 25 Basins evaluated for flow duration.  Figure from Reclamation [2014], see Table 2 for basin 
legend. 

The daily flow duration curves for seven of the 43 basins are shown in Figure 26.  Generally, 
flow duration curves are similar between BCSD-VIC and LOCA-VIC (Figure 26, see Appendix E 
for all 43) with the 23-GCM ensemble spread being wider in the future than in the historical 
period for both downscaling methods.  However, the flow duration curves are not identical, and 
how they differ varies between basins.  In some locations they are nearly identical (e.g., Yakima 
at Parker, Colorado at Lees Ferry); in some locations LOCA flows are greater (e.g., Williamson 
below Sprague, Feather at Oroville); in some locations BSCD flows are greater (e.g., Columbia 
at Grand Coulee, Plate South Fork near Sterling); and at times (though less common) their 
paths cross (e.g, in the Rio Grande near Lobatos, LOCA has higher high flows and lower low 
flows than BCSD), indicating a much flashier response of streamflows.  We do not intend these 
basins to be a comprehensive set, but rather specific locations of interest based on past reports. 
We therefore do not make overarching conclusions but rather display the information so those 
interested can look more closely at basins they are interested in and contrast them to others. 

Notably too, these are modeled values that often have biases in excess of their change signal in 
both BCSD-VIC and LOCA-VIC.  We intend these figures to illustrate differences from 
downscaling methods prior to any streamflow bias correction.  If streamflow values were to be 
used beyond relative comparisons, closer investigations would be required, and likely biases 
would need to be corrected. 
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Table 2 Basins Evaluated for Flow Durations. Locations similar to Reclamation [2014]. 

Number State River Basin and Outlet Location Latitude Longitude 
1 OR Williamson River below Sprague River  42.56 -121.84 
2 CA Klamath River below Iron Gate Dam   41.93 -122.44 
3 CA Klamath River below Seiad Valley 41.85 -123.23 
4 CA Klamath River at Orleans  41.30 -123.53 
5 CA Klamath River near Klamath 41.51 -123.98 
6 ID Snake River at Brownlee Dam 44.84 -116.90 
7 WA Columbia River at Grand Coulee 47.97 -118.98 
8 OR Columbia River at the Dalles 45.61 -121.17 
9 WA Yakima River at Parker  46.51 -120.45 

10 OR Deschutes River near Madras  44.73 -121.25 
11 ID Snake River near Heise  43.61 -111.66 
12 MT Flathead River at Columbia Falls 48.36 -114.18 
13 AZ Colorado River at Lees Ferry 36.86 -111.59 
14 CA Colorado River above Imperial Dam 32.88 -114.47 
15 UT Green River near Greendale 40.91 -109.42 
16 CO Colorado River near Cameo 39.24 -108.27 
17 CO Gunnison River near Grand Junction 38.98 -108.46 
18 UT San Juan River near Bluff 37.15 -109.86 
19 CA Sacramento River at Freeport 38.46 -121.50 
20 CA Sacramento River at Bend Bridge (Red Bluff) 40.26 -122.22 
21 CA Feather River at Oroville  39.52 -121.55 
22 CA San Joaquin River near Vernalis  37.68 -121.27 
23 CA Stanislaus River at New Melones Dam 37.95 -120.53 
24 MT Missouri River at Canyon Ferry Dam 46.65 -111.73 
25 MT Milk River at Nashua 48.13 -106.36 
26 CO Platte River (South Fork) near Sterling 40.62 -103.19 
27 NE Missouri River near Omaha 41.26 -95.92 
28 CO Rio Grande near Lobatos 37.08 -105.76 
29 NM Rio Chama near Abiquiu 36.32 -106.60 
30 NM Rio Grande near Otowi 35.88 -106.14 
31 NM Rio Grande at Elephant Butte Dam 33.16 -107.19 
32 NM Pecos River at Damsite No 3 (Carlsbad) 32.51 -104.33 
33 CA Little Truckee River below Boca Dam 39.39 -120.10 
34 CA Carson River (West Fork) at Woodfords 38.77 -119.83 
35 CA Sacramento-San Joaquin Delta inflow 38.06 -121.86 
36 CA San Joaquin River at Friant Dam 37.00 -119.71 
37 CA Truckee River at Farad Gage (stateline)  39.45 -120.01 
38 NV Truckee River at Nixon Gage 39.78 -119.34 
39 NV Carson River at Ft Churchill Gage 39.33 -119.15 
40 MT Big Horn River at Yellowtail Dam 45.31 -107.96 
41 NE Platte River (North Fork) at Lake McConaughy  41.21 -101.64 
42 CA American River at Fair Oaks 38.64 -121.23 
43 CA Tulare-Buena Vista Lakes basin  36.05 -119.72 
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Figure 26 Daily Streamflow Exceedance Probability.  Historical (left column) and RCP 4.5 (middle) 
and RCP 8.5 (right).  Individual lines come from routed flows from BCSD-VIC or LOCA-VIC run with 23 
GCMs. These are seven of the 43 basins in Table 2, other basins can be found in Appendix E. 

