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Abstract. Billey–Konvalinka–Swanson studied the asymptotic distribution of the coef-
ficients of Stanley’s q-hook length formula, or equivalently the major index on standard
tableaux of straight shape and certain skew shapes. We extend those investigations to Stan-
ley’s q-hook-content formula related to semistandard tableaux and q-hook length formulas of
Björner–Wachs related to linear extensions of labeled forests. We show that, while their co-
efficients are “generically” asymptotically normal, there are uncountably many non-normal
limit laws. More precisely, we introduce and completely describe the compact closure of
the metric space of distributions of these statistics in several regimes. The additional limit
distributions involve generalized uniform sum distributions which are topologically param-
eterized by certain decreasing sequence spaces with bounded 2-norm. The closure of these
distributions in the Lévy metric gives rise to the space of DUSTPAN distributions. As an
application, we completely classify the limiting distributions of the size statistic on plane
partitions fitting in a box.
Keywords. Hook length, q-analogues, major index, semistandard tableaux, plane partitions,
forests, asymptotic normality, limit laws, Irwin–Hall distribution
Mathematics Subject Classifications. 05A16 (Primary), 60C05, 60F05 (Secondary)

1. Introduction

The famed Frame–Robinson–Thrall hook length formula is a rational product formula for count-
ing the number of standard Young tableaux of a given partition shape λ [FRT54], denoted
SYT(λ). Stanley’s q-analogue of the hook length formula [Sta99, Cor. 7.21.5] is a remark-
ably simple generalization for the polynomial generating function of the major index statistic on

∗The first author was partially supported by the Washington Research Foundation and DMS-1764012 from the
National Science Foundation.
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SYT(λ). His q-hook length formula replaces each integer n with the corresponding q-integer
[n]q := 1 + q + · · ·+ qn−1, times an overall shift of qr(λ) where r(λ) :=

∑
i>1(i− 1)λi:∑

T∈SYT(λ)

qmaj(T ) = qr(λ) [n]q!∏
u∈λ[hu]q

. (1.1)

Consequently, (1.1) encodes probabilistic information concerning the distribution of the major
index statistic when sampling from SYT(λ) uniformly at random.

In [BKS20], the present authors together with Konvalinka considered the distribution of
maj on SYT(λ). Given a sequence of partitions, we were able to completely determine when
the corresponding sequence of standardized random variables converges in distribution. Equiv-
alently, we determined the asymptotic distribution of the coefficients of Stanley’s q-hook length
formula. For these random variables, countably many continuous limit laws are possible: one
gets the normal distribution “generically” and, in certain degenerate regimes, the Irwin–Hall
distributions. A key technical tool in [BKS20] is an exact formula for the cumulants of the un-
derlying random variables, which follows easily from work of Chen–Wang–Wang [CWW08]
and Hwang–Zacharovas [HZ15] together with Stanley’s q-hook length formula (1.1).

The present work generalizes the study in [BKS20] to the next most famous q-analogues
of the hook length formula: Stanley’s q-hook-content formula for semistandard tableaux, and
formulae of Björner–Wachs for linear extensions of labeled forests. See Table 1.1 for a summary
of the q-hook-type formulas we use. The limit laws in these cases turn out to be much more
intricate than in [BKS20], with uncountably many rather than countably many possible limits.

Typical central limit theorems are based on an integer sequence so they “let n → ∞,” even
when the limit laws are complicated such as in the work of Chatterjee–Diaconis [CD14]. By
contrast, the combinatorial statistics considered here and in [BKS20] have much more complex
indexing sets involving objects like integer partitions and forests. We address this complication
by considering sets of standardized distributions as metric spaces under the Lévy metric on all
distributions, together with a corresponding space of parameters. Our overarching goal is to
describe the closure of these metric spaces and to completely classify which sequences tend to
which limit points in terms of the relevant parameter spaces.

A key step in our approach is the introduction of a new family of continuous univariate distri-
butions which we call DUSTPAN distributions1. These distributions involve convolutions of the
normal law with a countable family of uniform measures supported on some intervals. More pre-
cisely, we have the following abstract description. See Definition 3.24 for the concrete version.

Theorem 1.1. The family of DUSTPAN distributions with variance 1 is uniquely characterized
as the smallest family F of standardized real-valued distributions such that:

(i) U [0, 1]∗ ∈ F

(ii) If X, Y ∈ F , then the standardized independent sum random variable αX+βY√
α2+β2

belongs to
F for any α, β ∈ R not both 0.

(iii) F is closed under convergence in distribution.

1A “distribution associated to a uniform sum for t plus an independent normal distribution.”
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Statistic(s) set q-hook formula(s) cumulant expression(s)

maj SYT(λ) qr(λ) [n]q !∏
u∈λ[hu]q

∑n
i=1 j

d −
∑

u∈λ h
d
u

rank SSYT6m(λ) qr(λ)
∏

u∈λ
[m+cu]q

[hu]q

∑
u∈λ(m+ cu)

d − hdu
qr(λ)

∏
16i<j6m

[λi−λj+j−i]q
[j−i]q

∑
16i<j6m(λi−λj+j−i)d−(j−i)d

size PP(a×b×c)
∏a
i=1

∏b
j=1

∏c
k=1

[i+j+k−1]q
[i+j+k−2]q

∑
i,j,k(i+j+k−1)d−(i+j+k−2)d

maj L(P,w) qmaj(P,w) [n]q !∏
u∈P [hu]q

∑n
i=1 j

d −
∑

u∈λ h
d
u

inv qinv(P,w) [n]q !∏
u∈P [hu]q

Table 1.1: Summary of combinatorial objects, statistics, q-hook formulas, and cumulant expres-
sions used in this paper. Cumulants are obtained from cumulant expressions by multiplying
by Bd

d
for d > 1. See Section 2 for details.

The general strategy of our arguments is as follows. First, we convert formulas involving
ratios of q-integers into explicit expressions for the cumulants. In most cases these expres-
sions involve significant cancellation. Next comes the difficult step where we find an asymp-
totically cancellation-free approximation to the cumulants in a suitable regime; see for instance
Lemma 5.8. Finally, in all cases considered in this paper, we use the approximate cumulants
to identify the limiting standardized distributions pertaining to SSYT’s and linear extensions of
trees as some particular DUSTPAN distribution. While the first step is quite generic, the com-
binatorial arguments and inequalities underlying the second step are highly domain-specific and
expand on the corresponding approach from [BKS20].

In Section 1.1, we summarize the results of [BKS20] and reframe them in terms of metric
spaces as a prelude to our new, more technical results on semi-standard tableaux and forests.
To keep this introduction to a manageable length and avoid frequent digressions, we assume
familiarity with tableaux combinatorics and cumulants. Detailed background on these topics is
provided in [BKS20, §2] or [Sta99, Ch.7]. The main new results in this paper are outlined in
Section 1.2 and Section 1.3. See Section 2 for background necessary for the new material.

1.1. Standard tableaux

Let Xλ[maj] denote the random variable associated with maj on SYT(λ), sampled uniformly at
random. Then the probability P(Xλ[maj] = k) = aλk/f

λ where SYT(λ)maj(q) =
∑
aλkq

k and
fλ = SYT(λ)maj(1) is the number of standard Young tableaux of shape λ. Hence, studying the
distribution of the random variable Xλ[maj] and the sequence of coefficients {aλk : k > 0} for
SYT(λ)maj(q) are essentially equivalent. Furthermore, any polynomial in q with nonnegative
integer coefficients can be associated to a random variable in a similar way.

For the sake of understanding limiting distributions, we typically standardize the random
variables involved so they have mean 0 and variance 1. In general, given any random variable X
with mean µ and standard deviation σ > 0, let X ∗ := (X − µ)/σ denote the corresponding
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standardized random variable with mean 0 and variance 1. To avoid overemphasizing trivial-
ities, we implicitly ignore degenerate distributions with σ = 0 throughout the paper without
further comment, so every distribution we consider does have a standardization. Write Xn ⇒ X
to mean that the sequence Xn converges in distribution to X . Let N (µ, σ2) denote a normal
distribution, and let IHM denote the M th Irwin–Hall distribution, obtained by summing M
independent continuous uniform [0, 1] random variables. These distributions are also referred
to as uniform sum distributions in the literature. Note that the normal and Irwin–Hall distribu-
tions are continuous, while each of the random variables coming from q-hook formulas below
determine discrete distributions.

We may completely describe the possible limit distributions of Xλ[maj]∗ using a simple
auxiliary statistic on partitions, aft. In particular, let aft(λ) := |λ| −max{λ1, λ

′
1}.

Theorem 1.2. [BKS20, Thm. 1.7] Letλ(1), λ(2), . . . be a sequence of partitions where |λ(N)|→∞
as N →∞.

(i) Xλ(N) [maj]∗ ⇒ N (0, 1) if and only if aft(λ(N))→∞.

(ii) Xλ(N) [maj]∗ ⇒ IH∗M if and only if aft(λ(N))→M <∞.

Theorem 1.2 shows that the setZ>1∪{∞} parameterizes the set of all possible limit distribu-
tions associated to the q-hook length formulas and the standardized random variables Xλ[maj]∗.
If we instead parameterize the limit distributions by

{
1
n

: n ∈ Z>1

}
∪ {0}, we get a parame-

ter space and a distribution space which are homeomorphic as topological spaces. Hence, we
introduce the notion of a metric space of standardized distributions.

Definition 1.3. The metric space of Irwin–Hall distributions is

MIH := {IH∗M : M ∈ Z>1},

and the metric space of SYT distributions is

MSYT := {Xλ[maj]∗ : λ ∈ Par, fλ > 1}.

Endow MIH and MSYT with the topology inherited from the topology of distributions of real-
valued random variables under the Lévy metric, which is characterized by convergence in dis-
tribution [Bil95, Ex. 14.5].

By the Central Limit Theorem, MIH = MIH ∪ {N (0, 1)}. In light of Theorem 1.2, we
have the following very precise description of the minimal compactification of the metric space
of SYT distributions.

Corollary 1.4. In the Lévy metric,

MSYT = MSYT tMIH, (1.2)

which is compact. Moreover, the set of limit points of MSYT is exactly MIH.
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When the set parametrizing our combinatorial statistics has a natural topology, one might
hope that it is homeomorphic to the space of distributions. For example, let

PIH :=

{
1

n
: n ∈ Z>1

}
be the Irwin–Hall parameter space. We endow PIH ⊂ [0, 1] with the topology of pointwise
convergence, so PIH = PIH t {0}. Since IH∗M ⇒ N (0, 1) as M →∞, the bijection PIH →
MIH given by 1

M
7→ IH∗M and 0 7→ N (0, 1) is a homeomorphism. It is less clear how to impose

a topology on standard Young tableaux, but a characterization of the multiset of hook lengths
would be a key consideration. See [BKS20, Thm. 7.1].

Remark 1.5. Recent work of Kim–Lee identified certain normal [KL20] and bivariate normal
[KL21] distributions as limits of normalizations of des and (des,maj) over conjugacy classes in
the symmetric group. In their context, the space of limit distributions is parameterized by real
numbers in [0, 1].

1.2. Semistandard tableaux and plane partitions

Stanley’s hook-content formula is a rational product formula for counting the set SSYT6m(λ) of
semistandard tableaux of shape λ with entries at most m. He gave a natural q-analogue of this
formula, which is in fact the polynomial generating function for the rank statistic on SSYT6m(λ).
A second rational product formula for rank on SSYT6m(λ) with important representation-
theoretic meaning is given by the type A case of the q-Weyl dimension formula. Explicitly,

∑
T∈SSYT6m(λ)

qrank(T ) = qr(λ)
∏
u∈λ

[m+ cu]q
[hu]q

= qr(λ)
∏

16i<j6m

[λi − λj + j − i]q
[j − i]q

. (1.3)

See Section 2.2 for more details.
LetXλ;m[rank] denote the random variable associated with the rank statistic on SSYT6m(λ),

sampled uniformly at random. In Section 2, we derive simple explicit cumulant formulas from
these rational expressions which allow us to study the possible limiting distributions for the
Xλ;m[rank]∗. While the closures MSYT and MIH are completely characterized above, the clo-
sure of the metric space of SSYT distributions,

MSSYT := {Xλ;m[rank]∗ : λ ∈ Par, `(λ) 6 m},

is much more complicated. In particular, we show that the following generalization of the Irwin–
Hall distributions are related to limit laws for Xλ;m[rank]∗.

Definition 1.6. Given a finite multiset t of non-negative real numbers, let

St :=
∑
t∈t

U
[
− t

2
,
t

2

]
, (1.4)
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where we assume the summands are independent and U [a, b] denotes the continuous uniform
distribution supported on [a, b]. If t consists of M copies of 1, then St + M

2
= IHM . By

convention, we consider the multiset t as a weakly decreasing sequence of real numbers t =
{t1 > t2 > · · · > tm}where tm > 0. We call the distribution associated toSt a finite generalized
uniform sum distribution.

Certain sequences of random variables Xλ;m[rank]∗ which converge to a finite generalized
uniform sum distribution are completely characterized by an auxiliary multiset called the dis-
tance multiset. This auxiliary set also comes up in the Turnpike Reconstruction Problem, which
is essentially the problem of identifying all possible sequences t from the following multiset ∆t,
which has applications in DNA sequencing and X-ray crystallography [Wei95, Sect. 10.5.1].
The Turnpike Reconstruction Problem is a potential candidate for being in NP-Intermediate.
See [LSS03] for further computational complexity considerations.

Definition 1.7. The distance multiset of t = {t1 > t2 > · · · > tm} is the multiset

∆t := {ti − tj : 1 6 i < j 6 m}.

To avoid highly cluttered notation coming from the terms in a sequence indexed by a param-
eter N = 1, 2, . . ., we will often drop the explicit dependence on N . For example, let λ and
m denote a sequence of partitions λ(1), λ(2), . . . and a sequence of values m(1),m(2), . . . respec-
tively. If we assume `(λ(N)) < m(N) for each N , we will simply write `(λ) < m. Also, |λ| = n
means there is another sequence n(1), n(2), . . . such that the size of the partition |λ(N)| = n(N),
thus |λ| → ∞ and n → ∞ both imply |λ(N)| → ∞ as N → ∞. Similarly, let Xλ;m[rank]
denote the sequence of uniform random variables associated with SSYT6m(N)(λ(N))rank(q).

Theorem 1.8. Let λ be an infinite sequence of partitions with `(λ) < m where λ1/m
3 → ∞.

Let t(λ) = (t1, . . . , tm) ∈ [0, 1]m be the finite multiset with tk := λk
λ1

for 1 6 k 6 m. Then
Xλ;m[rank]∗ converges in distribution if and only if the multisets ∆t(λ) converge pointwise. In
that case, the limit distribution isN (0, 1) ifm→∞ and S∗d where ∆t(λ)→ d ifm is bounded.

Theorem 1.8 suggests we consider the metric space of distance distributions

MDIST :=
⋃
m>2

{S∗∆t : t = {1 = t1 > · · · > tm = 0}} (1.5)

and its associated parameter space PDIST defined in Section 3.4. By padding with 0’s, we con-
sider PDIST ⊂ RN as a sequence space with the topology of pointwise convergence. The metric
space of distance distributions is significantly more complex than the metric space of Irwin–Hall
distributions. Nonetheless, a careful analysis involving the topology of the parameter space of
distance multisets done in Section 3.4 yields the following results. We will show that both PDIST

and MDIST have natural one point compactifications,

PDIST = PDIST t {0} and MDIST = MDIST t {N (0, 1)},

where 0 is the infinite sequence of 0’s. Furthermore, in analogy with Corollary 1.4, we will show
that the mapPDIST →MDIST given by d 7→ S∗d and 0 7→ N (0, 1) is a homeomorphism between
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sequentially compact spaces. See Theorem 3.32. Therefore, Theorem 1.8 and Theorem 3.32
combine to give the following complete characterization of the possible limit laws for a particular
family of semistandard tableaux in analogy with Corollary 1.4.

Corollary 1.9. For any fixed ε > 0, let

Mε SSYT := {Xλ;m[rank]∗ : `(λ) < m and λ1/m
3 > (|λ|+m)ε} ⊂MSSYT.

Then
MεSSYT = Mε SSYT tMDIST, (1.6)

which is compact. Moreover, the set of limit points of Mε SSYT is MDIST.

Corollary 1.9 already indicates that the limiting distributions associated to semistandard
tableaux are much more varied than the case of standard Young tableaux. See Summary 4.20
for a synopsis of all of the asymptotic limits we have identified for Xλ,m[rank]∗. This includes
several “generic” asymptotic normality criteria and a partial analogue of aft, called weft, which
controls asymptotic normality in many cases of interest. A complete description of the closure
of MSSYT akin to Theorem 1.2 and Corollary 1.4 remains open.

Open Problem 1.10. Describe MSSYT in the Lévy metric. What are all possible limit points?

