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Abstract
Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation mea-
surements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is
sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited
rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a
method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-
cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists
of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-
weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from
PERSIANN-CCSwas used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for
calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the
yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed
method can effectively adjust the bias of satellite-based precipitation estimations.

Keywords Saudi Arabia . PERSIANN-CCS . Rain gauge . Remote sensing . Climate . Quantilemapping

Introduction

Precipitation is a key meteorological input for land surface
hydrologic processes. Reliable precipitation estimation is crit-
ical for hydrological and climate studies. Rain gauges provide
the most accurate precipitation measurement at the point of
observation (Maliva and Missimer 2012; Schultz 2011;
Willems et al. 2012; Sultana and Nasrollahi 2018). Studying
hydrological and climate conditions of an area requires a spa-
tial input rather than a point input. Therefore, the spatial cov-
erage of precipitation is required. However, the uncertainty of
rain gauge measurements increases when rain gauge observa-
tions are interpolated to ungauged regions using one of the

interpolation methods, such as weighting average, kriging,
and Thiessen polygons (Huff 1970; Sinclair and Pegram
2005; Tao et al. 2009). The uncertainty of estimation from rain
gauges interpolation is influenced by the density and distribu-
tion of rain gauge networks (Ragab and Prudhomme 2002;
Tekeli and Fouli 2017). As shown in Fig. 1, the rain gauge
network over Saudi Arabia is sparse, and the uncertainty of
precipitation measurements from spatial interpolation
methods is relative high.

Falling to measure extreme storm events leads to catastroph-
ic results when the rain gauges are limited. For example, Jeddah
City suffered from two deadly flash flood events on November
25, 2009 and January 25, 2011 (Almazroui et al. 2018). The
two flash floods caused death of over 100 and economic losses
of $900 million (De Vries et al. 2016). The Intergovernmental
Panel on Climate Change (IPCC 2007) had reported that, due to
ongoing climate variability and changes, the chance of heavy
precipitation is more likely to intensively and may cause flash
floods over many regions (Parry et al. 2007).

To overcome the shortage of precipitation measurements
when rain gauges are sparse or are unavailable, satellite-based
precipitation estimates (SPEs) can be an alternative source for
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precipitation measurements. Several SPEs have been devel-
oped (Hsu et al. 1997; Sorooshian et al. 2000; Al et al. 2004;
Huffman et al. 2007, 2010; Hou et al. 2014; Ashouri et al.
2015; Hong et al. 2004). In fact, SPEs are influenced by bias
(Moazami et al. 2013; Qin et al. 2014). The bias of SPEs is
directly related to the sensors from visible, infrared, and pas-
sive microwaves and indirectly related to the precipitation on
the ground surface (Pereira Filho et al. 2010).

The bias of SPEs leads to either overestimations or under-
estimations of precipitation measurements that affect the out-
comes of the hydrological and climate studies. Therefore, the
effective removal of SPEs bias is a crucial step toward
implementing SPEs on the hydrologic and climate studies
(Chen et al. 2016; Gebregiorgis et al. 2012). Various bias
correction approaches are proposed to adjust systematic bias
of SPEs and improve the outcomes of SPEs (Tesfagiorgis et al.
2011).

Bias correction methods, such as linear scaling, local inten-
sity scaling, and histogram equalization, are introduced in the
literature (Lenderink et al. 2007; Gudmundsson et al. 2012).

Linear scaling corrects the mean of SPEs tomatch the mean of
rain gauges observations, and the correction is made by cal-
culating an additive or multiplicative factor. The linear scaling
method only corrects the mean of SPEs without correcting
variance on precipitation (Teutschbein and Seibert 2012;
Ahmed et al. 2015). The local intensity method is proposed
by Schmidli et al. (2006) to overcome the scaling limitation.
The local intensity method matches the wet-day and dry-day
frequencies and intensities between the SPE estimations and
the rain gauge observations. The correction is done in two
steps. First, a threshold is calculated where the intensity of
SPEs wet-day is adjusted to match the wet-day of rain gauges
observations. Second, the ratio of the mean of SPE to the
mean of rain gauges is calculated and used as a factor to adjust
SPE. However, the method does not make any correction on
the daily precipitation occurrences (Chen et al. 2013).

