Lawrence Berkeley National Laboratory

LBL Publications

Title

A simulation based comparison of AC and DC power distribution networks in buildings

Permalink

https://escholarship.org/uc/item/6hp144nw

Authors

Gerber, Daniel Vossos, Evangelos Feng, Wei <u>et al.</u>

Publication Date

2017-06-27

Peer reviewed

The 2nd IEEE International Conference on DC Microgrids June 27-29, 2017 Nürnberg, Germany

1041

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings

Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman dgerb@berkeley.edu Berkeley, CA, USA

Simulation, Emulation, and Analysis of Microgrids

Motivation

- Solar PV generation, battery storage, and most loads are natively DC
- How much efficiency savings with DC building distribution?
- Particularly relevant for Zero Net Energy (ZNE) and microgrid buildings

International

Conference on

DC Microarids

6/29/2017

Page 2

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Research Goal

- Determine how much efficiency savings with DC distribution
- Modeled buildings for study
 - Medium sized office building (50m X 33 m, 3 floors)
 - Los Angeles, CA, USA

Image of PNNL model of medium office building

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Modelica

- Object oriented modeling language
- Useful for complex systems that span electrical, mechanical, etc. domains
- GUI provided by Dymola or Open Modelica
- Popular for building and automotive simulations

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Office Building with AC Distribution

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman Conference on DC Microgrids

Office Building with DC Distribution

Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

International
 Conference on
 DC Microgrids

Page 6

Power & Energy Society

Load Models

- All loads are DC or have internal DC stage
- AC building: loads are native/internal DC

 All loads require load-packaged rectifier
- DC building: loads are direct DC
 - Lighting requires LED driver
 - HVAC (VFD motors) and plug loads assumed to be able to interface directly with DC distribution lines
- Load profiles are from Energy Plus

International

Conference on

DC Microarids

6/29/2017

Page 7

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Converter Models

AC Product	CEC Efficiency	String Inverter L
String Inverter	96.0%	100
Battery Inverter	92.1%	
Low Power Rectifier	89.9%	95
High Power Rectifier	90.8%	
AC LED Driver	90.2%	cy [%]
DC Product	CEC Efficiency	iticien 00
Power Optimizer	99.4%	
MPPT Chg. Controller	98.5%	85
DC-DC Transformer	97.6%	Maximum Curve
Grid Tie Inverter	96.6%	80 Median Curve
DC LED Driver	95.6%	0 10 20 30 40 50 60 70 80 90 % Max Power [%]

- Converters represent the most significant power loss
- Loss is based on efficiency curves obtained from manufacturer product data
- Power quality is not modeled in this study

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

6/29/2017

Page 8

Battery Model

- $P_{excess} = P_{solar} P_{load}$
- Charge battery when excess P_{excess} > 0
- Discharge battery when P_{excess} < 0
- Algorithm does not account for grid tariffs or multistage charging

Conference on

DC Microarids

Page 9

Power & Energy

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vageks Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Wire Model

- Model resistive losses as lumped resistance
- Wire gauge from expected load ampacity
- Wire length modeled by geometric methods

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Efficiency Results

- Efficiency for annual simulation: 1 (Total Loss / Total Load)
- Efficiency savings with DC increases with solar capacity and battery capacity
- Baseline parameter values
 - 390 kW solar capacity amount required for ZNE
 - 1380 kW-h battery capacity 50% of amount required to store all excess solar on sunniest day

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Loss Analysis

- AC building loss dominated by load packaged rectifiers and battery inverter
- DC building loss dominated by grid tie inverter
- Both buildings suffer battery chemical loss

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman

Techno Economic Analysis

TABLE II. LCC AND PBP RESULTS FOR BASELINE SCENARIO

Source	Description	Network	Value
ergy efficiency alysis	Total Installed Cost (\$)	AC _{AC}	252,098
	Total Instaned Cost (\$)	DC _{DC}	301,155
line retailers	Net Annual Electricity Consumption	AC _{AC}	176,775
	(kWh/yr)	DC _{DC}	100,656
ergy ormation	Average LCC Savings (\$)	AC_{DC} vs. DC_{AC}	61,487
ministration A 2014) nual Energy	% Cases with Net Benefit - DC Network	AC_{DC} vs. DC_{AC}	>90%
tlook 2016 EO2016)	Average PBP - DC Network (Years)	AC_{DC} vs. DC_{AC}	0.7
sed on power			

LCC = *Total Installed Cost* + *Lifetime Operating Cost*

 $PBP = \frac{Installed \ Cost_{DC \ System} - Installed \ Cost_{AC \ System}}{Operating \ Cost_{AC \ System} - Operating \ Cost_{DC \ System}}$

n Based Comparison of AC and DC Power Distribution Networks in Buildings wei in Based Source Nordman Source N

stem component

online stern.n

modar/

Thank you!

A Simulation Based Comparison of AC and DC Power Distribution Networks in Buildings Daniel Gerber, Vagelis Vossos, Wei Feng, Aditya Khandekar, Chris Marnay, Bruce Nordman International Conference on DC Microgrids

Power & Energy Society