Newer
Older
""" Libffi wrapping
"""
from __future__ import with_statement
from rpython.rtyper.tool import rffi_platform
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.rtyper.tool import rffi_platform
from rpython.rlib.unroll import unrolling_iterable
from rpython.rlib.rarithmetic import intmask, is_emulated_long
from rpython.rlib.objectmodel import we_are_translated
from rpython.rlib.rdynload import dlopen, dlclose, dlsym, dlsym_byordinal
from rpython.rlib.rdynload import DLOpenError, DLLHANDLE
from rpython.rlib import jit, rposix
from rpython.rlib.objectmodel import specialize
from rpython.translator.tool.cbuild import ExternalCompilationInfo
from rpython.translator.platform import platform
from rpython.translator import cdir
Carl Friedrich Bolz-Tereick
committed
import ctypes
import ctypes.util
# maaaybe isinstance here would be better. Think
_MSVC = platform.name == "msvc"
_MINGW = platform.name == "mingw32"
_WIN32 = _MSVC or _MINGW
_WIN64 = _WIN32 and is_emulated_long
_LITTLE_ENDIAN = sys.byteorder == 'little'
_BIG_ENDIAN = sys.byteorder == 'big'
_ARM32 = rffi_platform.getdefined('__arm__', '')
_ARM64 = rffi_platform.getdefined('__aarch64', '')
_MAC_OS_ARM64 = _MAC_OS and _ARM64
if _WIN32:
from rpython.rlib import rwin32
separate_module_sources = ['''
#include <stdio.h>
#include <windows.h>
/* Get the module where the "fopen" function resides in */
MEMORY_BASIC_INFORMATION mi;
char buf[1000];
memset(&mi, 0, sizeof(mi));
if( !VirtualQueryEx(GetCurrentProcess(), &fopen, &mi, sizeof(mi)) )
GetModuleFileName((HMODULE)mi.AllocationBase, buf, 500);
return (HMODULE)mi.AllocationBase;
}
''']
post_include_bits = ['RPY_EXTERN HMODULE pypy_get_libc_handle(void);\n',]
if not _WIN32:
includes = ['ffi.h']
if _MAC_OS:
pre_include_bits = ['#define MACOSX\n#define USE_FFI_CLOSURE_ALLOC 1']
eci = ExternalCompilationInfo(
pre_include_bits = pre_include_bits,
includes = includes,
libraries = libraries,
separate_module_sources = separate_module_sources,
post_include_bits = post_include_bits,
include_dirs = platform.include_dirs_for_libffi(),
library_dirs = platform.library_dirs_for_libffi(),
link_files = link_files,
testonly_libraries = ['ffi'],
)
elif _MINGW:
includes = ['ffi.h']
libraries = ['libffi-5']
eci = ExternalCompilationInfo(
libraries = libraries,
includes = includes,
separate_module_sources = separate_module_sources,
post_include_bits = post_include_bits,
)
eci = rffi_platform.configure_external_library(
[dict(prefix='libffi-',
include_dir='include', library_dir='.libs'),
dict(prefix=r'c:\\mingw64', include_dir='include', library_dir='lib'),
])
else:
eci = ExternalCompilationInfo(
includes = ['ffi.h', 'windows.h'],
libraries = ['kernel32', 'libffi-8'],
separate_module_sources = separate_module_sources,
post_include_bits = post_include_bits,
)
FFI_TYPE_P = lltype.Ptr(lltype.ForwardReference())
FFI_TYPE_PP = rffi.CArrayPtr(FFI_TYPE_P)
FFI_TYPE_NULL = lltype.nullptr(FFI_TYPE_P.TO)
class CConfig:
_compilation_info_ = eci
FFI_OK = rffi_platform.ConstantInteger('FFI_OK')
FFI_BAD_TYPEDEF = rffi_platform.ConstantInteger('FFI_BAD_TYPEDEF')
FFI_DEFAULT_ABI = rffi_platform.ConstantInteger('FFI_DEFAULT_ABI')
if _WIN32 and not _WIN64:
FFI_STDCALL = rffi_platform.ConstantInteger('FFI_STDCALL')
if _ARM32:
FFI_SYSV = rffi_platform.ConstantInteger('FFI_SYSV')
FFI_VFP = rffi_platform.ConstantInteger('FFI_VFP')
FFI_TYPE_STRUCT = rffi_platform.ConstantInteger('FFI_TYPE_STRUCT')
size_t = rffi_platform.SimpleType("size_t", rffi.ULONG)
ffi_abi = rffi_platform.SimpleType("ffi_abi", rffi.USHORT)
ffi_arg = rffi_platform.SimpleType("ffi_arg", lltype.Signed)
ffi_type = rffi_platform.Struct('ffi_type', [('size', rffi.ULONG),
('alignment', rffi.USHORT),
('type', rffi.USHORT),
('elements', FFI_TYPE_PP)])
ffi_cif = rffi_platform.Struct('ffi_cif', [])
ffi_closure = rffi_platform.Struct('ffi_closure',
[('user_data', rffi.VOIDP)])
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def add_simple_type(type_name):
for name in ['size', 'alignment', 'type']:
setattr(CConfig, type_name + '_' + name,
rffi_platform.ConstantInteger(type_name + '.' + name))
def configure_simple_type(type_name):
l = lltype.malloc(FFI_TYPE_P.TO, flavor='raw', immortal=True)
for tp, name in [(size_t, 'size'),
(rffi.USHORT, 'alignment'),
(rffi.USHORT, 'type')]:
value = getattr(cConfig, '%s_%s' % (type_name, name))
setattr(l, 'c_' + name, rffi.cast(tp, value))
l.c_elements = lltype.nullptr(FFI_TYPE_PP.TO)
return l
base_names = ['double', 'uchar', 'schar', 'sshort', 'ushort', 'uint', 'sint',
# ffi_type_slong and ffi_type_ulong are omitted because
# their meaning changes too much from one libffi version to
# another. DON'T USE THEM! use cast_type_to_ffitype().
'float', 'longdouble', 'pointer', 'void',
# by size
'sint8', 'uint8', 'sint16', 'uint16', 'sint32', 'uint32',
'sint64', 'uint64']
type_names = ['ffi_type_%s' % name for name in base_names]
for i in type_names:
add_simple_type(i)
class cConfig:
pass
for k, v in rffi_platform.configure(CConfig).items():
setattr(cConfig, k, v)
FFI_TYPE_P.TO.become(cConfig.ffi_type)
size_t = cConfig.size_t
FFI_ABI = cConfig.ffi_abi
ffi_arg = cConfig.ffi_arg
for name in type_names:
locals()[name] = configure_simple_type(name)
def _signed_type_for(TYPE):
sz = rffi.sizeof(TYPE)
if sz == 1: return ffi_type_sint8
elif sz == 2: return ffi_type_sint16
elif sz == 4: return ffi_type_sint32
elif sz == 8: return ffi_type_sint64
else: raise ValueError("unsupported type size for %r" % (TYPE,))
def _unsigned_type_for(TYPE):
sz = rffi.sizeof(TYPE)
if sz == 1: return ffi_type_uint8
elif sz == 2: return ffi_type_uint16
elif sz == 4: return ffi_type_uint32
elif sz == 8: return ffi_type_uint64
else: raise ValueError("unsupported type size for %r" % (TYPE,))
__int_type_map = [
(rffi.UCHAR, ffi_type_uchar),
(rffi.SIGNEDCHAR, ffi_type_schar),
(rffi.SHORT, ffi_type_sshort),
(rffi.USHORT, ffi_type_ushort),
(rffi.UINT, ffi_type_uint),
(rffi.INT, ffi_type_sint),
# xxx don't use ffi_type_slong and ffi_type_ulong - their meaning
# changes from a libffi version to another :-((
(rffi.ULONG, _unsigned_type_for(rffi.ULONG)),
(rffi.LONG, _signed_type_for(rffi.LONG)),
(rffi.ULONGLONG, _unsigned_type_for(rffi.ULONGLONG)),
(rffi.LONGLONG, _signed_type_for(rffi.LONGLONG)),
(lltype.UniChar, _unsigned_type_for(lltype.UniChar)),
(lltype.Bool, _unsigned_type_for(lltype.Bool)),
(lltype.Char, _signed_type_for(lltype.Char)),
]
