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The volumetric quantification of brain structures is of great interest in pediatric populations because it allows the
investigation of different factors influencing neurodevelopment. FreeSurfer and FSL both provide frequently used
packages for automatic segmentation of brain structures. In this study, we examined the accuracy and consisten-
cy of those two automated protocols relative to manual segmentation, commonly considered as the “gold stan-
dard” technique, for estimating hippocampus and amygdala volumes in a sample of preadolescent children aged
between 6 to 11 years. The volumes obtained with FreeSurfer and FSL-FIRST were evaluated and compared with
manual segmentations with respect to volume difference, spatial agreement and between- and within-method
correlations.
Results highlighted a tendency for both automated techniques to overestimate hippocampus and amygdala vol-
umes, in comparison tomanual segmentation. Thiswasmore pronouncedwhen using FreeSurfer than FSL-FIRST
and, for both techniques, the overestimation wasmoremarked for the amygdala than the hippocampus. Pearson
correlations support moderate associations between manual tracing and FreeSurfer for hippocampus (right r =
0.69, p b 0.001; left r= 0.77, p b 0.001) and amygdala (right r= 0.61, p b 0.001; left r= 0.67, p b 0.001) volumes.
Correlation coefficients between manual segmentation and FSL-FIRST were statistically significant (right hippo-
campus r= 0.59, p b 0.001; left hippocampus r= 0.51, p b 0.001; right amygdala r = 0.35, p b 0.001; left amyg-
dala r=0.31, p b 0.001) butwere significantlyweaker, for all investigated structures.When computing intraclass
correlation coefficients betweenmanual tracing and automatic segmentation, all comparisons, except for left hip-
pocampus volume estimatedwith FreeSurfer, failed to reach 0.70. When looking at eachmethod separately, cor-
relations between left and right hemispheric volumes showed strong associations between bilateral
hippocampus and bilateral amygdala volumes when assessed using manual segmentation or FreeSurfer. These
correlations were significantly weaker when volumes were assessed with FSL-FIRST. Finally, Bland–Altman
plots suggest that the difference between manual and automatic segmentation might be influenced by the vol-
ume of the structure, because smaller volumes were associated with larger volume differences between
techniques.
These results demonstrate that, at least in a pediatric population, the agreement between amygdala and hippo-
campus volumes obtained with automated FSL-FIRST and FreeSurfer protocols and those obtained with manual
segmentation is not strong. Visual inspection by an informed individual and, if necessary, manual correction of
automated segmentation outputs are important to ensure validity of volumetric results and interpretation of re-
lated findings.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Childhood is a period of great relevance in the development of risk
factors for various neuropsychiatric conditions (Paus et al., 2008).
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Togetherwith increased efforts in prevention,many large-scale longitu-
dinal studies, starting in early childhood, are currently being undertak-
en to reveal the impact of environmental, behavioral and biological
factors on subsequent developmental outcomes (Chakravarty et al.,
2014; Giedd et al., 2015; Raznahan et al., 2014). Due to rapid advances
of in-vivo brain imaging technologies, volumetric quantification of
brain structures from structural Magnetic Resonance Imaging (MRI) is
more accessible than ever. Thus, large-scale studies often acquire MRI
to investigate relations between volume of specific brain structures
and different aspects of behavior.

Due to their involvement in multiple neuropsychiatric and neuro-
logical conditions, the medial temporal lobe structures hippocampus
and amygdala have received a considerable amount of attention. The
hippocampus is one of the most commonly studied and cited brain
structures in the scientific literature. Its involvement in basic cognitive
functions, such as memory consolidation (Squire, 1992), psychopathol-
ogies such as PTSD (Bonne et al., 2001), major depression (Campbell
and MacQueen, 2004), and neurological disorders, such as Alzheimer
disease (Fox et al., 1996), is well established. The amygdala is the
main structure of the limbic system associated with fear (Adolphs
et al., 1994; Davis and Whalen, 2001). It has been linked to many psy-
chopathologies including borderline personality disorder (Donegan
et al., 2003; Herpertz et al., 2001), PTSD (Rauch et al., 2000) and social
phobia (Stein et al., 2002). The association between negative life events
during childhood, such as abuse and traumatic experiences, and the in-
creased risk of developing psychiatric disorders later in life is well doc-
umented (Janssen et al., 2004; Johnson et al., 1999; MacMillan et al.,
2001; Springer et al., 2007). It has been hypothesized that the relations
between severe childhood stressors and vulnerability to psychopathol-
ogiesmight bemediated trough an impaired development of the hippo-
campus and/or amygdala (Pynoos et al., 1999; Teicher et al., 2003;
Woon and Hedges, 2008). Thus, many efforts are directed at defining
and clarifying the roles of the amygdala and the hippocampus in pediat-
ric samples. From a structural neuroimaging perspective, an important
challenge lies in the reliable and valid volumetric quantification of
these brain regions. However, reliable volumetric estimation ismethod-
ologically limited by the anatomical complexity of these two structures.

Manual segmentation is currently considered the gold standard for
volumetric quantification of brain structures (Pardoe et al., 2009;
Rodionov et al., 2009). However, this procedure requires sufficient ana-
tomical and MR methodological expertise, is difficult and time-
consuming to learn, and can be associated with intra- and inter-rater
variability if not performed using a consistent approach (Jack Jr. et al.,
1995). In order to increase reliability and reduce potential biases associ-
ated with manual segmentation procedures, multiple protocols have
been established and described in the literature for specific target re-
gions (Jack et al., 1990; Matsuoka et al., 2003; Pruessner et al., 2000;
Watson et al., 1992). Studies have demonstrated that using these proto-
cols significantly improve intra- and inter-rater agreement (Jack et al.,
1990; Matsuoka et al., 2003; Pruessner et al., 2000; Watson et al.,
1992). However, these protocols require a considerable amount of
training and thus further increase time demands of manual segmenta-
tion procedures. In contrast, protocols that offer the fully automated
processing and segmentation of target structures from MR images are
fast (speed is only limited by CPU power and availability), have excel-
lent reproducibility and require little anatomical expertise from the
end user. As a result, a number of automated protocols have recently
been developed, published and received favorably by the research com-
munity. In part because they are easily and freely accessible to the re-
search community and provide detailed documentation on usage, two
of these automated procedures have gained a considerable amount of
popularity. The first one is FreeSurfer (http://surfer.nmr.mgh.harvard.
edu), a software developed by theMartinos Center for Biomedical Imag-
ing (Fischl et al., 2002). FreeSurfer automatically assigns a label to each
voxel from the anatomical image based on probabilistic estimations re-
lying on Markov random fields (MRFs). The localisation and spatial
relations between structures are defined according using a training set
of manually labeled brains. The second commonly used automated seg-
mentation protocol is “FIRST”, provided as part of the FSL software li-
brary (http://fsl.fmrib.ox.ac.uk) (Patenaude, 2007; Patenaude et al.,
2011). Using a probabilistic framework, this software estimates bound-
aries of brain structures based on the signal intensity of the T1 image as
well as the expected shape of structures to be segmented.

