
EXCERPTED FROM

A Universal Cellular
Automaton

SECTION 11.4

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

644

experience with computer languages, there is already an indication that

the range of systems that are universal might be somewhat broader.

Indeed, Mathematica turns out to be a particularly good example,

in which one can pick very different sets of operations to use, and yet

still be able to implement exactly the same kinds of programs.

So what about cellular automata and other systems with simple

rules? Is it possible for these kinds of systems to be universal?

At first, it seems quite implausible that they could be. For the

intuition that one gets from practical computers and computer

languages seems to suggest that to achieve universality there must be

some fundamentally fairly sophisticated elements present.

But just as we found that the intuition which suggests that

simple rules cannot lead to complex behavior is wrong, so also the

intuition that simple rules cannot be universal also turns out to be

wrong. And indeed, later in this chapter, I will show an example of a

cellular automaton with an extremely simple underlying rule that can

nevertheless in the end be seen to be universal.

In the past it has tended to be assumed that universality is

somehow a rare and special quality, usually possessed only by systems

that are specifically constructed to have it. But one of the results of this

chapter is that in fact universality is a much more widespread

phenomenon. And in the next chapter I will argue that for example it

also occurs in a wide range of important systems that we see in nature.

A Universal Cellular Automaton

As our first specific example of a system that exhibits universality, I

discuss in this section a particular universal cellular automaton that

has been set up to make its operation as easy to follow as possible.

The rules for this cellular automaton itself are always the same.

But the fact that it is universal means that if it is given appropriate

initial conditions it can effectively be programmed to emulate for

example any possible cellular automaton—with any set of rules.

The next three pages show three examples of this.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

645

rule 254

The universal cellular automaton emulating elementary rule 254. Each cell in rule 254 is
represented by a block of 20 cells in the universal cellular automaton. Each of these
blocks encodes both the color of the cell it represents, and the rule for updating this color.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

646

rule 90

The universal cellular automaton emulating elementary rule 90. The underlying rules for
the universal cellular automaton are exactly the same as on the previous page. But each
block in the initial conditions now contains a representation of rule 90 rather than rule 254.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

647

rule 30

The universal cellular automaton emulating rule 30. A total of 848 steps in the
evolution of the universal cellular automaton are shown, corresponding to 16
steps in the evolution of rule 30.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

648

On each page the underlying rules for the universal cellular

automaton are exactly the same. But on the first page, the initial

conditions are set up so as to make the universal cellular automaton

emulate rule 254, while on the second page they are set up to make it

emulate rule 90, and on the third page rule 30.

The pages that follow show how this works. The basic idea is

that a block of 20 cells in the universal cellular automaton is used to

represent each single cell in the cellular automaton that is being

emulated. And within this block of 20 cells is encoded both a

specification of the current color of the cell that is being represented, as

well as the rule by which that color is to be updated.

0 1 1

0

0

1

1

0 1 1

0

0

1

1 1

1

0 1 0

1

1

0 1

1

1

1

1

0 1 0

1

1

0 1

1 1

0 1 1

0

0

1

1

0 1 1

0

0

1

0

0 1 0

1

1

0

0

0 1 0

1

1

0

1

0 1 1

0

0

1

1

0 1 1

0

0

1

1

1

1 1 0

1

1

0

0

1

0

0

0 1 0

1

1

0

0

1

0 0 1

0

0

1

1

0

1

1 0 1

0

0

1

1

0

1

The rules for the universal cellular automaton. There are 19 possible colors for each cell, represented here by 19 different icons.
Since the new color of each cell depends on the previous colors of a total of five cells, there are in principle 2,476,099 cases to
cover. But by using to stand for a cell with any possible color, many cases are combined. Note that the cases shown are in a
definite order reading down successive columns, with special cases given before more general ones. With the initial conditions
used, there are some combinations of cells that can never occur, and these are not covered in the rules shown.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

