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5
Two Dimensions and Beyond 

Introduction

The physical world in which we live involves three dimensions of

space. Yet so far in this book all the systems we have discussed have

effectively been limited to just one dimension. 

The purpose of this chapter, therefore, is to see how much of a

difference it makes to allow more than one dimension.

At least in simple cases, the basic idea—as illustrated in the

pictures below—is to consider systems whose elements do not just lie

along a one-dimensional line, but instead are arranged for example on a

two-dimensional grid.

one dimension

two dimensions three dimensions

Examples of simple arrangements of elements in one, two and three dimensions. In two
dimensions, what is shown is a square grid; triangular and hexagonal grids are also possible. In three
dimensions, what is shown is a cubic lattice; various other lattices, analogous to those for regular
crystals, are also possible—as are arrangements that are not repetitive. 
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Traditional science tends to suggest that allowing more than one

dimension will have very important consequences. Indeed, it turns out

that many of the phenomena that have been most studied in traditional

science simply do not occur in just one dimension. 

Phenomena that involve geometrical shapes, for example, usually

require at least two dimensions, while phenomena that rely on the

existence of knotted structures require three dimensions. But what about

the phenomenon of complexity? How much does it depend on dimension? 

It could be that in going beyond one dimension the character of

the behavior that we would see would immediately change. And indeed

in the course of this chapter, we will come across many examples of

specific effects that depend on having more than one dimension.

But what we will discover in the end is that at an overall level the

behavior we see is not fundamentally much different in two or more

dimensions than in one dimension. Indeed, despite what we might

expect from traditional science, adding more dimensions does not

ultimately seem to have much effect on the occurrence of behavior of

any significant complexity. 

Cellular Automata 

The cellular automata that we have discussed so far in this book are all

purely one-dimensional, so that at each step, they involve only a single

line of cells. But one can also consider two-dimensional cellular

automata that involve a whole grid of cells, with the color of each cell

being updated according to a rule that depends on its neighbors in all

four directions on the grid, as in the picture below.

The form of the rule for a typical two-dimensional cellular automaton.
In the cases discussed in this section, each cell is either black or
white. Usually I consider so-called totalistic rules in which the new
color of the center cell depends only on the average of the previous
colors of its four neighbors, as well as on its own previous color. 
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The pictures below show what happens with an especially simple

rule in which a particular cell is taken to become black if any of its four

neighbors were black on the previous step.

Starting from a single black cell, this rule just yields a uniformly

expanding diamond-shaped region of black cells. But by changing the

rule slightly, one can obtain more complicated patterns of growth. The

pictures below show what happens, for example, with a rule in which

each cell becomes black if just one or all four of its neighbors were black

on the previous step, but otherwise stays the same color as it was before.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

Successive steps in the evolution of a two-dimensional cellular automaton whose rule specifies that a particular cell should become
black if any of its neighbors were black on the previous step. (In the numbering scheme described on page 173 this rule is code 1022.) 

step 10 step 20 step 30

Steps in the evolution of a two-dimensional cellular automaton whose rule specifies that a particular cell should become black if exactly
one or all four of its neighbors were black on the previous step, but should otherwise stay the same color. Starting with a single black
cell, this rule yields an intricate, if very regular, pattern of growth. (In the numbering scheme on page 173, the rule is code 942.) 

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8
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The patterns produced in this case no longer have a simple

geometrical form, but instead often exhibit an intricate structure

somewhat reminiscent of a snowflake. Yet despite this intricacy, the

patterns still show great regularity. And indeed, if one takes the

patterns from successive steps and stacks them on top of each other to

form a three-dimensional object, as in the picture below, then this

object has a very regular nested structure.

But what about other rules? The facing page and the one that

follows show patterns produced by two-dimensional cellular automata

with a sequence of different rules. Within each pattern there is often

considerable complexity. But this complexity turns out to be very

similar to the complexity we have already seen in one-dimensional

A three-dimensional object
formed by stacking the two-dimensional
patterns from the bottom of the previous page. Such
pictures are the analogs for two-dimensional cellular automata of the
two-dimensional pictures that I often generate for one-dimensional cellular automata. 
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code 492 code 493 code 494 code 495 code 496 code 497 code 498

code 485 code 486 code 487 code 488 code 489 code 490 code 491

code 478 code 479 code 480 code 481 code 482 code 483 code 484

code 471 code 472 code 473 code 474 code 475 code 476 code 477

code 464 code 465 code 466 code 467 code 468 code 469 code 470

code 457 code 458 code 459 code 460 code 461 code 462 code 463

code 450 code 451 code 452 code 453 code 454 code 455 code 456

Patterns generated by a sequence of two-dimensional cellular automaton rules. The patterns are produced by starting from a
single black square and then running for 22 steps. In each case the base 2 digit sequence for the code number specifies the
rule as follows. The last digit specifies what color the center cell should be if all its neighbors were white on the previous step,
and it too was white. The second-to-last digit specifies what happens if all the neighbors are white, but the center cell itself is
black. And each earlier digit then specifies what should happen if progressively more neighbors are black. (Compare page 60.)
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code 483 code 489 code 491 code 493

code 473 code 475 code 478 code 481

code 465 code 467 code 468 code 470

code 457 code 459 code 461 code 462

code 451 code 452 code 453 code 454

Patterns generated by two-dimensional cellular automata from the previous page, but now after twice as many steps. 
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code 478 code 479 code 480 code 481

code 474 code 475 code 476 code 477

code 470 code 471 code 472 code 473

code 466 code 467 code 468 code 469

code 462 code 463 code 464 code 465

code 458 code 459 code 460 code 461

code 454 code 455 code 456 code 457

code 450 code 451 code 452 code 453

Evolution of one-dimensional slices through some of the two-dimensional cellular automata from the previous two pages. Each
picture shows the colors of cells that lie on the one-dimensional line that goes through the middle of each two-dimensional pattern.
The results are strikingly similar to ones we saw in previous chapters in purely one-dimensional cellular automata. 
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cellular automata. And indeed the previous page shows that if one

looks at the evolution of a one-dimensional slice through each

two-dimensional pattern the results one gets are strikingly similar to

what we have seen in ordinary one-dimensional cellular automata. 

But looking at such slices cannot reveal much about the overall

shapes of the two-dimensional patterns. And in fact it turns out that for

all the two-dimensional cellular automata shown on the last few pages,

these shapes are always very regular.

But it is nevertheless possible to find two-dimensional cellular

automata that yield less regular shapes. And as a first example, the

picture on the facing page shows a rule that produces a pattern whose

surface has seemingly random irregularities, at least on a small scale. 

In this particular case, however, it turns out that on a larger scale

the surface follows a rather smooth curve. And indeed, as the picture on

page 178 shows, it is even possible to find cellular automata that yield

overall shapes that closely approximate perfect circles.

But it is certainly not the case that all two-dimensional cellular

automata produce only simple overall shapes. The pictures on pages

179–181 show one rule, for example, that does not. The rule is actually

rather simple: it just states that a particular cell should become black

whenever exactly three of its eight neighbors—including diagonals—are

black, and otherwise it should stay the same color as it was before.

In order to get any kind of growth with this rule one must start

with at least three black cells. The picture at the top of page 179 shows

what happens with various numbers of black cells. In some cases the

patterns produced are fairly simple—and typically stop growing after

just a few steps. But in other cases, much more complicated patterns are

produced, which often apparently go on growing forever. 

The pictures on page 181 show the behavior produced by starting

from a row of eleven black cells, and then evolving for several hundred

steps. The shapes obtained seem continually to go on changing, with no

simple overall form ever being produced. 

And so it seems that there can be great complexity not only in

the detailed arrangement of black and white cells in a two-dimensional

cellular automaton pattern, but also in the overall shape of the pattern.
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step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

step 9 step 10 step 11 step 12 step 13 step 14 step 15 step 16

step 17 step 18 step 19 step 20 step 21 step 22 step 23 step 24

step 100

step 200

A two-dimensional cellular automaton that yields a pattern with a rough surface. The rule used here
includes diagonal neighbors, and so involves a total of 8 neighbors for each cell, as indicated in the icon
on the left. The rule specifies that the center cell should become black if either 3 or 5 of its 8 neighbors
were black on the step before, and should otherwise stay the same color as it was before. The initial
condition in the case shown consists of a row of 7 black cells. In an extension to 8 neighbors of the
scheme used in the pictures a few pages back, the rule has code number 175850. 
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A cellular automaton that yields a pattern whose shape closely approximates a circle. The rule used is of the same kind as on the
previous page, but now takes the center cell to become black only if it has exactly 3 black neighbors. If it has 1, 2 or 4 black neighbors
then it stays the same color as it was before, and if it has 5 or more black neighbors, then it becomes white on the next step (code
number 746). The initial condition consists of a row of 7 black cells, just as in the picture on the previous page. The pattern shown here
is the result of 400 steps in the evolution of the system. After  steps, the radius of the approximate circle is about . t 0.37 t
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So what about three-dimensional cellular automata? It is

straightforward to generalize the setup for two-dimensional rules to the

three-dimensional case. But particularly on a printed page it is fairly

difficult to display the evolution of a three-dimensional cellular

automaton in a way that can readily be assimilated.

Pages 182 and 183 do however show a few examples of

three-dimensional cellular automata. And just as in the two-dimensional

case, there are some specific new phenomena that can be seen. But overall

it seems that the basic kinds of behavior produced are just the same as in

one and two dimensions. And in particular, the basic phenomenon of

complexity does not seem to depend in any crucial way on the

dimensionality of the system one looks at.

23 initial black cells 25 initial black cells 27 initial black cells 29 initial black cells 31 initial black cells

13 initial black cells 15 initial black cells 17 initial black cells 19 initial black cells 21 initial black cells

3 initial black cells 5 initial black cells 7 initial black cells 9 initial black cells 11 initial black cells

Patterns produced by evolution according to a simple two-dimensional cellular automaton rule starting from rows of black
cells of various lengths. The rule used specifies that a particular cell should become black if exactly three out of its eight
neighbors (with diagonal neighbors included) are black (code number 174826). The patterns in the picture are obtained by 60
steps of evolution according to this rule. The smaller patterns above have all stopped growing after this number of steps, but
many of the other patterns apparently go on growing forever. 
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13 initial black cells

15 initial black cells

17 initial black cells
Three-dimensional objects formed by stacking successive
two-dimensional patterns produced in the evolution of the
cellular automaton from the previous page. The large picture
on the right shows 200 steps of evolution. 

11 initial black cells
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step 100

step 300

step 400

step 500

Stages in the evolution of the cellular automaton from the facing page, starting with an initial condition consisting of a row of 11 black cells. 

step 200
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step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10

step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10

Examples of three-dimensional cellular automata. In the top set of pictures, the rule specifies that a
cell should become black whenever any of the six neighbors with which it shares a face were black
on the step before. In the bottom pictures, the rule specifies that a cell should become black only
when exactly one of its six neighbors was black on the step before. In both cases, the initial condition
contains a single black cell. In the top pictures, the limiting shape obtained is a regular octahedron. In
the bottom pictures, it is a nested pattern analogous to the two-dimensional one on page 171. 
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step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10

step 1 step 2 step 3 step 4 step 5 step 6

step 7 step 8 step 9 step 10

Further examples of three-dimensional cellular automata, but now with rules that depend on all 26
neighbors that share either a face or a corner with a particular cell. In the top pictures, the rule
specifies that a cell should become black when exactly one of its 26 neighbors was black on the
step before. In the bottom pictures, the rule specifies that a cell should become black only when
exactly two of its 26 neighbors were black on the step before. In the top pictures, the initial
condition contains a single black cell; in the bottom pictures, it contains a line of three black cells. 
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Turing Machines 

Much as for cellular automata, it is straightforward to generalize

Turing machines to two dimensions. The basic idea—shown in the

picture below—is to allow the head of the Turing machine to move

around on a two-dimensional grid rather than just going backwards and

forwards on a one-dimensional tape.

When we looked at one-dimensional Turing machines earlier in

this book, we found that it was possible for them to exhibit complex

behavior, but that such behavior was rather rare. 

In going to two dimensions we might expect that complex behavior

would somehow immediately become more common. But in fact what

we find is that the situation is remarkably similar to one dimension.

For Turing machines with two or three possible states, only

repetitive and nested behavior normally seem to occur. With four

states, more complex behavior is possible, but it is still rather rare.

The facing page shows some examples of two-dimensional Turing

machines with four states. Simple behavior is overwhelmingly the most

common. But out of a million randomly chosen rules, there will typically

be a few that show complex behavior. Page 186 shows one example where

the behavior seems in many respects completely random. 

An example of a two-dimensional Turing machine
whose head has three possible states. The black dot
represents the position of the head at each step, and
the three possible orientations of the arrow on this dot correspond to the three possible states of the head. The rule specifies
in which of the four possible directions the head should move at each step. Note that the orientation of the arrow representing
the state of the head has no direct relationship to directions on the grid—or to which way the head will move at the next step.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9

step 10 step 20 step 30 step 40 step 50 step 60
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(a)

(b)

(c)

(d)

(e)

(a) (step 1000)

(b) (step 2500)

(d) (step 8000)

(c) (step 3000)

(e) (step 10000)

Examples of patterns produced by two-dimensional Turing machines
whose heads have four possible states. In each case, all cells are
initially white, and one of the rules given on the left is applied for the
specified number of steps. Note that in the later cases shown, the
head often visits the same position on the grid many times. 
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The path traced out by the head of the two-dimensional Turing machine with rule (e) from the previous page. There are
many seemingly random fluctuations in this path, though in general it tends to grow to the right.

100,000 steps

500,000 steps
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Substitution Systems and Fractals

One-dimensional substitution systems of the kind we discussed on page

82 can be thought of as working by progressively subdividing each

element they contain into several smaller elements.

One can construct two-dimensional substitution systems that

work in essentially the same way, as shown in the pictures below.

The next page gives some more examples of two-dimensional

substitution systems. The patterns that are produced are certainly quite

intricate. But there is nevertheless great regularity in their overall

forms. Indeed, just like patterns produced by one-dimensional

substitution systems on page 83, all the patterns shown here ultimately

have a simple nested structure.

Why does such nesting occur? The basic reason is that at every

step the rules for the substitution system simply replace each black

square with several smaller black squares. And on subsequent steps,

each of these new black squares is then in turn replaced in exactly the

step 5 step 6 step 7 step 8

step 1 step 2 step 3 step 4

A two-dimensional substitution system in which each square is replaced by four
smaller squares at every step according to the rule shown on the left. The pattern
generated has a nested form. 
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(g) (h) ( i)

(d) (e) (f )

(a) (b) (c)

(g) (h) ( i)

(d) (e) (f )

(a) (b) (c)Patterns from various two-dimensional
substitution systems. In each case what is
shown is the pattern obtained after five
steps of evolution according to the rules on
the right, starting with a single black square. 
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same way, so that it ultimately evolves to produce an identical copy of

the whole pattern. 

But in fact there is nothing about this basic process that depends

on the squares being arranged in any kind of rigid grid. And the picture

below shows what happens if one just uses a simple geometrical rule to

replace each black square by two smaller black squares. The result, once

again, is that one gets an intricate but highly regular nested pattern.

In a substitution system where black squares are arranged on a

grid, one can be sure that different squares will never overlap. But if

there is just a geometrical rule that is used to replace each black square,

then it is possible for the squares produced to overlap, as in the picture

on the next page. Yet at least in this example, the overall pattern that is

ultimately obtained still has a purely nested structure. 

The general idea of building up patterns by repeatedly applying

geometrical rules is at the heart of so-called fractal geometry. And the

step 8 step 9 step 10 step 11

step 1 step 2 step 3 step 4 step 5 step 6 step 7

The pattern obtained by starting with a single black square and then at every step replacing each
black cell with two smaller black cells according to the simple geometrical rule shown on the left.
Note that in applying the rule to a particular square, one must take account of the orientation of
that square. The final pattern obtained has an intricate nested structure. 
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pictures on the facing page show several more examples of fractal

patterns produced in this way. 

The details of the geometrical rules used are different in each

case. But what all the rules have in common is that they involve

replacing one black square by two or more smaller black squares. And

with this kind of setup, it is ultimately inevitable that all the patterns

produced must have a completely regular nested structure.

