
EXCERPTED FROM

Starting from
Randomness

NOTES FOR CHAPTER 6:

4 NOTES
Sytems Based on Numbers
N O T E S

X
TitleName
P A R T N A M E

947

NOTES FOR CHAPTER 6

Starting from Randomness

The Emergence of Order

â Page 226 · Properties of patterns. For a random initial
condition, the average density of black cells is exactly 1/2.
For rule 126, the density after many steps is still 1/2. For rule
22, it is approximately 0.35095. For rule 30 and rule 150 it is
exactly 1/2, while for rule 182 it is 3/4. And insofar as rule
110 converges to a definite density, the density is 4/7. (See
page 953 for a method of estimating these densities.)

Even after many steps, individual lines in the patterns
produced by rules 30 and 150 remain in general completely
random. But in rule 126, black cells always tend to appear in
pairs, while in rule 182, every white cell tends to be
surrounded by black ones. And in rule 22, there are more
complicated conditions involving blocks of 4 cells.

The density of triangles of size goes roughly like for
rules 126, 30 (see also page 871), 150 and 182 and roughly like

 for rule 22.

In the algebraic representation discussed on page 869,
rule 22 is , rule 126 is

, rule 150 is
and rule 182 is .

â Continual injection of randomness. In the main text we
discuss what happens when one starts from random initial
conditions and then evolves according to a definite cellular
automaton rule. As an alternative one can consider starting
with very simple initial conditions, such as all cells white,
and then at each step randomly changing the color of the
center cell. Some examples of what happens are shown at the
bottom of the previous column. The results are usually very
similar to those obtained with random initial conditions.

â History. The fact that despite initial randomness processes
like friction can make systems settle down into definite
configurations has been the basis for all sorts of engineering
throughout history. The rise of statistical mechanics in the late
1800s emphasized the idea of entropy increase and the
fundamental tendency for systems to become progressively
more disordered as they evolve to thermodynamic
equilibrium. Theories were nevertheless developed for a few
cases of spontaneous pattern formation—notably in
convection, cirrus clouds and ocean waves. When the study of
feedback and stability became popular in the 1940s, there were
many results about how specific simple fixed or repetitive
behaviors in time could emerge despite random input. In the
1950s it was suggested that reaction-diffusion processes might
be responsible for spontaneous pattern formation in biology
(see page 1012)—and starting in the 1970s such processes were
discussed as prime examples of the phenomenon of self-
organization. But in their usual form, they yield essentially
only rather simple repetitive patterns. Ever since around 1900
it tended to be assumed that any fundamental theory of
systems with many components must be based on statistical
mechanics. But almost all work in the field of statistical
mechanics concentrated on systems in or very near thermal
equilibrium—in which in a sense there is almost complete
disorder. In the 1970s there began to be more discussion of
phenomena far from equilibrium, although typically it got no
further than to consider how external forces could lead to
reaction-diffusion-like phenomena. My own work on cellular

n 2-n

1.3-n

Mod[p + q + r + p q r, 2]
Mod[(p + q) (q + r) + (p + r), 2] Mod[p + q + r, 2]

Mod[p r (1+ q) + (p + q + r), 2]

rule 108 rule 110 rule 126

rule 30 rule 62 rule 90

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

948

automata in 1981 emerged in part from thinking about self-
gravitating systems (see page 880) where it seemed
conceivable that there might be very basic rules quite different
from those usually studied in statistical mechanics. And when
I first generated pictures of the behavior of arbitrary cellular
automaton rules, what struck me most was the order that
emerged even from random initial conditions. But while it was
immediately clear that most cellular automata do not have the
kind of reversible underlying rules assumed in traditional
statistical mechanics, it still seemed initially very surprising
that their overall behavior could be so elaborate—and so far
from the complete orderlessness one might expect on the basis
of traditional ideas of entropy maximization.

Four Classes of Behavior

â Different runs. The qualitative behavior seen with a given
cellular automaton rule will normally look exactly the same
for essentially all different large random initial conditions—
just as it does for different parts of a single initial condition.
And as discussed on page 597 any obvious differences could
in effect be thought of as revealing deviations from
randomness in the initial conditions.

â Page 232 · Elementary rules. The examples shown have rule
numbers for which matches

.

â Page 235 · States of matter. As suggested by pages 944 and
1193, working out whether a particular substance at a
particular temperature will be a solid, liquid or gas may in
fact be computationally comparable in difficulty to working
out what class of behavior a particular cellular automaton
will exhibit.

â Page 235 · Class 4 rules. Other examples of class 4 totalistic
rules with colors include 357 (page 282), 438, 600, 792,
924, 1038, 1041, 1086, 1329 (page 282), 1572, 1599 (see page
70), 1635 (see page 67), 1662, 1815 (page 236), 2007 (page 237)
and 2049 (see page 68).

â Frequencies of classes. The pie charts below show results for
1D totalistic cellular automata with colors and range . Class
3 tends to become more common as the number of elements in
the rule increases because as soon as any of these elements
yield class 3 behavior, that behavior dominates the system.

â History. I discovered the classification scheme for cellular
automata described here late in 1983, and announced it in
January 1984. Much work has been done by me and others on
ways to make the classification scheme precise. The notion
that class 4 can be viewed as intermediate between class 2
and class 3 was studied particularly by Christopher Langton,
Wentian Li and Norman Packard in 1986 for ordinary cellular
automata, by Hyman Hartman in 1985 for probabilistic
cellular automata and by Hugues Chaté and Paul Manneville
in 1990 for continuous cellular automata.

â Subclasses within class 4. Different class 4 systems can show
localized structures with strikingly similar forms, and this
may allow subclasses within class 4 to be identified. In
addition, class 4 systems show varying levels of activity, and
it is possible that there may be discrete transitions—perhaps
analogous to percolation—that can be used to define
boundaries between subclasses.

â Page 240 · Undecidability. Almost any definite procedure for
determining the class of a particular rule will have the feature
that in borderline cases it can take arbitrarily long, often
formally showing undecidability, as discussed on page 1138.
(An example would be a test for class 1 based on checking
that no initial pattern of any size can survive. Including
probabilities can help, but there are still always borderline
cases and potential undecidability.)

â Page 244 · Continuous cellular automata. In ordinary cellular
automata, going from one rule to the next in a sequence
involves some discrete change. But in continuous cellular
automata, the parameters of the rule can be varied smoothly.
Nevertheless, it still turns out that there are discrete
transitions in the overall behavior that is produced. In fact,
there is often a complicated set of transitions that depends
more on the digit sequence of the parameter than its size.
And between these transitions there are usually ranges of
parameter values that yield definite class 4 behavior.
(Compare page 922.)

â Nearby cellular automaton rules. In a range cellular
automaton the new color of a particular cell depends only on
cells at most a distance away. One can make an equivalent
cellular automaton of larger range by having a rule in which
cells at distance more than have no effect. One can then
define nearby cellular automata to be those where the
differences in the rule involve only cells close to the edge of
the range. With larger and larger ranges one can then
construct closer approximations to continuous sequences of
cellular automata.

â 2D class 4 cellular automata. No 5- or 9-neighbor totalistic
rules nor 5-neighbor outer totalistic ones appear to yield

n IntegerDigits[n, 2, 8]
{_, i_, _, j_, i_, _, j_, 0}

k = 3

k r

1

2 3

4

12

3

4

1

2

3
4

1

2

3

4

k = 2, r = 1 k = 2, r = 2 k = 2, r = 3 k = 3, r = 1

r

r

r

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

949

class 4 behavior with a white background. But among 9-
neighbor outer totalistic rules there are examples with codes
224 (Game of Life), 226, 4320 (sometimes called HighLife),
5344, 6248, 6752, 6754 and 8416, etc. It turns out that the
simplest moving structures are the same in codes 224, 226
and 4320.

â Page 249 · Game of Life. Invented by John Conway around
1970 (see page 877), the Life 2D cellular automaton has been
much studied in recreational computing, and as described
on page 964 many localized structures in it have been
identified. Each step in its evolution can be implemented
using

A more efficient implementation can be obtained by
operating not on a complete array of black and white cells
but rather just on a list of positions of black cells. With this
setup, each step then corresponds to

(A still more efficient implementation is based on finding
runs of length 3 and 4 in .)

â 3D class 4 rules. With a cubic lattice of the type shown on
page 183, and with updating rules of the form

Carter Bays discovered between 1986 and 1990 the three
examples , , and . The pictures below
show successive steps in the evolution of a moving structure
in the second of these rules.

â Random initial conditions in other systems. Whenever the
initial conditions for a system can involve an infinite
sequence of elements these elements can potentially be
chosen at random. In systems like mobile automata and
Turing machines the colors of initial cells can be random,
but the active cell must start at a definite location, and
depending on the behavior only a limited region of initial
cells near this location may ever be sampled. Ordinary
substitution systems can operate on infinite sequences of
elements chosen at random. Sequential substitution systems,
however, rely on scanning limited sequences of elements,

and so cannot readily be given infinite random initial
conditions. The same is true of ordinary and cyclic tag
systems. Systems based on continuous numbers involve
infinite sequences of digits which can readily be chosen at
random (see page 154). But systems based on integers
(including register machines) always deal with finite
sequences of digits, for which there is no unique definition
of randomness. (See however the discussion of number
representations on page 1070.) Random networks (see pages
963 and 1038) can be used to provide random initial
conditions for network systems. Multiway systems cannot
meaningfully be given infinite random initial conditions
since these would typically lead to an infinite number of
possible states. Systems based on constraints do not have
initial conditions. (See also page 920.)