__float_type_map = [
(rffi.DOUBLE, ffi_type_double),
(rffi.FLOAT, ffi_type_float),
(rffi.LONGDOUBLE, ffi_type_longdouble),
]
__ptr_type_map = [
(rffi.VOIDP, ffi_type_pointer),
]
__type_map = __int_type_map + __float_type_map + [
(lltype.Void, ffi_type_void)
]
TYPE_MAP_INT = dict(__int_type_map)
TYPE_MAP_FLOAT = dict(__float_type_map)
TYPE_MAP = dict(__type_map)
ffitype_map_int = unrolling_iterable(__int_type_map)
ffitype_map_int_or_ptr = unrolling_iterable(__int_type_map + __ptr_type_map)
ffitype_map_float = unrolling_iterable(__float_type_map)
ffitype_map = unrolling_iterable(__type_map)
del __int_type_map, __float_type_map, __ptr_type_map, __type_map
def external(name, args, result, **kwds):
return rffi.llexternal(name, args, result, compilation_info=eci, **kwds)
def winexternal(name, args, result):
return rffi.llexternal(name, args, result, compilation_info=eci, calling_conv='win')
def check_fficall_result(result, flags):
pass # No check
else:
def check_fficall_result(result, flags):
if result == 0:
return
# if win64:
# raises ValueError("ffi_call failed with code %d" % (result,))
if result < 0:
if flags & FUNCFLAG_CDECL:
raise StackCheckError(
"Procedure called with not enough arguments"
" (%d bytes missing)"
" or wrong calling convention" % (-result,))
else:
raise StackCheckError(
"Procedure called with not enough arguments "
" (%d bytes missing) " % (-result,))
else:
raise StackCheckError(
"Procedure called with too many "
"arguments (%d bytes in excess) " % (result,))
if not _WIN32:
Carl Friedrich Bolz-Tereick
committed
# prefer using ctypes.util.find_library() as it takes care of some
# platform specifics -- however, it is not 100% portable
Carl Friedrich Bolz-Tereick
committed
if libc_name is not None:
def get_libc_name():
return libc_name
elif sys.platform == 'darwin':
def get_libc_name():
return '/usr/lib/libc.dylib'
else:
Carl Friedrich Bolz-Tereick
committed
# try falling back to generic "libc.so" as that should work
# for the majority of ELF systems (except for GNU/Linux)
try:
ctypes.CDLL('libc.so')
except OSError:
raise AssertionError(
"Cannot find C library, ctypes.util.find_library('c') returned None")
else:
def get_libc_name():
return 'libc.so'
elif _MSVC:
get_libc_handle = external('pypy_get_libc_handle', [], DLLHANDLE)
@jit.dont_look_inside
def get_libc_name():
return rwin32.GetModuleFileName(get_libc_handle())
libc_name = get_libc_name().lower()
assert "msvcr" in libc_name or 'ucrtbase' in libc_name, \
"Suspect msvcrt library: %s" % (get_libc_name(),)
elif _MINGW:
def get_libc_name():
return 'msvcrt.dll'
if _WIN32:
LoadLibrary = rwin32.LoadLibrary
FFI_OK = cConfig.FFI_OK
FFI_BAD_TYPEDEF = cConfig.FFI_BAD_TYPEDEF
FFI_DEFAULT_ABI = cConfig.FFI_DEFAULT_ABI
if _WIN32 and not _WIN64:
FFI_STDCALL = cConfig.FFI_STDCALL
if _ARM32:
FFI_SYSV = cConfig.FFI_SYSV
FFI_VFP = cConfig.FFI_VFP
FFI_TYPE_STRUCT = cConfig.FFI_TYPE_STRUCT
FFI_CIFP = lltype.Ptr(cConfig.ffi_cif)
FFI_CLOSUREP = lltype.Ptr(cConfig.ffi_closure)
VOIDPP = rffi.CArrayPtr(rffi.VOIDP)
c_ffi_prep_cif = external('ffi_prep_cif', [FFI_CIFP, FFI_ABI, rffi.UINT,
FFI_TYPE_P, FFI_TYPE_PP], rffi.INT)
c_ffi_prep_cif_var = external('ffi_prep_cif_var', [FFI_CIFP, FFI_ABI, rffi.UINT, rffi.UINT,