So what does it take to get patterns with more complicated

structure? The basic answer, much as we saw in one-dimensional

substitution systems on page 85, is some form of interaction between

different elements—so that the replacement for a particular element at

a given step can depend not only on the characteristics of that element

itself, but also on the characteristics of other neighboring elements.

But with geometrical replacement rules of the kind shown on the

facing page there is a problem with this. For elements can end up

anywhere in the plane, making it difficult to define an obvious notion

of neighbors. And the result of this has been that in traditional fractal

geometry the idea of interaction between elements is not considered—

so that all patterns that are produced have a purely nested form.

step 8 step 9 step 10 step 11

step 1 step 2 step 3 step 4 step 5 step 6 step 7

The pattern obtained by repeatedly applying the simple geometrical rule shown on the right.
Even though this basic rule does not involve overlapping squares, the pattern obtained even by
step 3 already has squares that overlap. But the overall pattern obtained after a large number of
steps still has a nested form. 
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Yet if one sets up elements on a grid it is straightforward to allow

the replacements for a given element to depend on its neighbors, as in

the picture at the top of the next page. And if one does this, one

immediately gets all sorts of fairly complicated patterns that are often

not just purely nested—as illustrated in the pictures on the next page.

In Chapter 3 we discussed both ordinary one-dimensional

substitution systems, in which every element is replaced at each step,

and sequential substitution systems, in which just a single block of

elements are replaced at each step. And what we did to find which

block of elements should be replaced at a given step was to scan the

whole sequence of elements from left to right. 

(a)

(b)

(c)

(d)

(b) (d)

(a) (c)

Examples of fractal patterns produced by
repeatedly applying the geometrical rules
shown for a total of 12 steps. The details of
each pattern are different, but in all cases
the patterns have a nested overall structure.
The presence of this nested structure is an
inevitable consequence of the fact that the
rule for replacing an element at a particular
position does not depend in any way on
other elements. 
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So how can this be generalized to higher dimensions? On a

two-dimensional grid one can certainly imagine snaking backwards and

forwards or spiralling outwards to scan all the elements. But as soon as

one defines any particular order for elements—however they may be laid

out—this in effect reduces one to dealing with a one-dimensional system.

And indeed there seems to be no immediate way to generalize

sequential substitution systems to two or more dimensions. In Chapter

9, however, we will see that with more sophisticated ideas it is in fact

possible in any number of dimensions to set up substitution systems in

which elements are scanned in order—but whatever order is used, the

results are in some sense always the same. 

step 1 step 2 step 3 step 4 step 5 step 6 step 7

(e) (f ) (g) (h)

(a) (b) (c) (d)

(e) (f ) (g) (h)

(a) (b) (c) (d)Patterns generated by 8 steps of evolution in various
two-dimensional neighbor-dependent substitution systems. 

A two-dimensional neighbor-dependent substitution system. The
grid of cells is assumed to wrap around in both its dimensions. 
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Network Systems

One feature of systems like cellular automata is that their elements are

always set up in a regular array that remains the same from one step to

the next. In substitution systems with geometrical replacement rules

there is slightly more freedom, but still the elements are ultimately

constrained to lie in a two-dimensional plane. 

Indeed, in all the systems that we have discussed so far there is in

effect always a fixed underlying geometrical structure which remains

unchanged throughout the evolution of the system. 

It turns out, however, that it is possible to construct systems in

which there is no such invariance in basic structure, and in this section

I discuss as an example one version of what I will call network systems.

A network system is fundamentally just a collection of nodes

with various connections between these nodes, and rules that specify

how these connections should change from one step to the next. 

At any particular step in its evolution, a network system can be

thought of a little like an electric circuit, with the nodes of the network

corresponding to the components in the circuit, and the connections to

the wires joining these components together. 

And as in an electric circuit, the properties of the system depend

only on the way in which the nodes are connected together, and not on

any specific layout for the nodes that may happen to be used.

Of course, to make a picture of a network system, one has to

choose particular positions for each of its nodes. But the crucial point is

that these positions have no fundamental significance: they are

introduced solely for the purpose of visual representation. 

In constructing network systems one could in general allow each

node to have any number of connections coming from it. But at least for

the purposes of this section nothing fundamental turns out to be lost if

one restricts oneself to the case in which every node has exactly two

outgoing connections—each of which can then either go to another

node, or can loop back to the original node itself. 

With this setup the very simplest possible network consists of

just one node, with both connections from the node looping back, as
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in the top picture below. With two nodes, there are already three

possible patterns of connections, as shown on the second line below.

And as the number of nodes increases, the number of possible

different networks grows very rapidly.

For most of these networks there is no way of laying out their

nodes so as to get a picture that looks like anything much more than a

random jumble of wires. But it is nevertheless possible to construct

many specific networks that have easily recognizable forms, as shown

in the pictures on the facing page.

Each of the networks illustrated at the top of the facing page

consists at the lowest level of a collection of identical nodes. But the

remarkable fact that we see is that just by changing the pattern of

1 node

2 nodes

3 nodes

Possible networks formed by having one, two or three nodes, with two connections coming out of
each node. The picture shows all inequivalent cases ignoring labels, but excludes networks in which
there are nodes which cannot be reached by connections from other nodes. 
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connections between these nodes it is possible to get structures that

effectively correspond to arrays with different numbers of dimensions.

Example (a) shows a network that is effectively one-dimensional.

The network consists of pairs of nodes that can be arranged in a

sequence in which each pair is connected to one other pair on the left

and another pair on the right. 

But there is nothing intrinsically one-dimensional about the

structure of network systems. And as example (b) demonstrates, it is

just a matter of rearranging connections to get a network that looks like

a two-dimensional rather than a one-dimensional array. Each individual

node in example (b) still has exactly two connections coming out of it,

but now the overall pattern of connections is such that every block of

nodes is connected to four rather than two neighboring blocks, so that

the network effectively forms a two-dimensional square grid.

(c) three dimensions

(a) one dimension

(b) two dimensions

Examples of networks that correspond to arrays in one, two and three dimensions. At an underlying level, each network
consists just of a collection of nodes with two connections coming from each node. But by setting up appropriate
patterns for these connections, one can get networks with very different effective geometrical structures. 
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Example (c) then shows that with appropriate connections, it is also

possible to get a three-dimensional array, and indeed using the same

principles an array with any number of dimensions can easily be obtained.

The pictures below show examples of networks that form infinite

trees rather than arrays. Notice that the first and last networks shown

actually have an identical pattern of connections, but they look different

here because the nodes are arranged in a different way on the page.

(a)

(b)

(c)

Examples of networks that correspond to infinite trees. Note that networks (a) and (c) are identical, though they look different
because the nodes are laid out differently on the page. All the networks shown are truncated at the leaves of each tree. 
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In general, there is great variety in the possible structures that

can be set up in network systems, and as one further example the

picture below shows a network that forms a nested pattern. 

In the pictures above we have seen various examples of

individual networks that might exist at a particular step in the

evolution of a network system. But now we must consider how such

networks are transformed from one step in evolution to the next. 

The basic idea is to have rules that specify how the connections

coming out of each node should be rerouted on the basis of the local

structure of the network around that node.

But to see the effect of any such rules, one must first find a

uniform way of displaying the networks that can be produced. The

pictures at the top of the next page show one possible approach based on

always arranging the nodes in each network in a line across the page.

And although this representation can obscure the geometrical structure

An example of a network that forms a nested
geometrical structure. As in all the other networks
shown, each node here is identical, and has just
two connections coming out of it. 
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of a particular network, as in the second and third cases above, it more

readily allows comparison between different networks.

In setting up rules for network systems, it is convenient to

distinguish the two connections that come out of each node. And in the

pictures above one connection is therefore always shown going above

the line of nodes, while the other is always shown going below. 

The pictures on the facing page show examples of evolution

obtained with four different choices of underlying rules. In the first

case, the rule specifies that the “above” connection from each node

should be rerouted so that it leads to the node obtained by following the

“below” connection and then the “above” connection from that node.

The “below” connection is left unchanged. 

The other rules shown are similar in structure, except that in

cases (c) and (d), the “above” connection from each node is rerouted so

that it simply loops back to the node itself.

In case (d), the result of this is that the network breaks up into

several disconnected pieces. And it turns out that none of the rules I

consider here can ever reconnect these pieces again. So as a

consequence, what I do in the remainder of this section is to track only

the piece that includes the first node shown in pictures such as those

(c)

(b)

(a)

Networks from previous pictures laid out in a uniform way. Network (a) corresponds to a
one-dimensional array, (b) to a two-dimensional array, and (c) to a tree. In the layout shown here, all
the networks have their nodes arranged along a line. Note that in cases (a) and (b) the connections are
arranged so that the arrays effectively wrap around; in case (c) the leaves of the tree are taken to have
connections that loop back to themselves.
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above. And in effect, this then means that other nodes are dropped from

the network, so that the total size of the network decreases. 

By changing the underlying rules, however, the number of nodes

in a network can also be made to increase. The basic way this can be

done is by breaking a connection coming from a particular node by

inserting a new node and then connecting that new node to nodes

obtained by following connections from the original node.

The pictures on the next page show examples of behavior

produced by two rules that use this mechanism. In both cases, a new

node is inserted in the “above” connection from each existing node in

(a) (b) (c) (d)

The evolution of network systems with four different choices of underlying rules. Successive steps in the evolution are shown
on successive lines down the page. In case (a), the “above” connection of each node is rerouted at each step to lead to the
node reached by following first the below connection and then the above connection from that node; the below connection is
left unchanged. In case (b), the above connection of each node is rerouted to the node reached by following the above
connection and then the above connection again; the below connection is left unchanged. In case (c), the above connection of
each node is rerouted so as to loop back to the node itself, while the below connection is left unchanged. And in case (d), the
above connection is rerouted so as to loop back, while the below connection is rerouted to lead to the node reached by
following the above connection. With the “above” connection labelled as 1 and the “below” connection as 2, these rules
correspond to replacing connections  at each node by (a) , (b) , (c) , and (d) .{{1}, {2}} {{2, 1}, {2}} {{1, 1}, {2}} {{}, {2}} {{}, {1}}
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the network. In the first case, the connections from the new node are

exactly the same as the connections from the existing node, while in

the second case, the “above” and “below” connections are reversed.

But in both cases the behavior obtained is quite simple. Yet much

like neighbor-independent substitution systems these network systems

have the property that exactly the same operation is always performed

at each node on every step. 

In general, however, one can set up network systems that have

rules in which different operations are performed at different nodes,

depending on the local structure of the network near each node.

One simple scheme for doing this is based on looking at the two

connections that come out of each node, and then performing one

operation if these two connections lead to the same node, and another if

the connections lead to different nodes. 

The pictures on the facing page show some examples of what can

happen with this scheme. And again it turns out that the behavior is

always quite simple—with the network having a structure that

inevitably grows in an essentially repetitive way. 

But as soon as one allows dependence on slightly longer-range

features of the network, much more complicated behavior immediately

(a) (b)

Evolution of network systems whose rules involve the addition of new nodes. In both cases, the new nodes are inserted in
the “above” connection from each node. In case (a), the connections from the new node lead to the same nodes as the
connections from the original node. In case (b), the above and below connections for the new node are reversed. In the
pictures above, new nodes are placed immediately after the nodes that give rise to them, and gray lines are used to indicate
the origin of each node. Note that the initial conditions consist of a network that contains only a single node.
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becomes possible. And indeed, the pictures on the next two pages show

examples of what can happen if the rules are allowed to depend on the

number of distinct nodes reached by following not just one but up to

two successive connections from each node.

With such rules, the sequence of networks obtained no longer

needs to form any kind of simple progression, and indeed one finds that

even the total number of nodes at each step can vary in a way that

seems in many respects completely random.

When we discuss issues of fundamental physics in Chapter 9 we

will encounter a variety of other types of network systems—and I

suspect that some of these systems will in the end turn out to be closely

related to the basic structure of space and spacetime in our universe. 

(a) (b) (c)

Examples of network systems with rules that cause different operations to be performed at different nodes. Each rule contains
two cases, as shown above. The first case specifies what to do if both connections from a particular node lead to the same node;
the second case specifies what to do when they lead to different nodes. In the rules shown, the connections from a particular
node (indicated by a solid circle) and from new nodes created from this node always go to the nodes indicated by open circles that
are reached by following just a single above or below connection from the original node. Even if this restriction is removed,
however, more complicated behavior does not appear to be seen.
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(a)

(a)
{{1, 1} ! {{1}, {{2, 1}, {2, 1}}}, {1, 2} ! {{{}, {1, 1}}, {{1, 1}, {}}}, {2, 1} ! {{{}, {}}, {{1}, {2, 1}}}, {2, 2} ! {{{1, 1}, {2, 1}}, {{2}, {2, 1}}},
{2, 3} ! {{{}, {}}, {2}}, {2, 4} ! {{{2, 2}, {}}, {}}}

(b)
{{1, 1} ! {{{}, {1, 1}}, {2}}, {1, 2} ! {{2}, {{}, {}}},

{2, 1} ! {{2, 1}, {{}, {1}}}, {2, 2} ! {{{2}, {1}}, {}}, {2, 3} ! {{1, 2}, {2}}, {2, 4} ! {{{1}, {1}}, {2, 1}}}

(c)
{{1, 1} ! {{{1, 1}, {1}}, {2}}, {1, 2} ! {{{1, 2}, {2}}, {{2, 2}, {}}}, {2, 1} ! {{{2, 2}, {2}}, {{1}, {}}}, {2, 2} ! {{{1}, {1}}, {{2, 1}, {1, 1}}},
{2, 3} ! {{2, 1}, {2}}, {2, 4} ! {{{1}, {1, 2}}, {{1, 2}, {}}}}

Network systems in which the rule depends on the number of distinct nodes reached by going up to distance two away from each
node. The plots show the total number of nodes obtained at each step. In cases (a) and (b), the behavior of the system is eventually
repetitive. In case (c), it is nested—the size of the network at step  is related to the number of 1’s in the base 2 digit sequence of . t t
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(e) fluctuations

(d)
{{1, 1} ! {{{1, 2}, {1, 2}}, {}}, {1, 2} ! {{2, 2}, {{1}, {1}}}, {2, 1} ! {{1}, {{}, {2}}}, {2, 2} ! {{1, 2}, {2, 1}}, {2, 3} ! {{{2, 1}, {2}}, {1}},
{2, 4} ! {{1}, {1, 1}}}

(e)
{{1, 1} ! {{}, {{1, 1}, {1, 2}}}, {1, 2} ! {{{}, {1}}, {{1, 1}, {1, 2}}}, {2, 1} ! {{2}, {}}, {2, 2} ! {{{2, 1}, {1}}, {{1, 1}, {2}}},
{2, 3} ! {{2, 2}, {2}}, {2, 4} ! {{2, 1}, {2}}}

Network systems in which the total number of nodes obtained on successive steps appears to vary in a largely random
way forever. About one in 10,000 randomly chosen network systems seem to exhibit the kind of behavior shown here. 
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Multiway Systems

The network systems that we discussed in the previous section do not

have any underlying grid of elements in space. But they still in a sense

have a simple one-dimensional arrangement of states in time. And in fact,

all the systems that we have considered so far in this book can be thought

of as having the same simple structure in time. For all of them are

ultimately set up just to evolve progressively from one state to the next.

Multiway systems, however, are defined so that they can have not

just a single state, but a whole collection of possible states at any given step. 

The picture below shows a very simple example of such a system. 

Each state in the system consists of a sequence of elements, and

in the particular case of the picture above, the rule specifies that at each

step each of these elements either remains the same or is replaced by a

pair of elements. Starting with a single state consisting of one element,

the picture then shows that applying these rules immediately gives two

possible states: one with a single element, and the other with two. 

Multiway systems can in general use any sets of rules that define

replacements for blocks of elements in sequences. We already saw

exactly these kinds of rules when we discussed sequential substitution

systems on page 88. But in sequential substitution systems the idea was

to do just one replacement at each step. In multiway systems, however,

A very simple multiway system in
which one element in each sequence
is replaced at each step by either one
or two elements. The main feature of
multiway systems is that all the
distinct sequences that result are kept. 
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the idea is to do all possible replacements at each step—and then to

keep all the possible different sequences that are generated. 