3.3.3 Extreme runoff changes over time  

Both LOCA and BCSD project an increase in the frequency of extreme daily runoff events in the 
future.  Figure 27 shows box plots of the number of grid cells in each 5-year period across the 
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entire domain for which the downscaled hydrology dataset has an annual maximum runoff event 
greater than or equal to the largest daily event in that grid cell in the historical period.  A step 
change in the frequency of extreme precipitation and runoff events also appears in both LOCA 
and BCSD when transitioning from the historical period to the future projection period (2005 
onward for LOCA, 2000 for BCSD).  The step change produces a greater number of extreme 
events in the future period.  The change in the seventy-fifth percentile is greater in BCSD, while 
the change in the median in the LOCA dataset is larger. This step change most likely comes 
from constraints applied in the historical period such that the GCM precipitation is forced to 
match the observed variability, while in the projection time period, these constraints are 
removed.   

 
Figure 27 Trends in frequency of extreme runoff events for RCP 8.5.  Box plots of the number of grid 
cells in each five-year period for which the historical maximum runoff amount was equaled or exceeded.  
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Figure 28 Historical space-time autocorrelations.  The monthly time series correlation coefficients 
between all pairs of grid cells with a given spatial separation (lag) as averaged across the domain for 
BCSD (all GCMs, light blue), Maurer (blue), LOCA (all GCMs, light orange) and Livneh (orange) for 
precipitation. 

Another difference between LOCA and BCSD downscaling methods is evident in the space-time 
autocorrelation between grid cells. To illustrate this, the correlation in time between each grid 
cell with nearby grid cells of different proximities is computed for the historical period. The 
correlation values across grid cells are grouped by distance, averaged, and plotted for each 
GCM and the observations in Figure 28. This is important to hydrological applications because 
an unrealistically high spatial coherence of the precipitation field can skew flooding or regional 
drought statistics. For example, if adjacent watersheds are more likely to receive precipitation 
simultaneously in a downscaled dataset than in the observations, anomalously large floods may 
be simulated at their confluence. Both downscaled datasets produce realistic space-time 
autocorrelations on the daily time scale; however, differences are evident on the monthly 
timescale. Because BCSD uses the GCM precipitation on a monthly time scale with a quantile-
mapping bias correction and a simple disaggregation routine, it inherits more of the GCM spatial 
autocorrelation distance in its precipitation field.  In contrast, LOCA operates on a daily time 
scale and predicts a different high-resolution field based on the spatial pattern in the GCM on 
every day.  As a result, LOCA produces more spatial variability on a monthly time scale than 
was originally projected by the GCM.  This may lead to more spatially coherent droughts or 
floods in BCSD as compared to the LOCA.  It is also clear that neither method reproduces the 
spatial variability that appears in the observations, though LOCA is less affected than BCSD.  
This reinforces the point that it is important to perform any climate change analysis based on a 
consistent dataset in the historical period (e.g. LOCA future – LOCA present, not LOCA future – 
observed).  