Sensitivity to Initial Conditions

â Page 251 · Properties. In rule 126, the outer edges of the
region of change always expand by exactly one cell per step.
The same is true of the right-hand edge in rule 30—though
the left-hand edge in this case expands only about 0.2428
cells on average per step. In rule 22, both edges expand about
0.7660 cells on average per step.

The motion of the right-hand edge in rule 30 can be
understood by noting that with this rule the color of a
particular cell will always change if the color of the cell to its
left is changed on the previous step (see page 601). Nothing
as simple is true for the left-hand edge, and indeed this seems
to execute an essentially random walk—with an average
motion of about 0.2428 cells per step. Note that in the
approximation that the colors of all cells in the pattern are
assumed completely independent and random there should
be motion by 0.25 cells per step. Curiously, as discussed on
page 871, the region of non-repetitive behavior in evolution
from a single black cell according to rule 30 seems to grow at
a similar but not identical rate of about 0.252 cells per step.
(For rule 45, the left-hand edge of the difference pattern
moves about 0.1724 cells per step; for rule 54 both edges
move about 0.553 cells per step.)

â Difference patterns. The maximum rate at which a region of
change can grow is determined by the range of the
underlying cellular automaton rule. If the rule involves up to
 nearest neighbors, then at each step a change in the color of

a given cell can affect cells up to away—so that the edge of
the region of change can move by cells.

For most class 3 rules, once one is inside the region of change,
the colors of cells usually become essentially uncorrelated.

LifeStep[a_List] :=
MapThread[If[#1 2 1 && #2 2 4 || #2 2 3, 1, 0] &,
{a, Sum[RotateLeft[a, {i, j}], {i, -1, 1}, { j , -1, 1}]}, 2]

LifeStep[list_] :=
With[{p = Flatten[Array[List, {3, 3}, -1], 1]},

With[{u = Split[Sort[Flatten[Outer[Plus, list, p, 1], 1]]]},
Union[Cases[u, {x_, _, _} ! x],

Intersection[Cases[u, {x_, _, _, _} ! x], list]]]]

Sort[u]

LifeStep3D[{p_, q_, r_}, a_List] := MapThread[If[
#1 2 1 && p < #2 < q || #2 2 r, 1, 0] &, {a, Sum[RotateLeft[
a, {i, j , k}], {i, -1, 1}, { j , -1, 1}, {k, -1, 1}] - a}, 3]

{5, 7, 6} {4, 5, 5} {5, 6, 5}

r
r
r

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

950

However, for additive rules the pattern of differences is just
exactly the pattern that would be obtained by evolution from
an initial condition consisting only of the changes made. In
general the pattern of probabilities for changes can be
thought of as being somewhat like a Green’s function in
mathematical physics—though the nonadditivity of most
cellular automata makes this analogy less useful. (Note that
the pattern of differences between two initial conditions in a
rule with possible colors can always be reproduced by
looking at the evolution from a single initial condition of a
suitable rule with colors.) In 2D class 3 cellular automata,
the region of change usually ends up having a roughly
circular shape—a result presumably related to the Central
Limit Theorem (see page 976).

For any additive or partially additive class 3 cellular
automaton (such as rule 90 or rule 30) any change in initial
conditions will always lead to expanding differences. But in
other rules it sometimes may not. And thus, for example, in
rule 22, changing the color of a single cell has no effect after
even one step if the cell has a block on either side. But
while there are a few other initial conditions for which
differences can die out after several steps most forms of
averaging will say that the majority of initial conditions lead
to growing patterns of differences.

â Lyapunov exponents. If one thinks of cells to the right of a
point in a 1D cellular automaton as being like digits in a real
number, then linear growth in the region of differences
associated with a change further to the right is analogous to
the exponentially sensitive dependence on initial conditions
shown on page 155. The speed at which the region of
differences expands in the cellular automaton can thus be
thought of as giving a Lyapunov exponent (see page 921) that
characterizes instability in the system.

Systems of Limited Size and Class 2 Behavior

â Page 255 · Cyclic addition. After steps, the dot will be at
position where is the total number of
positions, and is the number of positions moved at each
step. The repetition period is given by . The
picture on page 613 shows the values of and for which
this is equal to .

An alternative interpretation of the system discussed here
involves arranging the possible positions in a circle, so that at
each step the dot goes a fraction of the way around the
circle. The repetition period is maximal when is a fraction
in lowest terms. The picture below shows the repetition
periods as a function of the numerical size of the quantity .

â Page 257 · Cyclic multiplication. With multiplication by at
each step the dot will be at position after steps. If

 and have no factors in common, there will be a for which
, so that the dot returns to position 1. The

smallest such is given by , which
always divides (see page 1093), and has a value
between and , with the upper limit being
attained only if is prime. (This value is related to the
repetition period for the digit sequence of in base , as
discussed on page 912). When the dot can never
visit position 0. But if , the dot reaches 0 after steps,
and then stays there. In general, the dot will visit position

 every
steps.

â Page 260 · Maximum periods. A cellular automaton with
cells and colors has possible states, but if the system has
cyclic boundary conditions, then the maximum repetition
period is smaller than . The reason is that different states of
the cellular automaton have different symmetry properties,
and thus cannot be on the same cycle. In particular, if a state of
a cellular automaton has a certain spatial period, given by the
minimum positive for which , then
this state can never evolve to one with a larger spatial period.
The number of states with spatial period is given by

or equivalently

In a cellular automaton with a total of cells, the maximum
possible repetition period is thus . For , the
maximum periods for up to 10 are:

. In all cases, is
divisible by . For prime , is . For large ,

 oscillates between about and . (See
page 963.)

k

2 k

t
Mod[m t, n] n

m
n/GCD[m, n]

m n
n

m/n
m/n

m/n

2
3
4
5
6

1/6 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 5/6

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

k
Mod[kt , n] t

k n t
Mod[kt , n] 2 1

t MultiplicativeOrder[k, n]
EulerPhi[n]

Log[k, n] n - 1
n

1/n k
GCD[k, n] 2 1

n 2 ks s

m = k^ IntegerExponent[n, k] MultiplicativeOrder[k, n/m]

n
k kn

kn

m RotateLeft[list, m] 2 list

m
s[m_, k_] :=

km -Apply[Plus, Map[s[#, k] &, Drop[Divisors[m], -1]]]

s[m_, k_] := Apply[Plus,
(MoebiusMu[m/#] k# &)[Divisors[m]]]

n
s[n, k] k = 2

n
{2, 2, 6, 12, 30, 54, 126, 240, 504, 990} s[n, k]

n n s[n, k] kn - k n
s[n, k] kn - kn/2 kn - k

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

951

â Additive cellular automata. In the case of additive rules such
as rule 90 and rule 60, a mathematical analysis of the
repetition periods can be given (as done by Olivier Martin,
Andrew Odlyzko and me in 1983). One starts by converting
the list of cell colors at each step to a polynomial

. Then for the case of rule 60 with cells
and cyclic boundary conditions, the state obtained after
steps is given by

where is the polynomial representing the initial state, and
 for a single black cell in the first position. The state

evolves after one step to the state , and for odd this
latter state always eventually appears again. Using the result
that modulo 2 for any , one then finds
that the repetition period always divides the quantity

, which in turn is at most
. The actual periods are often smaller than , with

the following ratios occurring:

There appears to be no case for where the period
achieves the absolute maximum .

In the case of rule 90 a similar analysis can be given, with the
 used at each step replaced by . And now the

repetition period for odd divides

The exponent here always lies between and
, with the upper bound being attained only if is

prime. Unlike for the case of rule 60, the period is usually
equal to (and is assumed so for the picture on page 260),
with the first exception occurring at .

â Rules 30 and 45. Maximum periods are often achieved with
initial conditions consisting of a single black cell. Particularly
for rule 30, however, there are quite a few exceptions. For

, for example, the maximum period is 832 but the
period with a single black cell is 260. For rule 45, the
maximum possible period discussed above is achieved for

, but does not appear to be achieved for any larger .
(See page 962.)

â Comparison of rules. Rules 45, 30 and 60, together with their
conjugates and reflections, yield the longest repetition
periods of all elementary rules (see page 1087). The picture
below compares their periods as a function of .

â Implementing boundary conditions. In the bitwise
representation discussed on page 865, 0’s outside of a width
can be implemented by applying at each step.
Cyclic boundary conditions can be implemented efficiently in
assembler on computers that support cyclic shift instructions.

Randomness in Class 3 Systems

â Page 263 · Rule 22. Randomness is obtained with initial
conditions consisting of two black squares positions apart
for any . The base 2 digit sequences for 19, 25, 37, 39, 41,
45, 47, 51, 57, 61, … also give initial conditions that yield
randomness. Despite its overall randomness there are some
regularities in the pattern shown at the bottom of the page. The
overall density of black cells is not 1/2 but is instead
approximately 0.35, just as for random initial conditions. And
if one looks at the center cell in the pattern one finds that it is
never black on two successive steps, and the probability for
white to follow white is about twice the probability for black to
follow white. There is also a region of repetitive behavior on
each side of the pattern; the random part in the middle
expands at about 0.766 cells per step—the same speed that we
found on page 949 that changes spread in this rule.

â Rule 225. With initial conditions consisting of a single black
cell, this class 3 rule yields a regular nested pattern, as shown on
page 58. But with the initial condition , it yields the much
more complicated pattern shown below. With a background
consisting of repetitions of the block , insertion of a single
initial white cell yields a largely random pattern that expands by
one cell per step. Rule 225 can be expressed as .