FFI_TYPE_P, FFI_TYPE_PP], rffi.INT)
c_ffi_closure_alloc = external('ffi_closure_alloc', [rffi.SIZE_T, rffi.VOIDPP],
rffi.VOIDP, _nowrapper=True)
c_ffi_closure_free = external('ffi_closure_free', [rffi.VOIDP], lltype.Void, _nowrapper=True)
c_ffi_call_return_type = rffi.INT
else:
c_ffi_call_return_type = lltype.Void
c_ffi_call = external('ffi_call', [FFI_CIFP, rffi.VOIDP, rffi.VOIDP,
Matti Picus
committed
save_err=rffi.RFFI_ERR_ALL | rffi.RFFI_ALT_ERRNO)
# Note: the RFFI_ALT_ERRNO flag matches the one in pyjitpl.direct_libffi_call
CALLBACK_TP = rffi.CCallback([FFI_CIFP, rffi.VOIDP, rffi.VOIDPP, rffi.VOIDP],
lltype.Void)
c_ffi_prep_closure_loc = external('ffi_prep_closure_loc', [FFI_CLOSUREP, FFI_CIFP,
CALLBACK_TP, rffi.VOIDP, rffi.VOIDP],
FFI_STRUCT_P = lltype.Ptr(lltype.Struct('FFI_STRUCT',
('ffistruct', FFI_TYPE_P.TO),
('members', lltype.Array(FFI_TYPE_P))))
@specialize.arg(3)
def make_struct_ffitype_e(size, aligment, field_types, track_allocation=True):
"""Compute the type of a structure. Returns a FFI_STRUCT_P out of
which the 'ffistruct' member is a regular FFI_TYPE.
"""
tpe = lltype.malloc(FFI_STRUCT_P.TO, len(field_types)+1, flavor='raw',
track_allocation=track_allocation)
tpe.ffistruct.c_type = rffi.cast(rffi.USHORT, FFI_TYPE_STRUCT)
tpe.ffistruct.c_size = rffi.cast(rffi.SIZE_T, size)
tpe.ffistruct.c_alignment = rffi.cast(rffi.USHORT, aligment)
tpe.ffistruct.c_elements = rffi.cast(FFI_TYPE_PP,
lltype.direct_arrayitems(tpe.members))
n = 0
while n < len(field_types):
tpe.members[n] = field_types[n]
n += 1
tpe.members[n] = lltype.nullptr(FFI_TYPE_P.TO)
return tpe
@specialize.memo()
def cast_type_to_ffitype(tp):
""" This function returns ffi representation of rpython type tp
"""
return TYPE_MAP[tp]
@specialize.argtype(1)
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def push_arg_as_ffiptr(ffitp, arg, ll_buf):
# This is for primitive types. Note that the exact type of 'arg' may be
# different from the expected 'c_size'. To cope with that, we fall back
# to a byte-by-byte copy.
TP = lltype.typeOf(arg)
TP_P = lltype.Ptr(rffi.CArray(TP))
TP_size = rffi.sizeof(TP)
c_size = intmask(ffitp.c_size)
# if both types have the same size, we can directly write the
# value to the buffer
if c_size == TP_size:
buf = rffi.cast(TP_P, ll_buf)
buf[0] = arg
else:
# needs byte-by-byte copying. Make sure 'arg' is an integer type.
# Note that this won't work for rffi.FLOAT/rffi.DOUBLE.
assert TP is not rffi.FLOAT and TP is not rffi.DOUBLE
if TP_size <= rffi.sizeof(lltype.Signed):
arg = rffi.cast(lltype.Unsigned, arg)
else:
arg = rffi.cast(lltype.UnsignedLongLong, arg)
if _LITTLE_ENDIAN:
for i in range(c_size):
ll_buf[i] = chr(arg & 0xFF)
arg >>= 8
elif _BIG_ENDIAN:
for i in range(c_size-1, -1, -1):
ll_buf[i] = chr(arg & 0xFF)
arg >>= 8
else:
raise AssertionError
# type defs for callback and closure userdata
USERDATA_P = lltype.Ptr(lltype.ForwardReference())
CALLBACK_TP = lltype.Ptr(lltype.FuncType([rffi.VOIDPP, rffi.VOIDP, USERDATA_P],
lltype.Void))
USERDATA_P.TO.become(lltype.Struct('userdata',
('callback', CALLBACK_TP),
('addarg', lltype.Signed),
hints={'callback':True}))
def _ll_callback(ffi_cif, ll_res, ll_args, ll_userdata):
""" Callback specification.