By studying one more special family of semistandard tableaux, we will show that the Irwin–
Hall distributions are also among the limit points. Thus, the strongest statement we have shown
for the metric space of limit laws for Stanley’s q-hook-content formula is

MSSYT ∪MDIST ∪MIH ∪ {N (0, 1)} ⊂MSSYT.

Using a well-known bijection, the two product formulas in (1.3) imply product formulas for
the generating function of the size statistic on the set PP(a × b × c) of plane partitions fitting
in a box. See the second and third rows of Table 1.1. Let Xa×b×c[size] similarly denote the
random variable associated with the size statistic on PP(a × b × c). In the theorem below, we
give a complete characterization of the limit laws for plane partitions and {Xa×b×c[size]∗}. This
leads to an analog of Corollary 1.4 for the metric space of plane partition distributions, denoted
MPP := {Xa×b×c[size]∗}.

Theorem 1.11. Let a, b, c each be a sequence of positive integers.

(i) Xa×b×c[size]∗ ⇒ N (0, 1) if and only if median{a, b, c} → ∞.

(ii) Xa×b×c[size]∗ ⇒ IHM if ab→M <∞ and c→∞.

Corollary 1.12. In the Lévy metric,

MPP = MPP tMIH, (1.7)

which is compact. Moreover, the set of limit points of MPP is exactly MIH.
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1.3. Linear extensions of forests

Knuth [Knu73, p. 70] gave a rational product formula for counting the set L(P ) of linear ex-
tensions of a forest P , analogous to the Frame–Robinson–Thrall hook length formula. Using
a fixed bijection w : P → [n], one may interpret L(P ) as a set of permutations L(P,w) ⊂ Sn
and consider the distribution of the major index or inversion number statistics on these permu-
tations. Stanley [Sta72] and Björner–Wachs [BW89] gave q-analogues of Knuth’s formula for
major index and number of inversions using certain labelings w. All of these statistics agree up
to an overall shift. See the fourth row of Table 1.1 and Section 2.3 for details.

LetXP denote the random variable associated with the maj or inv statistic onL(P,w) where
w is order-preserving. The distribution of X ∗P is independent of the choice of statistic and the
choice of w. Let

MForest := {X ∗P : P is a forest}

be the metric space of forest distributions. We show that the behavior of the possible limiting
distributions for X ∗P breaks into two distinct regimes. The first “generic” regime exhibits classic
asymptotic normality, while the second “degenerate” regime allows even more continuous limit
laws than have appeared in the theory for standard or semistandard tableaux.

Let rank(P ) denote the length of a maximal chain in P . Let |P | denote the number of
vertices. For example, the rank of a complete binary tree with 2n − 1 vertices is n, so
rank(P ) ≈ log2 |P |. Typically, rank(P ) is much smaller than |P |, so the following theorem
covers the “generic” regime.

Theorem 1.13. Given a sequence of forests P , the corresponding sequence of random vari-
ables X ∗P is asymptotically normal if

|P | → ∞ and lim sup
rank(P )

|P |
< 1.

In the “degenerate” regime, rank(P ) ∼ |P |, so the number of vertices not in a chosen max-
imal chain is relatively small. We completely describe the possible limit distributions when
|P | − rank(P ) = o(|P |1/2). To do so, we generalize both the distance distributions and the
Irwin–Hall distributions to the distributions associated to countable sums of independent, con-
tinuous, uniform random variables with finite mean and variance. We call these generalized
uniform sum distributions. Again we can reduce to sums of independent centralized random
variables St exactly as in (1.4), except now we consider countably infinite multisets
t = {t1 > t2 > . . . } of nonnegative real numbers. See Section 3.1 for details such as cumu-
lants, the density function, and the relation to pointwise convergence in RN.

The variance of a uniform sum random variable St is closely related to the 2-norm of t,

|t|2 :=

(∑
t∈t

t2

)1/2

.

In this notation, Var[St] = B2

2
|t|22, where B2 = 1

6
is a Bernoulli number. Thus, in order

for St to be well defined, it must have finite variance, so |t|2 < ∞ is required. Let
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˜̀
2 := {t = (t1, t2, . . .) : t1 > t2 > · · · > 0, |t|2 < ∞}. The standardized general uniform sum

distributions are indexed by the decreasing sequences t ∈ ˜̀2 such that 1 = Var[St] = B2

2
|t|22,

so |t|22 = 2
B2

= 12. Thus, we will see the number 12 coming up in several places. In particular,
define the hat-operation on t ∈ ˜̀2 with positive 2-norm by

t̂ :=

√
12 · t
|t|2

, (1.8)

so that Var[St̂] = 1 and St̂ = S∗
t̂
.

Now, we can return to the limiting distributions of forests in the “degenerate” regime. We
show in Remark 2.22 that it suffices to consider only standardized trees in order to characterize
all of MForest. In Definition 5.7, we associate to each tree P an elevation multiset e depending
on a maximal chain in P . These multisets determine a new type of limiting distribution related
to the generalized uniform sum distributions, but with another normal summand.

Theorem 1.14. Let P be an infinite sequence of standardized trees with |P | − rank(P ) =
o(|P |1/2). Then X ∗P converges in distribution if and only if the multisets ê converge pointwise to
some element t ∈ ˜̀2. In that case, the limit distribution is St+N (0, σ2) where |t|22/12+σ2 = 1.

Inspired by Theorem 1.14, we begin the study of DUSTPAN distributions associated to ran-
dom variables of the form St +N (0, σ2), assuming the two random variables are independent,
t ∈ ˜̀2, and σ ∈ R>0. The nomenclature DUSTPAN refers to a distribution associated to a
uniform sum for t plus an independent normal distribution. The generalized uniform sum dis-
tributions with variance 1 are the special case when σ = 0. Let

PDUST :=
{
t ∈ ˜̀2 : |t|22 6 12

}
(1.9)

be the standardized DUSTPAN parameter space, considered as a sequence space with the topol-
ogy of pointwise convergence. Define the metric space of standardized DUSTPAN distributions
to be

MDUST := {St +N (0, σ2) : |t|22/12 + σ2 = 1}. (1.10)

The standardized DUSTPAN parameter space PDUST is a closed subset of the sequence
space ˜̀2 ⊂ RN considered as a Fréchet space (rather than a Banach space). See e.g. [MV97,
Ex. 5.18(1)] for more details on this structure. In fact, MDUST is closed as well, and we will
show we have the following homeomorphism of compact spaces.

Theorem 1.15. The map Φ: PDUST → MDUST given by t 7→ St + N (0, σ2) where
σ :=

√
1− |t|22/12 is a homeomorphism between compact spaces.

Corollary 1.16. The limit laws for all possible standardized general uniform sum distributions
MSUMS := {S∗t : t ∈ ˜̀2} is exactly the metric space of DUSTPAN distributions,

MSUMS = MDUST.
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Corollary 1.17. For any fixed ε > 0, let εTREE be the set of standardized trees P for which
|P |−rank(P ) < |P | 12−ε. LetMεTREE := {X ∗P : P ∈ εTREE} ⊂MForest be the corresponding
metric space of distributions. Then

MεTREE = MεTREE tMDUST, (1.11)

which is compact. Moreover, the set of limit points of MεTREE is MDUST.

Remark 1.18. The foundational idea of information geometry is to endow spaces of distribu-
tions with the structure of Riemannian manifolds. Consequently, one may be tempted to recast
Theorem 1.15 in the context of manifold theory. However, the infinite-dimensional case is gener-
ally “not mathematically easy” [Ama16, §2.5, p.39]. Here, ˜̀2 is a Hilbert manifold and a Banach
manifold under the ˜̀2-norm, as well as a Fréchet manifold under pointwise convergence. There
does not appear to be a generally agreed-upon Hilbert, Banach, or Fréchet manifold structure
which the closed subset PDUST inherits from ˜̀2, though it could perhaps be thought of as a man-
ifold with corners. In any case, the inherited Hilbert and Banach topology on PDUST disagrees
with the Fréchet topology, so for our purposes, Theorem 1.15 requires us to use the Fréchet
structure of pointwise convergence. It is consequently unclear if a useful differentiable structure
exists for PDUST.

As with MSSYT, it remains an open problem to completely classify all possible limit points
of MForest. The strongest results we have proven for q-hook length formulas for forests show
MForest∪MDUST ⊂MForest, implying there are an uncountable number of possible limit laws for
distributions associated to forests. In the case of forests, the underlying distributions are always
symmetric and unimodal, in contrast to MSYT which are not always unimodal, see [BKS20,
Conj. 8.1]. So, MForest does not contain MSYT.

More generally, it is natural to ask which limit laws are possible for the coefficients of ar-
bitrary q-hook-type formulas, namely polynomials with nonnegative integer coefficients of the
form

∏n
i=1[ai]q/[bi]q. In [BS22], we call such q-integer quotients cyclotomic generating functions

(CGF’s) and study their properties from a variety of algebraic and probabilistic perspectives.
Let MCGF denote the corresponding metric space of standardized distributions. By Prohkorov’s
Theorem, MCGF is compact.

Open Problem 1.19. Describe MCGF in the Lévy metric. What are all possible limit points? Is
MCGF∪MDUST the metric space of limit laws for q-hook formulas, referring back to the title of
this article?

1.4. Paper organization

The rest of the paper is organized as follows. In Section 2, we provide background for the hook
and cumulant formulas summarized in Table 1.1. In Section 3, we analyze the metric space of
generalized uniform sum distributions and its variations in order to prove Theorem 1.15 and its
analog for the distance distributions. The analysis of MSSYT and MPP is in Section 4. The
analysis of MForest is in Section 5. Some additional open questions and avenues for future work
are listed in Section 6.
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2. Background

In this section, we briefly recall statements from the literature we will need related to asymptotic
distributions, semistandard tableaux and forests. All of our arguments for determining asymp-
totic distributions use the Method of Moments/Cumulants. Using work of Hwang–Zacharovas,
we explain a key insight for this paper, namely that rational product formulas such as appear in
Table 1.1 give rise to explicit formulas for cumulants of the corresponding distributions. See
[BKS20, §2-3] for a more extensive exposition aimed at an audience familiar with enumerative
combinatorics. See [Bil95] for background in probability.

2.1. Asymptotic distributions

Let X be a real-valued random variable. For d ∈ Z>0, the dth moment X is

µd := E[X d].

The moment-generating function of X is

MX (t) := E[etX ] =
∞∑
d=0

µd
td

d!
,

which for us will always have a positive radius of convergence. The characteristic function of X
is

φX (t) := E[eitX ],

which exists for all t ∈ R and which is the Fourier transform of the density or mass function
associated to X . We will need the following technical details for the proofs in future sections.

Remark 2.1. The characteristic function φX (s) := E[eisX ] in general converges only for s ∈ R.
However, if there is a complex analytic function ψ(s) defined in an open ball |s| < ρ such that
φX (s) = ψ(s) for−ρ < s < ρ, then φX (s) exists and is analytic in some strip−β < Im(s) < α
where α, β > ρ. Moreover, for |s| < ρ, φX (s) = ψ(s). In particular, the moment-generating
function E[etX ] converges for −ρ < t < ρ, so X has moments of all orders and is determined
by its moments. See e.g. [Luk70, Thm. 7.1.1, pp.191-193] and [Bil95, Thm. 30.1] for details.

The cumulants κ1, κ2, . . . ofX are defined to be the coefficients of the exponential generating
function

KX (t) :=
∞∑
d=1

κd
td

d!
:= logMX (t) = logE[etX ].

Hence, they satisfy the recurrence

µd = κd +
d−1∑
m=1

(
d− 1

m− 1

)
κmµd−m, (2.1)

so the moments can similarly be recovered from the cumulants and vice versa. In particular,
(2.1) implies κ1 = µ1 = µ = E[X ] and κ2 = Var[X ] = σ2. The cumulants also satisfy
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1. (Homogeneity): the dth cumulant of cX is cdκd for c ∈ R, and

2. (Additivity) the cumulants of the sum of independent random variables are the sums of the
cumulants.

For d > 4, the moments of independent random variables are not necessarily sums of the mo-
ments, so cumulants work much better for our purposes. By homogeneity and additivity, the
associated standardized random variable X ∗ := (X − µ)/σ has cumulants κX ∗1 = 0, κX ∗2 = 1,
and

κX
∗

d =
κXd
σd

=
κXd

(κX2 )d/2
for d > 2. (2.2)

Example 2.2. The normal distribution N (0, 1) is the unique distribution with κ1 = 0, κ2 = 1,
and κd = 0 for d > 3. Therefore, N (µ, σ2) is the unique distribution with cumulants κ1 = µ,
κ2 = σ2, and κd = 0 for d > 3.

Example 2.3. Let U = U [0, 1] be the continuous uniform random variable whose density takes
the value 1 on the interval [0, 1] and 0 otherwise. Then the moment generating function is
MU(t) =

∫ 1

0
etxdx = (et − 1)/t, so the cumulant generating function logMU(t) coincides

with the exponential generating function for the divided Bernoulli numbers Bd
d

for d > 1. Their
exponential generating function ED(t) satisfies

ED(t) :=
∑
d>1

Bd

d

td

d!
= log

(
et − 1

t

)
.

Hence, the dth cumulant forU is κUd = Bd/d for d > 1. Recall from Section 1, IHm is the Irwin–
Hall distribution obtained by addingm independent U [0, 1] random variables. By additivity, the
dth cumulant of IHm is mBd/d. More generally, let S :=

∑m
k=1 U [αk, βk] be the sum of m

independent uniform continuous random variables. Then the dth cumulant of S for d > 2 is

κSd =
Bd

d

m∑
k=1

(βk − αk)d (2.3)

by the homogeneity and additivity properties of cumulants.

The Method of Moments/Cumulants is based on the following theorem. All random vari-
ables we encounter will have moments of all orders.

Theorem 2.4 (Frechét–Shohat Theorem, [Bil95, Theorem 30.2]). Let X1,X2, . . . be a sequence
of real-valued random variables, and let X be a real-valued random variable. Suppose the
moments of Xn and X all exist and the moment generating functions all have positive radius of
convergence. If

lim
n→∞

µXnd = µXd ∀d ∈ Z>1, (2.4)

then X1,X2, . . . converges in distribution to X . Similarly, if

lim
n→∞

κXnd = κXd ∀d ∈ Z>1, (2.5)

then X1,X2, . . . converges in distribution to X .
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Corollary 2.5. A sequence X1,X2, . . . of real-valued random variables on finite sets is asymp-
totically normal if for all d > 3 we have

lim
n→∞

κ
X ∗n
d = lim

n→∞

κXnd
(σXn)d

= 0. (2.6)

For a positive integer n, define the associated q-integer to be the polynomial

[n]q = 1 + q + q2 + · · ·+ qn−1 = (1− qn)/(1− q).

The q-integers factor into cyclotomic polynomials over the integers. Therefore, the hook length
formulas considered in this paper are all products of cyclotomic polynomials. Because these
rational product formulas are polynomial, all cancellation can be done efficiently by taking the
multiset difference between the numerator and denominator of the cyclotomic factors.

In a forthcoming paper [BS22], we investigate general properties of generating functions
which are products of cyclotomic polynomials with nonnegative coefficients. For this paper, we
just need two facts. The first theorem first appeared explicitly in the work of Hwang–Zacharovas
[HZ15, §4.1] building on the work of Chen–Wang–Wang [CWW08, Thm. 3.1], who in turn
used an argument going back at least to Sachkov [Sac97, §1.3.1].

Theorem 2.6. [HZ15, §4.1] Suppose {a1, . . . , am} and {b1, . . . , bm} are multisets of positive
integers such that

P (q) =
m∏
k=1

1− qak
1− qbk

=
m∏
k=1

[ak]q
[bk]q

=
∑
k

ckq
k ∈ Z>0[q]. (2.7)

Let X be a discrete random variable with P[X = k] = ck/P (1). Then the dth cumulant of X is

κXd =
Bd

d

(
m∑
k=1

adk − bdk

)
(2.8)

where Bd is the dth Bernoulli number (with B2 = 1
2
).

The following corollary is proved in [BS22]. It also follows from the tail decay bound in
[HZ15, Lemma 2.8]. We need this for our current investigations for hook length formulas.

Lemma 2.7 (Converse of Frechét–Shohat for CGF’s). Suppose X1,X2, . . . is a sequence of ran-
dom variables corresponding to polynomials of the same form as (2.7). If X ∗n ⇒ X for some
random variable X , then X is determined by its cumulants and, for all d ∈ Z>1,

lim
n→∞

κ
X ∗n
d = κXd .
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2.2. Semistandard Young tableaux and plane partitions

We briefly recall the definition and notation for Schur functions, semistandard tableaux and
plane partitions. For more information on symmetric functions and their connection with the
enumeration of plane partitions and tableaux, see [Sta99, Ch. 7].

A partition λ = (λ1 > λ2 > . . . > λk) is a finite decreasing sequence of positive integers.
Let `(λ) = k denote the length of λ. We think of λ in terms of its Young diagram, which is a
left justified array of `(λ) rows with λi cells on row i and index the cells in matrix notation.