Histogram equalization is also referred as probability map-
ping (Block et al. 2009) and quantile mapping (QM) (Chen
et al. 2013). QM is a distribution-based approach that is used
to match probability density functions (PDF) of SPEs and

Fig. 1 Map of rain gauge (left) and elevation (right)
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PDF of the rain gauge observations. The matching of two
PDFs is proceeded by fitting cumulative distribution functions
(CDFs). Non-parametric QM performs better than parametric
QM in removing the bias because CDF does not need to re-
define the type of PDF (Piani et al. 2010; Thiemig et al. 2013;
Ajaaj et al. 2016; Jakob et al. 2011). Studies show that QM
can effectively adjust the bias of SPEs better than the other
bias correction approaches (Piani et al. 2010).

Yang et al. (2016) examine the effectiveness of QM in
removing the systematic bias of SPEs using rain gauges.
The study adjusts the systematic bias of precipitation estima-
tion from remote sensed information using artificial neural
network-cloud classification system (PERSIANN-CCS) over
Chile using seasonal CDFs. One of the study recommenda-
tions is to implement the method over dense rain gauge areas
because using the method over sparse rain gauge reduces the
reliability of calculating consistent CDFs. Moreover,
implementing the method over sparse rain gauge networks is
limited since the method works by dividing the study area in

to several 1° by 1° boxes, and calculating CDFs over each box
with a gauge then by filling each box that does not have a
gauge with the nearest box that has a gauge. Therefore, the
method is limited to areas where rain gauges are dense, so
this method cannot be applied in Saudi Arabia because rain
gauges are very sparse which would lead to a majority of
boxes without rain gauges. This would lead to an unreliable
correction of SPE as the nearest box with a rain gauge
would be used to fit the rain gauge and SPE of CDFs.
However, including climate zones (CZs) should overcome
this limitation in Saudi Arabia.

The objective of this study is to find a way to identify and
adjust the systematic bias from (PERSIANN-CCS) in Saudi
Arabia. This study proposes a bias correction approach that is
based on empirical QM using the CZ and the inverse weighted
distance method (IWD) and extends to the ungauged areas.
The method is tested over Saudi Arabia from 2010 to 2016.
The first 6 years (2010–2015) is used for the calibration, while
the latter year (2016) is used for validation.

Fig. 2 a Yearly. b Winter season. c Spring season. d Summer season. f Autumn season precipitations in Saudi Arabia
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Climate and precipitation over the study area

Study area

Saudi Arabia lies between 15° N and 30° N of the
equator and 35° E and 55° E of Greenwich meridian,
and the country covers about 2.25 million km2 of the
Arabian Peninsula, as shown on Fig. 1. The country is
surrounded by unique boundaries. On the west, it is
surrounded by the Red Sea. The Arabian Gulf or the
Persian Gulf is located on the east side of the country.
The seas are the main source of water vapor over Saudi
Arabia (Atlas 1984).

The country has four topographical regions, which
includes the coastal plains, the mountainous region, the
Najd plateau, and Rub Al-Khali. Coastal plains are ex-
tended from the north to the south of the country along
the seas. The mountainous regions are over the south-
western area of the country, and it is known as Hijaz
and Asir. The elevation of the mountains ranges from
2000 to 3000 m. The slope of the mountains range is
steep toward the west, where the Red Sea is located,
but uniformly decreases toward the east. Najd Plateau
occupies most of Saudi Arabia, and the plateau lies the
east of the mountains and west of the eastern coastal
plain. The plateau’s elevation ranges from 800 and
1100 km. The Rub Al-Khali is located in the southeast-
ern part of the country, and the Rub Al-Khali is known
as the largest sand desert in the world (Atlas 1984;
Takahashi and Arakawa 1981).

Climate and precipitation in Saudi Arabia

According to Koppen-Geiger climate classification (Kottek
et al. 2006), the country’s climate is classified as hot, sunny,
and dry during the entire year, and it is coded as BWh. B
stands for an arid land, and W stands for low precipitations.
The h indicates high temperature. However, the southwest of
the country, where Hijaz and Asir mountains are located, has
mild to low temperatures and has precipitations during the
entire year. It is classified as semi-arid (Abdullah and Al-

Mazroui 1998; Al-Jerash 1985; Subyani et al. 2010; Subyani
2004). Climate studies by Al-Jerash (1985), Ahmed (1997),
and Almazroui et al. (2015) are the latest attempt to regional-
ize the climate of the country, and the studies conclude that
Saudi Arabia can be classified in to three zones based on
annual precipitations. Those three zones are southwest, center,
and the rest, which is presented in Fig. 2.