The pictures below show what happens with some very simple

rules. In each of these examples the behavior turns out to be rather

simple—with for example the number of possible sequences always

increasing uniformly from one step to the next.

In general, however, this number need not exhibit such uniform

growth, and the pictures below show examples where fluctuations occur. 

Examples of simple multiway systems. The number of distinct sequences at step  in these three systems is respectively
,  and  (which increases approximately like ). 

t

Ceiling[t /2] t Fibonacci[t + 1] 1.618t

(a) (b)
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0

5

10

0 20 40 60 80 100

(a) differences

-4

-2

0

2

4

0 100 200 300 400

(b) differencesExamples of multiway systems with slightly more complicated behavior. The plots on the
right show the total number of possible states obtained at each step, and the differences of
these numbers from one step to the next. In both cases, essentially repetitive behavior is
seen, every 40 and 161 steps respectively. Note that in case (a), the total number of possible
states at step  increases roughly like , while in case (b) it increases only like . t t 2 t
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But in both these cases it turns out to be not too long before these

fluctuations essentially repeat. The picture below shows an example

where a larger amount of apparent randomness is seen. Yet even in this

case one finds that there ends up again being essential repetition—

although now only every 1071 steps.

0
10
20
30
40
50
60

0 50 100 150 200 250

-2

0

2

0 100 200 300 400 500

(differences)

A multiway system with behavior that shows some signs of apparent randomness. The rule for this system involves three possible
replacements. Note that the first replacement only removes elements and does not insert new ones. In the pictures sequences
containing zero elements therefore sometimes appear. At least with the initial condition used here, despite considerable early apparent
randomness, the differences in number of elements do repeat (shifted by 1) every 1071 steps. 
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If one looks at many multiway systems, most either grow

exponentially quickly, or not at all; slow growth of the kind seen on the

facing page is rather rare. And indeed even when such growth leads to a

certain amount of apparent randomness it typically in the end seems to

exhibit some form of repetition. If one allows more rapid growth,

however, then there presumably start to be all sorts of multiway

systems that never show any such regularity. But in practice it tends to

be rather difficult to study these kinds of multiway systems—since the

number of states they generate quickly becomes too large to handle. 

One can get some idea about how such systems behave, however,

just by looking at the states that occur at early steps. The picture below

shows an example—with ultimately fairly simple nested behavior.

The pictures on the next page show some more examples.

Sometimes the set of states that get generated at a particular step show

essential repetition—though often with a long period. Sometimes this

set in effect includes a large fraction of the possible digit sequences of a

given length—and so essentially shows nesting. But in other cases there

is at least a hint of considerably more complexity—even though the

total number of states may still end up growing quite smoothly.

step 1 step 2 step 3 step 4
step 5

step 6

step 7

step 8

step 9

step 10

The collections of states generated on successive steps by a simple multiway system
with rapid growth shown on page 205. The particular rule used here eventually
generates all states beginning with a white cell. At step  there are 
states; a given state with  white cells and  black cells appears at step . 

t Fibonacci[t + 1]

m n 2 m+ n - 1
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Looking carefully at the pictures of multiway system evolution

on previous pages, a feature one notices is that the same sequences

often occur on several different steps. Yet it is a consequence of the

basic setup for multiway systems that whenever any particular

sequence occurs, it must always lead to exactly the same behavior. 

So this means that the complete evolution can be represented as

in the picture at the top of the facing page, with each sequence shown

explicitly only once, and any sequence generated more than once

indicated just by an arrow going back to its first occurrence.

(a) (step 75) (b) (step 25) (c) (step 60) (d) (step 500)

(e) (step 100) (f ) (step 250) (g) (step 75) (h) (step 400) ( i) (step 11) ( j) (20) (k) (13) ( l) (12) (m) (12)

( i) ( j ) (k) ( l) (m)

(e) ( f ) (g) (h)

(a) (b) (c) (d)Collections of states generated at particular
steps in the evolution of various multiway
systems. Rule (k) was shown on the
previous page; rules (d) and (f) on page 205.
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But there is no need to arrange the picture like this: for the whole

behavior of the multiway system can in a sense be captured just by

giving the network of what sequence leads to what other. The picture

below shows stages in building up such a network. And what we see is

that just as the network systems that we discussed in the previous

section can build up their own pattern of connections in space, so also

multiway systems can in effect build up their own pattern of

connections in time—and this pattern can often be quite complicated.

The evolution of a multiway
system, first with every
sequence explicitly shown
at each step, and then with
every sequence only ever
shown once. 

step 1 step 2 step 3 step 4

step 5 step 6 step 7 step 8

The network built up by the evolution of the multiway system from the top of the page. This network in effect represents a network
of connections in time between states of the multiway system. 
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Systems Based on Constraints 

In the course of this book we have looked at many different kinds of

systems. But in one respect all these systems have ultimately been set

up in the same basic way: they are all based on explicit rules that

specify how the system evolves from step to step. 

In traditional science, however, it is common to consider systems

that are set up in a rather different way: instead of having explicit rules

for evolution, the systems are just given constraints to satisfy.

As a simple example, consider a line of cells in which each cell is

colored black or white, and in which the arrangement of colors is subject

to the constraint that every cell should have exactly one black and one

white neighbor. Knowing only this constraint gives no explicit procedure

for working out the color of each cell. And in fact it may at first not be

clear that there will be any arrangement of colors that can satisfy the

constraint. But it turns out that there is—as shown below.

And having seen this picture, one might then imagine that there

must be many other patterns that would also satisfy the constraint.

After all, the constraint is local to neighboring cells, so one might

suppose that parts of the pattern sufficiently far apart should always be

independent. But in fact this is not true, and instead the system works a

bit like a puzzle in which there is only one way to fit in each piece. And

in the end it is only the perfectly repetitive pattern shown above that

can satisfy the required constraint at every cell.

Other constraints, however, can allow more freedom. Thus, for

example, with the constraint that every cell must have at least one

neighbor whose color is different from its own, any of the patterns in the

picture at the top of the facing page are allowed, as indeed is any pattern

that involves no more than two successive cells of the same color.

A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have exactly one black and one white neighbor. The pattern shown is the only
possible one that satisfies this constraint. The idea of implicitly determining the behavior of a system
by giving constraints that it must satisfy is common in traditional science and mathematics. 
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But while the first arrangement of colors shown above looks

somewhat random, the last two are simple and purely repetitive.

So what about other choices of constraints? We have seen in this

book many examples of systems where simple sets of rules give rise to

highly complex behavior. But what about systems based on constraints?

Are there simple sets of constraints that can force complex patterns?

It turns out that in one-dimensional systems there are not. For in

one dimension it is possible to prove that any local set of constraints

that can be satisfied at all can always be satisfied by some simple and

purely repetitive arrangement of colors. 

But what about two dimensions? The proof for one dimension

breaks down in two dimensions, and so it becomes at least conceivable

that a simple set of constraints could force a complex pattern to occur.

As a first example of a two-dimensional system, consider an array

of black and white cells in which the constraint is imposed that every

black cell should have exactly one black neighbor, and every white cell

should have exactly two white neighbors. 

A system consisting of a line of black and white cells whose form is defined by the constraint that
every cell should have at least one neighbor whose color is different from its own. There are many
possible arrangements of colors that satisfy this constraint. Some, like the first arrangement above,
look quite random. But others, like the second two arrangements above, are simple and repetitive. It
turns out that in a one-dimensional system no set of local constraints can force arrangements of
more complicated types. 

A system consisting of a grid of black and
white cells defined by the constraint that
every black cell should have exactly one
black neighbor among its four neighbors,
and every white cell should have exactly
two white neighbors. The infinite
repetitive pattern shown here, together
with its rotations and reflections, is the
only one that satisfies this constraint.
(The picture is assumed to wrap around
at each edge.) The pattern can be viewed
as a tessellation of 5 ä 5 blocks of cells. 
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As in one dimension, knowing the constraint does not

immediately provide a procedure for finding a pattern which satisfies it.

But a little experimentation reveals that the simple repetitive pattern

above satisfies the constraint, and in fact it is the only pattern to do so.

: 0 , 4
: 4 , 0

: 0 , 4
: 3 , 1

: 0 , 4
: 2 , 2

: 0 , 4
: 1 , 3

: 0 , 4
: 0 , 4

: 1 , 3
: 4 , 0

: 1 , 3
: 3 , 1

: 1 , 3
: 2 , 2

: 1 , 3
: 1 , 3

: 1 , 3
: 0 , 4

: 2 , 2
: 4 , 0

: 2 , 2
: 3 , 1

: 2 , 2
: 2 , 2

: 2 , 2
: 1 , 3

: 2 , 2
: 0 , 4

: 3 , 1
: 4 , 0

: 3 , 1
: 3 , 1

: 3 , 1
: 2 , 2

: 3 , 1
: 1 , 3

: 3 , 1
: 0 , 4

: 4 , 0
: 4 , 0

: 4 , 0
: 3 , 1

: 4 , 0
: 2 , 2

: 4 , 0
: 1 , 3

: 4 , 0
: 0 , 4

Patterns satisfying constraints which specify that every black cell and every white cell must have a certain fixed number of black
and white neighbors. The blank rectangles in the upper right indicate constraints that cannot be satisfied by any pattern
whatsoever. Most of the constraints are satisfied by a single pattern, together with its rotations and reflections. In some cases,
two distinct patterns are possible, and in a few cases, an infinite set of patterns are possible. In all cases where the constraints can
be satisfied at all, a simple repetitive pattern nevertheless suffices.
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What about other constraints? The pictures on the facing page

show schematically what happens with constraints that require each

cell to have various numbers of black and white neighbors. 

Several kinds of results are seen. In the two cases shown as blank

rectangles on the upper right, there are no patterns at all that satisfy the

constraints. But in every other case the constraints can be satisfied, though

typically by just one or sometimes two simple infinite repetitive patterns.

In the three cases shown in the center a whole range of mixtures of different

repetitive patterns are possible. But ultimately, in every case where some

pattern can work, a simple repetitive pattern is all that is needed. 

So what about more complicated constraints? The pictures below

show examples based on constraints that require the local arrangement

of colors around every cell to match a fixed set of possible templates.

There are a total of 4,294,967,296 possible sets of such templates.

And of these, 766,979,044 lead to constraints that cannot be satisfied by

any pattern. But among the 3,527,988,252 that remain, it turns out that

every single one can be satisfied by a simple repetitive pattern. In fact the

number of different repetitive patterns that are ever needed is quite small:

if a particular constraint can be satisfied by any pattern, then one of the

set of 171 repetitive patterns on the next two pages is always sufficient.

Systems specified by the constraint that the local arrangement of colors around every cell must match
the fixed set of possible templates shown. Note that these templates apply to every cell, with
templates of neighboring cells overlapping. Pattern (a) can be viewed as formed from a tessellation of
5 ä 10 blocks of cells; pattern (b) from a tessellation of 24 ä 24 blocks. With the numbering scheme for
constraints used on the next two pages the cases shown here correspond to 1384774 and 328778790. 
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1 65814 66578 69958 81922 135492 147456 201794 262672

332354 397888 1319746 1384774 1385794 1451330 4465152 17111122 17371734

17373270 17437268 18094438 18226274 18358598 18359362 18387014 18625090 18637378

18638930 22581798 34078996 34082880 35398994 38017056 38091074 38351652 39331108

40163602 40171778 43259180 43267650 43277346 43279658 43802950 43803666 43803970

55056436 55874154 56135974 56152110 56153142 56938506 60043594 60055562 60058658

60320822 62707734 64251906 65304582 102262930 102508882 106232194 106467876 106468652

107518484 107796498 108323082 112777238 122972562 123222150 125342342 125358086 127177326

129028110 129558550 134217744 152310376 177484134 177496358 190091370 190107690 194286694

194303014 257478694 261132398 261148718 272703878 272770436 272998726 273064262 273065282
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289768238 289834346 289974358 289974470 289974838 289974950 290009798 290033734 290034358

290035862 290038086 290038566 290098358 290099270 290099894 290101398 290104868 290732486

291279468 292080182 292080294 293636134 293906502 294819366 295213206 306742564 307004786

307011942 307134822 310649160 310783442 310976876 311141734 311176658 311338306 311697798

311698732 311730502 311731522 312225124 312240466 312263982 312271186 314911014 314912066

315172404 315174246 315212076 323786902 323791270 323799090 328494146 328762534 328766598

328767030 328778790 329050134 330066002 331924534 334010518 334288918 373916010 373916076

373917112 373918136 373918388 373987748 373991844 374114744 374122834 375100806 376228178

378638726 394823830 395358286 428057710 429441830 511809130 511816044 545259780 616635046

The complete collection of all 171 patterns needed to satisfy constraints of the type shown on the previous page. If none of these 171
patterns satisfy a particular constraint, then it follows that no pattern at all will satisfy the constraint. The patterns are labelled by
numbers which specify the minimal constraint which requires the given pattern. Patterns differing by overall reflection, rotation or
interchange of black and white are not shown. 
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So how can one force more complex patterns to occur?

The basic answer is that one must extend at least slightly the

kinds of constraints that one considers. And one way to do this is to

require not only that the colors around each cell match a set of

templates, but also that a particular template from this set must appear

at least somewhere in the array of cells.

The pictures below show a few examples of patterns determined

by constraints of this kind. A typical feature is that the patterns are

divided into several separate regions, often emanating from some kind

of center. But at least in all the examples below, the patterns that occur

in each individual region are still simple and repetitive.

So how can one find constraints that force more complex

patterns? To do so has been fairly difficult, and in fact has taken almost

as much computational effort as any other single result in this book.

The basic problem is that given a constraint it can be extremely

difficult to find out what pattern—if any—will satisfy the constraint.

In a system like a cellular automaton that is based on explicit

rules, it is always straightforward to take the rule and apply it to see

106389882 1125528937 339833662 375604536 1378162297

151828 86294 4670324 1428252506 1143305038

Examples of patterns produced by systems in which not only must the arrangement of colors in each neighborhood match one of a
fixed set of templates, but also a certain template from this set must occur at least once in the pattern. The constraints are numbered
as before, and in each picture the template that must occur is shown at the center. Constraint 1125528937 leads to a pattern that
repeats in 98 ä 98 blocks. The last pattern shown is also repetitive, repeating every 56 cells on the diagonal. 
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what pattern is produced. But in a system that is based on constraints,

there is no such direct procedure, and instead one must in effect always

go outside of the system to work out what patterns can occur.

The most straightforward approach might just be to enumerate

every single possible pattern and then see which, if any, of them satisfy

a particular constraint. But in systems containing more than just a few

cells, the total number of possible patterns is absolutely astronomical,

and so enumerating them becomes completely impractical. 

A more practical alternative is to build up patterns iteratively,

starting with a small region, and then adding new cells in essentially all

possible ways, at each stage backtracking if the constraint for the

system does not end up being satisfied.

The pictures on the next page show a few sequences of patterns

produced by this method. In some cases, there emerge quite quickly

simple repetitive patterns that satisfy the constraint. But in other

cases, a huge number of possibilities have to be examined in order to

find any suitable pattern.

And what if there is no pattern at all that can satisfy a particular

constraint? One might think that to demonstrate this would effectively

require examining every conceivable pattern on the infinite grid of

cells. But in fact, if one can show that there is no pattern that satisfies

the constraint in a limited region, then this proves that no pattern can

satisfy the constraint on the whole grid. And indeed for many

constraints, there are already quite small regions for which it is possible

to establish that no pattern can be found.

But occasionally, as in the third picture on the next page, one

runs into constraints that can be satisfied for regions containing

thousands of cells, but not for the whole grid. And to analyze such cases

inevitably requires examining huge numbers of possible patterns.

But with an appropriate collection of tricks, it is in the end

feasible to take almost any system of the type discussed here, and

determine what pattern, if any, satisfies its constraint.

So what kinds of patterns can be needed? In the vast majority of

cases, simple repetitive patterns, or mixtures of such patterns, are the

only ones that are needed.
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But if one systematically examines possible constraints in the

order shown on pages 214 and 215, then it turns out that after

examining more than 18 million of them, one finally discovers the

system shown on the facing page. And in this system, unlike all others

before it, no repetitive pattern is possible; the only pattern that satisfies

the constraint is the non-repetitive nested pattern shown in the picture.