A semistandard Young tableau, or just semistandard tableau for short, of shape λ is a filling of
the cells of λ with positive integer labels, possibly repeated, such that the labels weakly increase
to the right in rows and strictly increase down columns. The set of semistandard Young tableaux
of shape λ is denoted SSYT(λ). The subset of SSYT(λ) filled with integers no greater than
m is denoted SSYT6m(λ), which is a finite set. The type of a semistandard tableau T is the
composition α(T ) = (α1, α2, . . .) where αi is the number of times i appears in T . The Schur
function

sλ(x1, x2, . . .) :=
∑

T∈SSYT(λ)

xα(T )

is the type generating function for all semistandard tableaux of shape λ, where xα := xα1
1 x

α2
2 · · · .

The rank of a semistandard tableau T is a nonnegative integer statistic depending only on
the type. It is defined by

rank(T ) := rank(α) :=
∑
i>1

(i− 1)αi.

For example, for a fixed partition λ, the smallest possible rank of any T ∈ SSYT(λ) occurs
for the tableau with all 1’s in the first row, all 2’s in the second row, etc. in the diagram of λ.
Therefore, the minimal rank is

∑
(i − 1)λi, which we denote as rank(λ). The rank generating

function for SSYT(λ) is given by the principal specialization of the Schur function,

sλ(1, q, q
2, . . .) = SSYT(λ)rank(q) =

∑
T∈SSYT(λ)

qrank(T )

sλ(1, q, q
2, . . . , qm−1) = SSYT6m(λ)rank(q)

∑
T∈SSYT(λ)6m

qrank(T ).

The motivation for considering this particular specialization comes from the q-analog of the
Weyl dimension formula in representation theory. Stembridge [Ste94, §2.2-2.3, Prop. 2.4] put a
ranked poset structure on the weights of a semisimple Lie algebra, which in type A reduces to
rank(α). The following rational product formula for sλ(1, q, q2, . . . , qm−1) follows easily from
the classical ratio of determinants definition of Schur polynomials.

Theorem 2.8 ([Lit40, §7.1], [Sta99, (7.105)]). For any partition λ and positive integerm>`(λ),

sλ(1, q, q
2, . . . , qm−1) = qrank(λ)

∏
16i<j6m

[λi − λj + j − i]q
[j − i]q

. (2.9)
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Stanley gave an alternate rational product formula for sλ(1, q, . . . , qm−1), which is called
the q-hook-content formula. Here the content of a cell u in row i, column j in λ is defined
as cu := j − i. Also, the hook length of cell u, denoted hu, is the number of cells directly east
of u, plus the number of cells directly south of u in the diagram of λ.

Theorem 2.9 ([Sta99, Thm. 7.21.2]). For any partition λ and positive integer m > `(λ),

sλ(1, q, . . . , q
m−1) = qrank(λ)

∏
u∈λ

[m+ cu]q
[hu]q

. (2.10)

The two product formulas for sλ(1, q, . . . , qm−1) are each useful in different circumstances.
The product in (2.9) involves

(
m
2

)
terms, whereas the product in (2.10) involves |λ| terms. One

can observe from these formulas that sλ(1, q, . . . , qm−1) is symmetric about the mean nonzero
coefficient. From the representation theory of GL2(C), it is known that sλ(1, q, . . . , qm−1) is also
unimodal. See [GOS92] for a combinatorial proof relying on the unimodality of the Gaussian
polynomials.

Recently, Huh–Matherne–Mészáros–St.Dizier [HMMSD22] showed that Schur polynomials
are strongly log-concave. However, we note that sλ(1, q, . . . , qm−1) is not always log-concave.
For example,

s(3,1)(1, q, q
2, q3) = q10 + 2q9 + 4q8 + 5q7 + 7q6 + 7q5 + 7q4 + 5q3 + 4q2 + 2q1 + 1,

which is not log-concave since 52 < 4 · 7.
Combining Theorem 2.6 and Theorem 2.9, we get an exact formula for the cumulants of

the random variable associated to the rank function on semi-standard Young tableaux on the
alphabet [m] chosen uniformly. This cumulant formula is the key to analyzing the asymptotic
distributions.

Corollary 2.10. Fix a partition λ. If κλ;m
d is the dth cumulant of the random variable associated

to rank on SSYT6m(λ), then, for d > 1,

κλ;m
d =

Bd

d

( ∑
16i<j6m

(λi − λj + j − i)d − (j − i)d
)

(2.11)

=
Bd

d

(∑
u∈λ

(m+ cu)
d − hdu

)
. (2.12)

Observe, the summands in (2.12) can be negative, but the summands in (2.11) are each clearly
positive. Thus, κλ;m

d has the same sign as the Bernoulli number Bd, namely it is negative if and
only if d is divisible by 4, and κλ;m

d = Bd = 0 if and only if d > 1 and odd.

Definition 2.11. A plane partition is a finite collection of unit cubes in the positive orthant of
R3 stacked towards the origin. More formally, it is a finite lower order ideal in Z3

>1 under the
component-wise partial order. We may imagine a plane partition ρ as a matrix with entry ρij
recording the number of cells with x-coordinate i and y-coordinate j. The size of a plane parti-
tion ρ is the number of cubes, denoted |ρ| =

∑
ρij . We write PP(a × b × c) for the set of all

plane partitions fitting inside an a by b by c rectangular prism.
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There is a straightforward bijection between plane partitions and rectangular shape semis-
tandard Young tableaux,

PP(a× b× c) ∼→ SSYT6a+c((b
a))

ρ 7→ T where Tij = c− ρij + i.
(2.13)

All T and ρ in the bijection are rectangular arrays with a rows and b columns with entries labeled
using matrix indexing conventions. Letting |T | :=

∑
i,j Tij , note that |T | = rank(T ) + ab and

|T |+|ρ| = abc+b
(
a+1

2

)
is constant. Hence, the unique element of minimal size in PP(a×b×c),

namely ∅, maps to the unique maximal rank tableau in SSYT6a+c((b
a)) with values c − i in

row i for each 1 6 i 6 a.
By Theorem 2.8 and Theorem 2.9, we know SSYT(λ)rank(q) is symmetric up to an overall

q-shift. Similarly, PP(a × b × c) is closed under box complementation, so it follows from the
bijection and (2.9) that

PP(a× b× c)size(q) = q− rank(λ) SSYT6a+c((b
a))rank(q) (2.14)

=
a∏
i=1

b∏
j=1

[a+ c+ j − i]q
[a+ b− i− j + 1]q

(2.15)

=
a∏
i=1

b∏
j=1

[i+ j + c− 1]q
[i+ j − 1]q

(2.16)

=
a∏
i=1

b∏
j=1

c∏
k=1

[i+ j + k − 1]q
[i+ j + k − 2]q

. (2.17)

The later two product formulas are originally due to MacMahon. See the proof of [Sta99, Thm.
7.21.7] for more details and [Sta99, pp. 402-403] for historical references. In particular, the
cumulants of size on PP(a× b× c) are given by (2.11) or (2.12) where λ = (ba) andm = a+ c.

2.3. Linear extensions of forests

Next, we summarize the relevant terminology and results from [BW89]. Briefly recall, a tree is
a finite, connected simple graph with no cycles. A forest is a finite disjoint union of trees. A tree
is rooted if it has a distinguished vertex, called the root. A forest is rooted if each of its trees is
rooted. The Hasse diagram of a partially ordered set (poset) P is the graph with vertex set P
where there is an edge between x and y if y covers x, i.e. x <P y and there does not exist u ∈ P
such that x <P u <P y. We refer to a poset as a forest if its Hasse diagram is a forest with roots
as maximal elements, or equivalently if every element of P is covered by at most one element.

Definition 2.12. Let P be a finite partially ordered set. The rank of P is the maximum number
of elements in any chain u1 < u2 < · · · < uk in P . For instance, if P is a singleton, its rank
is 1. Note that this definition is one larger than the standard definition in [Sta12, Ch.3], but it is
more convenient for our purposes.



combinatorial theory 2 (2) (2022), #5 17

Definition 2.13. Let P be a poset. A labeling of P is a bijection w : P → [n], and a labeled
poset is a pair (P,w) where w is a labeling of P . A labeling w of P for which w(p) 6 w(q)
whenever p 6P q is called a natural labeling. A labeling w of P is regular if for all x <P z
and y ∈ P , if w(x) < w(y) < w(z) or w(x) > w(y) > w(z) then x <P y or y <P z. Regular
labelings of forests include the postorder, preorder, and inorder labelings, which are commonly
used in computer science.

Definition 2.14. A linear extension of P is an ordered list p1, . . . , pn of the elements of P such
that i 6 j whenever pi 6P pj . If (P,w) is a labeled poset, a linear extension can be thought of
as the permutation i 7→ w(pi) of [n]. The set L(P,w) is the set of all permutations obtained in
this fashion from linear extensions of the labeled poset (P,w).

It is often convenient to use a natural labeling w of P so that id ∈ L(P,w). Choosing
labelings which are not natural forces inversions to appear in any σ ∈ L(P,w). Finding the
minimum number of inversions in any linear extension of an arbitrarily labeled poset motivates
the following analogues related to inversions and descents in permutations.

Definition 2.15. Let (P,w) be a labeled poset. Set

Inv(P,w) := {(w(x), w(y)) : x <P y and w(x) > w(y)} (inversion set)
inv(P,w) := | Inv(P,w)| (inversion number)
Des(P,w) := {w(x) : w(x) > w(y), y covers x ∈ P} (descent set)

maj(P,w) :=
∑

x∈Des(P,w)

hx (major index)

where the hook length of an element x ∈ P is

hx := #{t ∈ P : t 6P x}. (2.18)

Example 2.16. For the first labeled poset (P, v) in Figure 2.1, we haveL(P, v) = {1234, 1324},
Inv(P, v) = Des(P, v) = ∅, and inv(P, v) = maj(P, v) = 0. For the second labeled poset
(P,w) in Figure 2.1, we have L(P,w) = {3142, 3412}, Inv(P,w) = {(3, 1), (3, 2), (4, 2)},
Des(P,w) = {3, 4}, inv(P,w) = maj(P,w) = 3. The hook lengths of the diamond poset
are 1, 2, 2, 4.

Remark 2.17. One can consider a partition λ as a poset on its cells where (u, v) 6 (x, y) if and
only if u 6 x and v 6 y. However, the hook lengths of λ do not agree with (2.18) except when
λ is a single row or column. For example, the hook lengths for the partition (2, 2) are 1, 2, 2, 3,
while the hook lengths for the diamond poset are 1, 2, 2, 4.

Mallows and Riordan first studied the inversion enumeration on labeled rooted trees [MR68],
and connected it to cumulants of the lognormal distribution. Knuth gave a hook length formula
for |L(P,w)| [Knu73, p. 70] for posets which are forests. Björner–Wachs [BW89] and Stan-
ley [Sta72] generalized Knuth’s result to q-hook length formulas using the inv and maj statis-
tics on L(P,w). Stanley considered only the case when w is natural, i.e. when inv(P,w) =
maj(P,w) = 0, for the maj generating function. Recently Zaguia has studied linear extensions
of forests and proved the “1/3-2/3 Conjecture” holds on such posets [Zag19].
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Figure 2.1: A naturally labeled poset (P, v) on the left and another labeling of the same diamond
poset (P,w) on the right which is not natural or regular.
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Figure 2.2: A naturally labeled poset (P, v) on the left and another labeling of the same forest
poset (P,w) on the right which is not natural.

Theorem 2.18 ([BW89, Thm. 1.1-1.2, Cor. 3.1, Thm. 6.1-6.2]). Let (P,w) be a labeled poset
with n elements. Then

L(P,w)maj(q) :=
∑

π∈L(P,w)

qmaj(π) = qmaj(P,w) [n]q!∏
u∈P [hu]q

if and only if P is a forest. Similarly,

L(P,w)inv(q) :=
∑

π∈L(P,w)

qinv(π) = qinv(P,w) [n]q!∏
u∈P [hu]q

if and only if (P,w) is a regularly labeled forest. Moreover, if P is a forest, [n]q !∏
u∈P [hu]q

has
symmetric and unimodal coefficients.

Example 2.19. For the first labeled poset (P, v) in Figure 2.2, we haveL(P, v) = {1234, 2134},
Inv(P, v) = Des(P, v) = ∅, and inv(P, v) = maj(P, v) = 0. For the second labeled poset
(P,w) in Figure 2.2, we have L(P,w) = {2413, 4213}, Inv(P,w) = {(2, 1), (4, 1), (4, 3)},
Des(P,w) = {2, 4}, inv(P,w) = 3, maj(P,w) = 2. Note L(P,w)maj = q2 + q3, and
L(P,w)inv = q3 + q4. The hook lengths of the underlying poset are 1, 1, 3, 4. One can verify
the formulas in Theorem 2.18 hold in each of these cases, but they don’t hold for the diamond
poset.

Given a forest P , define the polynomial

LP (q) := [n]q!/
∏
u∈P

[hu]q, (2.19)
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and let XP the associated random variable. Note, the distribution of XP does not depend on the
choice of labeling of the vertices ofP sinceLP (q) depends only on the unlabeled poset structure.
We also get simple formulas for the associated cumulants in the next two statements.

Remark 2.20. By the unimodality result in Theorem 2.18, we knowLP (q) := [n]q!/
∏

u∈P [hu]q
has nonzero coefficients in an interval, so it has no internal zeros. The degree of LP (q) is

n∑
k=1

k −
∑
u∈P

hu,

and the mean of XP is half the degree.

Corollary 2.21. Let P be a forest with n elements. Suppose d ∈ Z>2. Let κPd denote the dth
cumulant of the random variable XP . Then,

κPd =
Bd

d

(
n∑
k=1

kd −
∑
u∈P

hdu

)
.

Remark 2.22. In order to characterize all possible limit laws for the standardized random vari-
ables associated with maj and inv on labeled forests, we only need to consider the set of all
distributions associated with standardized trees as follows. Given any forest P , we may turn P
into a tree by adding a new vertex covering the roots of all the trees of P . It is easy to see that
the quotient in (2.19) is unchanged, so the cumulants and the corresponding distributions are the
same. Similarly, if P is a tree and the root has exactly one child, we may delete the root while
preserving the fact that P is a tree, and the quotient in (2.19) is again unchanged. Consequently,
we say a forest is standardized if it is a tree and the root has at least two children. Therefore,

MForest := {X ∗P : P is a forest} = {X ∗P : P is a standardized tree}.

2.4. Riemann integral estimates

Many of our theorems depend on approximations using a mixture of combinatorics and analysis.
In particular, we return to certain basic sums over and over again. Let hd(a, b) =

∑d
j=0 a

jbd−j

denote the complete homogeneous symmetric function on two inputs.

Lemma 2.23. For positive integers a, b, and d > 1, we have

1

d

[
(a+ b)d − ad

]
<

a+b∑
j=a+1

jd−1 <
1

d

[
(a+ b)d − ad

]
+ (a+ b)d−1 − ad−1.

Equivalently,

b

d
hd−1(a+ b, a) <

a+b∑
j=a+1

jd−1 <
b

d
hd−1(a+ b, a) + bhd−2(a+ b, a).

Proof. Use a Riemann integral estimate.
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2.5. Standard notation for approximations

We use the following standard Bachmann–Landau asymptotic notation without further comment.
We write f(n) = Θ(g(n)) to mean there exist constants a, b > 0 such that for n large enough,
we have ag(n) 6 f(n) 6 bg(n). If f(n) = O(g(n)), then there exists a constant c > 0 such
that for all n large enough, we have f(n) 6 cg(n). On the other hand, if f(n) = o(g(n)), then
as n → ∞, we have f(n)

g(n)
→ 0. Similarly, f(n) = ω(g(n)) implies f(n)

g(n)
→ ∞ as n → ∞, and

f(n) ∼ g(n) implies f(n)
g(n)
→ 1 as n→∞.

3. Metric spaces related to uniform sum distributions

Motivated by applications to MSSYT and MForest in the next two sections, we first analyze the
distributions of finite and infinite sums of uniform continuous random variables. We parame-
terize these distributions using certain sequence spaces and precisely relate weak convergence
of the underlying distributions to pointwise convergence of the parametrizing sequences. The
closure of the space of all possible distributions associated to standardized sums of independent
uniform random variables leads us to define the metric space of DUSTPAN distributions. We
also describe a closed subset of the DUSTPAN distributions related to distance multisets, which
appear in the study of MSSYT.

3.1. Generalized uniform sum distributions and decreasing sequence space

The Irwin–Hall distributions, also known as uniform sum distributions, are the distributions
associated to finite sums of independent, identically distributed, uniform random variables sup-
ported on [0, 1]. First, we relax the requirement that they be identically distributed, and then we
relax the requirement that they are finite sums.