A brief review on moist air mass movements over the
country that influence precipitation distributions is described
below (Al-Qurashi 1981; Alyamani 2001; Ngumbi 1991;
Subyani et al. 2010; MacLaren 1979):

I. Maritime tropical air mass (monsoon front) flows during
the summer and at the end fall seasons. The air mass
carries warm and moist air masses from the Indian
Ocean and the Arabian Sea to the south and southwest of
Saudi Arabia where Hijaz and Asir mountains are located.
Usually, the precipitation is associated with high intensity.

II. Continental tropical air mass is warm and moist air
masses that comes from the Atlantic Ocean and
prevails during the winter season. It brings low to
mild precipitation to the west and center of Saudi
Arabia.

III. Maritime polar air mass is formed on the eastern
Mediterranean Sea, and it crosses the north and north-
west of the country during the winter season. It produces
high to mild precipitation (Fig. 2).

Precipitations happen mostly in the winter and spring sea-
sons, while the southwest of the county, on the other hand, has
precipitations during the entire year (Atlas 1984). The precip-
itation amount over the country is less than 100 mm each year,
but the southwestern region has more than 350 mm annually
(Al-Jerash 1985; Alyamani 2001). Precipitations decrease
from the south to the north and from the west to the east where
the air masses and topography play important roles in the
precipitation process.

Figure 2 shows annual precipitation in the country ana-
lyzed from 1966 to 2013. The maximum mean annual precip-
itation (~ 500 mm/year) occurs in the southwest of the coun-
try. The minimum annual yearly precipitation (~ 15 mm/year)

Combining Rain Gauge
samples with box Original

PERSIANN-CCS  that
sharing the same climate
classification Calculating

Monthly CDFs

Dividing The
Study Area to 1º

by 1º Boxes

Filling the Grid
with CDFs

according the CZ

Calculating
weighting factor

base on Inver
Weighted

Fig. 3 Flowchart of QM-CD
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occurs in the north and the northwest of the county. For sea-
sonal distribution of precipitations, 37% takes place in the
spring season and 22% of precipitations occurs in the winter
season. Precipitations during the autumn and the summer ac-
counts for 22 and 19% of annual precipitation, respectively.

During the winter season, precipitations are cyclonic,
and it is formed by maritime polar air masses that come
from the Mediterranean Sea, which is cold and moist,
and the Atlantic Ocean, which is warm and moist. The
highest amount of precipitation is around 100 mm per
season and happens in the southwest due to orographic
lifting. The second highest precipitation is about 40 mm
per season and is located in the northeast of the country
because this part of the country is subjected to convec-
tion precipitation lift ing that is formed by the
Mediterranean. The center and southeast of the country
have low precipitation, which is 24 mm per season.

During the spring season, the highest precipitation
depth is around 160 mm per season and occurs in the south-
west due to monsoonal moist air that comes from the Indian
Ocean. It crosses the south of the country and is lifted by the
mountains. The center of the country still receives the second
highest precipitation depth around 60 mm per season, due to
the monsoonal moist air. It penetrates the country from
the southwest to the east. The north and northwest of the
country is a driest area with a precipitation depth around
20 mm per season.

During the summer season, most of the country does not
have precipitation. However, the southwest receives precipi-
tations due to conventional instabilities and the monsoonal air.

Most of the storms are thunderstorms, and the amount of pre-
cipitation in this part of the country is around 195 mm per
season.

During the autumn season, most of the storms are convec-
tive and are formed by the meeting of the southeastern air
mass that comes from the Arabian Sea and the westerly air
mass that comes from theMediterranean Sea. As expected, the
southwest region receives the highest amount of precipitation,
which is 180 mm per season, while the driest part is the north
and the northwest areas.

Data sources

The precipitation data used on this study comes from
daily PERSIANN-CCS estimations (Hong et al. 2004),
and daily historical rain gauges observations between
2010 and 2016. PERSIANN-CCS is provided from the
Center for Hydrometeorology and Remote Sensing,
University of California, Irvine (CHRS, UCI). The rain
gauges are obtained from the Ministry of Environment,
Water, and Agriculture (MEWA) and the General
Author i ty of Meteoro logy and Envi ronmenta l
Protection (GAMEP).