It is well known that neuroanatomical variations are found not only
in clinical populations, but also when comparing brains of normal indi-
viduals (Pruessner et al., 2002). Automated segmentation approaches
are based on the questionable assumption that computer algorithms
can reliably differentiate and delimitate anatomical regions regardless
of inter-individual differences in neuroanatomy, scan quality, image
contrast, etc. While we did not find any studies comparing the perfor-
mance of automated segmentation performed with FSL-FIRST and/or
FreeSurfer tomanual segmentation in pediatric populations, the validity
of these protocols has previously been assessed in healthy adult controls
(Cherbuin et al., 2009;Morey et al., 2009; Patenaude et al., 2011) aswell
as different clinical populations, such as Alzheimer Disease (Pipitone
et al., 2014; Sánchez-Benavides et al., 2010; Shen et al., 2010),mood dis-
orders (Doring et al., 2011; Nugent et al., 2013; Tae et al., 2008),
temporal-lobe epilepsy (Akhondi-Asl et al., 2011; Pardoe et al., 2009)
and psychosis (Pipitone et al., 2014). These reports generally support
the ability of automated methods to detect volume difference between
clinical groups. However, many articles have highlighted a tendency for
FreeSurfer and FSL-FIRST to overestimate volume of brain structures
(Cherbuin et al., 2009; Doring et al., 2011; Morey et al., 2009; Nugent
et al., 2013; Pipitone et al., 2014; Sánchez-Benavides et al., 2010; Shen
et al., 2010; Tae et al., 2008). When assessing the correspondence be-
tween volumes derived from these two automated protocols and man-
ual segmentation earlier findings are variable. For the hippocampus
region, results usually supportmoderate to strong associations between
manual tracing and FreeSurfer, with Pearson correlation coefficients
ranging from 0.71 (Cherbuin et al., 2009; Sánchez-Benavides et al.,
2010) to 0.90 (Shen et al., 2010). Studies looking at the association be-
tween hippocampus volumes derived from FSL-FIRST and manual seg-
mentation report Pearson correlations ranging from 0.47 (Pardoe
et al., 2009) to 0.67 (Nugent et al., 2013). Few studies have looked at
the agreement between amygdala volumes derived from automated
segmentation protocols and manual tracing. A study by Morey et al.
(2009) revealed weaker associations between manual segmentation
and both FSL-FIRST and FreeSurfer when estimating the amygdala vol-
ume than when estimating the hippocampus volume (Morey et al.,
2009). Taken together, these results seem to indicate that the concor-
dance between volumes derived frommanual segmentation versus au-
tomatic protocols depend on the segmented structure as well as the
protocol used. Further, a report by Sánchez-Benavides suggests that
the accuracy of automated protocols may vary depending on neuroana-
tomical characteristics of studied populations (Sánchez-Benavides et al.,
2010). More precisely, this later study highlights a larger discrepancy
between manually and automatically segmented volumes when used
on atrophic brains. Previous reports assessing the validity and accuracy
of FSL-FIRST and FreeSurfer were based on adult brains; it remains un-
certain whether smaller brain volumes and potential changes in gray /
white matter contrasts in pediatric brains negatively affect the perfor-
mance of these two automated segmentation software. Thus, studies in-
vestigating the validity of automated segmentation in children are
needed.

The goal of this article was to explore the validity of FSL-FIRST and
FreeSurfer in estimating hippocampus and amygdala volumes in chil-
dren. To do so, we compared volumes generated by these two automat-
ed techniques to volumes obtained by manual segmentation, which is
considered to be the “gold standard” approach. The validity of the
segmentationmethodswas investigated bymeans of three different ap-
proaches. First, we established discrepancies between volumes derived
from manual segmentation and automated methods. Second, to

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://fsl.fmrib.ox.ac.uk
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estimate the consistency between manual and automated segmenta-
tion, we assessed between- and within-method associations of
hippocampus and amygdala volumes. Finally, to explore agreement be-
tween volumes and estimate possible proportional and fixed biases in
volume estimation we computed Bland–Altman plots.

Methods

Subjects

Anatomical MRI scans were collected in preadolescent children as
part of two studies on child neurodevelopment that applied the same
MRI acquisition protocol conducted at the University of California Irvine
(Buss et al., 2012;Davis et al., 2013). Institutional review boards fromall
participating institutions approved all study procedures. All T1 images
were visually inspected for quality of the image and for absence of ap-
parent motion artifacts. 153 scans judged to be of good quality were
retained and used in this study. Two scans were removed due to co-
registration issues when using FSL and 4 others were removed due to
inadequate processing with FreeSurfer, leaving 147 subjects for final
analyses. Following quality control, the final sample included 65 girls
and 82 boys study (age range: 6 to 11 years, mean age = 8.47 years
±1.37 SD). These children were predominantly right-handed (n =
130). The demographic information of subjects used in analyses is sum-
marized in Table 1.

MRI acquisition

T1 anatomical imaging was performed on a 3-T Philips Achieva MRI
scanner, at 1 mm isotropic resolution. Images were acquired in the sag-
ittal plane with the following parameters: repetition time 11 ms; echo
time 3.3 ms; inversion time 100 ms; turbo field echo factor 192; 150
slices; sensitivity encoding for fast MRI acceleration; and flip angle 18°.

Volumetric quantification

Manual segmentation of the hippocampus and amygdala
Before proceeding to the manual segmentation, anatomical images

were corrected for intensity non-uniformity (Sled et al., 1998) and reg-
istered to the stereotaxic space (MNI152 template) (Collins et al., 1994)
using a linear transformation. This pre-processing was performed to fa-
cilitate the identification of key structures and improve segmentation
consistency between scans. The hippocampus and amygdala were seg-
mented by a single expert rater using the software DISPLAY (www.bic.
mni.mcgill.ca/software/Display/Display.html). The anatomical borders
of the two key structures were defined and segmented according to
the protocol described by Pruessner et al. (Pruessner et al., 2000). As
the structural characteristics, delineations and boundaries of the hippo-
campus and amygdala in children aged over 6 years old are fully devel-
oped (Arnold and Trojanowski, 1996), the segmentation protocol was
used as described in the article and no specific modifications were nec-
essary for the population of interest. This protocol has been shown to
allow good intra- and inter-rater reliability. Consistently, the present
Table 1
Demographic information.