â Rule 94. With appropriate initial conditions this class 2 rule
can yield both nested and random behavior, as shown below.

FromDigits[list, x] n
t

PolynomialMod[(1+ x)t z, {xn - 1, 2}]

z
z = 1 z = 1

z = 1+ x n

1+ x2m

2 (1+ x)2m

m

p[n] = 2^MultiplicativeOrder[2, n] - 1
2n-1 - 1 p[n]

n 11 13 19 25 27 29 37 41 43 53
ratio 3 5 27 41 19 565 21255 25 3 1266205

n > 5
2n-1 - 1

1+ x 1/x + x
n

q[n] = 2^MultiplicativeOrder[2, n, {1, -1}] - 1

Log[k, n]
(n - 1)/2 n

q[n]
n = 37

n = 13

n = 9 n

n

rule 30

rule 45

rule 60

5 10 15 20 25 30

1,000

1,000,000

1,000,000,000

n
BitAnd[a, 2n - 1]

4 m
m > 2

¨ p Ò (q ª r)

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

952

â Rule 218. If pairs of adjacent black cells appear anywhere in
its initial conditions this class 2 rule gives uniform black, but
if none do it gives a rule 90 nested pattern.

â Additive rules. Of the 256 elementary cellular automata 8
are additive: . All of these are
either trivial or essentially equivalent to rules 90 or 150.

Of all rules with colors and range it turns out that
there are always exactly additive ones—each obtained
by taking the cells in the neighborhood and adding them
modulo with weights between and . As discussed on
page 955, any rule based on addition modulo must yield a
nested pattern, and it therefore follows that any rule that is
additive must give a nested pattern, as in the examples
below. (See also page 870.)

Note that each step in the evolution of any additive cellular
automaton can be computed as

(See page 1087 for a discussion of partial additivity.)

â Page 264 · Generalized additivity. In general what it means
for a system to be additive is that some addition operation
can be used to combine any set of evolution histories to yield
another possible evolution history. If is the rule for the
system, this then requires for any states and the
distributive property

(In mathematical terms this is equivalent to the statement
that is conjugate to itself under the action of —or
alternatively that defines a homomorphism with respect to
the operation.) In the usual case, is just

, yielding say for rule 90 the results below.

But it turns out that some elementary rules show additivity
with respect to other addition operations. An example as
shown below is rule 250 with taken as ().

If a system is additive it means that one can work out how
the system will behave from any initial condition just by
combining the patterns (“Green’s functions”) obtained from
certain basic initial conditions—say ones containing a single
black cell. To get all the familiar properties of additivity one
needs an addition operation that is associative () and
commutative (), and has an identity element (white
or in the cases above)—so that it defines a commutative
monoid. (Usually it is also convenient to be able to get all
possible elements by combining a small number of basic
generator elements.)

The inequivalent commutative monoids with up to
colors are (in total there are 1, 2, 5, 19, 78, 421, 2637, such
objects):

For , the number of rules additive with respect to
these is respectively: ; for , : ; for ,

: ; for , :

It turns out to be possible to show that any rules additive
with respect to some addition operation must work by
applying that operation to values associated with cells in
their neighborhood. The values are obtained by applying to
cells at each position one of the unary operations
(endomorphisms) that satisfy for
individual cell values and . (For , there are 2 possible

, while for there are 3.)

The basic examples are then rules of the form
—analogs of rule 90, but with

other addition operations (compare page 886). The can be
used to give analogs of the weights that appear in the note
above. And rules that involve more than two cells can be
obtained by having several instances of —which can
always be flattened. But in all cases the general results for
associative rules on page 956 show that the patterns obtained
must be at most nested.

If instead of an ordinary cellular automaton with a limited
number of possible colors one considers a system in which
every cell can have any integer value then additivity with
respect to ordinary addition becomes just traditional linearity.
And the only way to achieve this is to have a rule in which the
new value of a cell is given by a linear form such as . If
the values of cells are allowed to be any real number then

{0, 60, 90, 102, 150, 170, 204, 240}

kk2 r+1

k r
k2 r+1

k 0 k - 1
k

Mod[ListCorrelate[w, list, Ceiling[Length[w] /2]], k]

«

f

u v

f[u«v] 2 f[u]«f[v]

f «

f

« u«v
Mod[u + v, k]

Φ[u] Φ[v] Φ[u� v] Φ[u]� Φ[v]

u«v Max[u, v] Or

Φ[u] Φ[v] Φ[u� v] Φ[u]� Φ[v]

Flat
Orderless

0

k = 4
…

6 14 4017 8229 13008 19569 19650

k = 2 r = 1
{8, 9} k = 2 r = 2 {32, 33} k = 3

r = 1 {28, 27, 35, 244, 28} k = 4 r = 1
{1001, 65, 540, 577, 126, 4225, 540, 9065,

757, 408, 65, 133, 862, 224, 72, 72, 91, 4096, 64}

f

«

s s[a«b] 2 s[a]«s[b]
a b Xor

s Or

RotateLeft[a]«RotateRight[a]
s

«

a x + b y

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

953

linear forms such as again yield additivity with
respect to ordinary addition. But in general one can apply to
each cell value any function that obeys the so-called Cauchy
functional equation . If is required
to be continuous, then the only form it can have is . But if
one allows to be discontinuous then there can be some other
exotic possibilities. It is inevitable that within any rationally
related set of values one must have with fixed .
But if one assumes the Axiom of Choice then in principle it
becomes possible to construct which have different for
different sets of values. (Note however that I do not believe
that such could ever actually be constructed in any explicit
way by any real computational system—or in fact by any
system in our universe.)

In general need not be ordinary addition, but can be any
operation that defines a commutative monoid—including an
infinite one. An example is ordinary numbers modulo an
irrational. And indeed a cellular automaton whose rule is
based on will show additivity with respect to
this operation (see page 922). If has an inverse, so that it
defines a group, then the only continuous (Lie group)
examples turn out to be combinations of ordinary addition
and modular addition (the group U(1)). This assumes,
however, that the underlying cellular automaton has
discrete cells. But one can also imagine setting up systems
whose states are continuous functions of position. then
defines a mapping from one such function to another. To be
analogous to cellular automata one can then require this
mapping to be local, in which case if it is continuous it must
be just a linear differential operator involving

—and at some level its behavior must be fairly
simple. (Compare page 161.)

â Probabilistic estimates. One way to get estimates for density
and other properties of class 3 cellular automata is to make
the assumption that the color of each cell at each step is
completely random. And with this assumption, if the overall
density of black cells at a particular step is , then each cell at
that step should independently have probability to be
black. This means that for example the probability to find a
black cell followed by two white cells is . And in
general, the probabilities for all 8 possible combinations of 3
cells are given by

In terms of these probabilities the density at the next step in
the evolution of cellular automaton with rule number is
then given by

For rule 22, for example, this means that if the density at a
particular step is , then the density on the next step should be

, and the densities on subsequent steps should be
obtained by iterating this function. (At least for the 256
elementary cellular automata this iterated map is never chaotic.)
The stable density after many steps is then given by

, so that or
approximately 0.42. The actual density for rule 22 is however
0.35095. The reason for the discrepancy is that the probabilities
for different cells are in fact correlated. One can systematically
include more such correlations by looking at more steps of
evolution at once. For two steps, one must consider probabilities
for all 32 combinations of 5 cells, and for rule 22 the function
becomes , yielding density 0.35012; for three
steps it is yielding
density 0.379. The plot below shows what happens with more
steps: the results seem to converge slowly to the exact result
indicated by the gray line.

(For rules 90 and 30 the functions obtained after one step are
respectively and , both of which
turn out to imply correct final densities of).

Probabilistic approximation schemes like this are often used
in statistical physics under the name of mean field theories.
In general, such approximations tend to work better for
systems in larger numbers of dimensions, where correlations
tend to be less important.

Probabilistic estimates can also be used for other quantities,
such as growth rates of difference patterns (see page 949). In
most cases, however, buildup of correlations tends to prevent
systematic improvement of such approximations.

â Density in rule 90. From the superposition principle above
and the number of black cells at step in a pattern starting
from a single black cell (see page 870) one can compute the
density after steps in the evolution of rule 90 with initial
conditions of density to be (see also page 602)

â Densities in other rules. The pictures below show how the
densities on successive steps depend on the initial density.
Densities are indicated by gray levels. Initial densities are
shown across each picture. Successive steps are shown
down the page. Rule 236 is class 2, and the density retains
a memory of its initial value. But in the class 3 rules 126
and 30, the densities converge quickly to a fixed value.

a x + b y

s

s[x + y] 2 s[x] + s[y] s[x]
c x

s

x s[x] = c x c

s[x] c
x

s

«

Mod[x + y, p]

«

f

Derivative[n]

p
p

p (1 - p)2

probs = Apply[Times, Table[IntegerDigits[8 - i, 2, 3],
{i, 8}] /. {1 ! p, 0 ! 1 - p}, {1}]

m

Simplify[probs�.�IntegerDigits[m, 2, 8]]

p
3 p (1 - p)2

Solve[3 p (1 - p)2 2 p, p] p ! 1 - 1/�!!!!3

p (1 - p)2 (2 + 3 p2)
p (1 - p)2 (p4 - 18 p3 + 41 p2 - 22 p + 6)

2 4 6 8 10 12 14

0.36

0.38

0.4

0.42
rule 22

2 4 6 8 10 12 14

0.45
0.5

0.55
0.6

0.65 rule 126

2 p (1 - p) p (2 p2 - 5 p + 3)
1/2

t

t
p

1/2 (1 - (1 - 2 p))^ (2^DigitCount[t, 2, 1])

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

954

Page 339 shows a cellular automaton with very different
behavior.