Historical rain gauges

The rain gauges that are used in this study are provided
by MEWA and GAMEP. MEWA provided 290 rain
gauges, and they have been recorded manually since
1966. GAMEP provided 28 automatic rain gauges, and

Fig. 4 January, April, July, and November CDFs for each CZ (red rectangular for zone 1, black rectangular for zone 2, and blue rectangular for zone 3)
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they are considered to be most reliable gauges over
Saudi Arabia. Moreover, these gauges are extensively
used to study precipitations and the climate in the study
area (Abdullah and Al-Mazroui 1998; Al-Qurashi 1981;
Al-Rashed and Sherif 2000; Almazroui 2011; Kheimi
and Gutub 2014).

Satellite-based precipitation estimation

PERSIANN-CCS uses long-wave infrared images from
geostationary satellites to estimate surface precipitation
rates using image classification and pattern recognition
techniques. Precipitation, at 0.04° × 0.04° lat-long spatial

Fig. 6 Qualified gauges representations by blue star (qualified gauges), and un-qualified gauges represented by black star

Fig. 5 An example of the qualified rain gauge on right, and the un-qualified gauges on left

508 Page 6 of 17 Arab J Geosci (2018) 11: 508



resolution hourly, is estimated by a cloud classification and
artificial neural network model. To match estimated
PERSIANN-CCS and daily gauge observations of precipita-
tions in the study area, PERSIANN-CCS is processed to a
local-time daily scale (06:00 amUTC to 06:00 amUTC time).

Methodology

This study is based on investigating the effectiveness of the
QM method by considering CZ. IWD is used to extend the
bias adjusted precipitation estimation to areas where rain
gauges are limited or not available. Seven years, which is
2010 to 2016, of daily rain gauges, observations and
PERSIANN-CCS estimations are used to evaluate the meth-
od. The first 6 years, which are 2010 to 2015 are used for
model calibration, while 1 year, which is 2016, is the valida-
tion year. The flowchart of the proposal method is shown in
Fig. 3.

QM is implemented to correc t the Original
PERSIANN-CCS (Org-PERSIANN-CCS) estimations
by matching CDF of Org-PERSIANN-CCS to the CDF
of rain gauges. The CZs are applied to increase the
number of samples for estimating stable CDFs. Also,
IWD is employed to interpolate the results of applying
QM to finer resolution.

Data quality

MEWA rain gauges observe precipitations manually, while
GAMEP gauges are automated. Studies have shown the

automated gauges are most consistent and reliable for the pre-
cipitation measurements in Saudi Arabia (Abdullah and Al-
Mazroui 1998; Al-Qurashi 1981; Al-Rashed and Sherif 2000;
Almazroui 2011; Kheimi and Gutub 2014; Sultana and
Nasrollahi 2018). Criteria for choosing a qualified rain gauge
are that the qualified rain gauge should have been recording
for more than five successive years, and it is consistent with
the nearest gauge using the double mass curve that follows
(Searcy and Hardison 1960).

Quantile mapping and climate zone

QM is a distribution-based mapping method, which is sensitive
to the sample size used to estimate the CDFs. The uncertainty of
estimation increases when the sample is small. To cover more
samples in CDFs, extending the effective sample coverage
within the same CZ can be helpful for collecting more samples.

Non-parametric QM is used to adjust PDF of the
daily estimations of Org PERISANN-CCS to match
PDF of daily rain gauge observations for each CZ. It
is assumed that CDFs for each month from the rain
gauge and PERSIANN-CCS within the same CZ are
the same. Therefore, we can calculate the CDFs of the
Org-PERSIANN-CCS and gauge observations by
collecting co-located the rain gauge observations and
Org-PERSIANN-CCS estimations at 0.04° resolution
within the same CZ. For each CZ, two monthly CDFs
is calculated, as shown by Fig. 4. The first CDF is the
rain gauge observation, and the second CDF is the Org
PERSIANN-CCS estimations.

Fig. 7 Annual average precipitation of (i) rain gauge, (ii) original PERSIANN-CCS, (iii) adjusted PERSIANNCCS without CZ, and (iv) adjusted
PERSIANN-CCS with CZ during calibration (top) and validation (below)
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Inverse weighted distances approach

The results of QM-CZ are interpolated by implementing IWD.
IWD is implemented in two steps:

I. The study area is divided into 1° by 1° boxes. Then the
results of QM-CZ are assigned to the box based on the box
CZs.