Mean (SD)

N 147
Age 8.47

(1.37)
Gender
(M/F)

82/65

Handedness
(R/L)

130/17

Subject demographics. M — male. F — female. R— right
handed. R— left handed. SD— standard deviation.
rater achieved an intraclass correlation coefficient of 0.90, and an
intrarater reliability of 0.92. One of the main objectives of this study
was to define whether smaller brain volumes could affect the accuracy
of FSL-FIRST and/or FreeSurfer in estimating hippocampus and amygda-
la volumes. Therefore, we used original MR T1 images from children
participants as input for both automated protocols. Consequently, to
be able to compare all segmentationmethodswithin the same space, la-
bels from manual segmentation were resampled to the native space
using the inversion of the matrix file designed to perform the linear
transformation prior to the manual segmentation. Native labels from
the specific structures (left/right amygdala and hippocampus) were
saved as four distinct binarymasks, each representing a single structure.
A voxel count was then used to estimate volumes from manually seg-
mented structures. To verify that the resampling of labels did not influ-
ence our results and conclusions, we also computed native volumes by
dividing the original segmentation volume in standard space by the
global scale factor associatedwith the linear transformation (native vol-
ume= standard volume/[x ∗ y ∗ z scale factors]). Volume difference and
between-methods correlation analyses described below were also per-
formedwith native volumes obtained the using the global scaling factor.

Automated segmentation of the hippocampus and amygdala using
FreeSurfer

The segmentation of the hippocampus and amygdala were also per-
formed using the FreeSurfer “recon-all” pipeline (v.4.4.0; http://surfer.
nmr.mgh.harvard.edu/). In brief, this technique estimates the probabil-
ity of each voxel to belong to a certain structure, based on a-priori
knowledge of spatial relationships acquired with a training set. It uses
differences in voxel intensity to locate and parcelate subcortical struc-
tures and affine registration to the Talairach space. The FreeSurfer pro-
cessing stages are fully described in Fischl et al. (2002). All files were
visually inspected to ensure adequate registration. Four subjects were
removed from the analysis due to poor co-registration. The volumes
provided in the aseg.stats file were used in the analysis, because these
take into account partial volume estimation and are judged to be more
accurate than the voxel count of label files. For visualization, segmenta-
tion files in the native space were converted into the MINC format. La-
bels from the specific structures (left/right amygdala and
hippocampus) were also saved as four distinct binary masks in the na-
tive space.

Automated segmentation of the hippocampus and amygdala using
FSL

Hippocampus and amygdala volumes were further obtained using
FSL-FIRST (v.1.2; http://fsl.fmrib.ox.ac.uk/). In brief, following registra-
tion to a standard template this software uses a Bayesian probabilistic
model that relies on shape and intensity to infer the location of struc-
tures of interest. For each structure a pre-defined number of modes is
applied to ensure the best fit. More documentation on the processing
steps of FIRST can be found in Patenaude's articles (Patenaude, 2007;
Patenaude et al., 2011). Finally, segmentation labels in the native
space were converted in the MINC file format. All files were visually
inspected to ensure correct registration. Two subjects were removed
from subsequent analyses due to inadequate co-registration and poor
processing. Labels from the specific structures (left/right amygdala
and hippocampus) were saved as binary masks, generating four sepa-
rate masks. A voxel count was then used to estimate volumes of struc-
tures segmented using FSL-FIRST.

Statistical analysis

Volumes used for method comparisons and statistical analyses were
in the native space. Due to the absence of group comparisons or correla-
tionswith external factors in the current analyses, we did not correct for
intracranial volume as there was no specific need to control for this

http://www.bic.mni.mcgill.ca/software/Display/Display.html
http://www.bic.mni.mcgill.ca/software/Display/Display.html
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://fsl.fmrib.ox.ac.uk


4 D. Schoemaker et al. / NeuroImage 129 (2016) 1–14
variable. All the following statistical analyseswere performed using IBM
SPSS statistics version 20.

Analysis of volume difference
The percentage of difference between volumes obtained with auto-

matedmethods andmanual segmentationwas computed using the fol-
lowing formula: %VD = [(Va − Vm)/Vm] ∗ 100%. In the event that the
automated (Va) method reaches an identical volume as manual seg-
mentation (Vm), the resulting percentage of volume difference (VD)
would be 0%. Hence, larger percentages of VD indicate increased dis-
crepancy between the volume derived from manual segmentation and
volumes derived from automated methods. Negative values are indica-
tive of an underestimation of volumes, in comparison with manual seg-
mentation, while positive values suggest an overestimation of volumes
computed automatically relative to manual segmentation. In order to
investigate potential interactions between methods and segmented
area (as expressed in percentages of volume difference), we conducted
a two-factor (Method x Area) repeated measure ANOVA. Significant
main effects were explored using post hoc Bonferroni-corrected
paired-samples t tests with a significance threshold adjusted to
p b 0.01 to account for the four (k = 4) performed comparisons. To lo-
cate regions of disagreement between volumes derived from automatic
methods and manual segmentation, 3D maps of regional differences
were prepared. For each subject, the transformation matrix associated
with registration to the MNI152 space was estimated using the
“mritotal” tool of the MINC Tool Kit. Binary masks representing labels
from each of the three segmentation methods were then resampled to
the MNI152 space, using the same transformation matrix. Using the
“mincmath” tool of the MINC Tool Kit maps of regional agreement be-
tween manual segmentation and both automated techniques were
computed. Specifically, these maps were constructed so that each
voxel represents the average percent of volume difference between la-
bels frommanual segmentation and the automatedmethod (100%, indi-
cating a total disagreement that a specific voxel belongs to the
segmented structure and 0%, indicating a total agreement). Thus, a
voxel with a percentage difference value of 25% would indicate that in
25% of the subjectswhere this specific voxel is inconsistently labeled be-
tween techniques, while in 75% of subjects, this voxel is labeled by both
techniques. For visualization, the maps are presented on the average
standardized brain of all participants included in the analyses.