â Density oscillations in rule 73. Although there are always
some fluctuations, most rules yield densities that converge
more or less uniformly to their final values. One exception is
rule 73, which yields densities that continue to oscillate with
a period of 3 steps forever. The origin of this phenomenon is
that with completely random initial conditions rule 73
evolves to a collection of independent regions, as in the
picture below, and many of these regions contain patterns
that repeat with period 3. The boundaries between regions
come from blocks of even numbers of black cells in the initial
conditions, and if one does not allow any such blocks, the
density oscillations no longer occur. (See also page 699.)

Special Initial Conditions

â Page 267 · Repeating blocks. The discussion in the main text
is mostly about repetition strictly every steps, and no
sooner. (If a system repeats for example every 3 steps, then it
is inevitable that it will also repeat in the same way every 6, 9,
12, 15, etc. steps.) Finding configurations in a 1D cellular
automaton that repeat with a particular period is equivalent
to satisfying the kind of constraints we discussed on page
211. And as described there, if such constraints can be
satisfied at all, then it must be possible to satisfy them with a
configuration that consists of a repetition of identical blocks.
Indeed, for period , the length of blocks required is at most

 (or for range rules).

The pictures at the bottom of the previous column summarize
which periods can be obtained with various rules. Periods
from 1 to 15 are represented by different rows, with period 1 at
the bottom. Within each row a gray bar indicates that a
particular period can be obtained with blocks of some length.
The black dots indicate specific block sizes up to 25 that work.

In rule 90 (as well as other additive rules such as 60 and 150)
any period can occur, but all configurations that repeat must
consist of a sequence of identical blocks. For periods up to 10,
examples of such blocks in rule 90 are given by the digits of

For period 1 the possible blocks are and ; for period 2
 and . The total number of configurations in rule

90 that repeat with any period that divides is always .

Rules 30 and 45 (as well as other one-sided additive rules)
also have the property that all configurations that repeat
must consist of a sequence of identical blocks. The total
number of configurations in rule 30 that repeat with periods
that divide 1 through 10 are .
In general for one-sided additive rules the number of such
configurations increases for large like , where is the
spacetime entropy of page 960. (This is the analog of a
standard result in dynamical systems theory about expansive
homeomorphisms.)

For rules that do not show at least one-sided additivity there
can be an infinite number of configurations that repeat with a
given period. To find them one considers all possible blocks
of length and picks out those that after steps
evolve so that their center cell ends up the same color as it
was originally. The possible configurations that repeat with
period then correspond to the finite complement language
(see page 958) obtained by stringing together these blocks.
For , rule 18 leaves 20 of the 32 possible length 5 blocks
invariant, but these blocks can only be strung together to
yield repetitions of , where now and are not
fixed, but in every case can each be either or .

(See also page 700.)

â Localized structures. See pages 281 and 1118.

â 2D cellular automata. As expected from the discussion of
constraints on page 942, the problem of finding repeating
configurations is much more difficult in two dimensions than
in one dimension. Thus for example unlike in 1D there is no
guarantee in 2D that among repeating configurations of a
particular period there is necessarily one that consists just of
a repetitive array of fixed blocks. Indeed, as discussed on
page 1139, it is in a sense possible that the only repeating
configurations are arbitrarily complex. Note that if one

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

rule 236 rule 126 rule 30

p

p
22 p 22 p r r

rule 50 rule 90 rule 110

rule 18 rule 30 rule 45

{0, 40, 24, 2176, 107904, 640, 96, 8421376,
7566031296234863392, 15561286137}

p 4p

{3, 3, 15, 10, 8, 99, 18, 14, 30, 163}

p khtx p htx

2 p r + 1 p

p

p = 2

{a, b, 0, 0} a b
{1} {0, 1}

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

955

considers configurations in 2D that consist only of infinitely
long stripes, then the problem reduces again to the 1D case.
(See also page 349.)

â Systems based on numbers. An iterated map of the kind
discussed on page 150 with rule (with
rational) will yield repetitive behavior when its initial
condition is a rational number. The same is true for higher-
dimensional generalizations such as so-called Anosov maps

. The continued fraction map
 discussed on page 914 becomes repetitive

whenever its initial condition is a solution to a quadratic
equation.

For a map where is a polynomial such as
 the real initial conditions that yield period are

given by

For the results usually cannot be expressed in
terms of explicit radicals beyond period 2. (See page 961.)

â Sarkovskii’s theorem. For any iterated map based on a
continuous function such as a polynomial it was shown in
1962 that if an initial condition exists that gives period 3, then
other initial conditions must exist that give any other period.
In general, if a period is possible then so must all periods
for which satisfies

Extensions of this to other types of systems seem difficult to
find, but it is conceivable that when viewed as continuous
mappings on a Cantor set (see page 869) at least some cellular
automata might exhibit similar properties.

â Page 269 · Rule emulations. See pages 702 and 1118.

â Renormalization group. The notion of studying systems by
seeing the effect of changing the scale on which one looks at
them has been widely used in physics since about 1970, and
there is some analogy between this and what I do here with
cellular automata. In the lattice version in physics one
typically considers what happens to averages over all
possible configurations of a system if one does a so-called
blocking transformation that replaces blocks of elements by
individual elements. And what one finds is that in certain
cases—notably in connection with nesting at critical points
associated with phase transitions (see page 981)—certain
averages turn out to be the same as one would get if one did
no blocking but just changed parameters (“coupling
constants”) in the underlying rules that specify the weighting
of different configurations. How such effective parameters
change with scale is then governed by so-called
renormalization group differential equations. And when one

looks at large scales the versions of these equations that arise
in practice essentially always show fixed points, whose
properties do not depend much on details of the equations—
leading to certain universal results across many different
underlying systems (see page 983).

What I do in the main text can be thought of as carrying out
blocking transformations on cellular automata. But only
rarely do such transformations yield cellular automata
whose rules are of the same type one started from. And in
most cases such rules will not suffice even if one takes
averages. And indeed, so far as I can tell, only in those cases
where there is fairly simple nested behavior is any direct
analog of renormalization group methods useful. (See
page 989.)

â Page 271 · Self-similarity of additive rules. The fact that rule
90 can emulate itself can be seen fairly easily from a symbolic
description of the rule. Given three cells the rule
specifies that the new value of the center cell will be

. But given the value after
one step is and after
two steps is again . It turns out that this
argument generalizes (by interspersing 0’s and going for

 steps) to any additive rule based on reduction modulo
(see page 952) so long as is prime. And it follows that in this
case the pattern generated after a certain number of steps
from a single non-white cell will always be the same as one
gets by going times that number of steps and then keeping
only every th row and column. And this immediately
implies that the pattern must always have a nested form. If
is not prime the pattern is no longer strictly invariant with
respect to keeping only every th row and column—but is in
effect still a superposition of patterns with this property for
factor of . (Compare page 870.)

â Fractal dimensions. The total number of nonzero cells in the
first rows of the pattern generated by the evolution of an
additive cellular automaton with colors and weights (see
page 952) from a single initial can be found using

The fractal dimension of this pattern is then given by the
large limit of

When is prime it turns out that this can be computed as

x ! Mod[a x, 1]
a

{x, y} ! Mod[m�.�{x, y}, 1]
x ! Mod[1/x, 1]

x ! f [x] f [x]
a x (1 - x) p

Select[x /. Solve[Nest[f , x, p] 2 x, x], Im[#] 2 0 &]

x ! a x (1 - x)

m n
p = {m, n}

OrderedQ[(Transpose[If[MemberQ[p/#, 1], Map[Reverse,
{p/#, #}], {#, p /#}]] &)[2^ IntegerExponent[p, 2]]]

{a1, a2, a3}

Mod[a1 + a3, 2] {a1, 0, a2, 0, a3, 0}
{Mod[a1 + a2, 2], 0, Mod[a2 + a3, 2], 0}

{Mod[a1 + a3, 2], 0}
k - 1

k k
k

k
k

k

k

k

t
k w

1
g[w_, k_, t_] := Apply[Plus, Sign[NestList[Mod[

ListCorrelate[w, #, {-1, 1}, 0], k] &, {1}, t - 1]], {0, 1}]

m

Log[k, g[w, k, km+1] /g[w, k, km]]

k
d[w_, k_ : 2] := Log[k, Max[Abs[Eigenvalues[With[
{s = Length[w] - 1}, (Map[Function[u, Map[Count[u, #] &,
#1]], Map[Flatten[Map[Partition[Take[#, k + s - 1], s, 1] &,
NestList[Mod[ListConvolve[w, #], k] &, #, k - 1]], 1] &,
Map[Flatten[Map[{Table[0, {k - 1}], #} &, Append[#,
0]]] &, #]]] &)[Array[IntegerDigits[#, k, s] &, ks - 1]]]]]]]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

956

For rule 90 one gets . For rule
150 . (See page 58.) For the
other rules on page 952:

Other cases include (see page 870):

â General associative rules. With a cellular automaton rule in
which the new color of a cell is given by (compare
page 886) it turns out that the pattern generated by evolution
from a single non-white cell is always nested if the function
has the property of being associative or . In fact, for a
system involving colors the pattern produced will always
be essentially just one of the patterns obtained from an
additive rule with or less colors. In general, the pattern
produced by evolution for steps is given by

so that the first few steps yield

If is , however, then the last two lines here become

and in general the number of ’s that appear in a particular
element is given as in Pascal’s triangle by a binomial
coefficient. If is commutative () then all that can
ever matter to the value of an element is its number of ’s. Yet
since there are a finite set of possible values for each element
it immediately follows that the resulting pattern must be
essentially Pascal’s triangle modulo some integer. And even
if is not commutative, the same result will hold so long as

 and —since then any element can be
reduced to . The result can also be generalized to
cellular automata with basic rules involving more than two
elements—since if is , is always just

.