Consider a random variable defined as the sum ofm independent uniform continuous random
variables of the form S :=

∑m
k=1 U [αk, βk] with αk 6 βk for each k. We call the distribution

of S a generalized uniform sum distribution. See Figure 3.1 for example density functions. We
note that each of the generalized uniform sum distributions is non-normal, though the histograms
may look quite similar. By Example 2.3, the dth cumulant of S for d > 2 is

κSd =
Bd

d

m∑
k=1

(βk − αk)d, (3.1)

which only depends on the differences tk := βk − αk. It is useful to compare (3.1) to the
cumulants in (2.8).

The random variable S can be expressed as a constant overall shift c = 1
2

∑m
k=1(αk + βk)

plus a uniform sum random variable associated to t

St :=
m∑
k=1

U
[
−tk

2
,
tk
2

]
, (3.2)

where t = {t1 > t2 > . . . > tm} is a multiset of non-negative real numbers written in decreasing
order. Thus, up to an overall constant shift, in order to classify all possible finite generalized
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uniform sum distributions, it suffices to classify finite sums of independent central continuous
uniform random variables of the form (3.2).
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Figure 3.1: Plots of density functions for the distributions St with t = (6, 5, 1) and t =
(6, 5, 5, 5, 1).

Example 3.1. Consider the 1/2-power sequence t = (1, 1/2, 1/4, 1/8, . . . ). The density func-
tion for the distribution St in Figure 3.2 has a rather flat top like the sum of two uniform distri-
butions, in contrast to the harmonic sequence t = (1, 1/2, 1/3, 1/4, 1/5, . . .).
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Figure 3.2: Plots of density functions for the distributions St with t = (1, 1/2, 1/4, 1/8,
1/16, 1/32, 1/64, 1/128, 1/256) and t = (1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9).

We will show below that a similar classification holds for the distributions associated to
countable sums of independent continuous uniform random variables, which are defined pro-
vided the expectation and variance are finite. Again we have a nice formula for the cumulants
of infinite sums of uniform random variables simply by letting m → ∞. Observe that (3.1) is
very similar to the definition of the p-norm for a real vector space.
Definition 3.2. Let t = (t1, t2, . . .) be a sequence of non-negative real numbers. For p ∈ R>1,
the p-norm of t is |t|p := (

∑∞
k=1 t

p
k)

1/p. We also set |t|∞ := supk tk.
The p-norm has many nice properties. In particular for d > 2 and t = (t1, . . . , tm), we have

κStd =
Bd

d

m∑
k=1

(tk)
d =

Bd

d
|t|dd. (3.3)

It is well-known (e.g. [MV97, Ex. 7.3, p.58]) that if 1 6 p 6 q 6 ∞, then |t|p > |t|q, and that
if |t|p <∞, then limp→∞ |t|p = |t|∞. Thus, if t is weakly decreasing, |t|∞ = supk tk = t1.

The sequence space with finite p-norm `p := {t = (t1, t2, . . .) ∈ RN
>0 : |t|p < ∞} is com-

monly used in functional analysis and statistics. Here we define a related concept for analyzing
sums of central continuous uniform random variables.
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Definition 3.3. The decreasing sequence space with finite p-norm is˜̀
p := {t = (t1, t2, . . .) : t1 > t2 > · · · > 0, |t|p <∞}.

The elements of ˜̀p may equivalently be thought of as the set of countable multisets of non-
negative real numbers with finite p-norm. Any finite multiset of non-negative real numbers can
be considered as an element of ˜̀p with finite support by sorting the multiset and appending 0’s.
The multisets in ˜̀p are uniquely determined by their p-norms. In fact, any subsequence of p-norm
values injectively determines the multiset provided the sequence goes to infinity.

Lemma 3.4. Let t,u ∈ ˜̀p for some 1 6 p 6 ∞. Suppose |t|pj = |u|pj for some sequence
pj →∞. Then t = u.

Proof. We have

t1 = sup
k
tk = |t|∞ = lim

j→∞
|t|pj = lim

j→∞
|u|pj = |u|∞ = sup

k
uk = u1.

We may remove the first elements from both t and u to obtain the multisets (t2, t3, . . .) and
(u2, u3, . . .) which are both in ˜̀p and have equal pj-norms again. While removing these largest
elements alters the pj-norms, it does so by the same amount for both t and u. Repeating the
argument, ti = ui for all i, so t = u.

Theorem 3.5. Finite generalized uniform sum distributions are bijectively parameterized by

R× {t ∈ ˜̀2 : t has finite support}.

Proof. As noted above, every such distribution is defined by a random variable of the form c+St
for some c ∈ R and t = (t1, . . . , tm, 0, 0, . . . ) ∈ ˜̀2. To show uniqueness, suppose St = Su. By
(3.3), we know

Bd

d
|t|dd =

Bd

d

m∑
k=1

tdk = κStd = κSud =
Bd

d

m∑
k=1

udk =
Bd

d
|u|dd.

Therefore, since the even Bernoulli numbers are non-zero, we have |t|d = |u|d for each d even,
which is a sequence approaching infinity. Hence, by Lemma 3.4, t = u.

The probability density functions (PDF) for any finite generalized uniform sum distributions
can be determined as a convolution. We will not need this formula in the rest of this paper, but
we note it here for completeness. It was used to generate Figure 3.2.

Lemma 3.6. Let t = {t1 > . . . > tm > 0}. Then PDF(St;x) is given by

1

2(m− 1)!t1 · · · tm

∑
ε1,...,εm∈{±1}

ε1 · · · εm
(
x+

ε1t1 + · · ·+ εmtm
2

)m−1

· sgn

(
x+

ε1t1 + · · ·+ εmtm
2

)
.
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Proof. For the case m = 1,

PDF(U [−t1/2, t1/2];x) =
1

2t1

(
sgn

(
x+

t1
2

)
− sgn

(
x− t1

2

))
.

Let ∗ denote convolution. One can check that for all u > 0, we have the convolution identity

xksgn(x) ∗ 1

2
(sgn(x+ u)− sgn(x− u))

=
1

k + 1

(
(x+ u)k+1sgn(x+ u)− (x− u)k+1sgn(x− u)

)
.

The probability density function of the sum of independent random variables is the convolution
of their density functions. Therefore, the general case of the lemma now follows by applying the
m = 1 case and the convolution identity inductively.

Remark 3.7. When t1 = · · · = tm = 1, the formula in Lemma 3.6 collapses to

PDF(IHm−m/2;x)

=
1

2(m− 1)!

m∑
k=0

(−1)k
(
m

k

)(
x+

m− k
2
− k

2

)m−1

sgn

(
x+

m− k
2
− k

2

)
.

Hence we recover the density formula for the Irwin–Hall distributions [JKB94, p. 296]

PDF(IHm;x) =
1

2(m− 1)!

m∑
k=0

(−1)k
(
m

k

)
(x− k)m−1 sgn (x− k) .

Remark 3.8. A similar formula for the cumulative distribution function of St as a sum over
the vertices of the hypercube is given in [BS79]. See also [JKB94, p. 298-300] for relevant
discussion.

We now turn to infinite sums of independent uniform continuous random variables. Our next
goal is to generalize Theorem 3.5 to this setting. To do so, we must first extend the uniform-sum
distributions St to countably infinite multisets t, and discuss the basic properties of these random
variables including existence, characteristic functions, and cumulants. Existence depends on the
following well-known result, which often appears in treatments of the law of large numbers. See,
for example, [Dur10, Thm. 2.5.3].

Theorem 3.9 (Kolmogorov’s Two-Series Theorem). Let X1,X2, . . . be a sequence of indepen-
dent real-valued random variables. Suppose E[Xk] = 0 and

∑∞
k=1 Var[Xk] < ∞. Then∑∞

k=1Xk converges almost surely.

Almost sure convergence implies convergence in distribution. Therefore, by Kolmogorov’s
Two-Series Theorem, we are lead to the following definition.
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Definition 3.10. A generalized uniform sum distribution is any distribution associated to a ran-
dom variable with finite mean and variance given as a countable sum of independent continuous
uniform random variables. As in the finite case, such random variables are given by a constant
overall shift plus a uniform sum random variable

St := U
[
−t1

2
,
t1
2

]
+ U

[
−t2

2
,
t2
2

]
+ · · ·

for some t = (t1, t2, . . .) ∈ ˜̀2. Kolmogorov’s Theorem applies since Var[U [−t/2, t/2]] = B2

2
t2

and
∑∞

k=1 Var[U [−tk/2, tk/2]] = B2

2
|t|22 <∞.

Conversely, Kolmogorov’s stronger Three-Series Theorem [Dur10, Thm. 2.5.4] shows that
if
∑∞

i=1 t
2
i = ∞, then

∑∞
i=1 U [−ti/2, ti/2] diverges with positive probability, so the assump-

tion |t|22 < ∞ is essential. In this way we also see that uncountably many non-zero summands
of independent continuous uniform random variables must diverge. Thus, we cannot extend
Definition 3.10 beyond countable sums.

We claim that each uniform sum random variable St for t ∈ ˜̀2 gives rise to a distinct distri-
bution. In order to prove the claim, we need to verify the relationship between the p-norms and
the cumulants of the infinite sums is as expected. To do so, we describe the characteristic and
moment-generating functions of St.

Lemma 3.11. Let t = (t1, t2, . . .) ∈ ˜̀2. Then St exists, has moments of all orders, and is
determined by its moments. The characteristic function is the entire function

φSt(s) =
∞∏
k=1

sinc(stk/2), s ∈ C. (3.4)

Moreover, E[St] = 0, Var[St] <∞, and for each d ∈ Z>2,

κStd =
Bd

d

∞∑
k=1

tdk =
Bd

d
|t|dd. (3.5)

Proof. As mentioned above, the assumption t ∈ ˜̀2 and Theorem 3.9 together imply St exists.
The characteristic function of U [−x, x] is

φU [−x,x](s) =
1

2x

∫ x

−x
eist dt =

eisx − e−isx

2isx
=

sin(sx)

sx
:= sinc(sx), (3.6)

where sinc(0) := 1. Consequently, the nth partial sum Sn =
∑n

k=1 U
[
− tk

2
, tk

2

]
has charac-

teristic function φSn(s) =
∏n

k=1 sinc(stk/2). Almost sure convergence implies convergence in
distribution, so Sn ⇒ St. Thus, by Lévy’s Continuity Theorem, we have for each s ∈ R that

φSt(s) =
∞∏
k=1

sinc(stk/2).
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By Lemma 3.12 below, the product form for φSt is entire and hence complex analytic on an
open ball, so (3.5) follows from Remark 2.1. Likewise, St has moments of all orders and St is
determined by its moments.

Since the entire functions φSn(s) converge uniformly on compact subsets of C to φSt(s), it
follows that the dth moment can be determined by the constant term of the dth derivative of the
characteristic function

lim
n→∞

E[Sdn] = lim
n→∞

i−dφ
(d)
Sn (0) = i−dφ

(d)
St (0) = E[Sdt ]

for all d > 1. The moments of any random variable determine its cumulants and vice versa.
Therefore, the cumulant formula now follows from (3.3), including the first two moments.

Lemma 3.12. Let t = (t1, t2, . . .) ∈ ˜̀2. As a function of s, the infinite product
∞∏
i=1

sinc(sti/2)

converges to an entire function in the complex plane. Moreover, for |s| < 1/|t|2,∣∣∣∣∣
∞∏
i=1

sinc(sti/2)

∣∣∣∣∣ 6 e.

Proof. For each D > 0, the entire function 1−sinc(z)
z2 is bounded on |z| < D by some con-

stant C > 0. Thus
|1− sinc(z)| 6 C|z|2 for |z| < D.

Consequently, for |s| < 2D/ sup{ti}, we have

|1− sinc(sti/2)| < C

4
|s|2t2i .

Hence
∞∑
i=1

|1− sinc(sti/2)| 6 C

4
|s|2|t|22 <∞.

Thus, the sum converges uniformly on compact subsets of {|s|<2D/ sup{ti}}. TakingD →∞,
the sum converges uniformly on compact subsets of all of C. The result now follows by standard
criteria for infinite product convergence such as [Rud87, Thm. 15.6].

For the growth rate bound, it is straightforward to check that when D = 1/2, we may
use C = 4. Since |t|2 > |t|∞ = sup{ti}, for |s| < 1/|t|2, we have∣∣∣∣∣

∞∏
i=1

sinc(sti/2)

∣∣∣∣∣ =
∞∏
i=1

|1− (1− sinc(sti/2))| 6
∞∏
i=1

(1 + |1− sinc(sti/2)|)

6
∞∏
i=1

(
1 + |s|2t2i

)
6
∞∏
i=1

exp
(
|s|2t2i

)
= exp

(
|s|2|t|22

)
6 exp (1) = e.
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Theorem 3.13. Generalized uniform sum distributions are bijectively parameterized by R× ˜̀2.
In particular, if t,u ∈ ˜̀2 with t 6= u, then St 6= Su. Furthermore, S∗t = S∗u if and only if t,u
differ by a scalar multiple.

Proof. The first and second claims follow exactly as in Theorem 3.5 using the cumulant formula
in Lemma 3.11. For the third claim, we can assume |t|∞ = |u|∞ by rescaling if necessary
and S∗t = S∗u. From Lemma 3.11 and the general properties of cumulants, it follows that for
all d even,

|t|dd/|t|
d/2
2 = |u|dd/|u|

d/2
2 .

Taking dth roots and the limiting sequence of positive even integers d, this implies

|t|∞
|t|1/22

= lim
d→∞

|t|d
|t|1/22

= lim
d→∞

|u|d
|u|1/22

=
|u|∞
|u|1/22

.

Since |t|∞ = |u|∞, we have |t|2 = |u|2, which hence gives |t|d = |u|d for all d even. Again by
Lemma 3.4, we have t = u.

Example 3.14. Infinite sums of independent continuous uniform random variables have ap-
peared elsewhere in the literature, though rarely. For instance, when t = (1, 1/2, 1/4, 1/8, . . .),
the cumulative distribution function of St =

∑∞
k=1 U [−1/2k, 1/2k] is the so-called Fabius func-

tion, [Fab66], which is a known example of a C∞-function on an interval which is nowhere
analytic. The characteristic function is nonetheless entire by Lemma 3.12.

Example 3.15. Another interesting case arises from t = (1, 1/2, 1/3, 1/4, . . .). Since
|t|2 =

∑∞
k=1 1/k2 <∞, St =

∑∞
k=1 U [−1/(2k), 1/(2k)] converges almost surely. For d > 1,

we have

κ2d =
B2d

2d

∞∑
k=1

1

k2d
=
B2d

2d
ζ(2d).

Using the known identity

ζ(2d) = (−1)d+1B2d(2π)2d

2(2d)!
,

it follows that

log φSt(s) =
∞∑
k=1

κk
sk

k!

= −
∞∑
d=1

ζ(2d)2

d

( s

2π

)2d

,

which is valid in a complex neighborhood of s = 0. This last expression is similar to the left-
hand side of the known identity

∞∑
d=0

ζ(2d)s2d = −πs
2

cot(πs).
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Example 3.16. Let α ∈ R>0 and set t(N) = (1/Nα, 1/Nα, . . . , 1/Nα, 0, . . .) where there areN
non-zero terms. Then |t(N)|p = N

1
p
−α. So, for 1 6 p <∞,

lim
N→∞

|t(N)|p =


0 if p > 1/α

1 if p = 1/α

∞ if p < 1/α.

On the other hand, for each k we have limN→∞ t
(N)
k = 0, independent of α. Hence we have a

large family of sequences which each converges pointwise to (0, 0, . . .), but which have different
limiting p-norms. In particular, whenα = 1/2 we have limN→∞ |t(N)|2 = 1 6= 0 = |(0, 0, . . .)|2,
so the limit of the 2-norms is not the 2-norm of the limit. The interplay between convergence
in ˜̀2 and convergence of generalized uniform sum distributions is consequently somewhat subtle,
which we treat in the next subsection.

3.2. Pointwise convergence and convergence in even norms

The decreasing sequence space ˜̀2 has a natural notion of pointwise convergence. In this sub-
section, we relate pointwise convergence to convergence of p-norms for all positive even p > 4,
assuming the 2-norms are bounded.

Lemma 3.17. Fix M ∈ R. Let t(N) ∈ ˜̀
2 be a countable sequence of sequences such

that |t(N)|22 6M for each N and

lim
N→∞

|t(N)|2d = τ2d

exists for all d ∈ Z>2. Then

(i) limd→∞ τ2d exists,

(ii) limN→∞ t
(N)
1 exists,

(iii) limd→∞ τ2d = limN→∞ t
(N)
1 = limN→∞ |t(N)|∞, and

(iv) t(N) converges pointwise to t = (t1, t2, . . . ) ∈ ˜̀2 where ti = limN→∞ t
(N)
i .

Proof. For (i), if d 6 e 6 ∞ then |t(N)|2d > |t(N)|2e by properties of the p-norm. Therefore,
τ2d > τ2e > 0 and limd→∞ τ2d exists.