Correlation analysis
Pearson correlations were conducted to estimate associations be-

tweenmanual and automated techniques and to establishwhether vol-
umes derived from automated methods are significantly associated
volumes obtained with manual segmentation. A strong correlation
would confirm a good consistency between automated techniques
and manual segmentation. To compare the two automated segmenta-
tion techniques with regards to their correlation with manual segmen-
tation, we computed Steiger's z test, a test recommended to assess the
difference in magnitude between correlated and overlapping correla-
tion coefficients (Meng et al., 1992; Steiger, 1980). Further, to obtain a
concurrent estimate of consistency and agreement between volumes
derived from the different segmentation techniques, we computed
intraclass correlation coefficients (ICC) (Shrout and Fleiss, 1979). An
ICC value of 1 indicates a perfect reproducibility between two (or
more) raters and of 0 or less, a reproducibility that is lower than what
is expected on the basis of chance alone.While there is no official guide-
line for the interpretation of ICCs, it has previously been suggested that a
ICC denoting a good reproducibility between measurements should be
equal to or higher than 0.75 (Burdock et al., 1963). Further, 0.70 has
often been considered as theminimum standard for adequate reliability
(Nunnally et al., 1967; Terwee et al., 2007). ICCs were computed auto-
matically with SPSS and, specifying a mixed-effect model as per
Shrout and Fleiss (1979) guidelines. Finally, to assess within-method
consistency, Pearson correlations were performed between volumes of
bilateral structures segmented within a same technique. Past research
indicates that, in a single subject, a moderate to strong association is ex-
pected between homotopic (left versus right hemisphere) volumes
(Allen et al., 2002). Weak left versus right hemisphere correlations
would indirectly suggest a lack of consistency or the presence of errors
in volume estimation within the assessed method. Further, if the two
automated segmentation protocols are consistent with manual seg-
mentation, similar associations between left and right hemisphere vol-
umes are expected when comparing theses methods. Thus difference in
magnitude between within-method correlations was also assessed ac-
cording to the statistical procedure described in Raghunathan et al.
(1996) article and based on the Fisher r-to-Z transform (ZPF)
(Raghunathan et al., 1996). In comparison to the Steiger's z statistical
test, this procedure is designed to assess differences between correlated
but nonoverlapping correlation coefficients.

Analysis of estimation biases
To further investigate agreement between manual segmentation

volumes and volumes derived from automated protocols, we computed
Bland–Altman plots. This graphical method is used to illustrate differ-
ences in estimation between two techniques or raters (Bland and
Altman, 1986). Bland–Altman plots are sometimes created using the
mean of the two studied techniques as the estimation of reference.
However, as manual segmentation is accepted and viewed as the gold
standard of technique for hippocampus and amygdala volumes estima-
tion, we plotted the difference between automated and manually seg-
mentation volumes against the volumes obtained with manual
segmentation. Arguments in favor of this procedure can be found in
Krouwer 2008 (Krouwer, 2008). We further integrated a regression
line to the plot to explore possible biases in volume estimation and ob-
serve whether characteristics of studied brain structures, as defined
using the gold standard technique, influence the discrepancy between
manually and automatically segmented volumes.

Results

Analysis of volume differences

Percentages of volume difference were computed separately for the
left and right hippocampus and the left and right amygdala. The mean
percentage of volume difference of FreeSurfer-derived volumes relative
to manually segmented volumes was of 60.38% (SD = 13.04) and
51.53% (SD = 13.17) for the left and right hippocampi, respectively,
and 100.29% (SD = 24.56) and 93.56% (SD = 25.78) for the left and
right amygdala, respectively. When computing the difference between
FSL-FIRST and manual segmentation, the mean percentage of volume
difference was of 27.61% (SD = 14.49) and 28.39% (SD = 13.07) for
the left and right hippocampi, respectively and of 50.32% (SD =
27.65) and 40.29% (SD= 26.09) for the left and right amygdala, respec-
tively. The mean hippocampus and amygdala volumes as well as per-
centage of volume difference derived from each technique are
presented in Table 2. The effects of the segmentation technique (FSL-
FIRST versus FreeSurfer) and the segmented area (average left and
right hippocampus volume respectively average left and right amygda-
la) on the obtained percentage of volume difference were tested with a
two-way repeated measure ANOVA. This analysis revealed a significant
effect of the technique F(1146) = 1555.65, p b 0001. Post-hoc
Bonferroni-corrected pairwise comparisons further revealed that
FreeSurfer leads to significantly larger percentage of volume difference
than FSL-FIRST for both the hippocampus (t(146) = 38.24, p b 0001)
and the amydgala (t(146)= 29.52, p b 0001). A highly significant effect
of the segmented area was also noted (F(1146) = 395.22, p b 0001).
Bonferroni-corrected pairwise comparisons showed that the amygdala
yielded significantly larger percentage of volume difference than the
hippocampus when segmented with both FSL-FIRST (t(146) = 9.85,
p b 0001) and FreeSurfer (t(146) = 24.11, p b 0001). Further, there



Table 2
Comparison of volumes between methods.

Manual FSL-FIRST FreeSurfer

Volume (SD) Volume (SD) % volume diff. (SD) Volume (SD) % volume diff. (SD)

L-hippocampus 2746,29 (347,73) 3475,44 (378,37) 27.61 (14.49) 4378,05 (445,69) 60.38
(13.04)

R-hippocampus 2786,92 (337,88) 3553,06 (372,55) 28.39 (13.07) 4194,63 (390,10) 51.53 (13.17)
L-amygdala 777,27 (134,99) 1144,02 (163,19) 50.32 (27.65) 1532,65 (171,49) 100.29 (24.56)
R-amygdala 832,92 (137,71) 1148,97 (194,78) 40.29 (26.09) 1586,05 (170,55) 93.56

(25.78)

Description ofmean volumes derived from each technique as well asmean percentage of volume difference (% volume diff.) obtained between FreeSurfer/FSL-FIRST andmanual segmen-
tation. L — left. R — right. SD— standard deviation.
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was a significant interaction effect between the automated segmenta-
tion method and the area (F(1146) = 180.27, p b 0001), due to the
fact that the difference in volume differences between the hippocampus
and the amygdala was even more pronounced when using FreeSurfer
than FSL-FIRST. Results of this analysis are summarized in Fig. 1. To
obtain a visual estimation of areas of discrepancy between manual seg-
mentation and the two studied automated methods, 3D-maps where
computed for FSL-FIRST vs. manual segmentation (Fig. 2), and
FreeSurfer (Fig 3) vs. manual segmentation using the ‘mincmath’ com-
mand, as part of the Minc ToolKit for manipulating 3D images (http://
www.bic.mni.mcgill.ca/ServicesSoftware/MINC). As expected, these
maps showed that, while the agreement betweenmanual and automat-
ed segmentation is usually satisfactory towards the inner sections of the
structures, especially at the cores, the disagreement increases linearly
towards the lateral and medial, superior and inferior, and anterior and
posterior borders of the target structures. From Figs. 2 and 3, it appears
that higher percentages of difference appear in the hippocampal tail as
compared to the head area. For the amygdala, when comparing FSL-
FIRST against manual segmentation, higher percentages of difference
are noted in superior boundaries. The same comparison between
FreeSurfer andmanual segmentation shows differences in both superior
and inferior boundaries.