649

1 1 1 1 1 1 1 0 = 254

1
1
1

1
1

1

1
1
1

1

0
1
1

0
1

0

0
1
1

1

1
0
1

1
0

1

1
0
1

1

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

1

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

1
1
1

1
1

1

1
1
1

1

0
1
1

0
1

0

0
1
1

1

1
0
1

1
0

1

1
0
1

1

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

1

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

1
1
1

1
1

1

1
1
1

1

0
1
1

0
1

0

0
1
1

1

1
0
1

1
0

1

1
0
1

1

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

1

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

cell values

rule

left cell

center cell

right cell

result

new step

0 1 0

Details of how the universal cellular automaton emulates rule
254. Each of the blocks in the universal cellular automaton
represents a single cell in rule 254, and encodes both the current
color of the cell and the form of the rule used to update it.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

650

1
1
1

1
1

1

1
1
1

0

0
1
1

0
1

0

0
1
1

1

1
0
1

1
0

1

1
0
1

0

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

0

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

1
1
1

1
1

1

1
1
1

0

0
1
1

0
1

0

0
1
1

1

1
0
1

1
0

1

1
0
1

0

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

0

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

1
1
1

1
1

1

1
1
1

0

0
1
1

0
1

0

0
1
1

1

1
0
1

1
0

1

1
0
1

0

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

0

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

cell values

rule

left cell

center cell

right cell

result

new step

0 1 0

0 1 0 1 1 0 1 0 = 90

Details of how the universal cellular automaton emulates
rule 90. The only difference in initial conditions from the
picture on the previous page is that each block now encodes
rule 90 instead of rule 254.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

651

1
1
1

1
1

1

1
1
1

0

0
1
1

0
1

0

0
1
1

0

1
0
1

1
0

1

1
0
1

0

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

1

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

1
1
1

1
1

1

1
1
1

0

0
1
1

0
1

0

0
1
1

0

1
0
1

1
0

1

1
0
1

0

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

1

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

1
1
1

1
1

1

1
1
1

0

0
1
1

0
1

0

0
1
1

0

1
0
1

1
0

1

1
0
1

0

0
0
1

0
0

0

0
0
1

1

1
1
0

1
1

1

1
1
0

1

0
1
0

0
1

0

0
1
0

1

1
0
0

1
0

1

1
0
0

1

0
0
0

0
0

0

0
0
0

0

0

1
1
1

1
1

1

1
1
1

1
1

1

1
1

1

1

1
1

cell values

rule

left cell

center cell

right cell

result

new step

0 1 0

0 0 0 1 1 1 1 0 = 30

Details of how the universal cellular automaton emulates
rule 30. Once again, the only difference in initial conditions
from the facing page is that each block now encodes rule 30
instead of rule 90.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

652

In the examples shown, the cellular automata being emulated

have 8 cases in their rules, with each case giving the outcome for one of

the 8 possible combinations of colors of a cell and its immediate

neighbors. In every block of 20 cells in the universal cellular

automaton, these rules are encoded in a very straightforward way, by

listing in order the outcomes for each of the 8 possible cases.

To update the color of the cell represented by a particular block,

what the universal cellular automaton must then do is to determine

which of the 8 cases applies to that cell. And it does this by successively

eliminating cases that do not apply, until eventually only one case

remains. This process of elimination can be seen quite directly in the

pictures on the previous pages. Below each large black or white triangle,

there are initially 8 vertical dark lines. Each of these lines corresponds to

one of the 8 cases in the rule, and the system is set up so that a particular

line ends as soon as the case to which it corresponds has been eliminated.

It so happens that in the universal cellular automaton discussed

here the elimination process for a given cell always occurs in the block

immediately to the left of the one that represents that cell. But the

process itself is not too difficult to understand, and indeed it works in

much the way one might expect of a practical electronic logic circuit.

There are three basic stages, visible in the pictures as three stripes

moving to the left across each block. The first stripe carries the color of the

left-hand neighbor, and causes all cases in the rule where that neighbor does

not have the appropriate color to be eliminated. The next two stripes then

carry the color of the cell itself and of its right-hand neighbor. And after all

three stripes have passed, only one of the 8 cases ever survives, and this case

is then the one that gives the new color for the cell.