After testing millions of constraints, and tens of billions of

candidate patterns, therefore, it is finally possible to establish that a

system based on simple constraints of the type discussed here can be

forced to exhibit behavior more complex than pure repetition.

(a)

(b)

(c)

Stages in finding patterns that satisfy constraints (a) 4670324, (b) 373384574, and (c) 387520105. Gray is
used to indicate cells whose colors have not yet been determined. The first stage shown in each case
corresponds to cells whose colors can be deduced immediately from the presence of a particular
template at the center. In case (a) choices for additional cells can be made straightforwardly, and an infinite
regular pattern can be built up without any backtracking. In case (b), many choices for additional cells have
to be tried, with much backtracking, and in the end the automatic procedure fails to find a repetitive
pattern. Nevertheless, as the last stage demonstrates, a repetitive pattern does in fact exist. In case (c),
the automatic procedure finds a fairly large and almost regular pattern that satisfies the constraints, but in
this case it turns out that no infinite pattern exists.
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The simplest system based on constraints that is forced to
exhibit a non-repetitive pattern. The constraint requires that the
arrangement of colors around each cell must match one of the

12 templates shown, and that at least somewhere in the pattern a template containing a pair of stacked black cells must occur. In the
numbering scheme used on preceding pages, the constraint is number 18762389. The pattern shown is unique, in that no variations of
it, except for trivial translations, will satisfy the constraints. The nested structure on the diagonal essentially corresponds to a
progression of base 2 digit sequences for positive and negative numbers. 
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What about still more complex behavior? 

There are altogether 137,438,953,472 constraints of the type

shown on page 216. And of the millions of these that I have tested, none

have forced anything more complicated than the kind of nested

behavior seen on the previous page. But if one extends again the type of

constraints one considers, it turns out to become possible to construct

examples that force more complex behavior. 

The idea is to set up templates that involve complete 3 ä 3 blocks

of cells, including diagonal neighbors. The picture below then shows an

example of such a system, in which by allowing only a specific set of 33

templates, a nested pattern is forced to occur.

What about more complex patterns? Searches have not succeeded

in finding anything. But explicit construction, based on correspondence

with one-dimensional cellular automata, leads to the example shown at

the top of the facing page: a system with 56 allowed templates in which

the only pattern satisfying the constraint is a complex and largely

random one, derived from the rule 30 cellular automaton.

An example of a system based on a constraint involving
3 ä 3 templates of cells. In this particular system, only
the 33 templates shown above (out of the 512 possible
ones) are allowed to occur. This constraint, together
with the requirement that the first template must appear
at least somewhere, then turns out to force a nested
pattern to occur. The system shown was specifically
constructed in correspondence with the rule 60
elementary one-dimensional cellular automaton.
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So finally this shows that it is indeed possible to force complex

behavior to occur in systems based on constraints. But from what we

have seen in this section such behavior appears to be quite rare: unlike

many of the simple rules that we have discussed in this book, it seems

that almost all simple constraints lead only to fairly simple patterns.

Any phenomenon based on rules can always ultimately also be

described in terms of constraints. But the results of this section indicate

that these descriptions can have to be fairly complicated for complex

behavior to occur. So the fact that traditional science and mathematics

tends to concentrate on equations that operate like constraints provides

yet another reason for their failure to identify the fundamental

phenomenon of complexity that I discuss in this book. 

A system based on a constraint, in which a complex and largely
random pattern is forced to occur. The constraint specifies that
only the 56 3 ä 3 templates shown at left can occur anywhere in
the pattern, with the first template appearing at least once. The
pattern required to satisfy this constraint corresponds to a
shifted version of the one generated by the evolution of the rule
30 elementary one-dimensional cellular automaton. 
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NOTES FOR CHAPTER 5

Two Dimensions and Beyond

Introduction

â Other lattices. See page 929.

â Page 170 · 1D phenomena. Among the phenomena that
cannot occur in one dimension are those associated with
shape, winding and knotting, as well as traditional phase
transitions with reversible evolution rules (see page 981).

Cellular Automata

â Implementation. An  array of white squares with a
single black square in the middle can be generated by 

For the 5-neighbor rules introduced on page 170 each step
can be implemented by 

where  is obtained from the  number by
. 

For the 9-neighbor rules introduced on page 177

where  is given by . 

In  dimensions with  colors, 5-neighbor rules generalize to
(2d+1)-neighbor rules, with 

with  given by .

9-neighbor rules generalize to -neighbor rules, with 

with  given by . 

In 3 dimensions, the positions of black cells can conveniently
be displayed using 

â General rules. One can specify the neighborhood for any
rule in any dimension by giving a list of the offsets for the
cells used to update a given cell. For 1D elementary rules
the list is , while for 2D 5-neighbor rules it is

. In this book such offset
lists are always taken to be in the order given by , so
that for range  rules in  dimensions the order is the same
as . One can
specify a neighborhood configuration by giving in the same
order as the offset list the color of each cell in the
neighborhood. With offset list  and  colors the possible
neighborhood configurations are

(These are shown on page 53 for elementary rules and page
941 for 5-neighbor rules.) If a cellular automaton rule takes
the new color of a cell with neighborhood configuration

 to be , then one can
define its rule number to be . A
single step in evolution of a general cellular automaton with
state  and rule number  is then given by

or equivalently by

â Numbers of possible rules. The table below gives the total
number of 2D rules of various types with two possible colors
for each cell. Given an initial pattern with a certain symmetry,
a rule will maintain that symmetry if the rule is such that
every neighborhood equivalent under the symmetry yields
the same color of cell. Rules are considered rotationally

n7n

PadLeft[{{1}}, {n, n}, 0, Floor[{n, n} /2]]

 CAStep[rule_, a_] := Map[rule010 - #1 &,
ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}]

rule code
IntegerDigits[code, 2, 10]

 CAStep[rule_, a_] := Map[rule018 - #1 &,
ListConvolve[{{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}, a, 2], {2}]

rule IntegerDigits[code, 2, 18]

d k

 CAStep[{rule_, d_}, a_] :=
Map[rule0-1 - #1 &, a + k AxesTotal[a, d], {d}]

AxesTotal[a_, d_] := Apply[Plus, Map[RotateLeft[a, #] +
RotateRight[a, #] &, IdentityMatrix[d]]]

rule IntegerDigits[code, k, k (2 d (k - 1) + 1)]

3d

 CAStep[{rule_, d_}, a_] :=
Map[rule0-1 - #1 &, a + k FullTotal[a, d], {d}]

FullTotal[a_, d_] :=
Array[RotateLeft[a, {##}] &, Table[3, {d}], -1, Plus] - a

rule IntegerDigits[code, k, k ( ( 3d - 1) ( k - 1) + 1)]

Graphics3D[Map[Cuboid[-Reverse[#]] &, Position[a, 1]]]

{{-1}, {0}, {1}}

{{-1, 0}, {0, -1}, {0, 0}, {0, 1}, {1, 0}}

Sort
r d

Flatten[Array[List, Table[2 r + 1, {d}], -r], d - 1]

os k

 Reverse[Table[IntegerDigits[ i - 1,
k, Length[os]], {i, k^Length[os]}]]

IntegerDigits[ i, k, Length[os]] u0i + 11
FromDigits[Reverse[u], k]

a num
 Map[IntegerDigits[num, k, k^Length[os]]0-1 - #1 &,

Apply[Plus, MapIndexed[k^ ( Length[os] - First[#2])
RotateLeft[a, #1] &, os]], {-1}]

 Map[IntegerDigits[num, k, k^Length[os]]0-# - 11 &,
ListCorrelate[Fold[ReplacePart[k #1, 1, #2 + r + 1] &,

Array[0 &, Table[2 r + 1, {d}]], os], a, r + 1], {d}]
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symmetric in the table below if they preserve any possible
rotational symmetry consistent with the underlying
arrangement of cells. Totalistic rules depend only on the total
number of black cells in a neighborhood; outer totalistic rules
(as in the previous note) also depend on the color of the
center cell. Growth totalistic rules make any cell that becomes
black remain black forever.

In such a rule, given a list of how many neighbors around a
given cell (out of  possible) make the cell turn black the
outer totalistic code for the rule can be obtained from

â Symmetric 5-neighbor rules. Among the 32 possible 5-cell
neighborhoods shown for example on page 941 there are 12
classes related by symmetries, given by

Completely symmetric 5-neighbor rules can be numbered
from 0 to 4095, with each digit specifying the new color of
the cell for each of these symmetry classes of
neighborhoods. Such rule numbers can be converted to
general form using

â Growth rules. The pictures below show examples of rules
in which a cell becomes black if it has exactly the specified
numbers of black neighbors (the initial conditions used
have the minimal number of black cells for growth). The
code numbers in these cases are given by

 where  is the number of
neighbors, here 5. (See also the 9-neighbor examples on
page 373.)

â Page 171 · Code 942 slices. The following is the result of
taking vertical slices through the pattern with a sequence of
offsets from the center:
 

 

  

â History. As indicated on pages 876–878, 2D cellular
automata were historically studied more extensively than 1D
ones—though rarely with simple initial conditions. The 5-cell
neighborhood on page 170 was considered by John von
Neumann in 1952; the 9-cell one on page 177 by Edward
Moore in 1962. (Both are also common in finite difference
approximations in numerical analysis.) (The 7-cell hexagonal
neighborhood of page 369 was considered for image
processing purposes by Marcel Golay in 1959.) Ever since the
invention of the Game of Life around 1970 a remarkable
number of hardware and software simulators have been built
to watch its evolution. But until after my work in the 1980s
simulators for more general 2D cellular automata were rare.
A sequence of hardware simulators were nevertheless built
starting in the mid-1970s by Tommaso Toffoli and later
Norman Margolus. And as mentioned on page 1077, going
back to the 1950s some image processing systems have been
based on particular families of 2D cellular automaton rules.

â Ulam systems. Having formulated the system around 1960,
Stanislaw Ulam and collaborators (see page 877) in 1967
simulated 120 steps of the process shown below, with black
cells after  steps occurring at positions

s

Apply[Plus, 2^Join[2 list, 2 Range[s + 1] - 1]]

5 - neighbor square 9 - neighbor square hexagonal

general 232 ; 47109 2512 ; 10154 2128 ; 371038

rotationally symmetric 212 = 4096 2140 ; 1042 228 ; 37108

completely symmetric 212 = 4096 2102 ; 571030 226 ; 77107

outer totalistic 210 = 1024 218 ; 37105 214 = 16384

totalistic 26 = 64 210 = 1024 28 = 256

growth totalistic 25 = 32 29 = 512 27 = 128

 s = {{1}, {2, 3, 9, 17}, {4, 10, 19, 25},
{5}, {6, 7, 13, 21}, {8, 14, 23, 29}, {11, 18},
{12, 20, 26, 27}, {15, 22}, {16, 24, 30, 31}, {28}, {32}}

 FromDigits[Map[Last, Sort[Flatten[Map[Thread,
Thread[{s, IntegerDigits[n, 2, 12]}]], 1]]], 2]

2/3 (4n - 1) +Apply[Plus, 4list] n

{1} {1, 2} {1, 3} {1, 4} {1, 3, 4}

offset 3 offset 4 offset 5

offset 0 offset 1 offset 2

t
 Map[First,

First[Nest[UStep[p[q[r[#1], #2]] &, {{1, 0}, {0, 1}, {-1, 0},
{0, -1}}, #] &, ( {#, #} &)[{{{0, 0}, {0, 0}}}], t]]]

UStep[f_, os_, {a_, b_}] := ( {Join[a, #], #} &)[f [Flatten[
Outer[{#1+#2, #1} &, Map[First, b], os, 1], 1], a]]

r[c_] := Map[First, Select[Split[Sort[c],
First[#1] 2 First[#2] &], Length[#] 2 1 &]]

q[c_, a_] := Select[c,
Apply[And, Map[Function[u, qq[#1, u, a]], a]] &]

p[c_] := Select[c,
Apply[And, Map[Function[u, pp[#1, u]], c]] &]

pp[{x_, u_}, {y_, v_}] := Max[Abs[x - y]] > 1 || u 2 v

qq[{x_, u_}, {y_, v_}, a_] := x 2 y || Max[Abs[x - y]] > 1 ||
u 2 y || First[Cases[a, {u, z_} ! z]] 2 y

step 6 step 7 step 8 step 9 step 10

step 1 step 2 step 3 step 4 step 5

step 50
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These rules are fairly complicated, and involve more history
than ordinary cellular automata. But from the discoveries in
this book we now know that much simpler rules can also
yield very complicated behavior. And as the pictures below
show, this is true even just for parts of the rules above (
alone yields outer totalistic code 686 in 2D, and rule 90 in 1D). 

Ulam also in 1967 considered the pure 2D cellular automaton
with outer totalistic code 12 (though he stated its rule in a
complicated way). As shown in the pictures below, when
started from blocks of certain sizes this rule yields complex
patterns—although nothing like this was noted in 1967.

â Limiting shapes. When growth occurs at the maximum rate
the outer boundaries of a cellular automaton pattern reflect
the neighborhood involved in its underlying rule (in rough
analogy to the Wulff construction for shapes of crystals).
When growth occurs at a slower rate, a wide range of
polygonal and other shapes can be obtained, as illustrated in
the main text.

â Additive rules. See page 1092.

â Page 174 · Cellular automaton art. 2D cellular automata can
be used to make a wide range of designs for rugs, wallpaper,
and similar objects. Repeating squares of pattern can be
produced by using periodic boundary conditions. Rules with
more than two colors will sometimes be appropriate. For
rugs, it is typically desirable to have each cell correspond to
more than one tuft, since otherwise with most rules the rug
looks too busy. (Compare page 872.)

â Page 177 · Code 175850. See also page 980.

â Page 178 · Code 746. The pattern generated is not perfectly
circular, as discussed on page 979. Its interior is mostly fixed,
but there are scattered small regions that cycle with a variety
of periods. 

â Page 181 · Code 174826. The pictures below show the upper-
right quadrant for more steps. Most of the lines visible are 8

cells across, and grow by 4 cells every 12 steps. They typically
survive being hit by more complicated growth from the side.
But occasionally runners 3 cells wide will start on the side of
a line. And since these go 2 cells every 3 steps they always
catch up with lines, producing complicated growth, often
terminating the lines. 

â Page 183 · Projections from 3D. Looking from above, with
closer cells shown darker, the following show patterns
generated after 30 steps, by (a) the rule at the top of page 183,
(b) the rule at the bottom of page 183, (c) the rule where a cell
becomes black if exactly 3 out of 26 neighbors were black and
(d) the same as (c), but with a  rather than a 
initial block of black cells:

â Other geometries. Systems like cellular automata can
readily be set up on any geometrical structure in which a
limited number of types of cells can be identified, with every
cell of a given type having a similar neighborhood.

In the simplest case, the cells are all identical, and are laid out
in the same orientation in a repetitive array. The centers of the
cells form a lattice, with coordinates that are integer
multiples of some set of basis vectors. The possible complete
symmetries of such lattices are much studied in
crystallography. But for the purpose of nearest-neighbor
cellular automaton rules, what matters is not detailed
geometry, but merely what cells are adjacent to a given cell.
This can be determined by looking at the Voronoi region (see
page 987) for each point in the lattice. In any given
dimension, this region (variously known as a Dirichlet
domain or Wigner-Seitz cell, and dual to the primitive cell,
first Brillouin zone or Wulff shape) has a limited number of
possible overall shapes. The most symmetrical versions of
these shapes in 2D are the square (4 neighbors) and hexagon
(6) and in 3D (as found by Evgraf Fedorov in 1885) the cube
(6), hexagonal prism (8), rhombic dodecahedron (12) (e.g.

s

r[] q[] p[] p[q[]] p[q[r[]]]

6 66 7 67 8 68 9 69 10 610

161 262 3 63 464 5 65

step 1000 step 2000 step 3000

3�3�1 3�1�1

(a) (b) (c) (d)
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face-centered cubic crystals), rhombo-hexagonal or elongated
dodecahedron (12) and truncated octahedron or
tetradecahedron (14) (e.g. body-centered cubic crystals), as
shown below. (In 4D, 8, 16 and 24 nearest neighbors are
possible; in higher dimensions possibilities have been
investigated in connection with sphere packing.) (Compare
pages 1029 and 986.)