II. The results of QM-CZ are interpolated to fine resolution
at 0.04° by 0.04° by using IWD:

P* tð Þi ¼ ∑
j

j→4
ωij*CDF−1

Gaugue mð Þ j CDF−1
PERSIANN−CCS mð Þ j P tð Þi

� �� �
ð1Þ

ωij ¼

1

d
�
i
�

∑i
j→4

1

d ið Þ

0
BBBB@

1
CCCCA ð2Þ

In Eq. (1), P∗(t)i is an adjusted PERSIANN-CCS estima-
tion, and it is the bias corrected estimation of the Org
PERSIANN-CCS. t stands for the daily estimations. i is the

spatial resolution of the PERSIANN-CCS, and it is 0.04° by
0.04°. j is 1° by 1° box. ωij is weighted that is assigned for

pixel (i). CDF−1
Gaugue mð Þ j is the monthly CDF of the rain

gauges for the box, and m is monthly time scale. CD

F−1
PERSIANN−CCS mð Þ j i s the monthly CDF of the Org

PERSIANN-CCS for the same box, and P(t)i is the daily
Org PERSIANN-CCS estimation of the pixel (i).

In Eq. (2), ωij is weighted which is assigned for the
pixel (i) on the box (j). The weighted is estimated base
on the inverse distances that is calculated between the
center of the four boxes and the pixel as shown on
Fig. 5. The calculation of the distance is follows
Haversian formula (Gellert et al. 1989).

Evaluations

The examination of the results of QM-CZ and QM-without
CZ during the calibration years and the validation year is done
spatially and temporally. Spatial evaluation is studying and
interpolating the results of the spatial distribution of the mean
annual and monthly precipitation in Saudi Arabia. It is

Fig. 8 Annual scatter plot for calibration (left), and validation (right)
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important to evaluate monthly and daily precipitation in the
country. Correlation confession (CC), mean bias (MB), and
root mean square error (RMSE) are calculated by Eqs. 3 to 5 to
evaluate the results of the QM with CZ and QM-without CZ
spatially and temporally.

In Eqs. 3–5, G is the representations of rain gauge obser-
vations, and G is the mean of rain gauge observations. S is the
representations of satellite estimations, and S̅ is the mean of
satellite estimations.

CC ¼
∑n

g¼1 Gg−G
� �

* ∑
n

g¼1
Sg−S

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

g¼1 Gg−G
� �2

r
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

g¼1
Sg−S

� �2
s ð3Þ

MB ¼ ∑n
g¼1 Sg−Gg

� �
n

ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

g¼1 Sg−Gg

� �2
n

s
ð5Þ

Results and discussion

Data quality

Because of the implementation of the two criteria selec-
tions as shown by Figs. 5 and 6, 59% of rain gauges in

Saudi Arabia are removed from this study since the
gauges are inconsistent, as showing in Fig. 6, while
41% of rain gauges are used. Forty-five percent of rain
gauges have a record for more than five successive
years. Also, 41% of the gauges with more than five
successive years are consistent with the nearest gauges.

Spatial distribution of precipitation in Saudi Arabia

The results of the spatial distribution of precipitation are
presented in Figs. 7, 8, 9, and 10. The statistical evalua-
tion is presented in Tables 1 and 2 for the calibration
years and validation year. The original PERSIANN-CCS
overestimates the annual precipitation during the calibra-
tion and the validation as demonstrated by Fig. 7 and
Table 1. Comparing rain gauge observations and the
gauged pixels in Fig. 8 shows that the original
PERSIANN-CCS overestimates the annual precipitation.
As presented in Table 1, the original PERSIANN-CCS
overestimates the annual precipitation by 184 mm per
year during the calibration and 180 mm per year during
the validations. Additionally, annual CC of the original
PERSIANN-CCS is 0.52 during the calibration and 0.61
during the validation. However, the two adjusted
PERSIANN-CCS match the rain gauge annual observa-
tions during the calibration and validation. In the calibra-
tion years without implementing the CZ, the annual over-
estimation is reduced to be 84.15 mm per year, which it is
55% lower. Additionally, the estimation during the vali-
dation years is lowered to 144.51 mm per year. In fact, the

Fig. 9 Monthly average precipitation of (i) rain gauge, (ii) original PERSIANN-CCS, (iii) adjusted PERSIANNCCS without CZ, and (iv) adjusted
PERSIANN-CCS with CZ during calibration (right) and validation (left)
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adjusted PERSIANN-CCS with CZ decreases the overes-
timation more than the adjusted PERSIANN-CCS without
CZ. It did so by 2.78 mm per year during the calibration
and 18.9 mm per year during the validation. Moreover,
the adjusted PERSIANN-CCS without CZ reduces RMSE
to 126.3 and 239 mm per year during the calibration and
validation, while the adjusted PERSAINN-CCS with CZ
effectively adjusts RMSE by 46.52 and 83.17 mm per
year during the calibration and validation.