ffi_cif - something ffi specific, don't care
ll_args - rffi.VOIDPP - pointer to array of pointers to args
ll_restype - rffi.VOIDP - pointer to result
ll_userdata - a special structure which holds necessary information
(what the real callback is for example), casted to VOIDP
"""
userdata = rffi.cast(USERDATA_P, ll_userdata)
llop.revdb_do_next_call(lltype.Void)
userdata.callback(ll_args, ll_res, userdata)
def ll_callback(ffi_cif, ll_res, ll_args, ll_userdata):
Matti Picus
committed
rposix._errno_after(rffi.RFFI_ERR_ALL | rffi.RFFI_ALT_ERRNO)
_ll_callback(ffi_cif, ll_res, ll_args, ll_userdata)
Matti Picus
committed
rposix._errno_before(rffi.RFFI_ERR_ALL | rffi.RFFI_ALT_ERRNO)
class StackCheckError(ValueError):
message = None
def __init__(self, message):
self.message = message
class LibFFIError(Exception):
pass
FUNCFLAG_STDCALL = 0 # on Windows: for WINAPI calls
FUNCFLAG_CDECL = 1 # on Windows: for __cdecl calls
FUNCFLAG_PYTHONAPI = 4
FUNCFLAG_USE_ERRNO = 8
FUNCFLAG_USE_LASTERROR = 16
@specialize.arg(1) # hack :-/
def get_call_conv(flags, from_jit):
if _WIN32 and not _WIN64 and (flags & FUNCFLAG_CDECL == 0):
return FFI_STDCALL
else:
return FFI_DEFAULT_ABI
class AbstractFuncPtr(object):
ll_cif = lltype.nullptr(FFI_CIFP.TO)
ll_argtypes = lltype.nullptr(FFI_TYPE_PP.TO)
_immutable_fields_ = ['argtypes', 'restype']
def __init__(self, name, argtypes, restype, flags=FUNCFLAG_CDECL, variadic_args=0):
self.name = name
self.argtypes = argtypes
self.restype = restype
self.flags = flags
argnum = len(argtypes)
self.ll_argtypes = lltype.malloc(FFI_TYPE_PP.TO, argnum, flavor='raw',
track_allocation=False) # freed by the __del__
for i in range(argnum):
self.ll_argtypes[i] = argtypes[i]
self.ll_cif = lltype.malloc(FFI_CIFP.TO, flavor='raw',
track_allocation=False) # freed by the __del__
if _MSVC:
# This little trick works correctly with MSVC.
# It returns small structures in registers
if intmask(restype.c_type) == FFI_TYPE_STRUCT:
if restype.c_size <= 4:
restype = ffi_type_sint32
elif restype.c_size <= 8:
restype = ffi_type_sint64
Matti Picus
committed
if variadic_args > 0:
res = c_ffi_prep_cif_var(self.ll_cif,
rffi.cast(rffi.USHORT, get_call_conv(flags,False)),
rffi.cast(rffi.UINT, argnum - variadic_args),
rffi.cast(rffi.UINT, argnum), restype,
self.ll_argtypes)
else:
res = c_ffi_prep_cif(self.ll_cif,
rffi.cast(rffi.USHORT, get_call_conv(flags,False)),
rffi.cast(rffi.UINT, argnum), restype,
self.ll_argtypes)
if not res == FFI_OK:
raise LibFFIError
def __del__(self):
if self.ll_cif:
lltype.free(self.ll_cif, flavor='raw', track_allocation=False)
self.ll_cif = lltype.nullptr(FFI_CIFP.TO)
if self.ll_argtypes:
lltype.free(self.ll_argtypes, flavor='raw', track_allocation=False)
self.ll_argtypes = lltype.nullptr(FFI_TYPE_PP.TO)
# as long as CallbackFuncPtr is kept alive, the underlaying userdata
# is kept alive as well
class CallbackFuncPtr(AbstractFuncPtr):
ll_closure = lltype.nullptr(FFI_CLOSUREP.TO)
ll_userdata = lltype.nullptr(USERDATA_P.TO)
# additional_arg should really be a non-heap type like a integer,
# it cannot be any kind of movable gc reference
def __init__(self, argtypes, restype, func, additional_arg=0,
flags=FUNCFLAG_CDECL, variadic_args=0):
AbstractFuncPtr.__init__(self, "callback", argtypes, restype, flags,
variadic_args)
self.ll_code = lltype.malloc(rffi.VOIDPP.TO, 1, flavor='raw')
self.ll_closure = rffi.cast(FFI_CLOSUREP,
c_ffi_closure_alloc(rffi.cast(rffi.SIZE_T, rffi.sizeof(FFI_CLOSUREP.TO)), self.ll_code))
self.ll_userdata = lltype.malloc(USERDATA_P.TO, flavor='raw',
track_allocation=False)
self.ll_userdata.callback = rffi.llhelper(CALLBACK_TP, func)
self.ll_userdata.addarg = additional_arg
if not res == FFI_OK:
raise LibFFIError
def get_closure(self):
return self.ll_code[0]
def __del__(self):
AbstractFuncPtr.__del__(self)
if self.ll_closure:
c_ffi_closure_free(self.ll_closure)
lltype.free(self.ll_code, flavor='raw')
self.ll_closure = lltype.nullptr(FFI_CLOSUREP.TO)
if self.ll_userdata:
lltype.free(self.ll_userdata, flavor='raw', track_allocation=False)
self.ll_userdata = lltype.nullptr(USERDATA_P.TO)
class RawFuncPtr(AbstractFuncPtr):
def __init__(self, name, argtypes, restype, funcsym, flags=FUNCFLAG_CDECL,
keepalive=None, variadic_args=0):
AbstractFuncPtr.__init__(self, name, argtypes, restype, flags, variadic_args)
self.keepalive = keepalive
self.funcsym = funcsym
def call(self, args_ll, ll_result):
# adjust_return_size() should always be used here on ll_result
assert len(args_ll) == len(self.argtypes), (
"wrong number of arguments in call to %s(): "
"%d instead of %d" % (self.name, len(args_ll), len(self.argtypes)))
ll_args = lltype.malloc(rffi.VOIDPP.TO, len(args_ll), flavor='raw')
for i in range(len(args_ll)):
assert args_ll[i] # none should be NULL
ll_args[i] = args_ll[i]
ffires = c_ffi_call(self.ll_cif, self.funcsym, ll_result, ll_args)
lltype.free(ll_args, flavor='raw')
check_fficall_result(ffires, self.flags)
class FuncPtr(AbstractFuncPtr):
ll_args = lltype.nullptr(rffi.VOIDPP.TO)
ll_result = lltype.nullptr(rffi.VOIDP.TO)
def __init__(self, name, argtypes, restype, funcsym, flags=FUNCFLAG_CDECL,
keepalive=None, variadic_args=0):
AbstractFuncPtr.__init__(self, name, argtypes, restype, flags, variadic_args)
self.keepalive = keepalive
self.funcsym = funcsym
self.argnum = len(self.argtypes)
self.pushed_args = 0
self.ll_args = lltype.malloc(rffi.VOIDPP.TO, self.argnum, flavor='raw')
for i in range(self.argnum):
# space for each argument
self.ll_args[i] = lltype.malloc(rffi.VOIDP.TO,
intmask(argtypes[i].c_size),
flavor='raw')
if restype != ffi_type_void:
Richard Plangger
committed
self.restype_size = intmask(restype.c_size)
size = adjust_return_size(self.restype_size)
Richard Plangger
committed
else:
self.restype_size = -1
@specialize.argtype(1)
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
def push_arg(self, value):
#if self.pushed_args == self.argnum:
# raise TypeError("Too many arguments, eats %d, pushed %d" %
# (self.argnum, self.argnum + 1))
if not we_are_translated():
TP = lltype.typeOf(value)
if isinstance(TP, lltype.Ptr):
if TP.TO._gckind != 'raw':
raise ValueError("Can only push raw values to C, not 'gc'")
# XXX probably we should recursively check for struct fields
# here, lets just ignore that for now
if isinstance(TP.TO, lltype.Array):
try:
TP.TO._hints['nolength']
except KeyError:
raise ValueError("Can only push to C arrays without length info")
push_arg_as_ffiptr(self.argtypes[self.pushed_args], value,
self.ll_args[self.pushed_args])
self.pushed_args += 1
def _check_args(self):
if self.pushed_args < self.argnum:
raise TypeError("Did not specify arg nr %d" % (self.pushed_args + 1))
def _clean_args(self):
self.pushed_args = 0
@specialize.arg(1)
def call(self, RES_TP):
self._check_args()
ffires = c_ffi_call(self.ll_cif, self.funcsym,
rffi.cast(rffi.VOIDP, self.ll_result),
rffi.cast(VOIDPP, self.ll_args))
if RES_TP is not lltype.Void:
TP = lltype.Ptr(rffi.CArray(RES_TP))
Richard Plangger
committed
ptr = self.ll_result
Richard Plangger
committed
if _BIG_ENDIAN and RES_TP in TYPE_MAP_INT:
Richard Plangger
committed
# we get a 8 byte value in big endian
n = rffi.sizeof(lltype.Signed) - self.restype_size
ptr = rffi.ptradd(ptr, n)
res = rffi.cast(TP, ptr)[0]
else:
res = None
self._clean_args()
check_fficall_result(ffires, self.flags)
return res
def __del__(self):
if self.ll_args:
argnum = len(self.argtypes)
for i in range(argnum):
if self.ll_args[i]:
lltype.free(self.ll_args[i], flavor='raw')
lltype.free(self.ll_args, flavor='raw')
self.ll_args = lltype.nullptr(rffi.VOIDPP.TO)
if self.ll_result:
lltype.free(self.ll_result, flavor='raw')
self.ll_result = lltype.nullptr(rffi.VOIDP.TO)
AbstractFuncPtr.__del__(self)
class RawCDLL(object):
def __init__(self, handle):
self.lib = handle
def getpointer(self, name, argtypes, restype, flags=FUNCFLAG_CDECL, variadic_args=0):
# these arguments are already casted to proper ffi
# structures!
return FuncPtr(name, argtypes, restype, dlsym(self.lib, name),
flags=flags, keepalive=self, variadic_args=variadic_args)
def getrawpointer(self, name, argtypes, restype, flags=FUNCFLAG_CDECL, variadic_args=0):
# these arguments are already casted to proper ffi
# structures!
return RawFuncPtr(name, argtypes, restype, dlsym(self.lib, name),
flags=flags, keepalive=self, variadic_args=variadic_args)
def getrawpointer_byordinal(self, ordinal, argtypes, restype,
flags=FUNCFLAG_CDECL, variadic_args=0):
# these arguments are already casted to proper ffi
# structures!
return RawFuncPtr(name, argtypes, restype,
dlsym_byordinal(self.lib, ordinal), flags=flags,
keepalive=self, variadic_args=variadic_args)
def getaddressindll(self, name):
return dlsym(self.lib, name)
class CDLL(RawCDLL):
def __init__(self, libname, mode=-1):
"""Load the library, or raises DLOpenError."""
RawCDLL.__init__(self, rffi.cast(DLLHANDLE, -1))
with rffi.scoped_str2charp(libname) as ll_libname:
self.lib = dlopen(ll_libname, mode)
def __del__(self):
if self.lib != rffi.cast(DLLHANDLE, -1):
dlclose(self.lib)
self.lib = rffi.cast(DLLHANDLE, -1)
def adjust_return_size(memsize):
# Workaround for a strange behavior of libffi: make sure that
# we always have at least 8 bytes. ffi_call() writes 8 bytes
# into the buffer even if the function's result type asks for
# less. This strange behavior is documented.
if memsize < 8:
memsize = 8
return memsize