For (ii), observe that since t(N) is a decreasing sequence in ˜̀2, we know |t(N)|∞= t
(N)
1 > t

(N)
i

for all i. Therefore, for all d ∈ Z>1, we have

|t(N)|2d2d =
∑
i

(t
(N)
i )2d

6
∑
i

(t
(N)
1 )2(d−1)(t

(N)
i )2

6 (t
(N)
1 )2(d−1) ·M.
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Combining this with the fact that t(N)
1 6 |t(N)|2d by definition of the p-norm, one has

t
(N)
1 6 |t(N)|2d 6 (t

(N)
1 )1− 1

d ·M
1
2d . (3.7)

Taking N →∞ in (3.7) gives

lim sup
N→∞

(t
(N)
1 ) 6 τ2d 6 lim inf

N→∞
(t

(N)
1 )1− 1

d ·M
1
2d . (3.8)

Taking d→∞ in (3.8) gives

lim sup
N→∞

(t
(N)
1 ) 6 lim

d→∞
τ2d 6 lim inf

N→∞
(t

(N)
1 ), (3.9)

so limN→∞ t
(N)
1 = limd→∞ τ2d which implies the limit exists by (i). Part (iii) also follows

from (3.9) and the fact that |t(N)|∞ = t
(N)
1 .

Part (iv) follows by an inductive argument. By (ii), t1 = limN→∞ t
(N)
1 exists. Define another

sequence of sequences u(N) := {t(N)
2 > t

(N)
3 > · · · }, so that |u(N)|22 = |t(N)|22 − (t

(N)
1 )2 6 M

and

|u(N)|2d2d = |t(N)|2d2d − (t
(N)
1 )2d ⇒ lim

N→∞
|u(N)|2d =

(
τ 2d

2d − t2d1
) 1

2d exists

by the hypotheses on t(N). By (iii) applied to u(N), t2 := limN→∞ u
(N)
1 = limN→∞ t

(N)
2 exists.

Repeating the argument, t(N) converges pointwise to (t1, t2, . . . ).

Lemma 3.18. Suppose t(N) ∈ ˜̀2 with |t(N)|22 6 M converges pointwise to t ∈ ˜̀2. Then
|t|22 6M and for all d > 2,

|t|2d = lim
N→∞

|t(N)|2d.

Proof. By Fatou’s Lemma applied to the counting measure on Z>1,

|t|22 6 lim inf
N→∞

|t(N)|22 6M.

Fix d > 2. For each N , we have t(N)
1 > t

(N)
2 > · · · > t

(N)
i > · · · . Thus

M > (t
(N)
1 )2 + · · ·+ (t

(N)
i )2 > i(t

(N)
i )2,

which implies

(t
(N)
i )2 6

M

i
⇒ (t

(N)
i )2d 6

(
M

i

)d
.

Since
∑∞

i=1
1
id

converges for d > 2, the sequence (t
(N)
i )2d is dominated by the integrable func-

tion
(
M
i

)d over the positive integers. By Lebesgue’s Dominated Convergence Theorem, since
limN→∞(t

(N)
i )2d = t2di , we have

lim
N→∞

|t− t(N)|2d = 0 ⇒ lim
N→∞

|t(N)|2d = |t|2d.
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Corollary 3.19. Suppose t(N) ∈ ˜̀2 with |t(N)|22 6M . Then t(N) converges pointwise to t if and
only if |t|2d = limN→∞ |t(N)|2d for all d > 2.

Proof. The proof follows directly from Lemma 3.17 and Lemma 3.18.

Observe that Corollary 3.19 says nothing about the 2-norm of the sequences. It is possible
for t(N) → t pointwise, even if |t|22 6= limN→∞ |t(N)|22, as the next example and lemma illustrate.

Example 3.20. In the Irwin–Hall case, we have IHN = St(N) +N/2 where

t(N) = (1, . . . , 1︸ ︷︷ ︸
N copies

, 0, . . .).

Since |t(N)|22 = N , after standardizing, IH∗N = S
t̂(N) where

t̂(N) = (
√

12/N, . . . ,
√

12/N︸ ︷︷ ︸
N copies

, 0, . . .),

which converges pointwise to t = (0, 0, . . .). Nonetheless, |t|22 = 0 < 12 = |t̂(N)|22 and
IH∗N ⇒ N (0, 1).

Lemma 3.21. For every t = (t1, t2, . . . ) ∈ ˜̀2 and every M > |t|22, there exists a sequence t(N)

of finitely supported decreasing sequences such that |t(N)|22 = M and t(N) → t pointwise.

Proof. Define a sequence of sequences t(N) ∈ ˜̀2 with |t(N)|22 = M as follows. Let

εN :=

√√√√M −
N∑
i=1

t2i .

For each N > 1, choose mN ∈ Z>1 large enough so that εN/mN 6 1
N

. Set

t(N) = (t1, t2, . . . , tN , εN/mN , . . . , εN/mN︸ ︷︷ ︸
m2
N copies

, 0, 0, . . . ).

As claimed, t(N) → t pointwise and

|t(N)|22 =
N∑
i=1

t2i +m2
N ·
(
εN
mN

)2

= M.

Example 3.22. Consider again t = (1, 1/2, 1/3, . . .) so |t|22 =
∑∞

i=1(1
i
)2 = π2/6 ≈ 1.6449.

Let εN :=
√

2−
∑N

i=1(1
i
)2. For each N > 1, set

t(N) = (1, 1/2, . . . , 1/N, εN/N, . . . , εN/N︸ ︷︷ ︸
N2 copies

, 0, 0, . . . ).
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Clearly t(N) → t pointwise and

|t(N)|22 =
N∑
i=1

t2i +N2 ·
(εN
N

)2

= 2.

However, |t|22 = π2/6 6= 2 = limN→∞ |t(N)|22.

Lemma 3.23. Suppose t(N) ∈ ˜̀2 converges pointwise to t ∈ ˜̀2 with |t(N)|22 → τ2 <∞. Then

St(N) ⇒ St +N (0, σ2)

where σ =
√

(τ2 − |t|22)/12 and the sum is independent.

Proof. By Lemma 3.18, limN→∞ |t(N)|2d = |t|2d for all d ∈ Z>2, so for all d > 3,

κ
S
t(N)

d → κStd = κ
St+N (0,σ2)
d

since κN (0,σ2)
d = 0. As for d = 2,

κ
S
t(N)

2 → τ2

12
=
|t|22
12

+ σ2 = κ
St+N (0,σ2)
2 .

The result follows by the Method of Moments/Cumulants.

In light of Lemma 3.23, pointwise convergence in ˜̀2 leads to us to study an additional family
of sums of random variables. Note, the sum of two generalized uniform sum random variables is
another generalized uniform sum of random variables. Also, the sum of two normal distributions
is normal, so we have reached a natural limit to the generalizations.

Definition 3.24. A DUSTPAN distribution is a distribution associated to a uniform sum for t
plus an independent normal distribution St +N (0, σ2), assuming the two random variables are
independent, t ∈ ˜̀2, and σ ∈ R>0.

Example 3.25. Consider the 1/n-sequence t = (1, 1/2, 1/3, . . . ) again. Let σ =
√

12− π2/6.
The distribution St has a small variance compared to N (0, σ2), so St + N (0, σ2) looks like a
fat normal distribution. See the approximation in Figure 3.3.

Figure 3.3: Histograms obtained by sampling from the distributions St, N (0, σ), and
St +N (0, σ) with t = (1, 1

2
, 1
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, 1

4
, 1

5
, 1
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, 1

7
, 1

8
) and σ ≈ 3.22.
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3.3. The metric space of DUSTPAN distributions

Recall the metric space of DUSTPAN distributions,

MDUST := {St +N (0, σ) : |t|22/12 + σ2 = 1},

along with the DUSTPAN parameter space

PDUST :=
{
t ∈ ˜̀2 : |t|22 6 12

}
.

We will show below that PDUST and MDUST are homeomorphic closed sets in their respec-
tive topologies of pointwise convergence and convergence in distribution, thus completing the
task of completely characterizing all possible limit laws of standardized general uniform sum
distributions.

From Definition 3.24, it follows that the characteristic functions of DUSTPAN distribu-
tions have nice properties. Recall that a normal family of holomorphic functions in some open
set U ⊂ C is one where every infinite sequence has a subsequence which converges uniformly
on compact subsets of U .

Lemma 3.26. The set of characteristic functions {φS(s) : S ∈ MDUST} is a normal family of
entire functions.

Proof. Let S = St +N (0, σ) ∈MDUST. By definition, the characteristic function of a DUST-
PAN distribution is the product of the corresponding characteristic functions for the normal and
generalized uniform sum distributions,

φS(s) = exp(−σ2/2)
∞∏
i=1

sinc(stk)/2.

By the growth bound in Lemma 3.12, for |s| < 1
12

, we have

| exp(−σ2/2)
∞∏
i=1

sinc(stk)/2| 6 exp(1).

Thus {φS(s) : S ∈MDUST} is a family of bounded analytic functions on |s| < 1
12

. By Montel’s
Theorem, it is a normal family in that domain. The bound in Lemma 3.12 may be extended to any
bounded domain using the same argument, so it is in fact a normal family of entire functions.

Lemma 3.27 (Converse of Frechét–Shohat for DUSTPAN’s). Suppose a sequence of DUST-
PAN distributions XN := St(N) + N (0, σ(N)) ∈ MDUST converges in distribution to some X .
Then E[X d] < ∞ exists for all d ∈ Z>1, X is determined by its moments, and
limN→∞ E[X d

N ] = E[X d].

Proof. By Lévy’s Continuity Theorem, φXN (s) → φX (s) for all s ∈ R. By Lemma 3.26,
we may replace XN if necessary with a subsequence for which φXN (s) converges uniformly
on compact subsets so that we can assume φX (s) is entire. Therefore, the moment generating
function of X has positive radius of convergence, moments of all order exist, X is determined
by its moments, and the limit of the moments is the moment of the limit.
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We may now restate and prove Theorem 1.15 from the introduction.
Theorem 1.15. The map Φ: PDUST → MDUST given by t 7→ St + N (0, σ) where
σ :=

√
1− |t|22/12 is a homeomorphism between sequentially compact spaces.

Proof. The parameter space PDUST is closed under pointwise convergence by Lemma 3.18.
Moreover, it is sequentially compact under pointwise convergence, either by Tychonoff’s The-
orem applied to [0,

√
12]N or by a simple diagonalization argument. Since PDUST and MDUST

are metrizable and Φ is a bijection by Theorem 3.13, we need only show that

t(N) → t in P pointwise ⇔ St(N) +N (0, σ(N))⇒ St +N (0, σ).

The forwards direction follows from Lemma 3.18 and the Method of Moments/Cumulants ex-
actly as in the proof of Lemma 3.23. The backwards direction follows from Lemma 3.27 and
Lemma 3.17.

Corollary 3.28. The metric space of DUSTPAN distributions MDUST is compact, hence it is
closed and bounded in the space of distributions under the Lévy metric.

Proof. PDUST is a compact subset of ˜̀2 under pointwise convergence, so MDUST is compact
under the Lévy metric as well by Theorem 1.15.

Corollary 3.29. The closure of the metric space {St : t ∈ ˜̀2, |t|22 = 12, t is finite} in the Lévy
metric is MDUST.

Proof. Since {St : t ∈ ˜̀2, |t|22 = 12, t is finite} ⊂ MDUST by definition and MDUST is closed
by Corollary 3.28, we know

{St : t ∈ ˜̀2, |t|22 = 12, t is finite} ⊂MDUST = MDUST.

For the other inclusion, we just need to show each t ∈ ˜̀2 with |t|22 6 12 is the pointwise limit
of a sequence t(N) ∈ ˜̀2 with |t(N)|22 = 12 and t finite by Theorem 1.15. As noted above, this
follows from Lemma 3.21.

3.4. The metric space of distance distributions

For convenience, we recall some of the definitions and notation from the introduction. For each
t ∈ ˜̀2 with |t|2 > 0, let

t̂ :=

√
12 · t
|t|2

be the rescaled sequence such that |̂t|22 = 12 and St̂ = S∗t . By definition of the hat-operation,
t̂ ∈ PDUST and Φ(̂t) = St̂ + N (0, 0) = St̂ = S∗

t̂
. The distance multiset of t = {t1 > t2 >

· · · > tm} is the multiset
∆t := {ti − tj : 1 6 i < j 6 m},

and the metric space of distance distributions is

MDIST =
{
S∆̂t : t = {1 = t1 > · · · > tm = 0}

}
. (3.10)
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Thus, the parameter space of distance multisets, mentioned in Section 1, is defined as

PDIST :=
{

∆̂t : t = {1 = t1 > · · · > tm = 0}
}

(3.11)

By padding with 0’s, consider PDIST ⊂ PDUST ⊂ ˜̀2 as a sequence space with the topology of
pointwise convergence.

Lemma 3.30. The closure of PDIST is PDIST t {0}.

Proof. Let d(N) ∈ PDIST be a sequence converging pointwise to d. By Theorem 1.15, we can
assume d ∈ PDUST. By definition, each d(N) = ∆̂t(N) for some finite sequence of real numbers
t(N) = {1 = t

(N)
1 > · · · > t

(N)

m(N) = 0}.
Suppose lim supN→∞m

(N) < ∞. We may pass to a subsequence for which m(N) = m is
constant. We may pass to a further subsequence for which t(N) ∈ [0, 1]m converges pointwise
to some t = {1 = t1 > · · · > tm = 0} ∈ [0, 1]m and where |t(N)|2 converges. Clearly the
distance multiset operator ∆: [0, 1]m → [0, 1](

m
2 ) is continuous, so ∆t(N) → ∆t, and moreover

d(N) = ∆̂t(N) → ∆̂t, so ∆̂t = d which implies d ∈ PDIST.
Now suppose lim supN→∞m

(N) = ∞. Again, we may pass to a subsequence if necessary
so we may assume m(N) →∞. Since t(N)

1 = 1 and t(N)

m(N) = 0 for each N , we have

|∆t(N)|22 =
∑

16i<j6m(N)

(t
(N)
i − t(N)

j )2

>
∑

1<`<m(N)

[
(1− t(N)

` )2 + (t
(N)
` − 0)2

]
>

∑
1<`<m(N)

1

2
=
m(N)

2
− 1.

Therefore, limN→∞
√

12
|∆t(N)|2

→ 0, so pointwise ∆̂t(N) → 0.

Corollary 3.31. Any pointwise convergent sequence ∆̂t(N) with t(N) = {1 = t
(N)
1 > · · · >

t
(N)

m(N) = 0} converges to 0 if and only if m(N) →∞.

Theorem 3.32. The map ΦDIST : PDIST → MDIST = MDIST t {N (0, 1)} given by d 7→ Sd
and 0 7→ N (0, 1) is a homeomorphism between (sequentially) compact spaces.

Proof. First note that PDIST ⊂ PDUST and MDIST ⊂ MDUST by construction, so ΦDIST is the
restriction of Φ : PDUST −→MDUST. Therefore, by Theorem 1.15, ΦDIST is a homeomorphism.
Since closed subsets of compact spaces are compact, we knowPDIST is compact by Lemma 3.30.
Furthermore, Φ(PDIST) = MDIST t {N (0, 1)} is closed and compact.
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4. Metric spaces related to SSYT6m(λ) distributions

We next consider the family of generating functions for semistandard tableaux given by the
principal specialization of Schur polynomials, or equivalently the rank statistic on SSYT6m(λ),
as described in Section 1.2 and Section 2.2. An interesting special case is given by MacMahon’s
formula for the size statistic on the set PP(a×b×c) of plane partitions inside an (a×b×c) box,
given in (2.14). In particular, we will prove Theorem 1.8 and Theorem 1.11. We provide a wide
variety of limit law classification results for these statistics in various regimes. The subsections
are divided into four natural special cases: n/m → 0, n/m → ∞, cases based on the number
of distinct parts of λ, and plane partitions. See Summary 4.20 for a summary.

4.1. Limit laws with |λ|/m→ 0 and uniform sums

We begin classifying the limit laws for semistandard Young tableaux. Throughout this sec-
tion, we tacitly assume `(λ) 6 m, so SSYT6m(λ) 6= ∅. Furthermore, if λm > 0, the first
λm columns of T ∈ SSYT6m(λ) are forced to each be 1, 2, . . . ,m. Hence, up to a q shift,
SSYT(λ)rank(q) equals SSYT(µ)rank(q) where µi = λi− λm. In order to classify limit laws for
SSYT6m(λ)rank(q), it thus suffices to assume throughout that `(λ) < m and λm = 0.

We begin with a simple analogue of Theorem 1.2. This will be our only use of the hook-
content-based cumulant formula; all of our other results rely on the q-Weyl dimension-based
cumulant formula.

Theorem 4.1. Let λ denote an infinite sequence of partitions with |λ| = n. If n
m
→ 0, then for

each fixed d ∈ Z>2, the corresponding sequence of cumulants is

κλ;m
d ∼ Bd

d
nmd. (4.1)

Furthermore, we can characterize convergence in distribution in the case n
m
→ 0 depending on

the limiting value of n.