The monthly precipitation spatial distribution is
shown in Figs. 9 and 10, and the months that are
displayed are January, April, July, and November.
Similar results to the annual precipitation distribution

are found where the original PERSIANN-CCS overesti-
mates the monthly precipitation, as shown in Table 2
and Fig. 10. For example, the original PERSIANN-
CCS overestimates the monthly precipitation during
April and July by 21.0 and 12.6 mm per month during
the calibrations and 19 and 25 mm per month during
the validation. As expected, the adjusted PERSIANN-
CCS with CZ successfully adjusts the systematic bias
and matches rain gauge observations, while the adjusted
PERSIANN-CCS without CZ does not adjust the bias
effectively comparing to the adjusted PERSIANN-CCS
with CZ. In the calibrations, the adjusted PERSIANN-
CCS without CZ overestimates the monthly precipitation

Fig. 10 Monthly scatter plot for January, April, July, and November during calibration (top), and validation (below)

Table 1 Statistics evaluations for
calibrated years Time Original PERSIANN-CCS Adjusted PERSIANN-CCS

without CZ
Adjusted PERSIANN-CCS
with CZ

CC MB RMSE CC MB RMSE CC MB RMSE

Year 0.525 184.960 270.85 0.502 84.15 126.261 0.572 2.778 46.52

January 0.621 2.51 7.32 0.608 3.81 10.56 0.628 − 0.17 5.34

April 0.337 21.08 28.49 0.565 18.69 34.22 0.628 − 1.3 10.12

July 0.732 12.59 32.20 0.729 9.3 27.03 0.736 0.875 7.12

November 0.062 0.84 14.30 0.595 15.36 23.58 0.603 0.498 9.79
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for April, July, January, and November by 18.69, 9.3,
3.32, and 15.36 mm per month. The adjusted
PERSIANN-CCS with CZ overestimates of July and
November by 0.9 and 0.5 mm per month during the
calibration. During the validated year, the adjusted
PERSIANN-CCS without CZ overestimates the monthly
precipitation of January, July, and November by 2.39,
29.76, and 26.85 mm. The adjusted PERSIANN-CCS
with CZ adjusted by 1.02, 3.2, and 7 for January,
July, and November.

Time series of precipitations over Saudi Arabia

Monthly and daily time series in Saudi Arabia are
shown by Figs. 11, 12, 13, 14, and 15, and the statis-
tical evaluations of the time series are presented by

Tables 3, 4, 5, and 6. The figures and tables are divided
in to representations of three CZ.

Monthly time series

The original PERSIANN-CCS overestimates themonthly pre-
cipitations all across the country, as shown by Figs. 11 and 12.
It overestimates the precipitation by 54.57, 45.85, and
103.76 mm per month over the zones 1, 2, and 3, respectively,
during the calibration years, and 419.58, 466.79, and
674.19 mm per month in the validated year (see Tables 3
and 4). In comparing between the monthly observations and
estimations of the org PERSIANN-CCS over the zones, the
original PERSIANN-CCS is moderately correlated during the
calibration years and highly correlated during the validated
year as presented by Tables 3 and 4. The monthly RMSEs

Fig. 11 Mean areal precipitation for three zones during calibration

Table 2 Statistics evaluations for
validated year Time Original PERSIANN-CCS Adjusted PERSIANN-CCS

without CZ
Adjusted PERSIANN-CCS
with CZ

CC MB RMSE CC MB RMSE CC MB RMSE

Year 0.61 180.06 259.48 0.60 144.51 238.64 0.62 18.90 83.17

January 0.05 3.47 11.02 0.16 2.39 9.51 0.06 1.02 8.98

April 0.44 18.92 45.29 0.68 27.19 56.75 0.68 − 11.13 35.45

July 0.83 24.75 78.97 0.80 29.76 110.17 0.82 3.20 27.08

November − 0.02 7.95 33.85 0.46 26.85 48.04 0.46 7.01 25.85
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are calculated to be 76.3, 123, and 164.2 mm per month dur-
ing the calibrations and more than 500 mm per month during
the validation for zones 1, 2, and 3, respectively. However, the

two adjusted PERSIANN-CCS improves the monthly statisti-
cal evaluations.