3.3.4 Wet day fractions 

Wet day fraction, the fraction of days in which there is precipitation, is a particularly important 
value in hydrologic modeling as it strongly influences ET. Forcing data with positive biases in 
wet day fraction often have too much drizzle and, as a result, too much ET particularly from 
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vegetation canopies. However, when running a hydrologic model it is common to estimate a 
daily cycle of temperature, humidity, and radiation based on the diurnal temperature range and 
the presence or absence of precipitation [Bohn et al., 2013]. In particular, the VIC hydrologic 
model uses the MTCLIM [Thornton and Running, 1999] algorithm to estimate these forcing data 
(in VIC versions used here, this is done internally, in newer versions this is done as a pre-
processing step). MTCLIM assumes that when precipitation is present clouds are too, and it 
decreases the amount of shortwave radiation in the model, which has the effect of decreasing 
ET.  As a result, the effect of wet day fraction on ET is not straightforward to diagnose.  

In the historical period, the observed datasets (top row, Figure 29) Maurer (for BCSD) and 
Livneh (for LOCA) have similar spatial patterns in wet day fractions. Livneh has more wet days 
than Maurer, especially in Canada and California. Although the spatial patterns in LOCA and 
BCSD are broadly similar, this is a case in which the historical GCM ensemble means do not 
have similar differences between BCSD and LOCA as the observed datasets used in their 
downscaling, with LOCA having a lower wet day fraction than BCSD.  GCMs tend to have an 
overly high wet day fraction (the so-called "drizzle problem"), so LOCA directly bias-corrects the 
wet day fraction, resulting in values closer to the observed dataset as seen in Figure 29. The 
variability across GCMs in BCSD matches the variability in precipitation across GCMs, and is 
greatest in and around California-Arizona, while it matches the variability in wet day fraction 
across GCMs (not shown) in LOCA in Texas-Louisiana.   Both of these are explained by the 
methods used in the two downscaling methods. LOCA explicitly represents daily variability in 
precipitation based on the GCM patterns, while BCSD uses monthly sequences of wet days 
from the observations. However, BCSD also adds additional wet days when the extreme 
precipitation event exceeds the maximum value in the historical period. The excess precipitation 
in BCSD is distributed across all days in the month. As a result, greater variability in monthly 
precipitation totals can cause BCSD to increase the number of wet days.  

In future projections (Figure 30 and 31), wet day fraction from BCSD has little change because it 
does not inherit the daily sequence from the GCMs, whereas the fraction in LOCA changes 
dependent on the GCM changes.  For LOCA, these changes are larger in the higher emissions 
experiments. On average, LOCA’s wet day fractions decrease in the future, although this differs 
across GCMs. 

In these comparisons, note that the LOCA data has been aggregated to match BCSD’s 1/8th 
degree grid. This leads to more wet days at any particular location than what was actually used 
to drive the hydrologic model.   
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Figure 29 Historical Wet Day Fraction.  Maps of the fraction of days for which precipitation is present 
(non-zero) from BCSD (left), LOCA (middle) and LOCA-BCSD (right) from observations from Maurer (left) 
and Livneh (middle) (top row) averaged across all GCMs (row 2), and three individual GCMS (rows 3-5) 
averaged from 1970-1999.  
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Figure 30 Change in Wet Day Fraction for RCP 4.5.   Similar to Figure 19, but for wet day fraction, 
instead of annual maximum precipitation.  
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Figure 31 Change in Wet Day Fraction for RCP 8.5.  Similar to the previous figure but for RCP 8.5 
instead of 4.5. 