In general, there is no need for individual cells in a cellular
automaton to have the same orientation. A triangular lattice
is one example where they do not. And indeed, any tiling of
congruent figures can readily be used to make a cellular
automaton, as illustrated by the pentagonal example below.
(Outer totalistic codes specify rules; the first rule makes a
particular cell black when any of its five neighbors are black
and has code 4094. Note that even though individual cells are
pentagonal, large-scale cellular automaton patterns usually
have 2-, 4- or 8-fold symmetry.) 

There is even no need for the tiling to be repetitive; the
picture below shows a cellular automaton on a nested
Penrose tiling (see page 932). This tiling has two different
shapes of tile, but here both are treated the same by the
cellular automaton rule, which is given by an outer totalistic
code number. The first example is code 254, which makes a
particular cell become black when any of its three neighbors
are black. (Large-scale cellular automaton patterns here can
have 5-fold symmetry.) (See also page 1027.)

â Networks. Cellular automata can be set up so that each
cell corresponds to a node in a network. (See page 936.)
The only requirement is that around each node the network
must have the same structure (or at least a limited number
of possible structures). For nearest-neighbor rules, it
suffices that each node has the same number of
connections. For longer-range rules, the network must
satisfy constraints of the kind discussed on page 483.
(Cayley graphs of groups always have the necessary
homogeneity.) If the connections at each node are not
labelled, then only totalistic cellular automaton rules can be
implemented. Many topological and geometrical properties
of the underlying network can affect the overall behavior of
a cellular automaton on it. 

Turing Machines

â Implementation. With rules represented as a list of elements
of the form  (  is the state of the
head and  the color of the cell under the head) each step in
the evolution of a 2D Turing machine is given by

â History. At a formal level 2D Turing machines have been
studied since at least the 1950s. And on several occasions
systems equivalent to specific simple 2D Turing machines
have also been constructed. In fact, much as for cellular
automata, more explicit experiments have been done on 2D
Turing machines than 1D ones. A tradition of early robotics
going back to the 1940s—and leading for example to the
Logo computer language—involved studying idealizations
of mobile turtles. And in 1971 Michael Paterson and John
Conway constructed what they described as an idealization
of a prehistoric worm, which was essentially a 2D Turing
machine in which the state of the head records the direction
of the motion taken at each step. Michael Beeler in 1973 used
a computer at MIT to investigate all 1296 possible worms
with rules of the simplest type on a hexagonal grid, and he
found several with fairly complex behavior. But this
discovery does not appear to have been followed up, and
systems equivalent to simple 2D Turing machines were
reinvented again, largely independently, several times in the
mid-1980s: by Christopher Langton in 1985 under the name
“vants”; by Rudy Rucker in 1987 under the name “turmites”;
and by Allen Brady in 1987 under the name “turning
machines”. The specific 4-state rule

step 1 step 2 step 3 step 4 step 5 step 6step 1 step 2 step 3 step 4 step 5 step 6

code 38 code 564 code 700 code 966 code 2990 code 4094

step 1 step 2 step 3 step 4 step 5 step 6

code 22 code 54 code 174 code 214 code 220 code 254

{s, a} ! {sp, ap, {dx, dy}} s
a

 TM2DStep[rule_, {s_, tape_, r : {x_, y_}}] :=
Apply[{#1, ReplacePart[tape, #2, {r}], r +#3} &,
{s, tape0x, y1} /. rule]

 {s_, c_} " With[{sp = s (2 c - 1) 5},
{sp, 1 - c, {Re[sp], Im[sp]}}]
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has been called Langton’s ant, and various studies of it were
done in the 1990s. 

â Visualization. The pictures below show the 2D position of
the head at 500 successive steps for the rules on page 185. 

Some 2D Turing machines exhibit elements of randomness at
some steps, but then fill in every so often to form simple
repetitive patterns. An example is the 3-state rule 

â Rules based on turning. The rules used in the main text
specify the displacement of the head at each step in terms of
fixed directions in the underlying grid. An alternative is to
specify the turns to make at each step in the motion of the
head. This is how turtles in the Logo computer language are
set up. (Compare the discussion of paths in substitution
systems on page 892.) 

â 2D mobile automata. Mobile automata can be generalized
just like Turing machines. Even in the simplest case, however,
with only four neighbors involved there are already 
possible rules, or nearly 1029 even for . 

Substitution Systems and Fractals

â Implementation. With the rule on page 187 given for
example by  the result of
 steps in the evolution of a 2D substitution system from a

initial condition such as  is given by 

â Connection with digit sequences. Just as in the 1D case
discussed on page 891, the color of a cell at position  in a
2D substitution system can be determined using a finite
automaton from the digit sequences of the numbers  and .
At step , the complete array of cells is 

where for the pattern on page 187,  and .
For patterns (a) through (f) on page 188,  and  is
given respectively by (a) , (b) , (c)

, (d) , (e) , (f)
. Note that the excluded pairs of digits are in

exact correspondence with the positions of which squares are
 in the underlying rules for the substitution systems. (See

pages 608 and 1091.)

â Page 187 · Sierpihski pattern. Other ways to generate
step  of the pattern shown here in various orientations
include:

ä  (see pages 611 and 870)

ä  (see pages 608 and 871)

ä  

(see page 870)

ä  

(see page 870) 

ä  (see 
page 906)

ä  

(see page 1034) 

ä  

(see pages 870 and 951)

ä  

(see page 1091)

ä  

(compare page 1073)

The positions of black squares can be found from:

ä  

ä  

(compare page 1005)

ä  

(see page 358) 

ä  

(see page 870)

ä  

(see page 509) 

(a) (b) (c) (d) (e)

( 4 k)k5

k = 2

{1 ! {{1, 0}, {1, 1}}, 0 ! {{0, 0}, {0, 0}}}

t
{{1}}

 SS2DEvolve[rule_, init_, t_] :=
Nest[Flatten2D[# /. rule] &, init, t]

Flatten2D[ list_] :=
Apply[Join, Map[MapThread[Join, #] &, list]]

{i, j}

i j
n

 Table[If[FreeQ[Transpose[IntegerDigits[{i, j}, k, n]], form],
1, 0], {i, 0, kn - 1}, { j , 0, kn - 1}]

k = 2 form = {0, 1}
k = 3 form

{1, 1} {0 Ï 2, 0 Ï 2}

{0 Ï 2, 0 Ï 2} Ï {1, 1} {i_, j_} /; j > i {0, 2} Ï {1, 1} Ï {2, 0}
{0, 2} Ï {1, 1}

0

n

Mod[Array[Binomial, {2, 2}n, 0], 2]

1 - Sign[Array[BitAnd, {2, 2}n, 0]]

NestList[Mod[RotateLeft[#] + #, 2] &,
PadLeft[{1}, 2n], 2n - 1]

NestList[Mod[ListConvolve[{1, 1}, #, -1], 2] &,
PadLeft[{1}, 2n], 2n - 1]

IntegerDigits[NestList[BitXor[2 #, #] &, 1, 2n - 1], 2, 2n]

NestList[Mod[Rest[FoldList[Plus, 0, #]], 2] &,
Table[1, {2n}], 2n - 1]

Table[PadRight[
Mod[CoefficientList[( 1+ x)t-1, x], 2], 2n - 1], {t, 2n}]

Reverse[Mod[CoefficientList[Series[1/ (1 - ( 1+ x) y),
{x, 0, 2n - 1}, {y, 0, 2n - 1}], {x, y}], 2]]

Nest[Apply[Join, MapThread[
Join, {{#, #}, {0 #, #}}, 2]] &, {{1}}, n]

Nest[Flatten[2 # /. {x_, y_} ! {{x, y}, {x + 1, y}, {x, y + 1}},
1] &, {{0, 0}}, n]

( Transpose[{Re[#], Im[#]}] &)[
Flatten[Nest[{2 #, 2 # + 1, 2 # + 5} &, {0}, n]]]

Position[Map[Split, NestList[Sort[Flatten[{#, # + 1}]] &,
{0}, 2n - 1]], _? (OddQ[Length[#]] &), {2}]

Flatten[Table[Map[{t, #} &,
Fold[Flatten[{#1, #1+#2}] &, 0, Flatten[2^ (Position[

Reverse[IntegerDigits[t, 2]], 1] - 1)]]], {t, 2n - 1}], 1]

Map[Map[FromDigits[#, 2] &, Transpose[Partition[#, 2]]] &,
Position[Nest[{{#, #}, {#}} &, 1, n], 1] - 1]
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A formatting hack giving the same visual pattern is

â Non-white backgrounds. The pictures below show
substitution systems in which white squares are replaced by
blocks which contain black squares. There is still a nested
structure but it is usually not visually as obvious as before.
(See page 583.)

â Higher-dimensional generalizations. The state of a -
dimensional substitution system can be represented by a
nested list of depth . The evolution of the system for  steps
can be obtained from 

The analog in 3D of the 2D rule on page 187 is

Note that in  dimensions, each black cell must be replaced
by at least  black cells at each step in order to obtain
an object that is not restricted to a dimension 
hyperplane. 

â Other shapes. The systems on pages 187 and 188 are based
on subdividing squares into smaller squares. But one can also
set up substitution systems that are based on subdividing
other geometrical figures, as shown below.

The second example involves two distinct shapes: a square and
a  aspect ratio rectangle. Labelling each shape and

orientation with a different color, the behavior of this system can
be reproduced with equal-sized squares using the rule

 starting
from initial condition .

â Penrose tilings. The nested pattern shown below was
studied by Roger Penrose in 1974 (see page 943).

The arrangement of triangles at step  can be obtained from a
substitution system according to 

This pattern can be viewed as generalizations of the pattern
generated by the 1D Fibonacci substitution system (c) on
page 83. As discussed on page 903, this 1D sequence can be
obtained by looking at how a line with  slope cuts
through a 2D lattice of squares. Penrose tilings can be
obtained by looking at how a 2D plane with slopes based on

 cuts through a lattice of hypercubes in 5D. The
tilings turn out to have approximate 5-fold symmetry. (See
also page 943.)

In general, projections onto any regular lattice in any number
of dimensions from hyperplanes with any quadratic
irrational slopes will yield nested patterns that can be
generated by subdividing some shape or another according
to a substitution system. Despite some confusion in the
literature, however, this procedure can reproduce only a tiny
fraction of all possible nested patterns. 

â Page 189 · Dragon curve. The pattern shown here can be
obtained in several related ways, including from numbers in
base  (see below) and from a doubled version of the
paths generated by 1D paperfolding substitution systems
(see page 892). Its boundary has fractal dimension

.

DisplayForm[Nest[SubsuperscriptBox[#, #, #] &, "1", n]]

d

d t

 SSEvolve[rule_, init_, t_, d_Integer] :=
Nest[FlattenArray[# /. rule, d] &, init, t]

FlattenArray[ list_, d_] :=
Fold[Function[{a, n}, Map[MapThread[Join, #, n] &,

a, -{d + 2}]], list, Reverse[Range[d] - 1]]

 {1 ! Array[If[LessEqual[##], 0, 1] &, {2, 2, 2}],
0 ! Array[0 &, {2, 2, 2}]}

d
d + 1

d - 1

GoldenRatio

{3 ! {{1, 0}, {3, 2}}, 2 ! {{1}, {3}}, 1 ! {{3, 2}}, 0 ! {{3}}}

{{3}}

t

 With[{f = GoldenRatio}, Nest[# /. a[p_, q_, r_] "
With[{s = ( p +fq) (2 - f)}, {a[r, s, q], b[r, s, p]}] /.

b[p_, q_, r_] " With[{s = ( p +f r) ( 2 - f)}, {a[p, q, s], b[
r, s, q]}] &, a[{1/2, Sin[2p /5] f}, {1, 0}, {0, 0}], t]]

GoldenRatio

GoldenRatio

5 - 1

2 Log[2, Root[2 +#12 - #13, 1]] ; 1.52



T W O  D I M E N S I O N S  A N D  B E Y O N D N O T E S  F O R  C H A P T E R  5

933

â Implementation. The most convenient approach is to represent
each pattern by a list of complex numbers, with the center of each
square being given in terms of each complex number  by

. The pattern after  steps is then given by
, where for the rule on page 189

 (  gives
a transformed version). For the rule on page 190,

. For rules (a), (b) and (c)
(Koch curve) on page 191 the forms of  are respectively: 

â Connection with digit sequences. Patterns after  steps can
be viewed as containing all -digit integers in an appropriate
complex base. Thus the patterns on page 189 can be formed
from -digit integers in base  containing only digits 0 and
1, as given by

In the particular case of base  with digits 0 through , it
turns out that for sufficiently large  any complex integer can
be represented, and will therefore be part of the pattern.
(Compare page 1094.)

â Visualization. The 3D pictures below show successive steps
in the evolution of each of the geometric substitution systems
from the main text. 

â Parameter space sets. See pages 407 and 1006 for a
discussion of varying parameters in geometrical substitution
systems. 

â Affine transformations. Any set of so-called affine
transformations that take the vector for each point, multiply
it by a fixed matrix and then add a fixed vector, will yield
nested patterns similar to those shown in the main text.
Linear operations on complex numbers of the kind
discussed above correspond geometrically to rotations,
translations and rescalings. General affine transformations
also allow reflection and skewing. In addition, affine
transformations can readily be generalized to any number of
dimensions, while complex numbers represent only two
dimensions.

â Complex maps. Many kinds of nonlinear transformations
on complex numbers yield nested patterns. Sets of so-called
Möbius transformations of the form 
always yield such patterns (and correspond to so-called
modular groups when ). Transformations of the
form  yield so-called Julia sets
which form nested patterns for many values of  (see note
below). In fact, a fair fraction of all possible transformations
based on algebraic functions will yield nested patterns. For
typically the continuity of such functions implies that only a
limited number of shapes not related by limited variations in
local magnification can occur at any scale. 

â Fractal dimensions. Certain features of nested patterns can
be characterized by so-called fractal dimensions. The
pictures below show five patterns with three successively
finer grids superimposed. The dimension of a pattern can be
computed by looking at how the number of grid squares
that have any gray in them varies with the length  of the
edge of each grid square. In the first case shown, this
number varies like  for small , while in the last case,
it varies like . In general, if the number varies like

, one can take  to be the dimension of the pattern.
And in the intermediate cases shown, it turns out that  has
non-integer values. 

The grid in the pictures above fits over the pattern in a very
regular way. But even when this does not happen, the
limiting behavior for small  is still  for any nested
pattern. This form is inevitable if the underlying pattern
effectively has the same structure on all scales. For some of
the more complex patterns encountered in this book,
however, there continues to be different structure on different
scales, so that the effective value of  fluctuates as the scale
changes, and may not converge to any definite value. (Precise
definitions of dimension based for example on the maximum
ever achieved by  will often in general imply formally non-
computable values, as in the discussion of page 1138.) 

z
{Re[z], Im[z]} n
Nest[Flatten[f [#]] &, {0}, n]
f [z_] = 1/2 (1 - 5) {z + 1/2, z - 1/2} f [z_] = ( 1 - 5) {z + 1, z}

f [z_] = 1/2 (1 - 5) {5 z + 1/2, z - 1/2}
f [z_]

 ( 0.296 - 0.57 5) z - 0.067 5 - {1.04, 0.237}

N[1/40 {17 (�!!!!3 - 5) z, -24+ 14 z}]

N[( 1/2 (1/�!!!!3 - 1) ( 5 + {1, -1}) - 5 - ( 1+ {5, -5} /�!!!!3 ) z)/2]

t
t

t 5 - 1

Table[FromDigits[IntegerDigits[s, 2, t], 5 - 1], {s, 0, 2t - 1}]

5 - q q2

t

z ! ( a z + b)/ ( c z + d)

a d - b c 2 1
z ! {Sqrt[z - c], -Sqrt[z - c]}

c

a

(1/a)1 a
(1/a)2

(1/a)d d
d

a (1/a)d

d

d
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Fractal dimensions characterize some aspects of nested
patterns, but patterns with the same dimension can often
look very different. One approach to getting better
characterizations is to look at each grid square, and to ask not
just whether there is any gray in it, but how much. Quantities
derived from the mean, variance and other moments of the
probability distribution can serve as generalizations of fractal
dimension. (Compare page 959.)