If one starts from more than a single non- element, then it is
still true that a nested pattern will be produced if is both

associative and commutative. And from the discussion on
page 952 this means that any rule that shows generalized
additivity must always yield a nested pattern. But if f is not
commutative, then even if it is associative, non-nested
patterns can be produced. And indeed page 887 shows an
example of this based on the non-commutative group S3. (In
general can correspond to an almost arbitrary semigroup,
but with a single initial element only a cyclic subgroup of it is
ever explored.)

â Nesting in rule 45. As illustrated on page 701, starting from
a single black cell on a background of repeated blocks,
rule 45 yields a slanted version of the nested rule 90 pattern.

â Uniqueness of patterns. Starting from a particular initial
condition, different rules can often yield the same pattern.
The picture below shows in sorted order the configurations
obtained at each successive step in the evolution of all 256
elementary cellular automata starting from a single black cell.
After a large number of steps, between 94 and 105 distinct
individual configurations are obtained, together with 143
distinct complete patterns. (Compare page 1186.)

â Square root of rule 30. Although rule 30 cannot apparently
be decomposed into other , cellular automata, it
can be viewed as the square of the , cellular
automata with rule numbers 11736, 11739 and 11742.

â Page 272 · Nested initial conditions. The pictures below
show patterns generated by rule 90 starting from the nested
sequences on page 83. (See page 1091.)

The Notion of Attractors

â Page 275 · Discrete systems. In traditional mathematics
mechanical and other systems are assumed continuous, so
that for example a pendulum may get exponentially close to

d[{1, 0, 1}] = Log[2, 3] ; 1.58
d[{1, 1, 1}] = Log[2, 1+

�!!!!5] ; 1.69

d[{1, 1, 0, 1, 0}] =
Log[2, Root[4+ 2 # - 2 #2 - 3 #3 +#4 &, 2]] ; 1.72

d[{1, 1, 0, 1, 1}] =
Log[2, Root[-4+ 4 # + #2 - 4 #3 +#4 &, 2]] ; 1.8

d[{1, 0, 1}, k] = 1+ Log[k, (k + 1)/2]

d[{1, 1, 1}, 3] = Log[3, 6] ; 1.63

d[{1, 1, 1}, 5] = Log[5, 19] ; 1.83

d[{1, 1, 1}, 7] = Log[7, Root[-27136 + 23280 # -
7288 #2 + 1008 #3 - 59 #4 +#5 &, 1]] ; 1.85

f [a1, a2]

f
Flat

k

k
t

NestList[
Inner[f , Prepend[#, 0], Append[#, 0], List] &, {a}, t]

{a}
{f [0, a], f [a, 0]}
{f [0, f [0, a]], f [f [0, a], f [a, 0]], f [f [a, 0], 0]}
{f [0, f [0, f [0, a]]], f [f [0, f [0, a]], f [f [0, a], f [a, 0]]],

f [f [f [0, a], f [a, 0]], f [f [a, 0], 0]], f [f [f [a, 0], 0], 0]}

f Flat
{f [0, 0, a], f [0, a, a, 0], f [a, 0, 0]}
{f [0, 0, 0, a], f [0, 0, a, 0, a, a, 0],

f [0, a, a, 0, a, 0, 0], f [a, 0, 0, 0]}

a

f Orderless
a

f
f [0, a] 2 a f [a, 0] 2 a

f [a, a, a, ?]

f Flat f [a1, a2, a3]

f [f [a1, a2], a3]

0
f

f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k = 2 r = 1
k = 3 r = 1/2

(a) (b) (c)

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

957

the attractor state where it has stopped, but it will never
strictly reach this attractor. In discrete systems like cellular
automata, however, there is no problem in explicitly reaching
at least simple attractors.

â Implementation. One can represent a network by a list such
as where each element
represents a node whose number corresponds to the position
of the element, and for each node there are rules that specify
to which nodes arcs with different values lead. Starting with
a list of nodes, the nodes reached by following arcs with
value for one step are given by

A list of values then corresponds to a path in the network
starting from any node if

Given a set of sequences of values represented by a particular
network, the set obtained after one step of cellular automaton
evolution is given by

where here elementary rule 126 is specified for example by
. Starting from the set

of all possible sequences, as given by

this then yields for rule 126 the network

It is always possible to find a minimal network that
represents a set of sequences. This can be done by first
creating a “deterministic” network in which at most one arc
of each value comes out of each node, then combining
equivalent nodes. The whole procedure can be performed
using

If has nodes, then in general can have as
many as nodes. The form of given here can take

up to about steps to generate a result with nodes; an
 procedure is known. The result from for rule

126 is .

In general will yield a network with the property that
any allowed sequence of values corresponds to a path which
starts from node 1. In the main text, however, the networks
allow paths that start at any node. To obtain such trimmed
networks one can apply the function

â Finite automata. The networks discussed in the main text
can be viewed as finite automata (also known as finite state
machines). Each node in the network corresponds to a state
in the automaton, and each arc represents a transition that
occurs when a particular value is given as input.
above in general produces a non-deterministic finite
automaton (NDFA) for which a particular sequence of values
does not determine a unique path through the network.

 creates an equivalent DFA, then minimizes this. The
Myhill-Nerode theorem ensures that a unique minimal DFA
can always be found (though to do so is in general a PSPACE-
complete problem).

The total number of distinct minimal finite automata with
 possible labels for each arc grows with the number of

nodes as follows: 3, 7, 78, 1388, … (The simple result
based on the number of ways to connect up nodes is a
significant overestimate because of equivalence between
automata with different patterns of connections.)

â Regular languages. The set of sequences obtained by
following possible paths through a finite network is often
called a regular language, and appears in studies of many
kinds of systems. (See page 939.)

â Regular expressions. The sequences in a regular language
correspond to those that can be matched by Mathematica
patterns that use no explicit pattern names. Thus for example

 corresponds to all possible sequences of ’s and
’s, while corresponds to the

sequences that can occur after 2 steps in rule 126 and
 to those that can

occur after 2 steps in rule 110 (see page 279).

â Generating functions. The sequences in a regular language
can be thought of as corresponding to products of non-
commuting variables that appear as coefficients in a formal
power series expansion of a generating function. A basic
result is that for regular languages this generating function

{{1 ! 2}, {0 ! 3, 1 ! 2}, {0 ! 3, 1 ! 1}}

a
NetStep[net_, i_, a_] :=

Union[ReplaceList[a, Flatten[net0i1]]]

Fold[NetStep[net, #1, #2] &,
Range[Length[net]], list] =!= {}

NetCAStep[{k_, r_, rtab_}, net_] := Flatten[
Map[Table[# /. (a_ ! s_) " rtab0i k + a + 11 ! k2 r (s - 1) +

1+Mod[i k + a, k2 r], {i, 0, k2 r - 1}] &, net], 1]

{2, 1, Reverse[IntegerDigits[126, 2, 8]]}

AllNet[k_ : 2] := {Thread[Range[k] - 1 ! 1]}

{{0 ! 1, 1 ! 2}, {1 ! 3, 1 ! 4}, {1 ! 1, 1 ! 2}, {1 ! 3, 0 ! 4}}

MinNet[net_, k_ : 2] := Module[{d = DSets[net, k], q, b},
If[First[d] =!= {}, AllNet[k], q = ISets[b = Map[Table[

Position[d, NetStep[net, #, a]]01, 11, {a, 0, k - 1}] &, d]];
DeleteCases[MapIndexed[#2021 - 1 ! #1 &, Rest[

Map[Position[q, #]01, 11 &, Transpose[Map[#0Map[
First, q]1 &, Transpose[b]]], {2}]] - 1, {2}], _ ! 0, {2}]]]

DSets[net_, k_ : 2] :=
FixedPoint[Union[Flatten[Map[Table[NetStep[net, #, a],

{a, 0, k - 1}] &, #], 1]] &, {Range[Length[net]]}]
ISets[list_] := FixedPoint[Function[g, Flatten[Map[

Map[Last, Split[Sort[Transpose[{Map[Position[g, #]01,
11 &, list, {2}], Range[Length[list]]}]0#1], First[#1] 2

First[#2] &], {2}] &, g], 1]], {{1}, Range[2, Length[list]]}]

net q MinNet[net]
2q - 1 MinNet

n2 n
n Log[n] MinNet

{{1 ! 3}, {0 ! 2, 1 ! 1}, {0 ! 2, 1 ! 3}}

MinNet

TrimNet[net_] :=
With[{m = Apply[Intersection, Map[FixedPoint[

Union[#, Flatten[Map[Last, net0#1, {2}]]] &,
#] &, Map[List, Range[Length[net]]]]]},

net0m1 /. Table[(a_ ! m0i1) ! a ! i, {i, Length[m]}]]

NetCAStep

MinNet

k = 2
(n+ 1)n k

n

{(0 Ï 1) ...} 0
1 {1, 1, (1) ..., 0, (0) ...} ...

{(0) ..., 1, {0, (0) ..., 1, 1} Ï {1, (1) ..., 0}} ...

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

958

is always rational. (Compare the discussion of entropies
below.)