(i) If n converges to a finite value N , then Xλ[rank]∗ converges in distribution to IH∗N .

(ii) If n→∞, then Xλ[rank] is asymptotically normal.

Proof. For each cell u ∈ λ, the trivial bounds 0 6 cu 6 n and 1 6 hu 6 n give

md − nd 6 (m+ cu)
d − hdu 6 (m+ n)d.

Summing over all u ∈ λ and dividing through by nmd gives

1−
( n
m

)d
6

∑
u∈λ(m+ cu)

d − hdu
nmd

6
(

1 +
n

m

)d
.

When n/m → 0, the lower and upper bounds each tend to 1. The cumulant formula (4.1) now
follows from (2.12).

By (4.1), (κλ;m
d )∗ ∼ (Bd/d)/(B2/2)d/2 · n1−d/2, which eliminates m from the limits.

If n → N , then (Bd/d)/(B2/2)d/2 · n1−d/2 approaches the dth cumulant of IH∗N by (2.2) and
Example 2.3, proving (i). If n→∞, then (Bd/d)/(B2/2)d/2 ·n1−d/2 tends to 0 for d > 3, which
are the cumulants of N (0, 1), hence (ii) follows from Corollary 2.5.
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Example 4.2. Consider a constant sequence of partitions λ(N) = λ and let m → ∞. By
Theorem 4.1(i), Xλ;m[rank]∗ ⇒ IH∗|λ|, which depends only on |λ|. On the other hand, if the
sequence λ(N) is chosen such that |λ(N)| → ∞ and m(N) ∼ |λ(N)|2, the limit is N (0, 1) by
Theorem 4.1(ii).

Corollary 4.3. For any fixed ε > 0, let

Mε := {Xλ;m[rank]∗ : |λ| < m1−ε} ⊂MSSYT.

In the Lévy metric,
Mε = Mε tMIH, (4.2)

which is (sequentially) compact. Moreover, the set of limit points of Mε is MIH.

Proof. Given a sequence in Mε, if m is bounded, then so is n = |λ|, so there are only finitely
many distinct (λ,m) in the sequence and convergence occurs if and only if the sequence is
eventually constant. On the other hand, if m → ∞, then n < m1−ε yields n

m
< m−ε → 0, so

(4.2) follows immediately from Theorem 4.1.
By these observations, every infinite sequence of distinct points in Mε has a limit point

in MIH, so Mε consists entirely of isolated points and MIH consists entirely of limit points.
Sequential compactness is similarly clear.

4.2. Limit laws with |λ|/m→∞ and distance distributions

At the other extreme, we may consider the case when |λ|/m→∞. As we will see, the possible
behavior is vastly more varied in this limit. Among the sequences of partitions λ with |λ|/m→
∞, the easiest case to consider is when λ1/m

3 →∞. This includes the case wherem converges
to a fixed finite value and |λ| → ∞.

For a partition λ = (λ1, . . . , λm), recall from Theorem 1.8 that

t(λ) = (t1, . . . , tm) ∈ [0, 1]m

is the finite multiset with tj :=
λj
λ1

for 1 6 j 6 m. By Definition 1.7, the corresponding distance
multiset is

∆t(λ) := {ti − tj : 1 6 i < j 6 m}.

Lemma 4.4. Let λ denote an infinite sequence of partitions with `(λ) < m and |λ| = n. If
n
m
→∞ in such a way that λ1/m

3 →∞, then for each fixed d ∈ Z>2,

κλ;m
d

λd1
∼ (Bd/d)|∆t(λ)|dd,

which is the dth cumulant of the rescaled uniform sum S∆t(λ)/λ1.

Proof. Note that

(λi − λj)d −md 6 (λi − λj + j − i)d − (j − i)d 6 (λi − λj +m)d.
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Divide through by λd1 and consider the upper bound. Setting tj :=
λj
λ1

for 1 6 j 6 m, we find

(λi − λj +m)d

λd1
= (ti − tj +m/λ1)d

=
d∑

k=0

(
d

k

)
(ti − tj)d−k

(
m

λ1

)k
6 (ti − tj)d +

d∑
k=1

(
d

k

)(
m

λ1

)k
.

Summing over all 1 6 i < j 6 m and considering both bounds gives∑
16i<j6m

(ti − tj)d −
(
m

2

)
·
(
m

λ1

)d
6

∑
16i<j6m(λi − λj + j − i)d − (j − i)d

λd1

6
∑

16i<j6m

(ti − tj)d +

(
m

2

) d∑
k=1

(
d

k

)(
m

λ1

)k
.

Since λ1/m
3 →∞, we have

(
m
2

)
(m/λ1)→ 0. Furthermore, for each k > 1,(

m

2

)
(m/λ1)k 6 m2+k/λk1 6 m3k/λk1 → 0.

It follows that ∑
16i<j6m(λi − λj + j − i)d − (j − i)

λd1
∼

∑
16i<j6m

(ti − tj)d.

The result now follows from (2.11) and (3.3).

We use the results on generalized uniform sum distributions from Section 3 to characterize
convergence in distribution in the next theorem. It is a more explicit statement of Theorem 1.8.

Theorem 4.5. Let λ denote an infinite sequence of partitions, with `(λ) < m and |λ| = n.
If n

m
→ ∞ in such a way that λ1/m

3 → ∞, then for each fixed d ∈ Z>2, the standardized
cumulants are approximately

(κλ;m
d )∗ ∼ Bd

d
|∆̂t(λ)|dd = κ

S
∆̂t(λ)

d . (4.3)

Furthermore, we can characterize convergence in distribution when it occurs.

(i) If m is bounded, then Xλ;m[rank]∗ converges in distribution if and only if the multisets
∆̂t(λ) converge pointwise to some multiset d, in which case, the limiting distribution is
Sd and d ∈ PDIST,

(ii) The sequence m→∞ if and only if Xλ;m[rank]∗ is asymptotically normal.
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Proof. By hypothesis, λ1/m
3 → ∞, so Lemma 4.4 implies κλ;m

d ∼ (Bd/d)|∆t(λ)|dd for all
d > 2. Thus, the standardized cumulants are given by

(κλ;m
d )∗ ∼ (Bd/d)|∆t(λ)|dd

((B2/2)|∆t(λ)|22)d/2
=

Bd/d

(B2/2)d/2

(
|∆t(λ)|d
|∆t(λ)|2

)d
=
Bd

d
|∆̂t(λ)|dd

by the definition of the hat-operation (1.8). By (3.3), Bd
d
|∆̂t(λ)|dd is the dth cumulant for the

uniform sum random variable S
∆̂t(λ)

.
By the Method of Moments/Cumulants (Theorem 2.4) together with its converse in this con-

text (Lemma 2.7), the sequence Xλ;m[rank]∗ converges in distribution to some X if and only if
the limit of the standardized cumulants (κλ;m

d )∗ → κXd < ∞ for each d > 1, which happens if
and only if κ

S
∆̂t(λ)

d → κXd for each d > 1. By the Method of Moments/Cumulants and its con-
verse for DUSTPAN distributions (Lemma 3.27), this occurs if and only if S

∆̂t(λ)
⇒ X . Finally,

by Theorem 3.32, this occurs if and only if ∆̂t(λ) converges pointwise to some d ∈ PDIST. The
result follows from Corollary 3.31. In particular, if m is bounded (i) holds, and if m → ∞ (ii)
holds.

Example 4.6. Fix a partition λ and a positive integer m > `(λ). Pick a sequence r(N) → ∞
of row scale factors, so that λ(N)

i = r(N)λi and m(N) = m. Clearly λ(N)
1 /(m(N))3 → ∞, so by

Theorem 4.5(i), we have Xr(N)λ;m[rank]∗ ⇒ S∗∆λ.

Example 4.7. Consider the sequence of partitions with λ(N) = (2N−1, 2N−2, . . . , 1) andm(N) =
N . Strictly speaking, `(λ(N)) = N = m(N) here, so recall we can delete the first column and
consider the auxiliary sequence µ(N) = (2N−1 − 1, 2N−2 − 1, . . . , 0). Now

µ
(N)
1

(m(N))3
=

2N−1 − 1

N3
→∞

and m(N) = N → ∞. Thus the sequence X(2N−1,2N−2,...,1);N [rank] is asymptotically normal by
Theorem 4.5(ii).

4.3. Limit laws based on distinct values in λ and the weft statistic

We now describe a very general test for asymptotic normality of Xλ;m[rank] based on a new
statistic we call weft in analogy with aft for standard Young tableaux. This test depends on the
number of distinct values in a partition, so we switch to exponential notation. Note, throughout
the rest of this section k will denote the number of distinct values in λ.

Definition 4.8. We may write a nonempty partition in exponential notation λ = `e11 · · · `
ek
k where

`1 > · · · > `k > 0 and ei > 0, meaning λ has ei rows of length `i. In our earlier notation,
m = e1 + · · ·+ ek and n = e1`1 + · · ·+ ek`k.

Lemma 4.9. Take a partition λ = (λ1, . . . , λm) = `e11 · · · `
ek
k . Then, uniformly for all d > 2,
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∑
16i<j6m

(λi − λj)(λi − λj + j − i)d−1

= Θ

( ∑
16a<b6k

(`a − `b)eaeb(`a − `b − 1 + ea + · · ·+ eb)
d−1

)
.

(4.4)

Proof. Observe that we may restrict the sum in (4.4) to just the indices with λi 6= λj . Hence,
we group the terms according to the distinct values λi = `a and λj = `b for 1 6 a < b 6 k. The
contribution to the sum in (4.4) for all λi = `a and λj = `b for a fixed a < b is∑

(`a − `b)(`a − `b + j − i)d−1 (4.5)

where the sum is over i, j such that e1+· · ·+ea−1+1 6 i 6 e1+· · ·+ea and e1+· · ·+eb−1+1 6
j 6 e1 + · · ·+eb. Reindexing with p = ea−(i−e1−· · ·−ea−1)+1 and q = j−e1−· · ·−eb−1,
the sum in (4.5) becomes

(`a − `b)
∑

16p6ea
16q6eb

(`a − `b + p+ q − 1 + ea+1 + · · ·+ eb−1)d−1. (4.6)

Next, note that for fixed d > 2, (u+v+w)d = Θ(ud+vd+wd) uniformly for all u, v, w > 0,
since then

ud + vd + wd 6 (u+ v + w)d

6 (3 max{u, v, w})d = 3d max{ud, vd, wd}
6 3d(ud + vd + wd).

Letting u = p, v = `a − `b + ea+1 + · · · + eb−1 − 1, and w = q, we see the sum in (4.5) and
(4.6) is Θ of

(`a − `b)
∑

16p6ea
16q6eb

[
(`a − `b + ea+1 + · · ·+ eb−1 − 1)d−1 + pd−1 + qd−1

]

= (`a − `b)

[
eaeb(`a − `b + ea+1 + · · ·+ eb−1 − 1)d−1 + eb

∑
16p6ea

pd−1 + ea
∑

16q6eb

qd−1

]
.

Since d > 2,
∑

16p6ea
pd−1 = Θ(eda) uniformly for all u ∈ Z>1 by the bounds in Lemma 2.23,

and similarly
∑

16p6eb
qd−1 = Θ(edb). Consequently, the preceding sum and also the sum in (4.5)

are Θ of

(`a − `b)
[
eaeb(`a − `b + ea+1 + · · ·+ eb−1 − 1)d−1 + ebe

d
a + eae

d
b

]
= (`a − `b)eaeb

[
(`a − `b + ea+1 + · · ·+ eb−1 − 1)d−1 + ed−1

a + ed−1
b

]
= Θ

(
(`a − `b)eaeb(`a − `b − 1 + ea + · · ·+ eb)

d−1
)
.

The result follows by summing over all 1 6 a < b 6 k, since the preceding bounds were all
uniform.



combinatorial theory 2 (2) (2022), #5 39

Theorem 4.10. Let λ = `e11 · · · `
ek
k denote an infinite sequence of partitions with `(λ) 6 m,

`1 > `2 > · · · > `k > 0 and each ei > 0. Then, for d > 2 even,

κλ;m
d = Θ

( ∑
16a<b6k

(`a − `b)eaeb(`a − `b − 1 + ea + · · ·+ eb)
d−1

)
. (4.7)

Furthermore, Xλ;m[rank] is asymptotically normal if

weft(λ) :=

∑
16a<b6k(`a − `b)eaeb(`a − `b − 1 + ea + · · ·+ eb)

(`1 − `k − 1 +m)2
→∞. (4.8)

Proof. In general, ud − vd = (u− v)
∑d−1

i=0 u
ivd−i−1 = (u− v)hd−1(u, v), so (2.11) gives

κλ;m
d =

∑
16i<j6m

(λi − λj)hd−1(λi − λj + j − i, j − i).

For fixed d > 2 even and u > v > 0, we have hd−1(u, v) = Θ(ud−1) since

ud−1 6 ud−1 + ud−2v + · · ·+ vd−1 6 ud−1 + ud−1 + · · ·+ ud−1 = dud−1.

Consequently,

κλ;m
d = Θ

( ∑
16i<j6m

(λi − λj)(λi − λj + j − i)d−1

)
.

Hence, (4.7) holds by Lemma 4.9.
We use the cumulant formula in (4.7) to prove the asymptotic normality result. Write xab :=

(`a − `b)eaeb and yab := `a − `b − 1 + ea + · · · + eb for 1 6 a < b 6 k. By (4.7), we have for
all d > 2 even

(κλ;m
d )∗ = Θ

( ∑
16a<b6k xaby

d−1
ab(∑

16a<b6k xabyab
)d/2

)
.

Note that y1k > yab, so ŷab := yab/y1k 6 1. Hence ŷd−1
ab 6 ŷab and∑

16a<b6k

xabŷ
d−1
ab 6

∑
16a<b6k

xabŷab.

Consequently, ∑
16a<b6k xaby

d−1
ab(∑

16a<b6k xabyab
)d/2 =

yd−1
1k

y
d/2
1k

∑
16a<b6k xabŷ

d−1
ab(∑

16a<b6k xabŷab
)d/2

6
1

y
1−d/2
1k

( ∑
16a<b6k

xabŷab

)1−d/2

=

( ∑
16a<b6k

xabyab/y
2
1k

)1−d/2

.
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The latter parenthesized quantity equals the weft(λ) statistic in (4.8) by construction. Thus,

(κλ;m
d )∗ = O

(
1

weft(λ)d/2−1

)
. (4.9)

When d > 4, weft(λ) → ∞ implies (κλ;m
d )∗ → 0. Thus, asymptotic normality follows from

Corollary 2.5 since all of the odd Bernoulli numbers for d > 3 are zero.

Example 4.11. Let λ(N) = δN := (N − 1, N − 2, . . . , 2, 1, 0) be the staircase partition for
N > 1. We have e1 = · · · = eN = 1 and `1 = N − 1, . . . , `N = 0. In this case, (4.8) simplifies
to

weft(λ(N)) =

∑
16a<b6N 2(b− a)2

(2N − 2)2
= N2 N + 1

24(N − 1)
.

Thus, as N → ∞ this statistic goes to infinity, so XδN ;N [rank] is asymptotically normal by
Theorem 4.10.

The characterization in Theorem 4.10 is powerful enough to prove asymptotic normality in
many cases of interest. We will use the criteria in the next corollary to further simplify the
arguments in the examples below and the applications to plane partitions. As mentioned in the
introduction to this section, we can assume `(λ) < mwithout loss of generality. We may include
the case `(λ) = m if desired by replacing `1 with `1 − `k in the following result.

Corollary 4.12. Let λ = `e11 · · · `
ek
k denote an infinite sequence of partitions with `(λ) < m, so

λ1 = `1 > `2 > · · · > `k = 0, and each ei > 0. Then Xλ;m[rank] is asymptotically normal in
the following situations.

(i) m2

k`1(k+`1)
→ 0 and k →∞.

(ii) e[2]

k(`1/m+1)2 →∞, where e[2] denotes the second largest element among e1, . . . , ek.

(iii) `1e1ek
`1+m

→∞.

Proof. For (i), suppose m2

k`1(k+`1)
→ 0 and k →∞. We have∑

16a<b6k

(`a − `b)eaeb(`a − `b − 1 + ea + · · ·+ eb)

>
∑

1<p<k

[(`1 − `p)e1ep(`1 − `p − 1 + e1 + · · ·+ ep) + `pepek(`p − 1 + ep + · · ·+ ek)]

>
∑

1<p<k

[(`1 − `p)(`1 − `p + p− 1) + `p(`p + k − p)]

>
∑

k
4

+1<p< 3k
4

[(`1 − `p)(`1 − `p + k/4) + `p(`p + k/4)]

=
∑

k
4

+1<p< 3k
4

[`2
1 − 2`1`p + 2`2

p + k`1/4].
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Set xp := `p/`1 and divide the preceding inequality by `2
1. Suppose k > 4. The final expression

becomes ∑
k
4

+1<p< 3k
4

[1− 2xp + 2x2
p + k/(4`1)] >

∑
k
4

+1<p< 3k
4

[1/2 + k/(4`1)]

> (k/2− 2)(1/2 + k/(4`1))

> k/16 · (1 + k/`1).