â History of fractals. The idea of using nested 2D shapes in
art probably goes back to antiquity; some examples were
shown on page 43. In mathematics, nested shapes began to
be used at the end of the 1800s, mainly as counterexamples
to ideas about continuity that had grown out of work on
calculus. The first examples were graphs of functions: the
curve on page 918 was discussed by Bernhard Riemann in
1861 and by Karl Weierstrass in 1872. Later came
geometrical figures: example (c) on page 191 was
introduced by Helge von Koch in 1906, the example on
page 187 by Waclaw Sierpinski in 1916, examples (a) and (c)
on page 188 by Karl Menger in 1926 and the example on
page 190 by Paul Lévy in 1937. Similar figures were also
produced independently in the 1960s in the course of early
experiments with computer graphics, primarily at MIT.
From the point of view of mathematics, however, nested
shapes tended to be viewed as rare and pathological
examples, of no general significance. But the crucial idea
that was developed by Benoit Mandelbrot in the late 1960s
and early 1970s was that in fact nested shapes can be
identified in a great many natural systems and in several
branches of mathematics. Using early raster-based
computer display technology, Mandelbrot was able to
produce striking pictures of what he called fractals. And
following the publication of Mandelbrot’s 1975 book,
interest in fractals increased rapidly. Quantitative
comparisons of pure power laws implied by the simplest
fractals with observations of natural systems have had
somewhat mixed success, leading to the introduction of
multifractals with more parameters, but Mandelbrot’s
general idea of the importance of fractals is now well
established in both science and mathematics.

â The Mandelbrot set. The pictures below show Julia sets
produced by the procedure of taking the transformation

 discussed above and iterating it
starting at  for an array of values of  in the complex
plane.
 
 
 
 

 

 

The Mandelbrot set introduced by Benoit Mandelbrot in 1979
is defined as the set of values of  for which such Julia sets
are connected. This turns out to be equivalent to the set of
values of  for which starting at  the inverse mapping

 leads only to bounded values of . The Mandelbrot
set turns out to have many intricate features which have been
widely reproduced for their aesthetic value, as well as
studied by mathematicians. The first picture below shows the
overall form of the set; subsequent pictures show successive
magnifications of the regions indicated. All parts of the
Mandelbrot set are known to be connected. The whole set is
not self-similar. However, as seen in the third and fourth
pictures, within the set are isolated small copies of the whole
set. In addition, as seen in the last picture, near most values
of  the boundary of the Mandelbrot set looks very much like
the Julia set for that value of .

On pages 407 and 1006 I discuss parameter space sets that are
somewhat analogous to the Mandelbrot set, but whose
properties are in many respects much clearer. And from this
discussion there emerges the following interpretation of the
Mandelbrot set that appears not to be well known but which
I find most illuminating. Look at the array of Julia sets and
ask for each  whether the Julia set includes the point .

z ! {Sqrt[z - c], -Sqrt[z - c]}
z = 0 c

-2 -1 0 1 2

0

5

2�5

c

c z = 0
z ! z 2 + c z

c
c

c z = 0
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The set of values of  for which it does corresponds exactly to
the boundary of the Mandelbrot set. The pictures below show
a generalization of this idea, in which gray level indicates the
minimum distance  of any point  in the Julia set
from a fixed point . The first picture shows the case ,
corresponding to the usual Mandelbrot set.

â Page 192 · Neighbor-dependent substitution systems. Given
a list of individual replacement rules such as

, each step in the evolution
shown corresponds to

One can consider rules in which some replacements lead to
subdivision of elements but others do not. However, unlike
for the 1D case, there will in general in 2D be an arbitrarily
large set of different possible neighborhood configurations
around any given cell. 

â Page 192 · Space-filling curves. One can conveniently scan a
finite 2D grid just by going along each successive row in turn.
One can scan a quadrant of an infinite grid using the 
function on page 1127, or one can scan a whole grid by for
example going in a square spiral that at step  reaches position

Network Systems

â Implementation. The nodes in a network system can
conveniently be labelled by numbers , , , and the
network obtained at a particular step can be represented by a
list of pairs, where the pair at position  gives the numbers
corresponding to the nodes reached by following the above
and below connections from node . With this setup, a
network consisting of just one node is  and a 1D array
of  nodes can be obtained with 

With above connections represented as  and the below
connections as , the node reached by following a succession

 of connections from node  is given by 

The total number of distinct nodes reached by following all
possible succession of connections up to length  is given by 

For each such list the rules for the network system then specify
how the connections from node  should be rerouted. The rule

 specifies that when 
gives  for a node , the connections from that node should
become . The rule

 specifies that a new node should
be inserted in the above connection, and this new node should
have connections .
With rules set up in this way, each step in the evolution of a
network system is given by 

The set of nodes that can be reached from node  is given by

and disconnected nodes can be removed using 

The sequence of networks obtained on successive steps by
applying the rules and then removing all nodes not
connected to node number  is given by

Note that the nodes in each network are not necessarily
numbered in the order that they appear on successive lines in
the pictures in the main text. Additional information on the
origin of each new node must be maintained if this order is to
be found.

â Rule structure. For depth 1, the possible results from
 are  and . For depth 2, they are ,

, , ,  and . In general, each
successive element in a list from  cannot be
more than twice the previous element.

â Undirected networks. Networks with connections that do
not have definite directions are discussed at length in
Chapter 9, mainly as potential models for space in the
universe. The rules for updating such networks turn out to be

c

Abs[z - z0] z
z0 z0 = 0

z0 = 0 z0 = 1 z0 = 5

{{_, 1}, {0, 1}} ! {{1, 0}, {1, 1}}

Flatten2D[Partition[ list, {2, 2}, 1, -1] /. rule]

s

t
 ( 1/2 ( -1)# ( {1, -1} (Abs[#2 - t] - #) +#2 - t -Mod[#, 2]) &)[

Round[�!!!t ]]

1 2 ? n

i

i
{{1, 1}}

n
 CyclicNet[n_] := RotateRight[

Table[Mod[{i - 1, i + 1}, n] + 1, {i, n}]]

1
2

s i

Follow[ list_, i_, s_List] := Fold[ list0#110#21 &, i, s]

d
 NeighborNumbers[ list_, i_Integer, d_Integer] :=

Map[Length, NestList[Union[Flatten[ list0#1]] &,
Union[ list0i1], d - 1]]

i
{2, 3} ! {{2, 1}, {1}} NeighborNumbers

{2, 3} i
{Follow[ list, i, {2, 1}], Follow[ list, i, {1}]}

{2, 3} ! {{{2, 1}, {1, 1}}, {1}}

{Follow[ list, i, {2, 1}], Follow[ list, i, {1, 1}]}

 NetEvolveStep[{depth_Integer, rule_List}, list_List] := Block[
{new = {}}, Join[Table[Map[NetEvolveStep1[#, list, i] &,

Replace[NeighborNumbers[ list, i, depth],
rule]], {i, Length[ list]}], new]]

NetEvolveStep1[s : {___Integer}, list_, i_] := Follow[ list, i, s]

NetEvolveStep1[{s1 : {___Integer}, s2 : {___Integer}},
list_, i_] := Length[ list] + Length[

AppendTo[new, {Follow[ list, i, s1], Follow[ list, i, s2]}]]

i
 ConnectedNodes[ list_, i_] :=

FixedPoint[Union[Flatten[{#, list0#1}]] &, {i}]

 RenumberNodes[ list_, seq_] :=
Map[Position[seq, #]01, 11 &, list0seq1, {2}]

1
 NetEvolveList[rule_, init_, t_Integer] :=

NestList[(RenumberNodes[#, ConnectedNodes[#, 1]] &)[
NetEvolveStep[rule, #]] &, init, t]

NeighborNumbers {1} {2} {1, 1}
{1, 2} {2, 1} {2, 2} {2, 3} {2, 4}

NeighborNumbers



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

936

somewhat more difficult to apply than those for the network
systems discussed here. 

â Page 199 · Computer science. The networks discussed here
can be thought of as very simple analogs of data structures in
practical computer programs. The connections correspond to
pointers between elements of these data structures. The fact
that there are two connections coming from each node is
reminiscent of the LISP language, but in the networks
considered here there are no leaves corresponding to atoms
in LISP. Note that the process of dropping nodes that become
disconnected is analogous to so-called “garbage collection”
for data structures. The networks considered here are also
related to the combinator systems discussed on page 1121.

â Page 202 ·  Properties. Random behavior seems to occur in a
few out of every thousand randomly selected rules of the
kind shown here. In case (c), the following gives a list of the
numbers of nodes generated up to step : 

â Sequential network systems. In the network systems
discussed in the main text, every node is updated in
parallel at each step. It is however also possible to consider
systems in which there is only a single active node, and
operations are performed only on that node at any
particular step. The active node can move by following its
above or below connections, in a way that is determined by
a rule which depends on the local structure of the network.
The pictures below show examples of sequential network
systems; the path of the active node is indicated by a thick
black line.

It is rather common for the active node eventually to get
stuck at a particular position in the network; the picture
below shows the effect of this on the total number of nodes in
the last case illustrated above. The rule for this system is 

â Dimensionality of networks. As discussed on page 479, if a
sufficiently large network has a -dimensional form, then by
following  connections in succession from a given node, one
should reach about  distinct nodes. The plots below show
the actual numbers of nodes reached as a function of  for the
systems on pages 202 and 203 at steps 1, 10, 20, ..., 200. 

â Cellular automata on networks. The cellular automata that
we have considered so far all have cells arranged in regular
arrays. But one can also set up generalizations in which the
cells correspond to nodes in arbitrary networks. Given a
network of the kind discussed in the main text of this section,
one can assign a color to each node, and then update this
color at each step according to a rule that depends on the
colors of the nodes to which the connections from that node
go. The behavior obtained depends greatly on the form of the
network, but with networks of finite size the results are
typically like those obtained for other finite size cellular
automata of the kind discussed on page 259.

â Implementation. Given a network represented as a list in
which element  is , where  is the node reached by
the above connection from node , and  is the node reached
by the below connection, each step corresponds to 

â Boolean networks. Several lines of development from the
cybernetics movement (notably in immunology, genetics and
management science) led in the 1960s to a study of random
Boolean networks—notably by Stuart Kauffman and Crayton
Walker. Such systems are like cellular automata on networks,
except for the fact that when they are set up each node has a
rule that is randomly chosen from all  possible ones with

 inputs. With  class 2 behavior (see Chapter 6) tends to

t
 FoldList[Plus, 1, Join[{1, 4, 12, 10, -20, 6, 4},

Map[d, IntegerDigits[Range[4, t - 5], 2]]]]
d[{___, 1}] = 1

d[{1, p : ( ( 0) ..), 0}] :=
-Apply[Plus, 4 Range[Length[{p}]] - 1] + 6

d[{__, 1, p : ( ( 0) ..), 0}] := d[{1, p, 0}] - 7

d[{___, p : ( ( 1) ..), q : ( ( 0) ...), 1, 0}] :=
4 Length[{p}] + 3 Length[{q}] + 2

d[{___, p : ( ( 1) ..), 1, 0}] := 4 Length[{p}] + 2

 {{1, 1} ! {{{{}, {1, 1}}, {2}}, 2}, {1, 2} ! {{{2, 2}, {{}, {2, 2}}}, 2},
{2, 1} ! {{{}, {2, 2}}, 2}, {2, 2} ! {{{1, 2}, {{1}, {2}}}, 1},
{2, 3} ! {{{{1, 2}, {1}}, {{2}, {2, 1}}}, 2},
{2, 4} ! {{{2, 2}, {{2, 1}, {}}}, 1}}

0
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(e)

i {a, i, b} a
i b

 NetCAStep[{rule_, net_}, list_] :=
Map[Replace[#, rule] &, list0net1]

22s

s s = 2
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dominate. But for , the behavior one sees quickly
approaches what is typical for a random mapping in which
the network representing the evolution of the  states of the

 underlying nodes is itself connected essentially randomly
(see page 963). (Attempts were made in the 1980s to study
phase transitions as a function of  in analogy to ones in
percolation and spin glasses.) Note that in almost all work on
random Boolean networks averages are in effect taken over
possible configurations, making it impossible to see anything
like the kind of complex behavior that I discuss in cellular
automata and many other systems in this book. 

Multiway Systems

â Implementation. It is convenient to represent the state of a
multiway system at each step by a list of strings, where an
individual string is for example . The rules for the
multiway system can then be given for example as

The evolution of the system is given by the functions

An alternative approach uses lists instead of strings, and in
effect works by tracing the internal steps that Mathematica
goes through in trying out possible matchings. With the rule
from above written as

 can be rewritten as

The case shown on page 206 is

starting with {"ABABAB"}. Note that the rules are set up so that
a string for which there are no applicable replacements at a
given step is simply dropped.

â General properties. The merging of states (as done above by
) is crucial to the behavior seen. Note that the pictures

shown indicate only which states yield which states—not for
example in how many ways the rules can be applied to a
given state to yield a given new state. 

If there was no merging, then if a typical state yielded more
than one new state, then inevitably the total number of
states would increase exponentially. But when there is

merging, this need not occur—making it difficult to give
probabilistic estimates of growth rates. Note that a given
rule can yield very different growth rates with different
initial conditions. Thus, for example, the growth rate for

 is , where  is the
number of initial ’s. With most rules, states that appear at
one step can disappear at later steps. But if  and its
analogs are part of the rule, then every state will always be
kept, almost inevitably leading to overall nesting in pictures
like those on page 208. 

In cases where all strings that appear both in rules and
initial conditions are sorted—so that for example ’s appear
before ’s—any string generated will also be sorted, so it
can be specified just by giving a list of how many ’s and
how many ’s appear in it. The rule for the system can then
be stated in terms of a difference vector—which for

 is . Given a
list of string specifications, a step in the evolution of the
multiway system corresponds to

â Page 206 · Properties. The total number of strings grows
approximately quadratically; its differences repeat (offset by
1) with period 1071. The number of new strings generated at
successive steps grows approximately linearly; its differences
repeat with period 21. The third element of the rule is at first
used only on some steps—but after step 50 it appears to be
used somewhere in every step.

The pictures below show in stacked form (as on page 208) all
sequences generated at various steps of evolution. Note that
after just a few steps, the sequences produced always seem to
consist of white elements followed by black, with possibly
one block of black in the white region. Without this
additional block of black, only the first case in the rule can
ever apply. 

In analogy with page 796 the picture below shows when
different strings with lengths up to 10 are reached in the
evolution of the system.

s > 2

2m

m

s

"ABBAAB"

{"AAB" ! " BB", " BA" ! " ABB"}

 MWStep[rule_List, slist_List] := Union[Flatten[
Map[Function[s, Map[MWStep1[#, s] &, rule]], slist]]]

MWStep1[p_String ! q_String, s_String] :=
Map[StringReplacePart[s, q, #] &, StringPosition[s, p]]

MWEvolveList[rule_, init_List, t_Integer] :=
NestList[MWStep[rule, #] &, init, t]

 {{x___, 0, 0, 1, y___} ! {x, 1, 1, y},
{x___, 1, 0, y___} ! {x, 0, 1, 1, y}}

MWStep
 MWStep[rule_List, slist_List] :=

Union[Flatten[Map[ReplaceList[#, rule] &, slist], 1]]

{"AB" ! "", "ABA" ! "ABBAB", "ABABBB" ! "AAAAABA"}

Union

{"A" ! "AA", "AB" ! "BA", "BA" ! "AB"} tn+1 n
B

"A" ! "A"

A
B

A
B

{"BA" ! "AAA", "BAA" ! "BBBA"} {{2, -1}, {-1, 2}}

 Select[Union[Flatten[Outer[Plus, diff , list, 1], 1]],
Abs[#] 2 # &]

step 100 step 200 step 300 step 400

10

20

30

40

50

60
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Different initial conditions for this multiway system lead to
behavior that either dies out (as for ), or grows
exponentially forever (as for ).