Correlation analysis.

Between-method correlations
Pearson correlations between manual segmentation and FreeSurfer

volumes were rrhc = 0.69 and rlhc = 0.77 for right and left hippocampus,
respectively and rrag = 0.61 and rlag = 0.67 for right and left amygdala,
respectively. Correlations between FSL-FIRST and manually segmented
volumeswere rrhc= 0.59 and rlhc= 0.51 for the right and left hippocam-
pus, respectively and rrag = 0.35 and rlag = 0.31 for the right and left
amygdala, respectively. All correlations reached a p b 0.0001 threshold.
Correlations between volumes obtained with manual segmentation and
automatic protocols for FreeSurfer and in for FSL-FIRST are summarized
in Fig. 4 A and B, respectively. For each region (lhc, lag, rhc, rag), the dif-
ference in magnitude between correlations obtained with FSL-FIRST and
Fig. 1. Percentage of volume difference between automatic protocols and manual
segmentation for the combined left and right hippocampus and amygdala volumes. Two
asterisks indicate a significant difference (at the p b 0.0001 level). Percent volume
differences are significantly larger for volumes estimated with FreeSurfer than FSL-
FIRST, for both the amygdala and the hippocampus. Further, the amygdala leads to
significantly larger percent volume differences than the hippocampus, for FreeSurfer
and FSL-FIRST.
the one obtained with Freesurfer was tested using the Steiger's z test.
Since a total of four comparisonswere performed, the alphawas adjusted
to p b .01 for statistical significance, applying the Bonferroni correction.
Correlations between manual and automated segmentation volumes
were significantly stronger for Freesurfer than FSL-FIRST for the left
(Z = 4.83, p b 0.001) and right (Z = 3.31, p b 0.001) amygdala and the
left hippocampus (Z = 5.05, p b 0.001). For the right hippocampus, the
difference in correlations obtained with manual segmentation obtained
with FSL-FIRST and FreeSurfer did not reach our corrected significance
threshold (Z = 2.28, p = 0.01). To investigate causes of incongruity be-
tween segmentation volumes, outliers were identified using the magni-
tude of the residuals and selecting individuals that were at the furthest
distance from the regression line. Illustrations of the segmentationobtain-
ed from these outliers are presented in Figs. 5 and 6 for FSL-First and
FreeSurfer, respectively.

Intraclass correlation coefficient
The ICC between manual segmentation and Freesurfer was rlhc =

0.74 (CI: 0.66–0.81) for the left hippocampus, rrhc = 0.68 (CI: 0.59–
0.76) for the right hippocampus, rlag = 0.65 (CI: 0.55–0.74) for the left
amygdala and rrag = 0.60 (CI: 0.48–0.69) for the right amygdala.
When comparing manual segmentation and FSL-FIRST volumes, the
ICC for the left hippocampus was rlhc = 0.51 (CI: 0.38–0.62), rrhc =
0.59 (CI: 0.47–0.68) for the right hippocampus, rlag = 0.30 (CI: 0.15–
0.44) for the left amygdala, and rrag = 0.33 (CI: 0.17–0.46) for the
right amygdala.

Within-method correlation analysis
Pearson correlations between volumes in the left and right hemi-

sphere derived from each technique were calculated to estimate
within-method consistency. Results of this analysis are presented in
Fig. 7 (A to F) and summarized in Table 3. The association between inter-
hemispheric (left versus right) volumes was r = 0.85 (p b 0.0001) for
hippocampus and r=0.75 (p b 0.0001) for amygdala volumes estimated
with manual segmentation, r = 0.83 (p b 0.0001) for hippocampus and
r = 0.77 (p b 0.0001) for amygdala volumes estimated with FreeSurfer,
and r = 0.53 (p b 0.0001) for hippocampus and r = 0.59 (p b 0.0001)
for amygdala volumes estimated with FSL-FIRST. The difference in mag-
nitude between the computed correlations was tested with the ZPF sta-
tistic. Overall, 4 comparisons were performed: correlations between
bilateral hippocampi (bHC) volumes estimated with manual segmenta-
tion versus correlations between bHC volumes estimated with FSL-
FIRST/FreeSurfer; correlations between bilateral amygdala (bAG) vol-
umes estimated withmanual segmentation versus correlations between
bAG volumes estimated with FSL-FIRST/FreeSurfer. Consequently, the
alpha was adjusted to p b .01 for statistical significance, as per the
Bonferroni procedure. Using this criterion, significant differences were
observed only betweenwithin-method correlations of volumes estimat-
ed with manual segmentation and with FSL-FIRST. More precisely, the
results suggest a stronger association between bi-hemispheric volumes
when estimated with manual segmentation than FSL-FIRST. This was
true for both the bAG (ZPF = 2.55, p b .01) and bHC (ZPF = 6.21,
p b .01) volumes. No significant difference was found between the

http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC


Fig. 2. Satistical maps representing, for each voxel, the average percentage of difference between manual segmentation and FSL-FIRST volumes for the A — left hippocampus, B — left
amygdala, C — right hippocampus, D — right amygdala. The maps are displayed on the average standardized brain of all subjects.
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strength of within-method correlations of bHC (ZPF= 0.66, p N .05) and
bAG (ZPF=−0.58, p N .05) volumes when estimated with manual seg-
mentation or with FreeSurfer.

Analysis of estimation biases

Bland–Altman graphs plotting rawvolumedifference betweenman-
ual and automatic segmentation volumes against manual segmentation
volume, considered to be the “gold standard” measure, confirm that
both FreeSurfer and FSL-FIRST (Fig. 8 A and B) yielded larger volumes
than manual segmentation. In all plots but the one comparing left hip-
pocampus volumes between FreeSurfer and manual segmentation, the
incorporated regression line highlights a negative linear trend between
Fig. 3. Satistical maps representing, for each voxel, the average percentage of difference bet
hippocampus, B — left amygdala, C — right hippocampus, D — right amygdala. The maps are d
volume difference and baselinemanual segmentation volume. This sug-
gests that smaller volume of the studied structures leads to larger differ-
ence in volume estimation when comparing automatic to manual
tracing. Thus, this seems to indicate that neuroanatomical features pos-
sibly systematically influence outputs from automatic segmentation
protocols.

