
EXCERPTED FROM

Emulating Cellular
Automata with Other

Systems

SECTION 11.6

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

664

Emulating Cellular Automata with Other Systems

In the previous section we discovered the rather remarkable fact that

cellular automata can be set up to emulate an extremely wide range of

other types of systems. But is this somehow a special feature of cellular

automata, or do other systems also have similar capabilities?

In this section we will discover that in fact almost all of the

systems that we considered in the previous section—and in Chapter 3—

have the same capabilities. And indeed just as we showed that each of

these various systems could be emulated by cellular automata, so now

we will show that these systems can emulate cellular automata.

As a first example, the pictures below show how mobile automata

can be set up to emulate cellular automata. The basic idea is to have the

active cell in the mobile automaton sweep backwards and forwards,

updating cells as it goes, in such a way that after each complete sweep it

has effectively performed one step of cellular automaton evolution.

(a) (b)

(a)

(b)

Examples of mobile automata emulating cellular automata. In case (a) the rules for the mobile automaton are set
up to emulate the rule 90 elementary cellular automaton; in case (b) they are set up to emulate rule 30. The
pictures on the right are obtained by keeping only the steps indicated by arrows on the left, corresponding to
times when the active cell in the mobile automaton is further to the left than it has ever been before. The mobile
automata used here involve 7 possible colors for each cell.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

665

The specific pictures at the bottom of the facing page are for

elementary cellular automata with two possible colors for each cell and

nearest-neighbor rules. But the same basic idea can be used for cellular

automata with rules of any kind. And this implies that it is possible to

construct for example a mobile automaton which emulates the

universal cellular automata that we discussed a couple of sections ago.

Such a mobile automaton must then itself be universal, since the

universal cellular automaton that it emulates can in turn emulate a

wide range of other systems, including all possible mobile automata.

A similar scheme to the one for mobile automata can also be used

for Turing machines, as illustrated in the pictures below. And once

again, by emulating the universal cellular automaton, it is then possible

to construct a universal Turing machine.

But as it turns out, a universal Turing machine was already

constructed in 1936, using somewhat different methods. And in fact

that universal Turing machine provided what was historically the very

first clear example of universality seen in any system.

(a) (b)

(a)

(b)

(a)

(b)

Examples of Turing machines that emulate cellular automata with rules 90 and 30. The pictures on the right are obtained by
keeping only the steps indicated by arrows on the left. The Turing machines have 6 states and 3 possible colors for each cell.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

666

Continuing with the types of systems from the previous section,

we come next to substitution systems. And here, for once, we find that

at least at first we cannot in general emulate cellular automata. For as

we discussed on page 83, neighbor-independent substitution systems

can generate only patterns that are either repetitive or nested—so they

can never yield the more complicated patterns that are, for example,

needed to emulate rule 30.

But if one generalizes to neighbor-dependent substitution systems

then it immediately becomes very straightforward to emulate cellular

automata, as in the pictures below.

What about sequential substitution systems? Here again it turns

out to be fairly easy to emulate cellular automata—as the pictures at

the top of the facing page demonstrate.

Perhaps more surprisingly, the same is also true for ordinary tag

systems. And even though such systems operate in an extremely simple

underlying way, the pictures at the bottom of the facing page

demonstrate that they can still quite easily emulate cellular automata.

What about symbolic systems? The structure of these systems is

certainly vastly different from cellular automata. But once again—as

the picture at the top of page 668 shows—it is quite easy to get these

systems to emulate cellular automata.

Neighbor-dependent substitution systems that emulate cellular automata with rules 90 and 30. The
systems shown are simple examples of neighbor-dependent substitution systems with highly
uniform rules always yielding just one cell and corresponding quite directly to cellular automata.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

667

(a)

(b)

(a) (b)

Sequential substitution systems that emulate cellular automata with rules 90
and 30. The pictures at the top above are obtained by keeping only the steps
indicated by arrows on the left. The sequential substitution systems involve
elements with 3 possible colors.

rule 90 rule 90 shifted

(a)

rule 30 rule 30 shifted

(b)

rule 90 rule 90 shifted

(a)

rule 30 rule 30 shifted

(b)

(a) (b)

(a)

(b)

Tag systems that emulate the rule 90 and rule 30 cellular automata. The pictures
at the top above are obtained by keeping only the steps indicated by arrows on
the left. Both tag systems involve 6 colors.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

668

And as soon as one knows that any particular type of system is

capable of emulating any cellular automaton, it immediately follows

that there must be examples of that type of system that are universal.

So what about the other types of systems that we considered in

Chapter 3? One that we have not yet discussed here are cyclic tag

systems. And as it turns out, we will end up using just such systems later

in this chapter as part of establishing a dramatic example of universality.