Consequently,

weft(λ) >
k/16 · (1 + k/`1)

(1 + (m− 1)/`1)2

>
1

16

k`1(k + `1)

(`1 +m)2

>
1

16
min

{
k`1(k + `1)

(2`1)2
,
k`1(k + `1)

(2m)2

}
>

1

64
min

{
k,
k`1(k + `1)

m2

}
→∞,

since m2

k`1(k+`1)
→ 0 and k →∞ by hypothesis. The result now follows from Theorem 4.10.

For (ii), suppose e[2]

k(`1/m+1)2 →∞. By definition, e[2] 6 m− ei for all i. Thus,∑
16a<b6k

(`a − `b)eaeb(`a − `b − 1 + ea + · · ·+ eb)

>
∑

16a<b6k

e2
aeb + eae

2
b

=
∑

16i6k

e2
i (ei+1 + · · ·+ ek) +

∑
16i6k

(e1 + · · ·+ ei−1)e2
i

=
∑

16i6k

e2
i (m− ei)

> e[2]
∑

16i6k

e2
i .
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If f1 > · · · > fk > 0, then

(f1 + · · ·+ fk)
2 = f 2

1 + · · ·+ f 2
k + 2

∑
16i<j6k

fifj

6 f 2
1 + · · ·+ f 2

k + 2
∑

16i<j6k

f 2
i

=
k∑
i=1

(1 + 2(k − i))f 2
i

6 2k
k∑
i=1

f 2
i .

This latter bound is independent of the actual order of the fi. Consequently,

e[2]
∑

16i6k

e2
i > e[2]m

2

2k
.

Clearly (`1 − `k − 1 +m)2 6 (`1 +m)2. Hence

weft(λ) =

∑
16a<b6k(`a − `b)eaeb(`a − `b − 1 + ea + · · ·+ eb)

(`1 − `k − 1 +m)2

>
e[2]m2

2k(`1 +m)2
=

e[2]

2k(`1/m+ 1)2
→∞,

since e[2]

k(`1/m+1)2 →∞. The result again follows from Theorem 4.10.
For (iii), suppose `1e1ek

`1+m
→∞. We have

weft(λ) >
(`1 − `k)e1ek(`1 − `k − 1 +m)

(`1 − `k − 1 +m)2

>
`1e1ek
`1 +m

→∞.

The result again follows from Theorem 4.10.

Example 4.13. Suppose λ is a sequence of partitions with distinct parts and `(λ) → ∞. Then
`1 > k = m and m2

k`1(k+`1)
6 1

k
→ 0. By Corollary 4.12(i), the sequence Xλ;m[rank] is asymp-

totically normal.

Example 4.14. Suppose λ is a sequence of partitions withm = `1 and k →∞. Then m2

k`1(k+`1)
6

1
k
→ 0. Again by Corollary 4.12(i), the sequence Xλ;m[rank] is asymptotically normal.

Remark 4.15. The limit shape of a randomly chosen partition of n as n→∞ is well-known to
be the curve

e
− π√

6
x

+ e
− π√

6
y

= 1
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where (x, y) corresponds to (i/
√
n, λi/

√
n) [Ver96, Thm. 4.4, p.99]. One consequently expects

λ1 ≈
√
n, and certainly k →∞. It seems natural to use m = λ′1 ≈

√
n, in which case

m2

kλ1(k + λ1)
≈

√
n

2

k
√
n(k +

√
n)

6
1

k
→ 0.

Thus, one heuristically expects Xλ;m[rank] to be asymptotically normal for randomly chosen
partitions. We do not attempt to make this precise.

Question 4.16. Suppose λ is a sequence of partitions with `(λ) < m and k is the number of
distinct parts of λ. Does k →∞ ensure Xλ;m[rank] is asymptotically normal?

4.4. Limit laws for plane partitions

We may use Corollary 4.12(ii) to deduce the complete characterization of the asymptotic limits
for plane partitions in a box from the introduction. The following is a restatement of Theo-
rem 1.11.

Theorem 4.17. The size statistic on PP(a× b× c) is asymptotically normal if and only if

median{a, b, c} → ∞.

If ab converges and c→∞, the normalized limit law is the Irwin–Hall distribution IH∗ab.
Proof. From the discussion in Section 2.2, we have

XPP(a×b×c)[size]∗ = XSSYT6a+c((ba))[rank]∗.

Let λ = (ba) = ba0c, so n = ab, k = 2, `1 = b, `2 = 0, e1 = a, e2 = c, andm = a+ c. Suppose
median{a, b, c} → ∞. Without loss of generality, we may suppose b 6 a 6 c, so a → ∞. In
this case, e[2] = a and b/(a + c) 6 1/2. Hence e[2]

k(`1/m+1)2 = a
2(b/(a+c)+1)2 > a

2(3/2)2 → ∞ and
asymptotic normality follows from Corollary 4.12(ii).

On the other hand, if median{a, b, c} is bounded, we may suppose a 6 b 6 c, so that n = ab
is bounded. If c → ∞, then the standardized limit distribution is IH∗ab provided ab converges
by Theorem 4.1(i). The result follows.

We conclude this section by giving some sample applications of the preceding results to three
natural scaling limits of partitions obtained by stretching rows and/or columns by scale factors
tending to∞.

Example 4.18. Continuing Example 4.6, instead pick a sequence c(N) → ∞ of column scale
factors, so that

λ(N) = (λ1, . . . , λ1︸ ︷︷ ︸
c(N)

, · · · , λm, . . . , λm︸ ︷︷ ︸
c(N)

),

m(N) = c(N)m, `(N)
1 = λ1, e(N)

i = c(N)ei, and (e(N))[2] = c(N)e[2]. Thus

(e(N))[2]

k(N)(`
(N)
1 /m(N) + 1)2

=
c(N)e[2]

k(λ1/(c(N)m) + 1)2
∼ c(N)e[2]

k
→∞,

so by Corollary 4.12(ii), X(c(N)λ′)′;c(N)m[rank] is asymptotically normal.
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Example 4.19. Combining Example 4.6 and Example 4.18, use both row and column scale
factors simultaneously. We see

`
(N)
1 e

(N)
1 e

(N)
k

`
(N)
1 +m(N)

=
r(N)(c(N))2λ1e1ek
r(N)λ1 + c(N)m

→∞,

so by Corollary 4.12(iii), Xr(N)(c(N)λ′)′;c(N)m[rank] is asymptotically normal. In particular, this
includes the case when c(N) = r(N) → ∞ and λ(N) is obtained from λ by replacing each cell
with a c(N) × c(N) grid of cells.

4.5. Summary

Here we collect the known cases when Xλ;m[rank]∗ converges in distribution. Let n = |λ|,
without loss of generality suppose `(λ) < m, let k be the number of distinct row lengths of λ
(including 0 since `(λ) < m), let ei be the multiplicity of the ith largest row length, and let e[2]

be the second-largest element amongst e1, e2, . . . , ek.

Summary 4.20.

(i) In the following situations, Xλ;m[rank]∗ ⇒ N (0, 1).

(a) n
m
→ 0 and n→∞ (Theorem 4.1(ii))

(b) λ1/m
3 →∞ and m→∞. Moreover, a converse holds. (Theorem 4.5(ii))

(c) λ(N) = (2N−1, 2N−2, . . . , 1) and m(N) = N (Example 4.7)
(d) λ(N) = δN = (N − 1, N − 2, . . . , 2, 1, 0) and m(N) = N (Example 4.11)
(e) weft(λ)→∞ (Theorem 4.10)
(f) m2

k`1(k+`1)
→ 0 and k →∞ (Corollary 4.12(i))

(g) e[2]

k(`1/m+1)2 →∞ (Corollary 4.12(ii))

(h) `1e1ek
`1+m

→∞ (Corollary 4.12(iii))
(i) e1 = · · · = ek = 1 and k →∞ (Example 4.13)
(j) m = λ1 and k →∞ (Example 4.14)
(k) λ = (ba), m = a+ c, and median{a, b, c} → ∞ (Theorem 1.11)
(l) If the sequence λ is obtained by successively scaling the columns by a factor c→∞.

(Example 4.18)
(m) If the sequence λ is obtained by successively scaling the rows and columns by factors

of r, c→∞. (Example 4.19)

(ii) In the following situations, Xλ;m[rank]∗ ⇒ IH∗M .

(a) n/m→ 0 and n→M . (Theorem 4.1(i))
(b) λ = (ba), m = a+ c, ab→M , and c→∞ (Theorem 1.11)
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(iii) In the following situations, Xλ;m[rank]∗ ⇒ S∗d.

(a) λ1 → ∞, m is bounded, and ∆t(λ) → d where xi := λi/λ1. Moreover, a converse
holds. (Theorem 4.5(i))

(b) If the sequence λ is obtained by successively scaling the rows by a factor r → ∞,
and d = ∆λ. (Example 4.6)

5. Metric spaces related to forest distributions

In this section, we consider the two q-analogs of the number of linear extensions of posets which
come from trees and forests using variations on the inv and maj statistics for permutations as
given by Björner–Wachs in [BW89]. Recall the background for these q-analogs from Section 2.3.
As summarized in Section 1.3, we will show that the coefficients in the corresponding polyno-
mials “generically” are asymptotically normal, but that the metric space of DUSTPAN distribu-
tions MDUST characterizes all possible limit laws in a certain degenerate regime. In particular,
we prove Theorem 1.13, Theorem 1.14, and Corollary 1.17.

5.1. Generic asymptotic normality for trees and forests

Recall from Section 2.3 that for any forest P , there is an associated q-hook length polynomial

LP (q) := [n]q!/
∏
u∈P

[hu]q

and random variableXP . Here we show that the sequences of random variablesXP for forests P
are asymptotically normal if certain numerical conditions hold; see Theorem 1.13. This covers
the “generic cases”. We begin by describing a family of trees which maximize the sum of the
hook lengths over all trees of rank r with n elements. We use this family of trees to identify
good approximations for the cumulants corresponding with all trees.

Definition 5.1. Suppose n ∈ Z>1 and 1 < r 6 n. LetHn,r be the tree obtained by starting with a
rooted chainC with r elements and adding n−r elements each as children of the second-smallest
node in the chain. See Figure 5.1.

Lemma 5.2. Among all trees P with n elements and rank 1 < r 6 n, Hn,r is the unique
maximizer of

∑
u∈P hu. Consequently, the degree of LP (q) is

n∑
k=1

k −
∑
u∈P

hu >
n∑
k=1

k −
∑
v∈Hn,r

hv =

(
n− r + 1

2

)
(5.1)

Proof. Let C be a maximal chain of P with r > 1 elements and second-smallest element y.
If P 6= Hn,r, let x ∈ P − C be a leaf of P which is not a child of y. Let P ′ be the result of
moving x to be a descendant x′ of y, which preserves the rank and number of vertices. Since C
is maximal, we can easily determine the change in the sum of the hook lengths: it increases by
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c1

c2

c3

c4

d1 d2

Figure 5.1: The poset H6,4. The chain C = {c1, c2, c3, c4} of length 4 has 2 additional descen-
dants added to the second-smallest element c2.

#{v′ ∈ P ′ : v′ ∈ C, v′ > y} = |C| − 1 = r − 1 and decreases by #{v ∈ P : v > x} 6 r − 1.
This procedure always weakly increases the sum of the hook lengths and arrives at Hn,r after a
finite number of iterations, so the maximality claim follows.

Observe the procedure strictly increases the sum of the hook lengths unless
#{v ∈ P : v > x} = r − 1. In this case, let z be the unique cover of x in P . By con-
struction, z 6∈ C. After applying the procedure to x to get P ′, applying the procedure again
to all of z’s children and then to z will strictly increase the sum of hook lengths. Thus, P has
strictly smaller sum of hook lengths than Hn,r, and the uniqueness claim follows.

For the equality in (5.1), we find∑
v∈Hn,r

hu = 1 · (n− r + 1) +
n∑

k=n−r+2

k =
n∑

k=n−r+1

k.

Therefore,
n∑
k=1

k −
∑
v∈Hn,r

hv =
n∑
k=1

k −
n∑

k=n−r+1

k =
n−r∑
k=1

k =

(
n− r + 1

2

)
.

Lemma 5.3. Suppose 0 6 α < 1 and fix d ∈ Z>2 even. Uniformly for all trees P with n
elements and rank 1 < r 6 αn, we have

|κPd | = Θ(nd+1).

Explicitly, for a fixed d ∈ Z>1,

bad

d
nd+1 6

n∑
k=1

kd −
∑
u∈P

hdu 6

(
1

d+ 1
+

1

n

)
nd+1 (5.2)

where x :=
[(

2
1−α

)2 − 1
]
> 1, a := 1/x, and b := 1/(x+ 1), so 0 < a, b < 1.

Proof. Recall from Corollary 2.21 that κPd = Bd
d

(∑n
k=1 k

d −
∑

u∈P h
d
u

)
so |κPd | = Θ(nd+1)

provided the lower bound and upper bound in (5.2) hold. The upper bound follows from the
upper bound in Lemma 2.23.
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For the lower bound, construct a labeling w of P by iteratively building up P as follows.
Begin by labeling the root of P with 1 in w. At each step, increment all existing labels in w, pick
an element of P which has not been labeled whose parent has been labeled, and label it with 1.
Observe that the resulting labeling w : P → [n] is natural. Consider the quantity w(u) − hu
during this procedure. When u has initially been labeled, we havew(u)−hu = 1−1 = 0. After
u has been labeled, when adding a new vertex v, if v 6 u then bothw(u) and hu are incremented,
while if v 66 u then onlyw(u) in incremented. Consequently, the final value ofw(u)−hu counts
the number of elements v added after u such that v 66 u. In particular, w(u)− hu > 0.

Using the real numbers a, b, x defined in the statement of the lemma, let
M := {u ∈ P : w(u) − hu > bn}. We claim #M > an. To prove the claim, suppose to
the contrary that #M < an. By definition, 0 < a, b < 1. Consequently,

∑
u∈P

w(u)− hu =
∑
u∈M

(w(u)− hu) +
∑
u6∈M

(w(u)− hu)

6 #M · n+ (n−#M) · bn
= bn2 + #M · (1− b)n
< bn2 + a(1− b)n2 = (a+ b− ab)n2.

One may easily check that a + b − ab = 2/(x + 1) = (1 − α)2/2. Since r 6 αn, we have
n− r > (1− α)n, so that∑

u∈P

w(u)− hu <
(1− α)2

2
n2 6

(n− r)2

2
6

(
n− r + 1

2

)
,

contradicting Lemma 5.2 and verifying the claim. Using the claim and the lower bound on the
sum in Lemma 2.23, we now find

n∑
j=1

jd −
∑
u∈P

hdu =
∑
u∈P

(w(u)d − hdu)

>
∑
u∈M

(w(u)− hu)hd−1(w(u), hu) >
∑
u∈M

(bn)w(u)d−1

> bn ·
#M∑
j=1

jd−1

> bn · (#M)d/d >
(
bad/d

)
nd+1.

Now, we are prepared to address the question of asymptotic normality for sequences of ran-
dom variables associated to trees and forests. Recall the following theorem from the introduction.
Theorem 1.13. Given a sequence of forests P , the corresponding sequence of random vari-
ables X ∗P is asymptotically normal if

|P | → ∞ and lim sup
rank(P )

|P |
< 1.
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Proof. By Remark 2.22, it suffices to assume P is a tree. For d > 2 even, we know
|κPd | = Θ(nd+1) by Lemma 5.3, so |(κPd )∗| = |κPd |/|κP2 |d/2 = Θ(n1−d/2) → 0. By Corol-
lary 2.21, the odd cumulants vanish. Therefore, the result again follows from Corollary 2.5.

Remark 5.4. One expects most random forest generation techniques to yield a rank which is
logarithmic in the number of nodes with high probability, in which case Theorem 1.13 applies.
This is the sense in which we consider Theorem 1.13 to cover “generic” trees and forests.

Remark 5.5. More precisely, we may use the explicit bounds in Lemma 5.3. Setting α := r/n,
the lower bound becomes (1−α)2(d+1)

4(1+α)d(3−α)d
nd+1. Since 0 6 α 6 1, the denominator can be ignored.

Considering the d = 4 case for simplicity, we find

κ∗4 = O

(
n5

((1− α)6n3)2

)
= O

(
n−1

(1− r/n)12

)
= O

(
n11

(n− r)12

)
.

Thus asymptotic normality follows when n−r
n11/12 →∞, or equivalently when n− r = ω(n11/12).

By contrast, Theorem 1.14 classifies limit laws when n − r = o(n1/2). Analyzing the possible
asymptotic behavior between these extremes is still an open problem.