Discussion

Here we compared two widely used automated segmentation tools,
FSL-FIRST and FreeSurfer, against manual segmentation, the current
gold standard technique, for estimating hippocampus and amygdala
volumes in a population of preadolescent children. To our knowledge
ween manual segmentation and Freesurfer volumes for the various structures. A — left
isplayed on the average standardized brain of all subjects.
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this is the first study looking at the validity of automated segmentation
tools in a large pediatric sample. In this study, we decided to focus on
hippocampus and amygdala volumes because these regions are impli-
cated inmultiple psychopathologies and are among themost common-
ly studied in the field of neuroscience.We also definedmanual volumes
as the standard of reference, because its validity has been established in
previous articles (Pardoe et al., 2009; Rodionov et al., 2009).

Our results highlight important differences between volumes de-
rived from manual segmentation and the two studied automated tech-
niques. Indeed, both FreeSurfer and FSL-FIRST overestimated total
hippocampus and amygdala volumes in comparison with the manual
segmentation protocol used in the current study. When the same vol-
umedifference analyseswere performed usingnative volumes obtained
by dividing the volume of labels manually segmented in the standard
space by scale factors of the linear transformation (x ∗ y ∗ z), the results
were highly similar and also suggested that FreeSurfer and FSL-FIRST
Fig. 4. Pearson correlations between volumes obtainedwithmanual segmentation andwith Free
hippocampus, iii-right amygdala, iv-left amygdala. r — pearson correlation coefficient. Outlier
rectangle.
overestimated hippocampus and amygdala volumes in comparison to
manual segmentation. This suggests that large volume differences be-
tween manual and automated segmentation were not due to biases as-
sociated to the resampling of labels. Further, this tendency for volume
overestimation has been reported in earlier work in non-pediatric pop-
ulations (Cherbuin et al., 2009; Doring et al., 2011; Morey et al., 2009;
Nugent et al., 2013; Pipitone et al., 2014; Sánchez-Benavides et al.,
2010; Shen et al., 2010; Tae et al., 2008). Between the two automated
approaches, FreeSurfer was found to yield the largest volume estimates.
Our results further showed that the overestimation of volumes associat-
ed with automated segmentation was more pronounced for the amyg-
dala than for the hippocampus. This was true for both automated
methods, but was also more pronounced with the FreeSurfer method.
To better understand the origin of volumetric overestimation that
occur with these automated techniques, 3D neuroanatomical maps
representing the average percentage of difference between automatic
Surfer (A) and FSL-FIRST (B). Plots are presented separately for i-right hippocampus ii- left
s, defined using the magnitude of the residuals, are circled in red and identified in a red



Fig. 5. Visual comparison of amygdala (blue) and hippocampus (red) volume estimation in a single subject usingmanual segmentation and FSL-FIRST. These subjects were selected on the
basis of linear regression analyses, due to a poor correspondance between manually segmented and FSL-FIRST derived volumes. A — left amygdala, B — left hippocampus, C — right
amygdala, D — right hippocampus.
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and manual segmentation were computed to localize areas of disagree-
ment. A qualitative revision of those maps revealed that areas of dis-
agreement were located at the border of the target structures, found
in all dimensions (x-y-z axis), rather than in one specific location, or
in only one dimension. This suggests that the difference in volumes
was likely not a result of differences in the anatomical definition of the
target structures, but rather a too liberal inclusion of voxels towards
the structure boundaries. This might perhaps be explained by partial
volume effects,which can lead to incorrect inclusion of voxels neighbor-
ing the target structure. Thus, it appears likely that automatic segmenta-
tion techniques that were tested are more susceptible to partial volume
segmentation faults when compared to manual segmentation.

However, it cannot be excluded that differences in volumes obtained
between manual segmentation and automated protocols reflect varia-
tions in the definition of anatomical boundaries between segmentation
protocols. Manual segmentation of the hippocampus and amygdala
performed in this study was based on the protocol established by
Pruessner et al., 2000 (Pruessner et al., 2000). FreeSurfer and FSL-
FIRST pipelines are based on manual labels provided by the Center for
Morphometric Analysis, part of the Massachusetts General Hospital.
More details on the segmentation protocols used by this Center can be
found at www.cma.mgh.harvard.edu/manuals/segmentation. The pro-
tocol used for the manual segmentations in this article systematically
excludes the Andreas-Retzius and the Fasciolar gyrus from the tail of
the hippocampus. Also, this protocol takes extra care to avoid including
the inferior horn of the lateral ventricle, even in subjects where it might
not be clearly apparent, by excluding voxels in the infero-lateral portion
of the hippocampus with ambiguous signal intensity. This exclusion
takes place even if in one slice these voxels appear as gray matter, but
the existence of the inferior horn can be extrapolated from neighboring
slices. Such an approach is likely not present in automatic segmentation
methods for hippocampal volumes, and thus can be expected to result
in somewhat larger volume estimates. However, the amount of volume
that would be generated by the inclusion of the Andreas–Retzius gyrus
and the lateral ventricle can be estimated not to be more than 5% addi-
tional volume, which is far inferior to the volume differences observed
between the automated methods and the manual one in the current
study. In addition, other anatomical boundaries present in the manual
method protocol appear to match well with those of the automated
ones. These areas include the superiolateral white matter bands of the
hippocampus, the fornix and more anterior, the fimbria and the alveus.
Also, both themanual and the automated segmentationmethod include
at least part of the subiculum. Thus, differences anatomical boundaries
between segmentation protocols could be expected to result in volume
changes of around 5%, with the automated methods generating larger
volumes than themanual one. This is clearly not what is seen, as the au-
tomated methods generate hippocampus volumes that are approxi-
mately 28% (FSL) and 55% (Freesurfer) larger than the manual ones.
This additional overestimation could be the consequence of using a
standard brain template derived from mature adult brains compared