The adjusted PERSIANN-CCS without CZ still overesti-
mates the monthly precipitation in the country. As presented

Fig. 13 Mean areal daily precipitation for all zones during calibration

Fig. 12 Mean areal precipitation for three zones during validation
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Fig. 15 Mean daily cumulative precipitation for all zones

Fig. 14 Mean areal daily precipitation for all zones during validation
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by Tables 3 and 4, the overestimations are reduced to more
than 37 mm per month during the calibration, and the same
pattern is found during the validation where the adjusted
PERSIANN-CCS without CZ overestimates by more than
350 mm per month. Moreover, the adjusted PERSIANN-
CCS without CZ estimations is highly correlated to the rain
gauges observations according to Tables 3 and 4 in which CC
is improved to more than 0.7 during the calibration and the
validation for all zones.

As shown by Tables 3 and 4, the adjusted PERSIANN-
CCS with CZ slightly underestimates the monthly precipita-
tion in zones 1 and 2 by 0.02, and 0.66 mm per month during
the calibration, respectively, but the adjusted PERSIANN-
CCS with CZ overestimates zone 3 by 4.7 mm per month
during the calibration. Moreover, the adjusted PERSIANN-
CCS with CZ has a strong correlation with rain gauge obser-
vations for more than 0.74. As expected, the adjusted
PERSIANN-CCS with CZ reduces the overestimating of
monthly precipitation during the validated year by around
90, 84, and 86% for zones 1, 2, and 3, respectively. Finally,
the adjusted PERSIANN-CCS with CZ reduces RMSs to 141,
200, and 360 mm per month for zones 1, 2, and 3,
respectively.

Daily time series

The daily precipitation in Saudi Arabia is presented in
Figs. 13, 14, and 15 and Tables 5 and 6. Figure 14 shows
the mean areal cumulative for each CZs for each year.

As expected, the original PERSIANN-CCS overestimates
the daily precipitation by 0.26, 0.21, and 0.15 mm per day
during the calibration for zones 1, 2, and 3, respectively.
During the validation, the original PERSIANN-CCS overes-
timates the daily precipitation by 0.34, 0.36, and 1.23 mm per
day for zones 1, 2, and 3, respectively. As shown in Table 5,
the daily RMSEs are 0.9, 1.28, and 3.68 mm per day for zones
1, 2, and 3, respectively. During the validated year, the daily
RMSEs are 0.85, 1.46, and 4.26 mm per day for zones 1, 2,
and 3, respectively.

According to Tables 5 and 6, the daily estimations of the
adjusted PERSIANN-CCSwithout CZ are reduced to be 0.19,
0.17, and 0.42 mm per day for zones during the calibration
years. Moreover, the adjusted PERSIANN-CCS without CZ
still overestimates the daily precipitation in zones 1, 2, and 3
by 0.28, 0.28, and 1.01 mm per day. However, the daily CCs
are improved during both calibration years and the validation
year for all zones.

The adjusted PERSIANN-CCS with CZ effectively adjusts
the systematic bias during the calibration years and the vali-
dation year as shown by Tables 5 and 6. During the calibration
years, the bias is reduced to be less than 0.03 mm per day for
zone 3 where most of the precipitation occurs in Saudi Arabia,
and zones 1 and 2 have insignificant biases mm per day.
Additional, the daily RMSEs are reduced to 0.55, 0.93, and
1.74 mm per day for zones 1, 2, and 3, respectively. As pre-
dictable during the validation, the adjusted PERSIANN-CCS
with CZ overestimates the daily precipitation for all zones by
0.03, 0.04, and 0.22 mm per day for zones 1, 2, and 3,
respectively.