â Frequency of behavior. Among multiway systems with
randomly chosen rules, one finds about equal numbers that
grow rapidly and die out completely. A few percent exhibit
repetitive behavior, while only one in several million exhibit
more complex behavior. One common form of more complex
behavior is quadratic growth, with essentially periodic
fluctuations superimposed—as on page 206. 

â History. Versions of multiway systems have been invented
many times in a variety of contexts. In mathematics specific
examples of them arose in formal group theory (see below)
around the end of the 1800s. Axel Thue considered versions
with two-way rules (analogous to semigroups, as discussed
below) in 1912, leading to the name semi-Thue systems
sometimes being used for general multiway systems. Other
names for multiway systems have included string and term
rewrite systems, production systems and associative calculi.
From the early 1900s various generalizations of multiway
systems were used as idealizations of mathematical proofs
(see page 1150); multiway systems with explicit pattern
variables (such as ) were studied under the name canonical
systems by Emil Post starting in the 1920s. Since the 1950s,
multiway systems have been widely used as generators of
formal languages (see below). Simple analogs of multiway
systems have also been used in genetic analysis in biology
and in models for particle showers and other branching
processes in physics and elsewhere. 

â Semigroups and groups. The multiway systems that I
discuss can be viewed as representations for generalized
versions of familiar mathematical structures. Semigroups are
obtained by requiring that rules come in pairs: with each rule
such as  there must also be the reversed rule

. Such pairs of rules correspond to relations in
the semigroup, specifying for example that  is
equivalent to . (The operation in the semigroup is
concatenation of strings;  acts as an identity element, so in
fact a monoid is always obtained.) Groups require that not
only rules but also symbols come in pairs. Thus, for example,
in addition to a symbol , there must be an inverse symbol ,
with the rules ,  and their reversals. 

In the usual mathematical approach, the objects of greatest
interest for many purposes are those collections of sequences
that cannot be transformed into each other by any of the rules
given. Such collections correspond to distinct elements of the
group or semigroup, and in general many different choices of
underlying rules may yield the same elements with the same

properties. In terms of multiway systems, each of the
elements corresponds to a disconnected part of the network
formed from all possible sequences. 

Given a particular representation of a group or semigroup in
terms of rules for a multiway system, an object that is often
useful is the so-called Cayley graph—a network where each
node is an element of the group, and the connections show
what elements are reached by appending each possible
symbol to the sequences that represent a given element. The
so-called free semigroup has no relations and thus no rules,
so that all strings of generators correspond to distinct
elements, and the Cayley graph is a tree like the ones shown
on page 196. The simplest non-trivial commutative
semigroup has rules  and , so that
strings of generators with ’s and ’s in different orders are
equivalent and the Cayley graph is a 2D grid. 

For some sets of underlying rules, the total number of
distinct elements in a group or semigroup is finite. (Compare
page 945.) A major mathematical achievement in the 1980s
was the complete classification of all possible so-called
simple finite groups that in effect have no factors. (For
semigroups no such classification has yet been made.) In each
case, there are many different choices of rules that yield the
same group (and similar Cayley graphs). And it is known
that even fairly simple sets of rules can yield large and
complicated groups. The icosahedral group  defined by
the rules  has 60 elements. But in the
most complicated case a dozen rules yield the Monster
Group, where the number of elements is 

808017424794512875886459904961710757005754368000000000 

(See also pages 945 and 1032.)

Following work in the 1980s and 1990s by Mikhael Gromov
and others, it is also known that for groups with randomly
chosen underlying rules, the Cayley graph is usually either
finite, or has a rapidly branching tree-like structure. But there
are presumably also marginal cases that exhibit complex
behavior analogous to what we saw in the main text. And
indeed for example, despite conjectures to the contrary, it was
found in the 1980s by Rostislav Grigorchuk that complicated
groups could be constructed in which growth intermediate
between polynomial and exponential can occur. (Note that
different choices of generators can yield Cayley graphs with
different local subgraphs; but the overall structure of a
sufficiently large graph for a particular group is always the
same.) 

â Formal languages. The multiway systems that I discuss are
similar to so-called generative grammars in the theory of
formal languages. The idea of a generative grammar is that

"ABA"
"ABAABABA"

s_

"ABB" ! "BA"
"BA" ! "ABB"

"ABB"
"BA"

""

A a
"Aa" ! "" "aA" ! ""

"AB" ! "BA" "BA" ! "AB"
A B

A5

x2 2 y 3 2 ( x y)5 2 1
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all possible expressions in a particular formal language can
be produced by applying in all possible ways the set of
replacement rules given by the grammar. Thus, for example,
the rules  starting with 
will generate all expressions that consist of balanced
sequences of parentheses. (Final expressions correspond to
those without the “non-terminal” symbol .) The hierarchy
described by Noam Chomsky in 1956 distinguishes four
kinds of generative grammars (see page 1104):

Regular grammars. The left-hand side of each rule must
consist of one non-terminal symbol, and the right-hand side
can contain only one non-terminal symbol. An example is

 starting with  which
generates sequences in which no pair of ’s ever appear
together. Expressions in regular languages can be
recognized by finite automata of the kind discussed on
page 957. 

Context-free grammars.  The left-hand side of each rule must
consist of one non-terminal symbol, but the right-hand side
can contain several non-terminal symbols. Examples
include the parenthesis language mentioned above,

 starting with , and the syntactic
definitions of Mathematica and most other modern computer
languages. Context-free languages can be recognized by a
computer using only memory on a single last-in first-out
stack. (See pages 1091 and 1103.)

Context-sensitive grammars. The left-hand side of each rule is
no longer than the right, but is otherwise unrestricted. An
example is  starting
with , which generates expressions of the form

.

Unrestricted grammars. Any rules are allowed.

(See also page 944.)

â Multidimensional multiway systems. As a generalization of
multiway systems based on 1D strings one can consider
systems in which rules operate on arbitrary blocks of
elements in an array in any number of dimensions. Still
more general network substitution systems are discussed on
page 508. 

â Limited size versions. One can set up multiway systems of
limited size by applying transformations cyclically to strings.

â Multiway tag systems. See page 1141.

â Multiway systems based on numbers. One can consider for
example the rule  implemented by 

In this case there are  distinct numbers
obtained at step . In general, rules based on simple
arithmetic operations yield only simple nested structures. If
the numbers  are allowed to have both real and imaginary
parts then results analogous to those discussed for
substitution systems on page 933 are obtained. (Somewhat
related systems based on recursive sequences are discussed
on page 907. Compare also sorted multiway systems on
page 937.)

â Non-deterministic systems. Multiway systems are examples
of what are often in computer science called non-
deterministic systems. The general idea of a non-
deterministic system is to have rules with several possible
outcomes, and then to allow each of these outcomes to be
followed. Non-deterministic Turing machines are a common
example. For most types of systems (such as Turing
machines) such non-deterministic versions do not ultimately
allow any greater range of computations to be performed
than deterministic ones. (But see page 766.)

â Fundamental physics. See page 504.

â Game systems. One can think of positions or configurations
in a game as corresponding to nodes in a large network, and
the possible moves in the game as corresponding to
connections between nodes. Most games have rules which
imply that if certain states are reached one player can be
forced in the end to lose, regardless of what specific moves
they make. And even though the underlying rules in the
game may be simple, the pattern of such winning positions is
often quite complex. Most games have huge networks whose
structure is difficult to visualize (even the network for tic-tac-
toe, for example, has 5478 nodes). One example that allows
easy visualization is a simplification of several common
games known as nim. This has  piles of objects, and on
alternate steps each of two players takes as many objects as
they want from any one of the piles. The winner is the player
who manages to take the very last object. With just two piles
one player can force the other to lose by arranging that after
each of their moves the two piles have equal heights. With
more than two piles it was discovered in 1901 that one player
can in general force the other to lose by arranging that after
each of their moves , where  is the list of
heights. For  this yields a nested pattern, analogous to
those shown on page 871. If one allows only specific numbers
of objects to be taken at each step a nested pattern is again
obtained. With more general rules it seems almost inevitable
that much more complicated patterns will occur.

{"x" ! "xx", "x" ! "( x)", "x" ! "( )"} "x"

x

{"x" ! "xA", "x" ! "yB", "y" ! "xA"} "x"
B

{"x" ! "AxA", "x" ! "B"} "x"

{"Ax" ! "AAxx", "xA" ! "BAA", "xB" ! "Bx"}
"AAxBA"

Table["A", {n}]<> Table["B", {n}]<> Table["A", {n}]

n ! {n+ 1, 2 n}

NestList[Union[Flatten[{# + 1, 2 #}]] &, {0}, t]

Fibonacci[t + 2]
t

n

k

Apply[BitXor, h] 2 0 h
k > 1
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Systems Based on Constraints

â The notion of equations. In the mathematical framework
traditionally used in the exact sciences, laws of nature are
usually represented not by explicit rules for evolution, but
rather by abstract equations. And in general what such
equations do is to specify constraints that systems must
satisfy. Sometimes these constraints just relate the state of a
system at one time to its state at a previous time. And in such
cases, the constraints can usually be converted into explicit
evolution rules. But if the constraints relate different features
of a system at one particular time, then they cannot be
converted into evolution rules. In computer programs and
other kinds of discrete systems, explicit evolution rules and
implicit constraints usually work very differently. But in
traditional continuous mathematics, it turns out that these
differences are somewhat obscured. First of all, at a formal
level, equations corresponding to these two cases can look
very similar. And secondly, the equations are almost always
so difficult to deal with at all that distinctions between the
two cases are not readily noticed.

In the language of differential equations—the most widely
used models in traditional science—the two cases we are
discussing are essentially so-called initial value and
boundary value problems, discussed on page 923. And at a
formal level, the two cases are so similar that in studying
partial differential equations one often starts with an
equation, and only later tries to work out whether initial or
boundary values are needed in order to get either any
solution or a unique solution. For the specific case of second-
order equations, it is known in general what is needed.
Elliptic equations such as the Laplace equation need
boundary values, while hyperbolic and parabolic equations
such as the wave equation and diffusion equation need initial
values. But for higher-order equations it can be extremely
difficult to work out what initial or boundary values are
needed, and indeed this has been the subject of much
research for many decades.

Given a partial differential equation with initial or boundary
values, there is then the question of solving it. To do this on a
computer requires constructing a discrete approximation. But
it turns out that the standard methods used (such as finite
difference and finite element) involve extremely similar
computations for initial and for boundary value problems,
leaving no trace of the significant differences between these
cases that are so obvious in the discrete systems that we
discuss in most of this book.

â Linear and nonlinear systems. A vast number of different
applications of traditional mathematics are ultimately based

on linear equations of the form  where  and  are
vectors (lists) and  is a matrix (list of lists), all containing
ordinary continuous numbers. If  is known then such
equations in essence provide explicit rules for computing .
But if only  is known, then the equations can instead be
thought of as providing implicit constraints for . However,
it so happens that even in this case  can still be found fairly
straightforwardly using . With vectors of
length  it generically takes about  steps to compute 
given , and a little less than  steps to compute  given 
(the best known algorithms—which are based on matrix
multiplication—currently involve about  steps). But as
soon as the original equation is nonlinear, say

, the situation changes dramatically. It still
takes only about  steps to compute  given , but it
becomes vastly more difficult to compute  given , taking
perhaps  steps. (Generically there are  solutions for ,
and even for integer coefficients in the range  to  already
in 95% of cases there are 4 solutions with  as soon as

.) 

â Explanations based on constraints. In some areas of science
it is common to give explanations in terms of constraints
rather than mechanisms. Thus, for example, in physics there
are so-called variational principles which state that physical
systems will behave in ways that minimize or maximize
certain quantities. One such principle implies that atoms in
molecules will tend to arrange themselves so as to minimize
their energy. For simple molecules, this is a useful principle.
But for complicated molecules of the kind that are common
in living systems, this principle becomes much less useful. In
fact, in finding out what configuration such molecules
actually adopt, it is usually much more relevant to know how
the molecule evolves in time as it is created than which of its
configurations formally has minimum energy. (See pages 342
and 1185.)

â Page 211 · 1D constraints. The constraints in the main text
can be thought of as specifying that only some of the 
possible blocks of cells of length  (with  possible colors for
each cell) are allowed. To see the consequences of such
constraints consider breaking a sequence of colors into blocks
of length , with each block overlapping by  cells with its
predecessor, as in . If all possible sequences
of colors were allowed, then there would be  possibilities for
what block could follow a given block, given by

. The possible
sequences of length  blocks that can occur are conveniently
represented by possible paths by so-called de Bruijn
networks, of the kind shown for  and  through 
below.

u 2 m�.�v u v
m

v
u

u
v

v
LinearSolve[m, u]

n n2 u
v n3 v u

n2.4

u 2 m1 �.�v +m2 �.�v
2

n2 u v
v u

22n

2n v
-r +r

n = 2
r > 6

kn

n k

n n - 1
Partition[ list, n, 1]

k

Map[Rest, Table[Append[ list, i], {i, 0, k - 1}]]
n

k = 2 n = 2 5
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Given the network for a particular , it is straightforward to
see what happens when only certain length  blocks are
allowed: one just keeps the arcs in the network that
correspond to allowed blocks, and drops all other ones. Then
if one can still form an infinite path by going along the arcs
that remain, this path will correspond to a pattern that
satisfies the constraints. Sometimes there will be a unique
such path; in other cases there will be choices that can be
made along the path. But the crucial point is that since there
are only  nodes in the network, then if any infinite path is
possible, there must be such a path that visits the same node
and thus repeats itself after at most  cells. The constraint
on page 210 has  and ; the pattern that satisfies it
repeats with period 4, thus saturating the bound. (See also
page 266.)

â 1D cellular automata. In a cellular automaton with  colors
and  neighbors, configurations that are left invariant after 
steps of evolution according to the cellular automaton rule
are exactly the ones which contain only those length 
blocks in which the center cell is the same before and after the
evolution. Such configurations therefore obey constraints of
the kind discussed in the main text. As we will see on page
225 some cellular automata evolve to invariant
configurations from any initial conditions, but most do not.
(See page 954.)

â Dynamical systems theory. Sets of sequences in which a
finite collection of blocks are excluded are sometimes known
as finite complement languages, or subshifts of finite type.
(See page 958.)

â Page 215 · 2D constraints. The constraints shown here are
minimal, in the sense that in each case removing any of the
allowed templates prevents the constraint from ever being
satisfied. Note that constraints which differ only by overall
rotation, reflection or interchange of black and white are not
explicitly shown. The number of allowed templates out of the
total of 32 possible varies from 1 to 15 for the constraints
shown, with 12 being the most common. Smaller sets of
allowed templates typically seem to lead to constraints that
can be satisfied by visually simpler patterns. 

â Numbering scheme. The constraint numbered  allows the
templates at  in the list
below. (See also page 927.)

â Identifying the 171 patterns. The number of constraints to
consider can be reduced by symmetries, by discarding sets of
templates that are supersets of ones already known to be
satisfiable, and by requiring that each template in the set be
compatible with itself or with at least one other in each of the
eight immediately adjacent positions. The remaining
constraints can then be analyzed by attempting to build up
explicit patterns that satisfy them, as discussed below. 