â History. Simple finite automata have implicitly been used
in electromechanical machines for over a century. A formal
version of them appeared in 1943 in McCulloch-Pitts neural
network models. (An earlier analog had appeared in Markov
chains.) Intensive work on them in the 1950s (sometimes
under the name sequential machines) established many basic
properties, including interpretation as regular languages and
equivalence to regular expressions. Connections to formal
power series and to substitution systems (see page 891) were
studied in the 1960s. And with the development of the Unix
operating system in the 1970s regular expressions began to be
widely used in practical computing in lexical analysis (lex)
and text searching (ed and grep). Regular languages also
arose in dynamical systems theory in the early 1970s under
the name of sofic systems.

â Page 278 · Network properties. The number of nodes and
connections at step are: rule 108: , ; rule 128: ,

; rule 132: , ; rule 160: , ;
rule 184: , . For rule 126 the first few cases are

and for rule 110 they are

The maximum size of network that can possibly be generated
after steps of cellular automaton evolution is . For

 the maximum of 15 (with 29 connections) is achieved for
16 out of the 256 possible elementary rules, including 22, 37,
73, 94, 104, 122, 146 and 164. For , rule 22 gives the
largest network, with 280 nodes and 551 arcs. The ,
totalistic rule with code 20 gives a network with 65535 nodes
after just 1 step. Note that rules which yield maximal size
networks are in a sense close to allowing all possible
sequences. (The shortest excluded block for code 20 is of
length 36.)

â Excluded blocks. As the evolution of a cellular automaton
proceeds, the set of sequences that can appear typically
shrinks, with progressively more blocks being excluded. In
some cases the set of allowed sequences forms a so-called
finite complement language (or subshift of finite type) that
can be characterized completely just by saying that some
finite set of blocks are excluded. But whenever the overall
behavior is at all complex, there tend to be an infinite set of
blocks excluded, making it necessary to use a network of
the kind discussed in the main text. If there are nodes in
such a network, then if any blocks are excluded, the
shortest one of them must be of length less than . And if
there are going to be an infinite number of excluded blocks,
there must be additional excluded blocks with lengths

between and . In rule 126, the lengths of the shortest
newly excluded blocks on successive steps are 0, 3, 12, 13,
14, 14, 17, 15. It is common to see such lengths
progressively increase, although in principle they can
decrease by as much as from one step to the next. (As
an example, in rule 54 they decrease from 9 to 7 between
steps 4 and 5.)

â Entropies and dimensions. There are sequences possible
for cells that are each either black or white. But as we
have seen, in most cellular automata not all these
sequences can occur except in the initial conditions. The
number of sequences of length that can actually occur
is given by

where the adjacency matrix is given by

For rule 32, for example, turns out to be ,
so that for large it is approximately . For any
rule, for large will behave like , where is the largest
eigenvalue of . For rule 126 after 1 step, the characteristic
polynomial for is , giving . After 2
steps, the polynomial is

giving . Note that is always an algebraic number—
or strictly a so-called Perron number, obtained from a
polynomial with leading coefficient 1. (Note that any possible
Perron number can be obtained for example from some finite
complement language.)

It is often convenient to fit for large to the form ,
where is the so-called spatial (topological) entropy (see
page 1084), given by . The value of this for
successive never increases; for the first 3 steps in rule 126 it
is for example approximately 1, 0.811, 0.793. The exact value
of after more steps tends to be very difficult to find, and
indeed the question of whether its limiting value after
infinitely many steps satisfies a given bound—say even being
nonzero—is in general undecidable (see page 1138).

If one associates with each possible sequence of length a
number , then the set of sequences that
actually occur at a given step form a Cantor set (see note
below), whose Hausdorff dimension turns out to be exactly .

â Cycles and zeta functions. The number of sequences of
cells that can occur repeatedly, corresponding to cycles in the
network, is given in terms of the adjacency matrix by

. These numbers can also be obtained
as the coefficients of in the series expansion of

t > 1 8 13 2 t
2 t + 2 2 t + 1 3 t + 3 (t + 1)2 (t + 1) (t + 3)

2 t 3 t + 1
{{1, 2}, {3, 5}, {13, 23}, {106, 196}, {2866, 5474}}

{{1, 2}, {5, 9}, {20, 38}, {206, 403}, {1353, 2666}}

t 2k2 r t

- 1
t = 1

t = 2
k = 2 r = 2

n

n

n 2 n

2 r

2n

n

sn n

Apply[Plus, Flatten[MatrixPower[m, n]]]

m
MapAt[1+# &, Table[0, {Length[net]}, {Length[net]}],

Flatten[MapIndexed[{First[#2], Last[#1]} &, net, {2}], 1]]

sn Fibonacci[n+ 3]
n GoldenRation

sn n kn k

m
m x3 - 2 x2 + x - 1 k ; 1.755

x13 - 4 x12 + 6 x11 - 5 x10 + 3 x9 - 3 x8 +
5 x7 - 3 x6 - x5 + 4 x4 - 2 x3 + x2 - x + 1

k ; 1.732 k

sn n 2h n

h
Log[2, k]

t

h

n
Sum[ai 2-i , {i, n}]

h

n

m
Tr[MatrixPower[m, n]]

xn

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

959

, with the so-called zeta function, which is
always a rational function of , given by

and corresponds to the product over all cycles of .

â 2D generalizations. Above 1D no systematic method seems
to exist for finding exact formulas for entropies (as expected
from the discussion at the end of Chapter 5). Indeed, even
working out for large how many of the possible
configurations of a grid of black and white squares
contain no pair of adjacent black cells is difficult. Fitting the
result to one finds , but no exact formula for
has ever been found. With hexagonal cells, however, the
exact solution of the so-called hard hexagon lattice gas model
in 1980 showed that is the logarithm of the largest
root of a degree 12 polynomial. (The solution of the so-called
dimer problem in 1961 also showed that for complete
coverings of a square grid by 2-cell dominoes

.)

â Probability-based entropies. This section has concentrated
on characterizing what sequences can possibly occur in 1D
cellular automata, with no regard to their probability. It turns
out to be difficult to extend the discussion of networks to
include probabilities in a rigorous way. But it is
straightforward to define versions of entropy that take
account of probabilities—and indeed the closest analog to the
usual entropy in physics or information theory is obtained by
taking the probabilities for the blocks of length
(assuming colors), then constructing

I have tended to call this quantity measure entropy, though in
other contexts, it is often just called entropy or information,
and is sometimes called information dimension. The quantity

is the entropy discussed in the notes above, and is variously
called set entropy, topological entropy, capacity and fractal
dimension. An example of a generalization is the quantity
given for blocks of size by

where yields set entropy, the limit measure
entropy, and so-called correlation entropy. For any
the maximum occurs when all . It is
always the case that . The have been
introduced in almost identical form several times, notably by
Alfréd Rényi in the 1950s as information measures for
probability distributions, in the 1970s as part of the
thermodynamic formalism for dynamical systems, and in the
1980s as generalized dimensions for multifractals. (Related
objects have also arisen in connection with Hölder exponents
for discontinuous functions.)

â Entropy estimates. Entropies computed from blocks of
size always decrease with ; the quantity is always
convex (negative second difference) with respect to . At
least at a basic level, to compute topological entropy one
needs in effect to count every possible sequence that can be
generated. But one can potentially get an estimate of measure
entropy just by sampling possible sequences. One problem,
however, is that even though such sampling may give
estimates of probabilities that are unbiased (and have
Gaussian errors), a direct computation of measure entropy
from them will tend to give a value that is systematically too
small. (A potential way around this is to use the theory of
unbiased estimators for polynomials just above and below

.)

â Nested structure of attractors. Associating with each
sequence of length (and possible colors for each element)
a number , the set of sequences that occur
in the limit forms a Cantor set. For , the set of
sequences where the second color never occurs corresponds
to the standard middle-thirds Cantor set. In general,
whenever the possible sequences correspond to paths
through a finite network, it follows that the Cantor set
obtained has a nested structure. Indeed, constructing the
Cantor set in levels by considering progressively longer
sequences is effectively equivalent to following successive
steps in a substitution system of the kind discussed on page
83. (To see the equivalence first set up kinds of elements in
the substitution system corresponding to the nodes in the
network.) Note that if the possible sequences cannot be
described by a network, then the Cantor set obtained will
inevitably not have a strictly nested form.

â Surjectivity and injectivity. One can think of a cellular
automaton rule as a mapping (endomorphism) from the
space of possible states of the cellular automaton to itself.
(See page 869.) Usually this mapping is contractive, so that
not all the states which appear as input to the mapping can
also appear as output. But in some cases, the mapping is
surjective or onto, meaning that any state which appears as
input can also appear as output. Among ,
elementary cellular automata it turns out that this happens
precisely for those 30 rules that are additive with respect to
at least the first or last position on which they depend (see
pages 601 and 1087); this includes both rules 90 and 150 and
rules 30 and 45. With , there are a total of
4,294,967,296 possible rules. Out of these 141,884 are onto—
and 11,388 of these turn out not to be additive with respect
to any position. The easiest way to test whether a particular
rule is onto seems to be essentially just to construct the
minimal finite automaton discussed on page 957. The onto

x $x Log[z[m, x]]
x

z[m_, x_] := 1/Det[IdentityMatrix[Length[m]] -m x]

1/ (1 - xn)

n 2n2

n6n

2h n2

h ; 0.589 h

h ; 0.481

h = Catalan/ (p Log[2]) ; 0.421

p[i] kn n
k

-Limit[Sum[p[i] Log[k, p[i]], {i, kn}] /n, n !¥]

Limit[Sum[UnitStep[p[i]], {i, kn}] /n, n !¥]

n

h[q_, n_] := Log[k, Sum[p[i]q, {i, kn}]] / (n (q - 1))

q = 0 q ! 1
q = 2 q

h[q, n] 2 1 p[i] 2 k -n

h[q + 1, n] < h[q, n] h[q]

h[n]
n n n h[n]

n

p Log[p]

n k
Sum[a[i] k -i , {i, n}]

n !¥ k = 3

s
s

k = 2 r = 1

k = 2 r = 2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

960

, rules were found in 1961 in a computer study by
Gustav Hedlund and others; they later apparently provided
input in the design of S-boxes for DES cryptography (see
page 1085).