The projected changes in wet day fraction shown in Figure 30 and 31 correspond to projected 
changes in the original GCMs, which show a spatial signature with 3-15 fewer wet days/year in 
the Pacific Northwest, Southwest, and southern parts of Texas (Figure 32, left column), 
depending on the location and emissions scenario. This is computed with a wet day threshold of 
>= 1 mm/day, necessary since the low-resolution GCMs produce too much drizzle.  Note that 
this is a different threshold than used in Figures 29-31 (which have a zero threshold to 
demonstrate MTCLIM sensitivities, described above).  Compared to the CMIP5 GCM historical-
to-future changes, LOCA tends to project a change of 3-6 more wet days through Utah, Nevada, 
Idaho, Eastern Oregon, and Eastern Washington, and 3-6 fewer wet days/year in much of the 



 58 

East. BCSD has a more monotonic pattern of increasing the number of wet days by at least 
3/year days over the entire domain, with the largest shifts with respect to the CMIP5 result in the 
western CONUS, particularly the Pacific Northwest. 

 
Figure 32 Direct GCM comparison of wet days. Left column: projected change (days) in number of wet 
days per year, 2070-2099 with respect to 1970-1999, for RCP 4.5 (top row) and RCP 8.5 (bottom row) 
emissions scenarios. Left column: Change projected by the CMIP5 GCMs. Middle column: difference 
between the BCSD result and the CMIP5 GCMs. Right column: difference between the LOCA result and 
the CMIP5 result. All fields have been bilinearly interpolated to a common 1°x 1° grid for computing the 
difference. In this figure, a wet day is defined as P >= 1 mm/day. 

3.4 Other notable differences 

In addition to differences between the LOCA and BCSD products noted above, there are 
differences that occur because of decisions made during the process of generating the data.   In 
this evaluation, we uncovered two worth noting: 

1. Four models, CCSM4, GISS-E2-R, CESM1-CAM5, and FGOALS-g2, used different 
historical period simulations in BCSD vs. LOCA.  LOCA used ensemble member r6i1p1 
for CCSM4 and GISS-E2-R because when LOCA was undertaken, daily data was not 
available for ensemble member r1i1p1, which is what BCSD used. For CESM1-CAM5 
and FGOALS-g2, the difference between LOCA and BCSD is likely due to a reposting of 
the GCM data between when the BCSD and the LOCA downscaling efforts downloaded 
their raw GCM data. This difference was detected by doing a simple correlation of 
annual precipitation anomalies from BCSD and LOCA over the Upper Colorado River 
(HUC4). Because BCSD and LOCA both derive their interannual variability from the 
GCM, timeseries of mean annual precipitation anomalies are expected to be well 
correlated.  More detail on these differences is available on the CMIP5 Errata page: 
https://cmip.llnl.gov/cmip5/errata/changes_of_FGOALS-g2_historical_data.pdf 

2. Differences exist between methods depending on how downscaling regions were 
defined. For BCSD, downscaling was performed by HUC2 and later merged into the full 

https://cmip.llnl.gov/cmip5/errata/changes_of_FGOALS-g2_historical_data.pdf
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CONUS domain. In some cases, this resulted in artifacts at the HUC boundaries (see 
Figure 4).  The squiggly lines across the BCSD difference plots are related to the HUC2 
boundaries, BCSD was implemented independently for each HUC2 and as a result there 
can be artifacts on the boundaries in a continental domain analysis.  For LOCA, the 1x1 
degree downscaling boxes are apparent for some measures, such as wet day fraction.  
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4. Results in Context and Conclusions 
Statistically downscaled climate data has been at the core of hydroclimate projections for over a 
decade. This is a result of the need for meteorological data that are consistent with the 
requirements of hydrologic models so river basins and local watersheds can be modeled to 
provide a reasonable approximation of the real hydrologic system.  Importantly, this 
approximation must be consistent in the historical and future configurations to provide plausible 
climate change information.  