5.2. Degenerate forests and DUSTPAN distributions

We now consider sequences of random variables associated to the “degenerate” trees
with n − r = o(n1/2). Note, n − r = o(n1/2) implies r/n → 1, so these sequences are not
covered by Theorem 1.13. For such trees, we give a simple numerical estimate for the cumulants
in terms of multisets of elevations, and use them to characterize asymptotic normality as well as
the other limiting distributions in terms of the metric space of DUSTPAN distributions MDUST.

Remark 5.6. To avoid certain redundancies, we restrict to standardized trees in the sense of
Remark 2.22. As an example of behavior which is prohibited by this assumption, consider the
trees Hn,n−k for fixed k, which are not standardized. This sequence of trees has rank r = n− k,
so lim r/n = 1 as n→∞, and Theorem 1.13 does not apply. Indeed, it is easy to see that

LHn,n−k(q) =
[n]q!∏

u∈Hn,n−k [hu]q
= [k + 1]q!.

Therefore, X ∗Hn,n−k has the same discrete distribution for all n > k, so the limit distribution is
discrete.

On the other hand, if n−r →∞, the length of the support ofXP tends to∞ by Remark 2.20
and Lemma 5.2. Hence each distribution appears only finitely many times in such a sequence.
Moreover, since the coefficients are unimodal, any sequence X ∗P with n − r → ∞ cannot con-
verge to a discrete distribution.

We begin with a series of estimates relating the cumulants κPd to the following auxiliary
combinatorial quantity on P .
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Figure 5.2: A tree P with maximal chain C = {c0 < c1 < c2 < c3 < c4} and elevations
of P − C labeled.

Definition 5.7. Let C be a fixed maximal chain in a forest P with |C| = r. For each u ∈ P −C,
define the elevation of u to be

eu := #{v ∈ C : u 66 v}.

See Figure 5.2. Let sk(P,C) be the number of elements in P−C with elevation at least k−n+r,

sk(P,C) := #{u ∈ P − C : eu > k − n+ r}.

For example, if u is attached to the root of the tree which is the maximal element of C, then
the elevation is eu = r − 1. If u is attached to the second-smallest element of C, then eu = 1.
We see that eu = r if and only if u is not connected by a path to C. Thus, if P is a tree, then
1 6 eu < r, so sn−r(P,C) = n− r, and sn(P,C) = 0.

If P is a tree and C is a chain in P , then P −C is a forest so both have associated cumulants.
We may relate κPd and κP−Cd using the numbers sk(P,C) as follows.

Lemma 5.8. Let C be a maximal chain in a tree P with n elements and |C| = r. Then for each
d ∈ Z>1,

κPd = κP−Cd +
Bd

d

∑
u∈P−C

n−r+eu∑
k=n−r+1

hd−1(k, k − sk) (5.3)

Proof. Let C = vn > vn−1 > · · · > vn−r+1. Note that for u ∈ P − C, we have u < vk if and
only if eu < k − n+ r. Consequently, for all n− r < k 6 n we have

hvk = k − n+ r + #{u ∈ P − C : u < vk}
= k − n+ r + #{u ∈ P − C : eu < k − n+ r}
= k − n+ r + (n− r −#{u ∈ P − C : eu > k − n+ r})
= k − sk.
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Thus,
n∑

k=n−r+1

kd − hdvk =
n∑

k=n−r+1

(k − hvk)hd−1(k, hvk)

=
n∑

k=n−r+1

skhd−1(k, k − sk)

=
n∑

k=n−r+1

#{u ∈ P − C : eu > k − n+ r} · hd−1(k, k − sk)

=
∑

u∈P−C

n−r+eu∑
k=n−r+1

hd−1(k, k − sk).

Therefore, (5.3) follows from the cumulant formula in Corollary 2.21.

If P is a standardized tree with maximal chain C of size |C| = r > 1, it has an element
u ∈ P − C with eu = r − 1, so eu/r ∼ 1 for r large. As we saw in Section 3.1, renormalizing
a multiset by the maximum value is a useful technique while not changing the corresponding
standardized general uniform sum distribution. Consequently, we consider the re-scaled multiset
of elevations e/r = {eu/r : u ∈ P−C},which are then related to the rescaled cumulants κPd /rd.

Lemma 5.9. Suppose we have a sequence of standardized trees P such that the number of
elements n → ∞ and the rank r satisfies n − r = o(n1/2), i.e. (n − r)/n1/2 → 0. Let C be a
maximal length chain in P . Then, for each d ∈ Z>1,

κP−Cd

rd
= O

(
(n− r)d+1

rd

)
→ 0 and

κPd
rd
∼

∑
u∈P−C

(eu
r

)d
= |e/r|dd.

Proof. Since n−r = o(n1/2) and n→∞, we find n ∼ r, and so n−r = o(r1/2). Consequently,
(n− r)2/r → 0, and more generally (n− r)d+1/rd → 0 for all d > 1. Therefore,

κP−Cd

rd
=

1

rd

n−r∑
k=1

kd − 1

rd

∑
u∈P−C

hdu = O

(
(n− r)d+1

rd

)
→ 0.

Consider the formula for κPd /rd obtained from (5.3) by dividing both sides by rd. The first
term goes to 0 by the argument above. The second term is bounded above and below by

d
∑

u∈P−C

n−r+eu∑
k=n−r+1

(k− sk)d−1 6
∑

u∈P−C

n−r+eu∑
k=n−r+1

hd−1(k, k− sk) 6 d
∑

u∈P−C

n−r+eu∑
k=n−r+1

kd−1. (5.4)

In Lemma 5.10 and Lemma 5.11 below, we will show that, after dividing by rd, both bounds in
(5.4) are asymptotic to

∑
u∈P−C

(
eu
r

)d. Thus, κPd /rd ∼
∑

u∈P−C
(
eu
r

)d.
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Lemma 5.10. With the same hypotheses as Lemma 5.9,

d

rd

∑
u∈P−C

n−r+eu∑
k=n−r+1

kd−1 ∼
∑

u∈P−C

(eu
r

)d
.

Proof. From Lemma 2.23, we have∑
u∈P−C

[(
n− r
r

+
eu
r

)d
−
(
n− r
r

)d]
6

d

rd

∑
u∈P−C

n−r+eu∑
k=n−r+1

kd−1

6
∑

u∈P−C

[(
n− r
r

+
eu
r

)d
−
(
n− r
r

)d]
+
d

r

∑
u∈P−C

[(
n− r
r

+
eu
r

)d−1

−
(
n− r
r

)d−1
]
.

(5.5)

Consider the lower bound in (5.5). By Lemma 5.9,
∑

u∈P−C
(
n−r
r

)d
= (n−r)d+1

rd
→ 0 for all

d > 1. Furthermore,∑
u∈P−C

(
n− r
r

+
eu
r

)d
=
∑

u∈P−C

d∑
i=0

(
d

i

)(
n− r
r

)i (eu
r

)d−i
=

d∑
i=0

(
d

i

)(
n− r
r

)i ∑
u∈P−C

(eu
r

)d−i
6

∑
u∈P−C

[(eu
r

)d
+

d∑
i=1

(
d

i

)(
n− r
r

)i
· 1d
]

∼
∑

u∈P−C

(eu
r

)d
.

The first term in the upper bound in (5.5) is dominant by a similar argument. Therefore, since
the upper and lower bound in (5.5) asymptotically converge to the same sum, it follows that

d

rd

∑
u∈P−C

n−r+eu∑
k=n−r+1

kd−1 ∼
∑

u∈P−C

(eu
r

)d
.

Lemma 5.11. With the same hypotheses as Lemma 5.9,

d

rd

∑
u∈P−C

n−r+eu∑
k=n−r+1

(k − sk)d−1 ∼
∑

u∈P−C

(eu
r

)d
.

Proof. Consider the expansion

d

rd

∑
u∈P−C

n−r+eu∑
k=n−r+1

(k − sk)d−1 =
∑

u∈P−C

d

rd

n−r+eu∑
k=n−r+1

kd−1

+
d−1∑
i=1

(−1)i
(
d− 1

i

) ∑
u∈P−C

d

rd

n−r+eu∑
k=n−r+1

kd−1−isik.
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Since sk by definition counts a subset ofP−C, we have sk 6 n−r. Thus, for each 1 6 i 6 d−1,
we have ∑

u∈P−C

d

rd

n−r+eu∑
k=n−r+1

kd−1−isik 6
∑

u∈P−C

d(n− r)i

rd
·

n∑
k=n−r+1

kd−i−1

=
d(n− r)i+1

rd
·

n∑
k=n−r+1

kd−i−1

= O

(
(n− r)i+1

rd
· rd−i

)
= O

(
(n− r)i+1

ri

)
.

By Lemma 5.9, (n−r)i+1

ri
→ 0, and so by Lemma 5.10, it follows that

d

rd

∑
u∈P−C

n−r+eu∑
k=n−r+1

(k − sk)d−1 ∼ d

rd

∑
u∈P−C

n−r+eu∑
k=n−r+1

kd−1 ∼
∑

u∈P−C

(eu
r

)d
.

We may combine the preceding results to prove the following more explicit form of Theo-
rem 1.14 from the introduction.

Theorem 5.12. Let P denote an infinite sequence of standardized trees with n elements and
maximal chains C of rank r such that n→∞ and n− r = o(n1/2). Let e = {eu : u ∈ P −C}
be the multiset of elevations for P andC. Then for each fixed d ∈ Z>2 even, the cumulants ofX ∗P
are approximately

(κPd )∗ ∼ Bd/d

(B2/2)d/2

(
|e/r|d
|e/r|2

)d
=
Bd

d
|ê|dd. (5.6)

The sequence of random variables X ∗P converges in distribution if and only if the multisets ê
converge pointwise to some multiset t ∈ PDUST, in which case the limiting distribution is
St + N (0, σ) ∈ MDUST where σ :=

√
1− |t|22/12. In particular, the sequence of random

variables XP are asymptotically normal if and only if

|e/r|22 :=
∑

u∈P−C

(eu
r

)2

→∞. (5.7)

Proof. Fix d > 2 even. By hypothesis, n− r = o(n1/2), so Lemma 5.9 shows that

κPd
rd
∼ Bd

d
|e/r|dd. (5.8)

Therefore, by (2.2)

(κPd )∗ ∼ Bd/d

(B2/2)d/2

(
|e/r|d
|e/r|2

)d
.

Since e/r is finite, |e/r|2 exists, so the hat-operation is defined on e/r and ê/r = ê after can-
cellation. Hence, (5.6) follows from the definition of the hat-operation in (1.8).
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By the Method of Moments/Cumulants (Theorem 2.4) together with Lemma 2.7, the se-
quence X ∗P converges in distribution to some X if and only if Bd

d
|ê|dd converges to κXd for

each d ∈ Z>1. By Corollary 3.19 and the fact that |ê|22 = 12 by definition, this occurs if and only
if ê converges pointwise to some t. Therefore, by Theorem 3.32, we have t ∈ PDUST and X has
the associated DUSTPAN distribution Φ(t) = St +N (0, σ).

In particular, the limiting distribution of X ∗P is N (0, 1) if and only if ê→ 0. Now ê→ 0 if
and only if |e/r|∞/|e/r|2 = 1/|e/r|2 → 0 since standardized trees have an element of eleva-
tion r − 1. In particular, the limit is N (0, 1) if and only if |e/r|2 →∞.

Remark 5.13. We note that considering only standardized trees in Theorem 5.12 is essential
for the “if and only if” conditions to hold. For example, consider a sequence of trees Hn,r with
maximal chainC of size r such that n→∞ and n−r = o(n1/2). SinceLHn,r(q) = [n−r+1]q!
and n− r →∞, XHn,r is asymptotically normal by [Fel45]. However, we have elevation eu = 1
for all u ∈ Hn,r − C. Therefore,

∑
u∈Hn,r−C(eu/r)

2 = (n− r)/r2 → 0 rather than∞.

Remark 5.14. One can construct sequences of standardized trees with n − r = o(n1/2) where
e/r converges to any prescribed finite multiset t = (t1 > t2 > · · · > tm) ∈ ˜̀2 with |t|∞ = 1.
For each N = m+ 3,m+ 4, . . ., let rN = N −m. To construct the tree PN , start with a chain
CN = (v0 < v1 < · · · < vrN−1), and for each nonzero value 1 = t1 > t2 > · · · > tm, add
a child to vd(rn−1)tie. Finally, for each ti = 0, add one additional child to v1. As constructed
n = |PN | = N , r = rN − 1 and n − r = m is constant. Since t1 = 1 by assumption,
the root of PN has at least one child so it is a standard tree. Furthermore, m = |PN − CN |
so the elevation multiset of PN has exactly m elements. By construction, the multisets e/r =
{eN/rN : u ∈ PN −CN} approaches t as N →∞. Therefore, St̂ is the limiting distribution of
X ∗PN . By Corollary 3.29, we know that the closure of {St̂ : t ∈ ˜̀2, t is finite} is MDUST. Thus,
MForest ∪MDUST ⊂MForest as claimed in Section 1.

Corollary 1.17. Let εTREE be the set of standardized treesP for which |P | − rank(P ) 6 |P | 12 .
Let MεTREE := {X ∗P : P ∈ εTREE} ⊂MForest be the corresponding metric space of distribu-
tions. Then

MεTREE = MεTREE tMDUST, (5.9)

which is (sequentially) compact. Moreover, the set of limit points of MεTREE is MDUST.

Proof. By the construction in Remark 5.14, we know MεTREE ⊃MDUST, and MDUST is closed
by Corollary 3.28. Furthermore, we have (|P | − rank(P ))/|P |1/2 < |P |−ε → 0, so Theo-
rem 5.12 applies. Thus, for every sequence of trees P ∈ εTREE with |P | → ∞ such that
the corresponding random variables X ∗P ∈MεTREE converge in distribution, we know the dis-
tribution must be a DUSTPAN distribution. On the other hand, for every sequence of trees
P ∈ εTREE such that the corresponding random variables X ∗P ∈ MεTREE converge in distri-
bution but |P | is bounded, we must have a subsequence where n = |P | is eventually constant.
There are only a finite number of standardized trees of size n in εTREE, so we can further
restrict to a sequence where each P is a particular tree, in which case the limiting of X ∗P is
itself X ∗P ∈MεTREE.
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6. Future work

In addition to the open problems mentioned in Section 1 and Question 4.16, we pose the follow-
ing questions for future study.

Question 6.1. Suppose we have a sequence of standardized trees such that n → ∞ where
n−r grows at least as fast as n1/2 but no faster than n11/12 in the sense that n−r 6∈ o(n1/2) and
n−r 6∈ ω(n11/12). When is the corresponding sequence of distributions asymptotically normal?
What non-normal limit laws are possible?

Question 6.2. Does weft(λ)→∞ if and only ifXλ;m[rank] is asymptotically normal? See (4.8).

Question 6.3. Consider the set of rooted, unlabeled forests with n vertices, sampled uniformly
at random. What is the expected value of the rank r, i.e. the maximum length of a path starting
at a root of a tree in the forest? How does r compare to n asymptotically as n→∞?

See [Pit94] for growth rates of the form r ≈ log n for certain random tree generation tech-
niques. For the number of rooted, unlabeled forests with n vertices, t trees, and rank r, see
[OEI22, A291336]. Broutin–Flajolet [BF12, Thm. 3] showed that E[r] ∼ C

√
n for an explicit

constant C > 0 when considering rooted, unlabeled binary trees. The corresponding problem
when order is imposed either by labeling the vertices (resulting in labeled trees) or by ordering
the children (resulting in planar trees) is older, though the E[r] ∼ D

√
n behavior is common

throughout; see [BF12, p.1] for a summary and further references.
In [Swa22], the following q, t-analogue of the hook length formula (1.1) is given. Let (r, c) ∈

λ denote a cell in row r and column c. Then

[n]q!
∏

(r,c)∈λ

qr−1 + tqc−1

[h(r, c)]q
(6.1)

is the generating function for a pair of statistics (maj, neg) on standard supertableaux of shape
λ. The t = 0 case of (6.1) yields (1.1). While (6.1) is not literally a quotient of q-integers,
it is evidently “nearly” such a quotient. Computational evidence suggests the distributions are
“typically” bivariate normal with non-trivial covariance, which is strikingly similar to the dis-
tributions encountered by Kim–Lee [KL21] for (des,maj) on permutations in fixed conjugacy
classes. See Figure 6.1 for sample data.

Question 6.4. What are the possible limiting distributions of the coefficients of the q, t-hook
length formula (6.1)? What is the support of (6.1)?

One referee asked the following natural question, saying “A result of this form could give a
conceptual explanation for some of the results.” The authors regard this as an important question,
but we do not expect a simple answer.

Question 6.5. Can one give a formula for the statistic rank on SSYTλ,m as a natural sum of m
natural statistics on the tableaux, and then to show that they are (asymptotically) independent,
converging to the uniform law?
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Figure 6.1: Plots of coefficients of the q, t-hook length formula (6.1) with λ = (25, 4, 3, 3, 1,
1, 1, 1, 1).
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