â Checking constraints. A set of allowed templates can be
specified by a Mathematica pattern of the form  etc.
where the  are for example . To
check whether an array  contains only arrangements of
colors corresponding to allowed templates one can then use

â Representing repetitive patterns. Repetitive patterns are
often most conveniently represented as tessellations of
rectangles whose corners overlap. Pattern (a) on page 213 can
be specified as

Given this, a complete  by  array filled with this pattern
can be constructed from

â Searching for patterns. The basic approach to finding a
pattern which satisfies a particular constraint on an infinite
array of cells is to start with a pattern which satisfies the
constraint in a small region, and then to try to extend the
pattern. Often the constraint will immediately force a unique
extension of the pattern, at least for some distance. But
eventually there will normally be places where the pattern is
not yet uniquely determined, and so a series of choices have
to be made. The procedure used to find the results in this
book attempts to extend patterns along a square spiral,
making whatever choices are needed, and backtracking if
these turn out to be inconsistent with the constraint. At every
step in the procedure, regularities are tested for that would
imply the possibility of an infinite repetitive pattern. In
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n
Position[IntegerDigits[n, 2, 32], 1]

t1 Ï t2 Ï t3

ti {{_, 1, _}, {0, 0, 1}, {_, 0, _}}
list

 SatisfiedQ[ list_, allowed_] :=
Apply[And, Map[MatchQ[#, allowed] &,

Partition[ list, {3, 3}, {1, 1}], {2}], {0, 1}]

{{2, -1, 2, 3}, {{0, 0, 0, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}}}

nx ny

 c[{d1_, d2_, d3_, d4_}, {x_, y_}] :=
With[{d = d1 d2 + d1 d4+ d3 d4},

Mod[{{d2 x + d4 x + d3 y, d4 x - d1 y}} /d, 1]]
Fill[{dlist_, data_}, {nx_, ny_}] :=
Array[c[dlist, {##}] &, {nx, ny}] /. Flatten[MapIndexed[

c[dlist, Reverse[#2]] ! #1 &, Reverse[data], {2}], 1]
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addition, whenever there is a choice, the first cases to be tried
are set up to be ones that tend to extend whatever regularity
has developed so far. And when backtracking is needed, the
procedure always goes back to the most recent choice that
actually affected whatever inconsistency was discovered.
And in addition it remembers what has already been worked
out, so as to avoid, for example, unnecessarily working out
the pattern on the opposite side of the spiral again. 

â Undecidability. The general problem of whether an infinite
pattern exists that satisfies a particular constraint is formally
undecidable (see page 1139). This means that in general there
can be no upper bound on the size of region for which the
constraints can be satisfied, even if they are not satisfiable for
the complete infinite grid. 

â NP completeness. The problem of whether a pattern can be
found that satisfies a constraint even in a finite region is NP-
complete. (See page 1145.) This suggests that to determine
whether a repetitive pattern with repeating blocks of size 
exists may in general take a number of steps which grows
more rapidly than any polynomial in .

â Enumerating patterns. Compare page 959.

â Page 219 · Non-periodic pattern. The color at position ,  in
the pattern is given by

The origin of the ,  coordinates is the only freedom in this
pattern. The nested structure is like the progression of base 2
digit sequences shown on page 117. Negative numbers are
effectively represented by complements of digit sequences,
much as in typical practical computers. With the procedure
described above for finding patterns that satisfy a constraint,
generating the pattern shown here is straightforward once
the appropriate constraint is identified.

â Other types of constraints. Constraints based on smaller
templates simply require smaller numbers of repetitive
patterns: :4; :7; :17; :11; :12. To extend the class of
systems considered in the main text, one can increase the size
of the templates, or increase the number of possible colors for
each cell. For  templates with two colors extensive
randomized searches have failed to discover examples where
non-repetitive patterns are forced to occur. Another extension
of the constraints in the main text is to require that not just a
single template, but every template in the set, must occur
somewhere in the pattern. Searches of such systems have also

failed to discover examples of forced non-repetitive patterns
beyond the one shown in the text.

â Forcing nested patterns. It is straightforward to find
constraints that allow nested patterns; the challenge is to find
ones that force such patterns to occur. Many nested patterns
(such as the one made by rule 90, for example) contain large
areas of uniform white, and it is typically difficult to prevent
pure repetition of that area. One approach to finding
constraints that can be satisfied only by nested patterns is
nevertheless to start from specific nested patterns, look at what
templates occur, and then see whether these templates are
such that they do not allow any purely repetitive patterns. A
convenient way to generate a large class of nested patterns is
to use 2D substitution systems of the kind discussed on page
188. But searching all 4 billion or so possible such systems with

 blocks and up to four colors one finds not a single case in
which a nested pattern is forced to occur. It can nevertheless be
shown that with a sufficiently large number of extra colors any
nested pattern can be forced to occur. And it turns out that a
result from the mid-1970s by Robert Ammann for a related
problem of tiling (see below) allows one to construct a specific
system with 16 colors in which constraints of the kind
discussed here force a nested pattern to occur. One starts from
the substitution system with rules

This yields the nested pattern below which contains only 51
of the 65,536 possible  blocks of cells with 16 colors. It
then turns out that with the constraint that the only 
arrangements of colors that can occur are ones that match
these 51 blocks, one is forced to get the nested pattern below.

â Relation to 2D cellular automata. The kind of constraints
discussed are exactly those that must be satisfied by
configurations that remain unchanged in the evolution of a
2D cellular automaton. The argument for this is similar to the
one on pages 941 and 954 for 1D cellular automata. The point
is that of the 32 5-cell neighborhoods involved in the 2D
cellular automaton rule, only some subset will have the
property that the center cell remains unchanged after
applying the rule. And any configuration which does not
change must involve only these subsets. Using the results of
this section it then follows that in the evolution of all 2D

n

n

x y

 a[x_, y_] := Mod[y + 1, 2] /; x + y > 0

a[x_, y_] := 0 /; Mod[x + y, 2] 2 1

a[x_, y_] :=
Mod[Floor[( x - y) 2(x+y-6)/4], 2] /; Mod[x + y, 4] 2 2

a[x_, y_] := 1 - Sign[Mod[x - y + 2, 2(-x-y+8)/4]]

x y

3�3

2�2

 {1 ! {{3}}, 2 ! {{13, 1}, {4, 10}}, 3 ! {{15, 1}, {4, 12}},
4 ! {{14, 1}, {2, 9}}, 5 ! {{13, 1}, {4, 12}}, 6 ! {{13, 1}, {8, 9}},
7 ! {{15, 1}, {4, 10}}, 8 ! {{14, 1}, {6, 10}}, 9 ! {{14}, {2}},
10 ! {{16}, {7}}, 11 ! {{13}, {8}}, 12 ! {{16}, {3}},
13 ! {{5, 11}}, 14 ! {{2, 9}}, 15 ! {{3, 11}}, 16 ! {{6, 10}}}

2�2
2�2
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cellular automata of the type discussed on page 170 there
exist purely repetitive configurations that remain unchanged.

â Relation to 1D cellular automata. A picture that shows the
evolution of a 1D cellular automaton can be thought of as a
2D array of cells in which the color of each cell satisfies a
constraint that relates it to the cells above according to the
cellular automaton rule. This constraint can then be
represented in terms of a set of allowed templates; the set for
rule 30 is as follows:

To reproduce an ordinary picture of cellular automaton
evolution, one would have to specify in advance a whole line
of black and white cells. Below this line there would then be a
unique pattern corresponding to the application of the
cellular automaton rule. But above the line, except for
reversible rules, there is no guarantee that any pattern
satisfying the constraints can exist. 

If one specifies no cells in advance, or at most a few cells, as in
the systems discussed in the main text, then the issue is
different, however. And now it is always possible to construct
a repetitive pattern which satisfies the constraints simply by
finding repetitive behavior in the evolution of the cellular
automaton from a spatially repetitive initial condition.

â Non-computable patterns. It is known to be possible to set
up constraints that will force patterns in which finding the
color of a particular cell can require doing something like
solving a halting problem—which cannot in general be done
by any finite computation. (See also page 1139.)

â Tiling. The constraints discussed here are similar to those
encountered in covering the plane with tiles of various
shapes. Of regular polygons, only squares, triangles and
hexagons can be used to do this, and in these cases the tilings
are always repetitive. For some time it was believed that any
set of tiles that could cover the plane could be arranged to do
so repetitively. But in 1964 Robert Berger demonstrated that
this was not the case, and constructed a set of about 20,000
tiles that could cover the plane only in a nested fashion. Later
Berger reduced the number of tiles needed to 104. Then
Raphael Robinson in 1971 reduced the number tiles to six,
and in 1974 Roger Penrose showed that just two tiles were
necessary. Penrose’s tiles can cover the plane only in a nested
pattern that can be constructed from a substitution system
that successively subdivides each tile, as shown on page 932.
(Note that various dissections of these tiles can also be used.
The edges of the particular shapes shown should strictly be
distinguished in order to prevent trivial periodic
arrangements.) The triangles in the construction have angles

which are multiples of , so that the whole tiling has an
approximate 5-fold symmetry (see page 994). Repetitive
tilings of the plane can only have 3-, 4- or 6-fold symmetry. 

No single shape is known which has the property that it can
tile the plane only non-repetitively, although one strongly
suspects that one must exist. In 3D, John Conway has found a
single biprism that can fill space only in a sequence of layers
with an irrational rotation angle between each layer. 

In addition, in no case has a simple set of tiles been found
which force a pattern more complicated than a nested one.
The results on page 221 in this book can be used to
constructed a complicated set of tiles with this property, but I
suspect that a much simpler set could be found.

(See also page 1139.)

â Polyominoes. An example of a tiling problem that is in
some respects particularly close to the grid-based constraint
systems discussed in the main text concerns covering the
plane with polyominoes that are formed by gluing collections
of squares together. Tiling by polyominoes has been
investigated since at least the late 1950s, particularly by
Solomon Golomb, but it is only very recently that sets of
polyominoes which force non-periodic patterns have been
found. The set (a) below was announced by Roger Penrose in
1994; the slightly smaller set (b) was found by Matthew Cook
as part of the development of this book.

Both of these sets yield nested patterns. Steps in the
construction of the pattern for set (b) are shown below. At
stage  the number of polyominoes of each type is

. Set (a) works in a roughly
similar way, but with a considerably more complicated
recursion.

p /5

(a) (b)

n
Fibonacci[2 n - {2, 0, 1}] / {1, 2, 1}
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â Ground states of spin systems. The constraints discussed in
the main text are similar to those that arise in the physics of
2D spin systems. An example of such a system is the so-
called Ising model discussed on page 981. The idea in all such
systems is to have an array of spins, each of which can be
either up or down. The energy associated with each spin is
then given by some function which depends on the
configuration of neighboring spins. The ground state of the
system corresponds to an arrangement of spins with the
smallest total energy. In the ordinary Ising model, this
ground state is simply all spins up or all spins down. But in
generalizations of the Ising model with more complicated
energy functions, the conditions to get a state of the lowest
possible energy can correspond exactly to the constraints
discussed in the main text. And from the results shown one
sees that in some cases random-looking ground states should
occur. Note that a rather different way to get a somewhat
similar ground state is to consider a spin glass, in which the
standard Ising model energy function is used, but multiplied
by -1 or +1 at random for each spin.

â Correspondence systems. For a discussion of a class of 1D
systems based on constraints see page 757.

â Sequence equations. Another way to set up 1D systems
based on constraints is by having equations like

, where each
variable stands for a list. Fairly simple such equations can
force fairly complicated results, although as discussed on
page 1141 there are known to be limits to this complexity. 

â Pattern-avoiding sequences. As another form of constraint
one can require, say, that no pair of identical blocks ever
appear together in a sequence, so that the sequence does not
match . With just two possible elements, no
sequence above length 3 can satisfy this constraint. But with

 possible elements, there are infinite nested sequences
that can, such as the one produced by the substitution system

, starting with . One can
find the sequences of length  that work by using

and the number of these grows roughly like .

The constraint that no triple of identical blocks appear
together turns out to be satisfied by the Thue-Morse nested
sequence from page 83—as already noted by Axel Thue in
1906. (The number of sequences that work seems to grow
roughly like .)

For any given , many combinations of blocks will inevitably
occur in sufficiently long sequences (compare page 1068).
(For example, with ,  always

matches any sequence with length more than 18.) But some
patterns of blocks can be avoided. And for example it is
known that for  any pattern with length 6 or more
(excluding the ’s) and only two different variables (say 
and ) can always be avoided. But it also known that
among the infinite sequences which do this, there are always
nested ones (sometimes one has to iterate one substitution
rule, then at the end apply once a different substitution rule).
With more variables, however, it seems possible that there
will be patterns that can be avoided only by sequences with a
more complicated structure. And a potential sign of this
would be patterns for which the number of sequences that
avoid them varies in a complicated way with length. 

â Formal languages. Formal languages of the kind discussed
on page 938 can be used to define constraints on 1D
sequences. The constraints shown on page 210 correspond to
special cases of regular languages (see page 940). For both
regular and context-free languages the so-called pumping
lemmas imply that if any finite sequences satisfy the
constraints, then so must an essentially repetitive infinite
sequence. 

â Diophantine equations. Any algebraic equation—such as
—can readily be solved if one allows the

variables to have any numerical value. But if one insists that
the variables are whole numbers, then the problem is more
analogous to the discrete constraints in the main text, and
becomes much more difficult. And in fact, even though such
so-called Diophantine equations have been studied since
well before the time of Diophantus around perhaps 250 AD,
only limited results about them are known. 

Linear Diophantine equations such as  yield
simple repetitive results, as in the pictures below, and can be
handled essentially just by knowing .

Even the simplest quadratic Diophantine equations can
already show much more complex behavior. The equation

 has no solution except when  is a perfect square.
But the Pell equation  (already studied in
antiquity) has infinitely many solutions whenever  is
positive and not a perfect square. The smallest solution for 
is given by

Flatten[{x, 1, x, 0, y}] === Flatten[{0, y, 0, y, x}]

{___, x__, x__, ___}

k = 3

{0 ! {0, 1, 2}, 1 ! {0, 2}, 2 ! {1}} {0}
n

 Nest[DeleteCases[Flatten[Map[Table[Append[#, i - 1],
{i, k}] &, #], 1], {___, x__, x__, ___}] &, {{}}, n]

3n/4

2n/2

k

k = 2 {___, x__, y__, x__, y__, ___}

k > 2
___ x__

y__

x3 + x + 1 2 0

a x 2 b y + c

ExtendedGCD[a, b]

3 x Ð 4 y 4 x Ð 5 y 3 x Ð 4 y + 1 4 x Ð 5 y + 3

x2 2 a y 2 a
x2 2 a y 2 + 1

a
x

 Numerator[FromContinuedFraction[
ContinuedFraction[�!!!!a , ( If[EvenQ[#], #, 2 #] &)[

Length[Last[ContinuedFraction[�!!!!a ]]]]]]]
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This is plotted below; complicated variation and some very
large values are seen (with  for example

).

In three variables, the equation  yields so-called
Pythagorean triples , , etc. And even in this
case the set of possible solutions for  and  in the pictures
below looks fairly complicated—though after removing
common factors, they are in fact just given by

. (See page 1078.)

The pictures below show the possible solutions for  and  in
various Diophantine equations. As in other systems based on
numbers, nested patterns are not common—though page
1160 shows how they can in principle be achieved with an
equation whose solutions satisfy .
(The equation  also for example has solutions
only when  is not of the form .) 

Many Diophantine equations have at most very sparse
solutions. And indeed for example Fermat’s Last Theorem
states that  can never be satisfied for . With

four variables one has for example ,
—but with fourth powers the smallest result

is . 

(See pages 791 and 1164.)

â Matrices satisfying constraints. One can consider for
example magic squares, Latin squares (quasigroup
multiplication tables), and matrices having the Hadamard
property discussed on page 1073. One can also consider
matrices whose powers contain certain patterns. (See also
page 805.)

â Finite groups and semigroups. Any finite group or
semigroup can be thought of as defined by having a
multiplication table which satisfies the constraints given on
page 887. The total number of semigroups increases faster
than exponentially with size in a seemingly quite uniform
way. But the number of groups varies in a complicated way
with size, as in the picture below. (The peaks are known to
grow roughly like —intermediate
between polynomial and exponential.) As mentioned on
page 938, through major mathematical effort, a complete
classification of all finite so-called simple groups that in effect
have no factors is known. Most such groups come in families
that are easy to characterize; a handful of so-called sporadic
ones are much more difficult to find. But this classification
does not immediately provide a practical way to enumerate
all possible groups. (See also pages 938 and 1032.)

â Constraints on formulas. Many standard problems of
algebraic computation can be viewed as consisting in finding
formulas that satisfy certain constraints. An example is exact
solution of algebraic equations. For quadratic equations the
standard formula gives solutions for arbitrary coefficients in
terms of square roots. Similar formulas in terms of th roots
have been known since the 1500s for equations with degrees

 up to 4, although their  starting at  increases
like 6, 25, 183, 718. For higher degrees it is known that such
general formulas must involve other functions. For degrees 5
and 6 it was shown in the late 1800s that  or

 are sufficient, although for degrees 5 and
6 respectively the necessary formulas have a  in the
billions. (Sharing common subexpressions yields a 
in the thousands.) (See also page 1129.)

a = 61
x 2 1766319049
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