The pictures on the last few pages have shown how the universal

cellular automaton can in effect be programmed to emulate any cellular

automaton whose rules involve nearest neighbors and two possible

colors for each cell. But the universal cellular automaton is in no way

restricted to emulating only rules that involve nearest neighbors. And

thus on the facing page, for example, it is shown emulating a rule that

involves next-nearest as well as nearest neighbors.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

653

The universal cellular automaton emulating one step in the evolution of the rule shown above,
which involves next-nearest as well as nearest-neighbor cells. The rule now covers a total of 32
cases, corresponding to the possible arrangements of colors of a cell and its nearest and
next-nearest neighbors. The picture shows the evolution of five cells according to the rule shown,
with each cell now being represented by a block of 70 cells in the universal cellular automaton.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

654

The blocks needed to represent each cell are now larger, since they

must include all 32 cases in the rule. There are also five elimination

stages rather than three. But despite these differences, the underlying rule

for the universal cellular automaton remains exactly the same.

What about rules that have more than two possible colors for

each cell? It turns out that there is a general way of emulating such

rules by using rules that have just two colors but a larger number of

neighbors. The picture on the facing page shows an example. The idea is

that each cell in the three-color cellular automaton is represented by a

block of three cells in the two-color cellular automaton. And by

looking at neighbors out to distance five on each side, the two-color

cellular automaton can update these blocks at each step in direct

correspondence with the rules of the three-color cellular automaton.

The same basic scheme can be used for rules with any number of

colors. And the conclusion is therefore that the universal cellular

automaton can ultimately emulate a cellular automaton with

absolutely any set of rules, regardless of how many neighbors and how

many colors they may involve.

This is an important and at first surprising result. For among other

things, it implies that the universal cellular automaton can emulate

cellular automata whose rules are more complicated than its own. If one

did not know about the basic phenomenon of universality, then one

would most likely assume that by using more complicated rules one

would always be able to produce new and different kinds of behavior.

But from studying the universal cellular automaton in this section,

we now know that this is not in fact the case. For given the universal

cellular automaton, it is always in effect possible to program this cellular

automaton to emulate any other cellular automaton, and therefore to

produce whatever behavior the other cellular automaton could produce.

In a sense, therefore, what we can now see is that nothing

fundamental can ever be gained by using rules that are more

complicated than those for the universal cellular automaton. For given

the universal cellular automaton, more complicated rules can always be

emulated just by setting up appropriate initial conditions.

T H E N O T I O N O F C O M P U T A T I O N C H A P T E R 1 1

655

An example of how a cellular automaton with three possible colors and
nearest-neighbor rules can be emulated by a cellular automaton with only two

possible colors but a larger number of neighbors (in this case five on each side). The basic idea is to represent each cell in
the three-color rule by a block of three cells in the two-color rule, according to the correspondence given on the left. The
three-color rule illustrated here is totalistic code 1599 from page 70.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

656

Looking at the specific universal cellular automaton that we have

discussed in this section, however, we would probably be led to assume

that while the phenomenon of universality might be important in

principle, it would rarely be relevant in practice. For the rules of the

universal cellular automaton in this section are quite complicated—

involving 19 possible colors for each cell, and next-nearest as well as

nearest neighbors. And if such complication was indeed necessary in

order to achieve universality, then one would not expect that universality

would be common, for example, in the systems we see in nature.

But what we will discover later in this chapter is that such

complication in underlying rules is in fact not needed. Indeed, in the

end we will see that universality can actually occur in cellular

automata with just two colors and nearest neighbors. The operation of

such cellular automata is considerably more difficult to follow than the

operation of the universal cellular automaton discussed in this section.

But the existence of universal cellular automata with such simple

underlying rules makes it clear that the basic results we have obtained

in this section are potentially of very broad significance.

Emulating Other Systems with Cellular Automata

The previous section showed that a particular universal cellular

automaton could emulate any possible cellular automaton. But what

about other types of systems? Can cellular automata also emulate these?

With their simple and rather specific underlying structure one

might think that cellular automata would never be capable of

emulating a very wide range of other systems. But what I will show in

this section is that in fact this is not the case, and that in the end

cellular automata can actually be made to emulate almost every single

type of system that we have discussed in this book.

As a first example of this, the picture on the facing page shows

how a cellular automaton can be made to emulate a mobile automaton.

The main difference between a mobile automaton and a cellular

automaton is that in a mobile automaton there is a special active cell

that moves around from one step to the next, while in a cellular