http://www.cma.mgh.harvard.edu/manuals/segmentation


Fig. 6.Visual comparison of amygdala (blue) and hippocampus (red) volume estimation in a single subject usingmanual segmentation and FreeSurfer. These subjects were selected on the
basis of linear regression analyses, due to a poor correspondence between manually segmented and FreeSurfer derived volumes. A — left amygdala, B — left hippocampus, C — right
amygdala, D — right hippocampus.
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to a pediatric population. Future studies should determine whether
using a common space based on pediatric brains, which would be
more representative of this population's neuroanatomy, could poten-
tially improve the accuracy of automated segmentation techniques. An-
other possible cause for this additional discrepancy can be seen in Fig. 6,
which illustrates for selected subjects that both automated methods
suffer from inclusion of ventricle space, neighboring gray matter struc-
tures, andwhitematter in their segmentations. There are probablymul-
tiple reasons for the inclusion of these structures and areas not part of
the target structure. Signal intensity might vary depending on scan
quality andmotion artifacts, whichmay lead to a less precise differenti-
ation and classification of structures by automated techniques. This
might be especially significant in children, who are more likely to
move during scan acquisition. Although, we performed a visual quality
control to remove scanswith apparentmotion artifacts, it cannot be ex-
cluded thatmotion affected the quality of the results from the two auto-
matic segmentation protocols. Further, even in scans of high quality,
superior and lateral boundaries of the amygdala with the basal ganglia,
inferior boundaries with the hippocampus and lateral-inferior bound-
aries with the entorhinal cortex can be difficult to define based on signal
intensity, and are highly variable across subjects due to anatomical het-
erogeneity. Consequently, manual segmentation protocols often rely on
the visualization of the area by a trained anatomist, recognition of the
various structures in the field of view, and an expert decision as to
where exactly the boundary to surrounding structures is located for
that particular subject. This is a procedure that is time and labor inten-
sive but favors anatomical precision and validity. Automated methods,
in comparison, can't rely on an expert rater's decision in ambiguous cir-
cumstances, and have to employ probabilities and intensity distribu-
tions instead. Future studies investigating differences in the 3-D shape
of the hippocampus and amygdala segmented manually or with auto-
mated techniques could allow a better understanding of the discrepan-
cy in volume observed when comparing manual and automatic
segmentation.

Volume overestimation does not necessarily imply a lack of validity
of automatic segmentation as long as it is done in a consistent manner.
Thus, to assess consistency in volume estimation,we computed pearson
correlations between volumes derived from automatic methods and
manual segmentation. The guiding idea was that a consistent overesti-
mation of volumes would not weaken correlations between segmenta-
tion techniques and could thus still support the validity of automated
techniques relative to manual segmentation. Associations between
FreeSurfer and manual segmentation were satisfactory for the hippo-
campus volumes and ranged between r = 0.69 to r = 0.77. These cor-
relations are consistent with what as previously been reported in the
literature (Cherbuin et al., 2009; Doring et al., 2011; Morey et al.,
2009; Pardoe et al., 2009; Pipitone et al., 2014; Sánchez-Benavides
et al., 2010), which usually supports correlation coefficients surround-
ing r = 0.75. Correlations between amygdala volumes derived
FreeSurfer and manual segmentation were weaker than for the hippo-
campus and ranged between r = 0.61 and r = 0.67. These estimates
are consistent with what has been found by Morey et al. (2009). How-
ever, few studies have looked at the accuracy of FreeSurfer to estimate
amygdala volume, thus it is difficult to compare our results with



Fig. 7.Within-method correlations of left versus right structure volumes. A— Correlation between left and right hippocampus volumes segmentedmanually. B— Correlation between left
and right amygdala volumes segmented manually. C— Correlation between left and right hippocampus volumes segmented automatically with FreeSurfer. D— Correlation between left
and right amygdala volumes segmented automatically with FreeSurfer. E — Correlation between left and right hippocampus volumes segmented automatically with FSL-FIRST. F —
Correlation between left and right amygdala volumes segmented automatically with FSL-FIRST. r — Pearson correlation coefficient.

Table 3
Comparison of inter-hemispheric volumes correlations derived from each method.

Left–right hippocampus Left–right amygdala

Manual segmentation 0.85 0.75
FreeSurfer 0.83 0.77
FSL-FIRST 0.53⁎⁎ 0.59⁎⁎

Pearson correlations of left against right hemispheric volumes obtainedwithin a same seg-
mentation method.
⁎⁎ Indicates a significant difference (at the p b 0.0001 level) in the magnitude of the
correlation, as compared with the correlation coefficients obtained with manual segmen-
tation, as defined with the Fisher r-to-Z transform (ZPF) statistical test.
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previous findings. Past studies comparing manually segmented hippo-
campus volumes to volumes obtained with FSL-FIRST reported Pearson
correlation coefficients varied between r = 0.47(Pardoe et al., 2009)
and r = 0.67(Nugent et al., 2013). The results we obtained performing
similar analyses highlight correlations closer to lower estimates that
have been reported in the past (r = 0.51 to r = 059). While neuroana-
tomical characteristics of the studied pediatric population could have
contributed to lower correlations found in this study, similar correla-
tions between FSL-FIRST and manual segmentation have been
highlighted in past studies performed on adults/mature brains
(Pardoe et al., 2009; Doring et al., 2011). For amygdala volumes derived
using FSL-FIRST, correlations with manual segmentation and FSL-FIRST
can be considered weak (r= 0.31 to r = 035). The poor correlation be-
tween FSL-FIRST andmanual segmentation for assessment of the amyg-
dala volume has also been reported previously (Morey et al., 2009). The
assessment of reproducibility of measurements with ICC suggests a
weak agreement between manual segmentation and automated
methods. The only comparison that reached or exceeded a coefficient
of 0.70, a threshold previously defined as the minimum to define reli-
ability between measures (Nunnally et al., 1967; Terwee et al., 2007),
was the left hippocampus volume measured with FreeSurfer and man-
ual segmentation. All other volumes, from FreeSurfer or FSL-FIRST,
failed to reach this minimum standard to support adequate agreement
with manual segmentation. Two key observations could be derived
from Pearson correlations and ICCs analyses. First, the agreement be-
tween manual and automated segmentation tended to be stronger for
hippocampus than amygdala volumes. This amygdala–hippocampus
discrepancywas also observed in previous articles studying the validity



Fig. 8. Bland–Altman plots of volume difference estimation betweenmanual segmentation and (A) FreeSurfer or (B) FSL-FIRST. Plots are presented separately for i— left hippocampus ii—
right hippocampus, iii — left amygdala, iv — right amygdala. A red regression line was integrated to each plot to illustrate potential biases in volume estimation.
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of automated segmentation in medial temporal lobe structures (Morey
et al., 2009). Poor associations found with amygdala volumes are possi-
bly the consequence of the neuroanatomical complexity of this struc-
ture. In addition to poor agreement with manual segmentation, the
amygdala volume was also shown to have a low scan-rescan reliability
when estimated with automatic techniques (Morey et al., 2010), most
likely due to a high susceptibility to small variations in image intensity.
This suggests that the amygdala volume is particularly difficult to assess
reliably and vulnerable to errors when estimated with automated
methods. The second observation that was noted both in between-
method correlations and ICC analyses was that the association between
automatic and manual segmentation volumes was stronger with
FreeSurfer than FSL-FIRST. This was true for both the amygdala and hip-
pocampus volume. Indeed, FreeSurfer consistently yielded larger
correlations and ICC coefficients with manual segmentation than FSL-
FIRST. It seems that the advantage of FreeSurfer over FSL-FIRST is not
specific to our population as it was outlined in previous articles compar-
ing results from both segmentation techniques as well (Doring et al.,
2011; Morey et al., 2009; Pardoe et al., 2009). Using native manual seg-
mentation volumes computed either by resampling labels to the native
space or by dividing volumes of labels in the standard space by scale fac-
tors associated with the linear transformation did not significantly alter
results of these analyses and did not change our findings (see Table 4).