Table 3 Statistical evaluation of
monthly time series during
calibration

Zones Original PERSIANN-
CCS

Adjusted PERSIANN-CCS with-
out CZ

Adjusted PERSIANN-CCS with
CZ

CC MB RMSE CC MB RMSE CC MB RMSE

Zone 1 0.65 54.57 76.32 0.74 39.53 69.71 0.79 − 0.02 19.61

Zone 2 0.56 45.85 122.93 0.74 37.08 106.27 0.75 − 0.66 50.78

Zone 3 0.63 103.76 164.20 0.72 44.94 97.66 0.78 4.69 30.10

Table 4 Statistical evaluation of
monthly time series during
validation

Zones Original PERSIANN-CCS Adjusted PERSIANN-CCS with-
out CZ

Adjusted PERSIANN-CCS
with CZ

CC MB RMSE CC MB RMSE CC MB RMSE

Zone 1 0.89 419.58 505.88 0.85 352.01 545.15 0.85 41.57 141.14

Zone 2 0.50 466.79 946.28 0.83 366.62 585.07 0.87 75.42 200.16

Zone 3 0.59 674.19 1119.57 0.75 533.80 1062.54 0.74 90.35 362.72
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Discussion

The adjusted PERSIANN-CCS with CZ successfully adjusts
the systematic bias of the original PERSIANN-CCS. In terms
of statistical evaluations, the adjusted PERSIANN-CCS with
CZ performs more effectively than the adjusted PERSIANN-
CCS without CZ in removing the systematic bias. Because the
using CZ increases the number of the samples, CDFs are more
reliability on removing biases.

In term of spatial evaluations, the adjusted PERSIANN-
CCS without CZ changes the precipitations patter over the
county as shown by Figs. 7 and 9. It overestimates the precip-
itation in areas where the precipitation is estimated to be low
such as the center of the country and near of Asir Mountains
because the methodology involved filling the empty boxes
without considering the CZs, and it did not keep the spatial
precipitation distribution matching the rain gauge
observations.

In teams of daily precipitation corrections, QM works by
adjusting CDFs of SPEs to match CDFs of the rain gauge
observations, which helps to adjust the large amount of bias
from the SPE. Nevertheless, QM does not correct SPE esti-
mations by matching the events day by day. This is one lim-
itation of QM, and it is identified in many literatures (Ajaaj
et al. 2016; Chen et al. 2013).

Conclusion

The study provides a framework that can be used to correct
SPEs for a region when the rain gauges are unavailable or

limited with using CZs. Saudi Arabia is chosen to verify the
effectiveness of the study using the daily estimations of
PERSIANN-CCS and the daily observations of the rain
gauges over the country between 2010 and 2016. The spatial
and temporal results prove that the framework is capable to
correct and improve outcomes of SPEs and including CZs,
improves the effectiveness of QM on correcting SPEs out-
comes. However, one of the framework’s limitations is that
correct SPE day-day to rain gauges, and we believe that com-
bining the rain gauges and SPE estimations may help to adjust
the random bias and improve the effectiveness of QM and CZ.

Recommendations

Based on the results, QM-CZ are applicable tool that can
consistently adjust a large amount of the bias when the ground
observations are limited since the QM uses the advantages of
the historical ground observations and SPEs. Here, some rec-
ommendations will help to implement this method over other
regions of the world when the rain gauges are limited or
unavailable.

First, the adjustment of the bias is done by matching be-
tween CDFs, so the model calibration needs the high quality
historical ground observations. When the high quality histor-
ical observation is unavailable, the using for seasonal CDFs
may overcome the limitation and improve the model calibra-
tion. Second, dividing the study area to 1° by 1° boxes and
implementing IWD are not needed when the study area has
one CZ.

Table 5 Statistical Evaluation of
daily time series during the
calibration

Zones Original PERSIANN-
CCS

Adjusted PERSIANN-CCS with-
out CZ

Adjusted PERSIANN-CCS with
CZ

CC MB RMSE CC MB RMSE CC MB RMSE

Zone 1 0.37 0.26 0.90 0.45 0.19 0.96 0.41 0.00 0.55

Zone 2 0.35 0.21 1.28 0.41 0.17 1.42 0.44 0.00 0.93

Zone 3 0.15 1.00 3.68 0.16 0.42 2.81 0.17 0.03 1.74

Table 6 Statistical Evaluation of
daily time series during the
validation

Zones Original PERSIANN-
CCS

Adjusted PERSIANN-CCS with-
out CZ

Adjusted PERSIANN-CCS with
CZ

CC MB RMSE CC MB RMSE CC MB RMSE

Zone 1 0.57 0.34 0.85 0.62 0.28 0.93 0.63 0.03 0.43

Zone 2 0.47 0.36 1.46 0.71 0.28 1.31 0.73 0.04 0.63

Zone 3 0.67 1.23 4.26 0.59 1.01 5.29 0.72 0.22 2.06
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