But to demonstrate that cyclic tag systems can manage to

emulate cellular automata is not quite as straightforward as to do this

for the various kinds of systems we have discussed so far. And indeed

we will end up doing it in several stages. The first stage, illustrated in

the picture at the top of the facing page, is to get a cyclic tag system to

emulate an ordinary tag system with the property that its rules depend

only on the very first element that appears at each step.

r � p � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � q � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � q � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � q � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � � p � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � � q � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � � p � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � � q � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � p � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � � p � � p � � r �
r � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � � p � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � � p � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � � q � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � � p � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � � p � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � � p � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � � p � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � � p � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � � p � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � � p � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � p � � � q � � p � � p � � r �
p � r � p � � p � � q � � p � � q � � p � � p � � p � � p � � p � � q � � p � � q � � � p � � p � � r �

(a)

(a) (b)

rule 90 shifted rule 30 shifted

(a)
ï[x_][ï][ï][ï] ! ï[x[ï]][ï][ï], ï[x_][ï][ï][ð] ! ï[x[ð]][ï][ð], ï[x_][ï][ð][ï] ! ï[x[ï]][ð][ï], ï[x_][ï][ð][ð] ! ï[x[ð]][ð][ð], ï[x_][ð][ï][ï] ! ï[x[ð]][ï][ï],
ï[x_][ð][ï][ð] ! ï[x[ï]][ï][ð], ï[x_][ð][ð][ï] ! ï[x[ð]][ð][ï], ï[x_][ð][ð][ð] ! ï[x[ï]][ð][ð], ñ[x_] ! ï[ñ[ï][ï]][x], ï[x_][ï][ï][ñ] ! x[ï][ï][ñ]

Symbolic systems set up to emulate cellular automata that have rules 90 and 30. Unlike the examples of symbolic systems in
Chapter 3, which involve only one symbol, these symbolic systems involve three symbols, , and . ï ð ñ

(b)
ï[x_][ï][ï][ï] ! ï[x[ï]][ï][ï], ï[x_][ï][ï][ð] ! ï[x[ð]][ï][ð], ï[x_][ï][ð][ï] ! ï[x[ð]][ð][ï], ï[x_][ï][ð][ð] ! ï[x[ð]][ð][ð], ï[x_][ð][ï][ï] ! ï[x[ð]][ï][ï],
ï[x_][ð][ï][ð] ! ï[x[ï]][ï][ð], ï[x_][ð][ð][ï] ! ï[x[ï]][ð][ï], ï[x_][ð][ð][ð] ! ï[x[ï]][ð][ð], ñ[x_] ! ï[ñ[ï][ï]][x], ï[x_][ï][ï][ñ] ! x[ï][ï][ñ]

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

669

And having done this, the next stage is to get such a tag system to

emulate a Turing machine. The pictures on the next page illustrate how

this can be done. But at least with the particular construction shown,

the resulting Turing machine can only have cells with two possible

colors. The pictures below demonstrate, however, that such a Turing

tag system evolution tag system expanded evolution

tag system rule

cyclic tag system rule

A cyclic tag system
emulating a tag system that
depends only on the first
element at each step. In the
expanded tag system
evolution, successive colors
of elements are encoded by
having a black cell at
successive positions inside a
fixed block of white cells.

cyclic tag system evolution

Turing machines with two
colors emulating ones with
more colors.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

670

tag system ruletag system evolution (150 steps)

tag system compressed evolution (1500 steps)

Turing machine evolution

Turing machine rule

Turing machine left and right numbers

Emulating a Turing machine with a tag system that depends only on the first element at each step. The configuration of cells on each
side of the head in the Turing machine is treated as a base 2 number. At the steps indicated by arrows the tag system yields
sequences of dark cells with lengths that correspond to each of these numbers.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

671

machine can readily be made to emulate a Turing machine with any

number of colors. And through the construction of page 665 this then

finally shows that a cyclic tag system can successfully emulate any

cellular automaton—and can thus be universal.

This leaves only one remaining type of system from Chapter 3:

register machines. And although it is again slightly complicated, the

pictures on the next page—and below—show how even these systems

can be made to emulate Turing machines and thus cellular automata.