Through this evaluation, we assess that both LOCA and BCSD and their associated VIC 
hydrologic simulations provide reasonable reproductions of current climate and hydrology with 
some notable departures. Differences between LOCA-VIC and BCSD-VIC or between 
downscaling methods and observation-driven VIC simulations are most pronounced in 
mountainous environments. Climatological differences between LOCA-VIC and BCSD-VIC 
simulations are largely due to differences between the Livneh and Maurer observed datasets, 
this finding is consistent with other recent comparisions [Alder and Hostetler, 2019, Jiang et al., 
2018].  Differences are more pronounced in the mountains generally, and in California and the 
Canadian portion of the Columbia River basin in particular.  These differences are more or less 
notable depending on the hydroclimate variable of interest. Technical differences also translate 
to differences in modeled hydrology including differences in resolution (e.g., 1/8 vs 1/16 
degree), different domain boundaries, and the difference in several combinations of GCM/RCP, 
although these elements had lesser importance in explaining differences in this particular 
comparison as it has been limited to identical GCM/RCP combinations. 

Both methods produce plausible future climate projections. However, it is important to recognize 
that they are not the same and any individual climate projection is a possible future not a 
specific prediction. Generally, we found the average monthly and annual changes in 
precipitation in the LOCA dataset are smaller than the average monthly and annual changes 
projected by BCSD. This results from the requirement in LOCA that the change signal in the 
GCM should be preserved, while BCSD allows the bias correction to modify the change signal 
(e.g. regions with more precipitation variability in the GCM than observed have the magnitude of 
the climate change signal reduced, while regions with less precipitation variability than observed 
have the magnitude of the climate change signal increased [Maurer and Pierce, 2014]). The 
extent to which change signals should be preserved is, however, an open research question 
(c.f. Maraun [2016] for a review of the issue). 

Two important implications of these differences are: (1) when the LOCA data are used, it is 
important to recalibrate VIC (or other models) to be consistent with the LOCA climate statistics, 
(2) one should always compare changes within a consistent modeling framework.  In other 
words, avoid direct comparisons between LOCA and BCSD derived flows and avoid direct 
comparisons between observations and future GCM simulations.  Instead, compare simulations 
in a historical GCM to the same GCM in the future downscaled using the same method.  

In addition, while BCSD and LOCA predict very similar change in long-term statistics, LOCA 
explicitly projects changes in many daily statistics based on the GCM daily weather sequences.  
As a result, for certain statistics and in certain locations, the two methods diverge.  For example, 
the methods have considerable differences in the mountains for extreme precipitation and 
runoff. This, in part, has to do with BCSD being tied to changes in monthly statistics and 
climatological patterns, such as greater precipitation corresponding to more extreme 
precipitation in the mountains, while LOCA values are able to vary more. We also note that both 
LOCA and BCSD have a statistical artifact in the frequency of extreme precipitation and runoff 
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that manifests as a step change in the change in frequency between the historical and future 
periods, at year 2000 for BCSD and 2005 for LOCA.  This is a statistical artifact, and users are 
encouraged to consider using the period 2001-2020 as the historical reference (BCSD) or 2005-
2025 (LOCA) as in Wobus et al [2017]. Beyond extreme events, LOCA also projects changes in 
the number of wet days in the future, while BCSD exhibits only limited changes; such changes 
may affect ET and runoff, though changes in precipitation have a much greater effect.   

Finally, while we have focused on LOCA and BCSD, it is important to note that they are both 
direct statistical downscaling methods based on GCM precipitation and temperature to project 
precipitation and temperature respectively; the differences between them are likely to be smaller 
than differences with other downscaling methods. If a GCM does not represent important 
aspects of the regional climate, the downscaled projected changes may not be reliable either; 
users are encouraged to consider the physical processes behind any hydro-climatic changes 
projected to understand and contextualize the reliability of those projections.  
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Appendix A. Supplemental Figures    
Additional figures of historical values for temperature, precipitation, ET, runoff, and SWE, 
magnitudes (a) and percent change of differences (b)   