Even when a cellular automaton mapping is surjective, it is
still often many-to-one, in the sense that several input states
can yield the same output state. (Thus for example additive
rules such as 90 and 150, as well as one-sided additive rules
such as 30 and 45 are always 4-to-1.) But some surjective rules
also have the property of being injective, so that different
input states always yield different output states. And in such
a case the cellular automaton mapping is one-to-one or
bijective (an automorphism). This is equivalent to saying that
the rule is reversible, as discussed on page 1017.

(In 2D such properties are in general undecidable; see
page 1138.)

â Temporal sequences. So far we have considered possible
sequences of cells that can occur at a particular step in the
evolution of a cellular automaton. But one can also consider
sequences formed from the color of a particular cell on a
succession of steps. For class 1 and 2 cellular automata,
there are typically only a limited number of possible
sequences of any length allowed. And when the length is
large, the sequences are almost always either just uniform or
repetitive. For class 3 cellular automata, however, the
number of sequences of length typically grows rapidly
with . For additive rules such as 60 and 90, and for
partially additive rules such as 30 and 45, any possible
sequence can occur if an appropriate initial condition is
given. For rule 18, it appears that any sequence can occur
that never contains more than one adjacent black cell. I
know of no general characterization of temporal sequences
analogous to the finite automaton one used for spatial
sequences above. However, if one defines the entropy or
dimension for temporal sequences by analogy with the
definition for spatial sequences above, then it follows for
example that , where is the maximum rate at
which changes grow in the cellular automaton. The origin of
this inequality is indicated in the picture below. The basic
idea is that the size of the region that can affect a given cell
in the course of steps is . But for large sizes the total
number of possible configurations of this region is .
(Inequalities between entropies and Lyapunov exponents
are also common in dynamical systems based on numbers,
but are more difficult to derive.) Note that in effect, gives
the information content of spatial sequences in units of bits
per unit distance, while gives the corresponding quantity
for temporal sequences in units of bits per unit time. (One
can also define directional entropies based on sequences at

different slopes; the values of such entropies tend to change
discontinuously when the slope crosses .)

Different classes of cellular automata show characteristically
different entropy values. Class 1 has and . Class 2
has but . Class 3 has and . Class 4
tends to show fluctuations which prevent definite values of

 and from being found.

â Spacetime patches. One can imagine defining entropies and
dimensions associated with regions of any shape in the
spacetime history of a cellular automaton. As an example,
one can consider patches that extend cells across in space
and cells down in time. If the color of every cell in such a
patch could be chosen independently then there would be

 possible configurations of the complete patch. But in fact,
having just specified a block of length in the initial
conditions, the cellular automaton rule then uniquely
determines the color of every cell in the patch, allowing a
total of at most configurations. One can define
a topological spacetime entropy as

and a measure spacetime entropy by replacing with
. In general, and . For

additive rules like rule 90 and rule 150 every possible
configuration of the initial block leads to a different
configuration for the patch, so that . But for other
rules many different configurations of the initial block can
lead to the same configuration for the patch, yielding
potentially much smaller values of . Just as for most other
entropies, when a cellular automaton shows complicated
behavior it tends to be difficult to find much more than upper
bounds for . For rule 30, , and there is some
evidence that its true value may actually be 1. For rule 18 it
appears that , while for rule 22, and for rule
54 .

â History. The analysis of cellular automata given in this
section is largely as I worked it out in the early 1980s. Parts
of it, however, are related to earlier investigations,
particularly in dynamical systems theory. Starting in the
1930s the idea of symbolic dynamics began to emerge, in
which one partitions continuous values in a system into bins
represented by discrete symbols, and then looks at the
sequences of such symbols that can be produced by the
evolution of the system. In connection with early work on

k = 2 r = 2

n
n

ht

ht < 2 l hx l

t 2 l t x
khx x

hx

ht

l

2 r t
2 l t

t

hx = 0 ht = 0
hx 9 0 ht = 0 hx 9 0 ht 9 0

hx ht

x
t

k t x

x + 2 r t

s[t, x] = kx+2 r t

htx

Limit[Limit[Log[k, s[t, x]] / t, t !¥], x !¥]

htx
m s

p Log[p] ht < htx < 2 l hx h < 2 r ht

htx = 2 r = 2

htx

htx htx
m < 1.155

htx
m = 1 htx

m < 0.915
htx
m < 0.25

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

961

chaos theory, it was noted that there are some systems that
act like “full shifts”, in the sense that the set of sequences
they generate includes all possibilities—and corresponds to
what one would get by starting with any possible number,
then successively shifting digits to the left, and at each step
picking off the leading digit. It was noted that some systems
could also yield various kinds of subshifts that are subsets
of full shifts. But since—unlike in cellular automata—the
symbol sequences being studied were obtained by rather
arbitrary partitionings of continuous values, the question
arose of what effect using different partitionings would
have. One approach was to try to find invariants that would
remain unchanged in different partitionings—and this is
what led, for example, to the study of topological entropy in
the 1960s. Another approach was to look at actual possible
transformations between partitionings, and this led from the
late 1950s to various studies of so-called shift-commuting
block maps (or sliding-block codes)—which turn out to be
exactly 1D cellular automata (see page 878). The locality of
cellular automaton rules was thought of as making them the
analog for symbol sequences of continuous functions for
real numbers (compare page 869). Of particular interest
were invertible (reversible) cellular automaton rules, since
systems related by these were considered conjugate or
topologically equivalent.

In the 1950s and 1960s—quite independent of symbolic
dynamics—there was a certain amount of work done in
connection with ideas about self-reproduction (see page 876)
on the question of what configurations one could arrange to
produce in 1D and 2D cellular automata. And this led for
example to the study of so-called Garden of Eden states that
can appear only in initial conditions—as well as to some
general discussion of properties such as surjectivity.

When I started working on cellular automata in the early
1980s I wanted to see how far one could get by following
ideas of statistical mechanics and dynamical systems theory
and trying to find global characterizations of the possible
behavior of individual cellular automata. In the traditional
symbolic dynamics of continuous systems it had always
been assumed that meaningful quantities must be invariant
under continuous invertible transformations of symbol
sequences. It turns out that the spacetime (or “invariant”)
entropy defined in the previous note has this property. But
the spatial and temporal entropies that I introduced do
not—and indeed in studying specific cellular automata there
seems to be no particular reason why such a property would
be useful.

â Attractors in systems based on numbers. Particularly for
systems based on ordinary differential equations (see

page 922) a geometrical classification of possible attractors
exists. There are fixed points, limit cycles and so-called
strange attractors. (The first two of these were identified
around the end of the 1800s; the last with clarity only in the
1960s.) Fixed points correspond to zero-dimensional subsets
of the space of possible states, limit cycles to one-dimensional
subsets (circles, solenoids, etc.). Strange attractors often have
a nested structure with non-integer fractal dimension. But
even in cases where the behavior obtained with a particular
random initial condition is very complicated the structure of
the attractor is almost invariably quite simple.

â Iterated maps. For maps of the form discussed
on page 920 the attractor for small is a fixed point, then a
period 2 limit cycle, then period 4, 8, 16, etc. There is an
accumulation of limit cycles at where the system
has a special nested structure. (See pages 920 and 955.)

â Attractors in Turing machines. In theoretical studies Turing
machines are often set up so that if their initial conditions
follow a particular formal grammar (see page 938) then they
evolve to “accept” states—which can be thought of as being
somewhat like attractors.

â Systems of limited size. For any system with a limited total
number of states, it is possible to create a finite network that
gives a global representation of the behavior of the system.
The idea of this network (which is very different from the
finite automata networks discussed above) is to have each
node represent a complete state of the system. At each step in
the evolution of the system, every state evolves to some new
state, and this process is represented in the network by an arc
that joins each node to a new node. The picture below gives
the networks obtained for systems of the kind shown on page
255. Each node is labelled by a possible position for the dot.
In the first case shown, starting for example at position 4 the
dot then visits positions 5, 0, 1, 2 and so on, at each step going
from one node in the network to the next.

The pictures below give networks obtained from the system
shown on page 257 for various values of . For odd , the
networks consist purely of cycles. But for even , there are
also trees of states that lead to these cycles.

x ! a x (1 - x)
a

a ; 3.569946

5

43

2

1 0 0

1
2

3

4

5

0

1

2

3

4

5
5

4

3

2

1

0 5

4

3 2

1

0

0 1 2 3 4 5 0 1 2 3 4 5
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

n n
n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

962

In general, any network that represents the evolution of a
system with definite rules will have the same basic form.
There are cycles which contain states that are visited
repeatedly, and there can also be trees that represent transient
states that can each only ever occur at most once in the
evolution of the system.

The picture below shows the network obtained from a class
1 cellular automaton (rule 254) with 4 cells and thus 16
possible states. All but one of these 16 states evolve after at
most two steps to state 15, which corresponds to all cells
being black.

The pictures below show networks obtained when more cells
are included in the cellular automaton above. The same
convergence to a single fixed point is observed.