So what about systems based on numbers, like those we

discussed in Chapter 4? As an example, one can consider a

generalization of the arithmetic systems discussed on page 122—in

which one has a whole number , and at each step one finds the

remainder after dividing by a constant, and based on the value of this

remainder one then applies some specified arithmetic operation to .

register 1
digits

(reversed)

(203,205 steps)

register 2
digits

Turing machine evolution

Turing machine rule

A register machine emulating a
slightly more complicated Turing
machine than on the next page.

register machine program

n

n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

672

Turing machine rule

register machine program

register 1
digits

(reversed)

(10,000 steps)

register 2
digits

Turing machine evolution

register machine evolution (300 steps)

register 1 register 2 register 3

register machine compressed evolution (1800 steps)

register 1 register 2

An example of a register machine set up to emulate a Turing machine. The Turing machine used
here has two states for the head; the register machine program has 72 instructions and uses
three registers. The register machine compressed evolution keeps only steps corresponding to
every other time the third register gets incremented from zero.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

673

The picture below shows that such a system can be set up to

emulate a register machine. And from the fact that register machines

are universal it follows that so too are such arithmetic systems.

And indeed the fact that it is possible to set up a universal system

using essentially just the operations of ordinary arithmetic is closely

related to the proof of Gödel’s Theorem discussed on page 784.

But from what we have learned in this chapter, it no longer seems

surprising that arithmetic should be capable of achieving universality.

Indeed, considering all the kinds of systems that we have found can

exhibit universality, it would have been quite peculiar if arithmetic had

somehow not been able to support it.

5 = 0 + 5 20 30

11 = 1+ 5 21 30

12 = 2 + 5 21 30

33 = 3 + 5 21 31

17 = 2 + 5 20 31

48 = 3 + 5 20 32

49 = 4 + 5 20 32

15 = 0 + 5 20 31

31 = 1+ 5 21 31

10 = 0 + 5 21 30

21 = 1+ 5 22 30

22 = 2 + 5 22 30

63 = 3 + 5 22 31

32 = 2 + 5 21 31

93 = 3 + 5 21 32

47 = 2 + 5 20 32

138 = 3 + 5 20 33

139 = 4 + 5 20 33

45 = 0 + 5 20 32

91 = 1+ 5 21 32

30 = 0 + 5 21 31

61 = 1+ 5 22 31

20 = 0 + 5 22 30

41 = 1+ 5 23 30

42 = 2 + 5 23 30

123 = 3 + 5 23 31

62 = 2 + 5 22 31

183 = 3 + 5 22 32

92 = 2 + 5 21 32

273 = 3 + 5 21 33

137 = 2 + 5 20 33

408 = 3 + 5 20 34

409 = 4 + 5 20 34

135 = 0 + 5 20 33

271 = 1+ 5 21 33

90 = 0 + 5 21 32

181 = 1+ 5 22 32

60 = 0 + 5 22 31

121 = 1+ 5 23 31

40 = 0 + 5 23 30

81 = 1+ 5 24 30

82 = 2 + 5 24 30

243 = 3 + 5 24 31

122 = 2 + 5 23 31

363 = 3 + 5 23 32

182 = 2 + 5 22 32

543 = 3 + 5 22 33

272 = 2 + 5 21 33

813 = 3 + 5 21 34

407 = 2 + 5 20 34

1218 = 3 + 5 20 35

1219 = 4 + 5 20 35

405 = 0 + 5 20 34

811 = 1+ 5 21 34

270 = 0 + 5 21 33

541 = 1+ 5 22 33

180 = 0 + 5 22 32

361 = 1+ 5 23 32

120 = 0 + 5 23 31

241 = 1+ 5 24 31

80 = 0 + 5 24 30

2 n + 1

0

(n�-�1) /3

1

3 (n�-�1)

2

(n + 1) /2

3

(n�-�4) /3

4

2 n + 1

5

n + 1

6

3 (n�-�1)

7

n + 1

8

n + 1

9

2 n + 1

10

n + 1

11

3 (n�-�1)

12

(n + 1) /2

13

n + 1

14

2 n + 1

15

(n�-�1) /3

16

3 (n�-�1)

17

n + 1

18

(n�-�4) /3

19

2 n + 1

20

n + 1

21

3 (n�-�1)

22

(n + 1) /2

23

n + 1

24

2 n + 1

25

n + 1

26

3 (n�-�1)

27

n + 1

28

n + 1

29

An example of how a simple arithmetic
system can emulate a register machine.
The arithmetic system takes the value
that it obtains at each step, computes

, and then depending on the
result applies to one of the arithmetic
operations specified by the rule on the
left below. The rule is set up so that if the
value of is written in the form , ,

 then the values of , and on
successive steps correspond
respectively to the position of the
register machine in its program, and to
the values of the two registers (2 and 3
appear because they are the first two
primes; 5 appears because it is the
length of the register machine program).
The values of in the pictures on the left
are indicated on a logarithmic scale.

n

Mod[n, 30]

n

n i + 5 2a

3b i a b

n