Figure A1a.  Historical mean annual temperatures.  
Observations (top row) for both BCSD (left, Maurer) 
and LOCA (right, Livneh), the 23-model ensemble 
average (row 2), and five individual model examples 
(rows 3-7) averaged from 1970-1999.  All 23 models 
(not shown) show little difference. 
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Figure A1b.  Historical mean annual 
precipitation.  Identical format to Figure A1a, 
except for precipitation instead of temperature. All 
23 models (not shown) show little difference.  
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Figure A2b.  Percent changes in precipitation.  Identical to Figure 5, except the percentage change is 
plotted instead of total magnitude differences.  The percent change is relative to OBS for the left (BSCD) 
and middle (LOCA) column of rows 2-4.  The percent change of the difference (right column) is relative to 
BCSD (i.e. (LOCA-BCSD)/BCSD). 
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Figure A3a.  Historical mean annual 
evapotranspiration.  Values from VIC hydrologic 
model simulations run using observations (top 
row) from Maurer (BCSD) and Livneh (LOCA), the 
ensemble average of VIC simulations run using 
23-model downscaled GCMs for BCSD (left) and 
LOCA (right) (row 2), and VIC simulations run 
using five individual downscaled GCM examples 
for BCSD (left) and LOCA (right) (rows 3-7).  All 
values are averages of 1970-1999.  
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Figure A3b.  Percent changes in ET.  Identical to Figure 6, except the percentage change is plotted 
instead of total magnitude differences.  The percent change is relative to VIC OBS for the left (BSCD) and 
middle (LOCA) column of rows 2-4.  The percent change of the difference (right column) is relative to 
BCSD (i.e. (LOCA-BCSD)/BCSD). 
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Figure A4a.  Historical mean annual runoff.  
Identical format to Figure A3a, except for VIC 
model output of runoff (surface runoff + baseflow) 
instead of ET.   
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Figure A4b.  Percent changes in runoff.  Identical to Figure 7, except the percentage change is plotted 
instead of total magnitude differences.  The percent change is relative to VIC OBS for the left (BSCD) and 
middle (LOCA) column of rows 2-4.  The percent change of the difference (right column) is relative to 
BCSD (i.e. (LOCA-BCSD)/BCSD). 
*Note percentages in locations with little runoff are likely to be considerably large.  This is why 
we include this only in the appendix for those interested in percent changes in particular areas.  
Total magnitude changes are shown in Figure 7. 
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Figure A5a.  Historical mean annual snow 
water equivalent (SWE).  Identical format to 
Figure A3a, except for VIC model output of SWE 
instead of ET.  
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Figure A5b.  Percent changes in snow water equivalent (SWE).  Identical to Figure 8, except the 
percentage change is plotted instead of total magnitude differences.  The percent change is relative to 
VIC OBS for the left (BSCD) and middle (LOCA) column of rows 2-4.  The percent change of the 
difference (right column) is relative to BCSD (i.e. (LOCA-BCSD)/BCSD). 
*Note percentages in locations with little SWE are likely to be considerably large.  This is why 
we include this only in the appendix for those interested in percent changes in particular areas.  
Total magnitude changes are shown in Figure 8. 
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Appendix B. Interannual variability in precipitation 
In addition to long-term means, we compared interannual variability depicted by LOCA and 
BCSD precipitation values. LOCA and BCSD have similar interannual variability as averaged 
across all GCMs (Figure B1, row 2 Ensemble Mean), with LOCA having slightly more 
interannual variability across much of the CONUS.  However, LOCA exhibits less spread across 
models in the interannual variability for different GCMs (Figure B1, row 3 Ensemble Std). This is 
likely due to the frequency dependent bias correction employed in LOCA which explicitly tries to 
correct time variance. In the historical period, LOCA appears to have more spread in interannual 
variability across models on average in the PNW (blue in the right column, 3 row sub-figure) and 
BCSD might have more in portions of California and the Canadian portion of the Columbia River 
basin (brown). These comparisons are noisy, however.   
Notably, the differences between observations (top row) have a different pattern over much of 
the CONUS than the differences seen in individual GCMs, indicating that downscaled 
LOCA/BCSD differences are not determined exclusively by differences between the Livneh and 
Mauer training observation datasets.  
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Figure B1. Interannual variability of precipitation.  The standard deviation of annual precipitation from 
1970-1999 for BCSD (left), LOCA (middle) and LOCA-BCSD (right) from observations (top row) averaged 
across all GCMs (row 2), and the standard deviation across GCMs (row 3), and three individual GCMS 
(rows 4-6).   Note: the color scale for standard deviation is a factor of 10 smaller.  
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Appendix C. Future changes for a subset of individual GCMs 
for 4.5 (a) and 8.5 (b)  