An approach commonly used to establish the validity of automated
techniques is to define their accuracy in distinguishing individuals
from different clinical groups (eg. Alzheimer Disease versus Normal
aging patients). A limitation associated with this study lies in the ab-
sence subgroups in the studied population. However, to arrive at an



Table 4
Comparison of results obtained using native volumes derived from label resampling and scaling factor correction.

Native manual segmentation volumes based on
resampling of labels
(as presented in the article)

Native manual segmentation volumes based on
calculation of scaling factors

FreeSurfer FSL-FIRST FreeSurfer FSL-FIRST

% volume diff. (SD)
L-hippocampus
R-hippocampus
L-amygdala
R-amygdala

60.38 (13.04)
51.53 (13.17)
100.29 (24.56)
93.56 (25.78)

27.61(14.49)
28.39 (13.07)
50.32 (27.65)
40.29 (26.09)

60.16 (12.90)
51.41 (13.09)
99.53 (24.27)
93.11 (24.56)

27.43 (14.28)
28.28 (12.89)
49.76 (27.55)
40.03 (25.83)

PCC with manual seg.
L-hippocampus
R-hippocampus
L-amygdala
R-amygdala

0.77
0.69
0.67
0.61

0.51
0.59
0.31
0.35

0.77
0.70
0.66
0.62

0.52
0.60
0.30
0.35

ICC with manual seg.
L-hippocampus
R-hippocampus
L-amygdala
R-amygdala

0.74
0.68
0.65
0.60

0.51
0.59
0.30
0.33

0.74
0.69
0.64
0.61

0.52
0.60
0.28
0.33

Percentage of volume difference (% volume diff.), Pearson correlation coefficients (PCC) and intraclass correlation coefficients (ICC) computed betweenmanual segmentation volumes and
automatic protocols. Results are presentedwith nativemanual segmentation volumes obtained by resampling labels in thenative spaceusing an inversion of the linear transformation (left
column) and with manual volumes obtained by dividing volumes segmented in the standard space by scale factors associated with the linear transformation in the x,y,z directions (right
column). This table shows that both methods of estimating manual segmentation volumes in the native space lead to highly similar results. L — left. R — right. SD— standard deviation.
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assessment of consistency for eachmethod independently, we used be-
tween hemisphere correlations to demonstrate the differences between
methods. If manual and automated segmentations were interchange-
able, it would be expected that the associations between left and right
volumes would be similar regardless of the difference in structural def-
inition associated with the segmentation protocol. Further, it can be ex-
pected that, within the individual subject, left versus right hemispheric
volumes are moderately to strongly associated (Allen et al., 2002). Both
manual segmentation and FreeSurfer seemed to support this last state-
ment,with results showing strong correlations between left versus right
hemisphere for both the amygdala and the hippocampus. Correlations
between bilateral amygdala and hippocampus volumes were signifi-
cantly weaker when estimated with FSL-FIRST. Thus, within-method
correlations suggest that the FSL-FIRST method might be prone to in-
consistencies in segmentation within the same subject. The scope of
this study was to investigate two key structures of the medial temporal
lobe, the hippocampus and amygdala. While results highlighted in this
article are likely to extend to adjacent structures in themedial temporal
lobe, and perhaps to the rest of the cortex, our findings remain specific
to those two key structures. Future studies investigating the agreement
between manual and automated segmentation using a more global ap-
proach and looking as spatial relationships between segmented struc-
tures would provide important additional information.

When looking at associations between manual segmentation and
both automated techniques and the overall fit to the regression line, a
considerable number of outliers could be visually identified. In these
outliers, a marked discrepancy between automatic and manual seg-
mentation volume estimates is observed - contributing to a limited ex-
planation of variance. It is thus possible that the automated
segmentation tends to be particularly inaccurate for some subjects.
The Bland–Altman diagrams seem to support that notion by indicating
a trend for larger volume difference between manual and automated
segmentation for individualswith smaller structure volumes. Variations
in scan quality or even in anatomy could contribute to this variability in
performance. The hippocampus shape and volume are known to be
highly variable across normal subjects (Bouix et al., 2005; Lupien
et al., 2007). Studies looking at hippocampal shape in pediatric popula-
tions highlighted variations in the hippocampal shape over the course
of normal development (Gogtay et al., 2006; Lin et al., 2013). Addition-
ally, Gogtay et al. (2006) reveal important between-subject heteroge-
neity in the development of the hippocampal structure during brain
development. Automated techniques are likely to be less flexible and
accurate when dealing with irregular shape. On the other hand, an ex-
pert in neuroanatomy and hippocampus segmentation should not be
affected by variance in shape. Future studies should aim to investigate
the impact associated with variations in the shape of neuroanatomical
structures in the context of automatic segmentation validation. To illus-
trate cases were there is an important discrepancy between automated
and manual segmentation, we selected subjects that deviated from the
regression line and visually compared labels obtained with both tech-
niques. In addition to corroborating the overestimation reported in pre-
vious analyses, these images show a tendency for automated methods
to miss the borders of target structures and expand into adjacent
areas, including ventricular space. For those subjects, the obtained vol-
ume is not anatomically valid and should not be used in subsequent
analyses. This highlights the importance of quality control and, when
needed, corrections of labels obtained automatically. This process is
time and labor intensive and is rarely performed thoroughly. Both
FreeSurfer and FSL-FIRST include documentation and guidelines on
quality control. However, to reflect the way groups lacking the training
and expertise in anatomy would use these tools, we did not apply any
form of correction of the labels derived from automated methods in
the current article. A careful and informed quality control and manual
corrections of automatically obtained labels by a trained individual
would likely lead to significantly improved associations between man-
ual segmentation and automatic techniques, especially when used in
special populations like the one used in the current study.
Conclusion

In this study we highlight differences in volumes of structures
segmented manually or obtained with automatic techniques, in this
case FreeSurfer and FSL-FIRST.We provide evidence that, in a pediat-
ric population, volumes obtained with those techniques might not
always be equivalent to volumes obtained when manually segment-
ed by an anatomical expert. This is especially true for more complex
structures, such as the amygdala. Our results also support a better
consistency between manual segmentation and FreeSurfer than
FSL-FIRST. With these results, we hope to emphasize the importance
of performing quality control on volumes obtained automatically. A
validated and well-established quality control protocol could signif-
icantly improve the correspondence between automatic and manual
segmentation volumes.
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