The pictures below give corresponding results for a class 2
cellular automaton (rule 132). The number of distinct cycles
now increases with the size of the system. (As discussed
below, identical pieces of the network are often related by
symmetries of the underlying cellular automaton system.)

In class 3, larger cycles are usually obtained, and often the
whole network is dominated by a single largest cycle. The
second set of pictures below summarize the results for some
larger cellular automata. Each distinct region corresponds to
a disjoint part of the network, with the area of the region
being proportional to the number of nodes involved. The
dark blobs represent cycles. (See page 1087.)

size 20 size 21 size 22 size 23 size 24

size 15 size 16 size 17 size 18 size 19

size 10 size 11 size 12 size 13 size 14

size 5 size 6 size 7 size 8 size 9

15 14
13

12
11

10

9

8

7

6 5

4

3

2

1

0

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

size 5 size 6 size 7 size 8

0
1

2

3

4 5

6

7

8

9

10

11

12

1314

15

size 5 size 6 size 7 size 8

size 4 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

rule 30

size 9 size 10 size 11 size 12 size 13 size 14 size 15 size 16

size 9 size 10 size 11

size 4 size 5 size 6 size 7 size 8

rule 45

size 9 size 10 size 11 size 12 size 13 size 14 size 15 size 16

size 9 size 10 size 11

size 4 size 5 size 6 size 7 size 8

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

963

For large sizes there is a rough correspondence with the
infinite size case, but many features are still different. (To
recover correct infinite size results one must increase size
while keeping the number of steps of evolution fixed; the
networks shown above, however, effectively depend on
arbitrarily many steps of evolution.)

â Symmetries. Many of the networks above contain large
numbers of identical pieces. Typically the reason is that the
states in each piece are shifted copies of each other, and in
such cases the number of pieces will be a divisor of . (See
page 950.) If the underlying cellular automaton rule exhibits
an invariance—say under reflection in space or permutation
of colors—this will also often lead to the presence of identical
pieces in the final network, corresponding to cosets of the
symmetry transformation.

â Shift rules. The pictures below show networks obtained
with rule 170, which just shifts every configuration one
position to the left at each step. With any such shift rule, all
states lie on cycles, and the lengths of these cycles are the
divisors of the size . Every cycle corresponds in effect to a
distinct necklace with beads; with colors the total number
of these is

The number of cycles of length exactly is ,
where is defined on page 950. For prime , each cycle
(except all 0’s) corresponds to a term in the product

. (See page 975.)

â Additive rules. The pictures below show networks
obtained for the additive cellular automata with rules 60
and 90. The networks are highly regular and can be

analyzed by the algebraic methods mentioned on page 951.
The lengths of the longest cycles are given on page 951; all
other cycles must have lengths which divide these. Rooted
at every state on each cycle is an identical structure. When
the number of cells is odd this structure consists of a
single arc, so that half of all states lie on cycles. When is
even, the structure is a balanced tree of depth

 and degree 2 for rule 60, and
depth and degree 4 for rule 90.
The total fraction of states on cycles is in both cases

. States with a single black cell
are always on the longest cycles. The state with no black
cells always forms a cycle of length 1.

â Random networks. The pictures below show networks in
which each of a set of nodes has as its successor a node that
is chosen at random from the set. The total number of
possible such networks is . For large , the average
number of distinct cycles in all such networks is

, and the average length of these cycles is
. The average fraction of nodes that have no

predecessor is or in the limit . Note that
processes such as cellular automaton evolution do not yield
networks whose properties are particularly close to those of
purely random ones.

rule 110

size 9 size 10 size 11 size 12 size 13 size 14 size 15 size 16

size 9 size 10 size 11

size 4 size 5 size 6 size 7 size 8

n

n
n k

Apply[Plus, (EulerPhi[n/#] k# &)[Divisors[n]]] /n

m s[m, k] /m
s[m, k] k

Factor [xkn-1 - 1, Modulus ! k]

size 4 size 5 size 6 size 7 size 8

n
n

2^ IntegerExponent[n, 2]
2^ IntegerExponent[n/2, 2]

2^ (-2^ IntegerExponent[n, 2])

rule 60

size 9 size 10 size 11

size 4 size 5 size 6 size 7 size 8

rule 90

size 9 size 10 size 11

size 4 size 5 size 6 size 7 size 8

n

nn n

Sqrt[p /2] Log[n]
Sqrt[p n/8]

(1 - 1/n)n 1/4 n !¥

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

964

Structures in Class 4 Systems

â Page 283 · Survival data. The number of steps for which the
pattern produced by each of the first 1000 initial conditions in
code 20 survive are indicated in the picture below. 72 of these
initial conditions lead to persistent structures. Among the
first million initial conditions, 60,171 lead to persistent
structures and among the first billion initial conditions the
number is 71,079,205.

â Page 290 · Background. At every step the background
pattern in rule 110 consists of repetitions of the block

, as shown in the picture
below. On step the color of a cell at position is given by

.

â Page 292 · Structures. The persistent structures shown can
be obtained from the following by inserting the
sequences between repetitions of the
background block :

The repetition periods and distances moved in each period
for the structures are respectively

Note that the periodicity of the background forces all rule 110
structures to have periods and distances given by

 where and are non-negative integers.
Extended versions of structures (d)–(i) can be obtained by collisions
with (a). Extended versions of (b) and (c) can be obtained from

where is a non-negative integer and is one of

Note that in most cases multiple copies of the same structure
can travel next to each other, as seen on page 290.

â Page 293 · Glider gun. The initial conditions shown
correspond to .

â Page 294 · Collisions. A fundamental result is that the sum
of the widths of all persistent structures involved in an
interaction must be conserved modulo 14.

â The Game of Life. The 2D cellular automaton described on
page 949 supports a whole range of persistent structures,
many of which have been given quaint names by its
enthusiasts. With typical random initial conditions the most
common structures to occur are:

The next most common moving structure is the so-called
“spaceship”:

The complete set of structures with less than 8 black cells that
remain unchanged at every step in the evolution are:

More complicated repetitive and moving structures are
shown in the pictures below. If one looks at the history of a
single row of cells, it typically looks much like the complete
histories we have seen in 1D class 4 cellular automata.

size 10 size 100 size 1000 size 10000 size 100000

0 200 400 600 800 1000
60
50
40
30
20
10

0

b = {1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0}

t x
b0Mod[x + 4 t, 14] + 11

{n, w}

IntegerDigits[n, 2, w]

b
{{152, 8}, {183, 8}, {18472955, 25}, {732, 10}, {129643, 18},
{0, 5}, {152, 13}, {39672, 21}, {619, 15}, {44, 7},
{334900605644, 39}, {8440, 15}, {248, 9}, {760, 11}, {38, 6}}

{{4, -2}, {12, -6}, {12, -6}, {42, -14},
{42, -14}, {15, -4}, {15, -4}, {15, -4}, {15, -4},
{30, -8}, {92, -18}, {36, -4}, {7, 0}, {10, 2}, {3, 2}}

{4, -2} r + {3, 2} s r s

Flatten[{IntegerDigits[1468, 2], Table[
IntegerDigits[102524348, 2], {n}], IntegerDigits[v, 2]}]

n v
{1784, 801016, 410097400, 13304, 6406392, 3280778648}

{n, w} = {1339191737336, 41}

"glider"

"block" "beehive" "blinker"

"pulsar" "26 oscillator" "slow ship" "blinker ship"

S T A R T I N G F R O M R A N D O M N E S S N O T E S F O R C H A P T E R 6

965

Structures with all repetition periods up to 18 have been
found in Life; examples are shown in the pictures below.

Persistent structures with various speeds in the horizontal
and vertical direction have also been found, as shown below.

The first example of unbounded growth in Life was the so-
called “glider gun”, discovered by William Gosper in 1970
and shown below. This object emits a glider every 30 steps.
The simplest known initial condition which leads to a glider
gun contains 21 black cells. The so-called “switch engine”
discovered in 1971 generates unbounded growth by leaving
a trail behind when it moves; it is now known that it can be
obtained from an initial condition with 10 black cells, or
black cells in just a or region. It is also known
that from less than 10 initial black cells no unbounded
growth is ever possible.

Many more elaborate structures similar to the glider gun
were found in the 1970s and 1980s; two are illustrated below.

A simpler kind of unbounded growth occurs if one starts
from an infinite line of black cells. In that case, the evolution
is effectively 1D, and turns out to follow elementary rule 22,
thus producing the infinitely growing nested pattern shown
on page 263.

For a long time it was not clear whether Life would support any
kind of uniform unbounded growth from a finite initial region
of black cells. However, in 1993 David Bell found starting from
206 black cells the “spacefiller” shown below. This object is
closely analogous to those shown for code 1329 on page 287.

As in other class 4 cellular automata, there are structures in
Life which take a very long time to settle down. The so-called
“puffer train” below which starts from 23 black cells becomes
repetitive with period 140 only after more than 1100 steps.

â Other 2D cellular automata. The general problem of finding
persistent structures is much more difficult in 2D than in 1D,
and there is no completely general procedure, for example,
for finding all structures of any size that have a certain
repetition period.

â Structures in Turing machines. See page 888.

12 13 14 15 16 17 18

3 4 5 6 7 8 9 10 11

1�2 � 2�5 � 1�3 � 2�7 � 1�4 � 1�6 � 1�5 �

5�5 39�1

"glider gun" (horizontal) (vertical) "switch engine" (horizontal) (vertical)

"pulsar puffer " "spaceship gun"

step 5 step 50 (history)

step 200 step 200 step 500

step 500