 
Figure C1a.  Change in temperature for individual downscaled GCMs for RCP 4.5  Differences 
between the historical period (1970-1999) and future period (2070-2099) for RCP 4.5 for BCSD (left) and 
LOCA (middle) and the differences between LOCA and BCSD (right).  Note colorbar is a factor of 10 
smaller in the differences column (right). 
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Figure C1b. Change signals in temperature for individual downscaled GCMs for RCP 8.5. Similar to 
previous figure but for 8.5 instead of 4.5. 
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Figure C2a. Change signals in precipitation for individual downscaled GCMs for RCP 4.5.  
Differences between the historical period (1970-1999) and future period (2070-2099) for RCP 4.5 for 
BCSD (left) and LOCA (middle) and the differences between LOCA and BCSD (right).   
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Figure C2b.  Change signals in precipitation for individual downscaled GCMs for RCP 8.5. Similar 
to previous figure but for 8.5 instead of 4.5. 
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Figure C3a. Change in evapotranspiration for individual downscaled GCMs for RCP 4.5.  Similar 
format to figure above but for ET instead of precipitation (note: color scale range is smaller here than it 
was for precipitation).   
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Figure C3b.  Change signals in evapotranspiration for individual downscaled GCMs for RCP 8.5.   
Similar to previous figure but for 8.5 instead of 4.5. 
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Figure C4a. Change in runoff for individual downscaled GCMs for RCP 4.5.  Similar format to figure 
above but for runoff (surface runoff + baseflow) instead of ET.   
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Figure C4b. Change signals in runoff for individual downscaled GCMs for RCP 8.5.  Similar to 
previous figure but for 8.5 instead of 4.5.  
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Figure C5a.  Change signals in SWE for individual downscaled GCMs for RCP 4.5.  Similar format to 
figures above but for SWE instead of runoff. 
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Figure C5b. Change in SWE for individual downscaled GCMs for RCP 8.5.  Similar to previous figure 
but for 8.5 instead of 4.5. 
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Appendix D. Seasonal simulation of historical and future 
changes in all 18 HUC2 

 
Figure D1. Historical and future basin runoff for HUC2 01-06. Similar to Figure 16 but for but HUC2 
01-06. Values are in mm, averaged across the watershed area. 



 88 

 
Figure D2. Historical and future basin runoff for HUC2 07-12. Similar to Figure 16 but for but HUC2 
07-12. Values are in mm, averaged across the watershed area. 
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Figure D3. Historical and future basin runoff for HUC2 13-18. Similar to Figure 16 but for but HUC2 
13-18. Values are in mm, averaged across the watershed area. 
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Appendix E. Daily Streamflow Exceedance Probabilities in 43 
basins in the Western CONUS 

 
Figure E1. Locations 1-8 
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Figure E2. Locations 9-16 
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Figure E3. Locations 17-24 
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Figure E4. Locations 25-32 
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Figure E5. Locations 33-40 
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Figure E6. Locations 41-43 
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Appendix F. Maps of VIC parameters used in BCSD-VIC and 
LOCA-VIC. 

 
Figure F1. Maps of 4 frequently calibrated VIC parameters from BCSD (left) and LOCA (right), infilt, 
Ds, Dsmax, and Ws 
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