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Under What Conditions Can Equilibrium Gas−Particle Partitioning Be
Expected to Hold in the Atmosphere?
Huajun Mai,† Manabu Shiraiwa,§ Richard C. Flagan,†,‡ and John H. Seinfeld*,†,‡

†Division of Engineering and Applied Science and ‡Division of Chemistry and Chemical Engineering, California Institute of
Technology, Pasadena, California 91125, United States
§Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany

ABSTRACT: The prevailing treatment of secondary organic aerosol formation in
atmospheric models is based on the assumption of instantaneous gas−particle
equilibrium for the condensing species, yet compelling experimental evidence
indicates that organic aerosols can exhibit the properties of highly viscous,
semisolid particles, for which gas−particle equilibrium may be achieved slowly.
The approach to gas−particle equilibrium partitioning is controlled by gas-phase
diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the
controlling processes and the time scale to achieve gas−particle equilibrium as a
function of the volatility of the condensing species, its surface accommodation
coefficient, and its particle-phase diffusivity. For particles in the size range of typical
atmospheric organic aerosols (∼50−500 nm), the time scale to establish gas−
particle equilibrium is generally governed either by interfacial accommodation or
particle-phase diffusion. The rate of approach to equilibrium varies, depending on
whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the
particles, typical of a closed system.

1. INTRODUCTION

Mounting evidence indicates that organic aerosols can exhibit
the properties of viscous, semisolid particles.1−12 In describing
the process of formation of secondary organic aerosol (SOA), it
has traditionally been assumed that condensing, low-volatility
oxidation products partition according to instantaneous gas−
particle equilibrium.13 The assumption of instantaneous gas−
particle equilibrium implies that the time scale to achieve that
equilibrium is short when compared to the time scales over
which other processes, such as gas- and particle-phase
dynamics, are occurring. Moreover, most current atmospheric
chemical transport models incorporate the assumption of
instantaneous gas−particle equilibrium in describing SOA
formation. A consequence of a highly viscous aerosol phase is
that gas−particle equilibrium for condensing species may not
be established instantaneously, owing to the time associated
with the transport processes in the gas phase, across the gas−
particle interface, and within the particle itself. In this case, a
dynamic, rather than equilibrium, formulation of the SOA
formation process is required. Because the computational
implications of dynamic versus equilibrium model formulations
are significant, it is important to assess the conditions under
which such a dynamic formulation is needed.
Several recent studies have addressed the time scales

associated with the establishment of atmospheric gas−aerosol
equilibrium. Shiraiwa and Seinfeld14 estimated the equilibration
time scale of SOA gas−particle partitioning using a state-of-the-
art numerical gas- and particle-phase transport model. Zaveri et
al.15 developed a comparable framework for describing gas−

particle SOA partitioning that accounts for diffusion and
reaction in the particle phase and includes the size distribution
dynamics of the aerosol population. Liu et al.16 presented an
exact analytical solution of the transient equations of gas-phase
diffusion of a condensing vapor to and diffusion and first-order
reaction in a particle. These three studies provide the
theoretical and computational framework to estimate the time
scale for establishment of gas−particle equilibrium. The present
work assesses the regimes of parameter values associated with
various limiting cases of gas−particle transport. On the basis of
the analytical solution of Liu et al.,16 we derive expressions for
the time scales associated with the transport steps involved in
SOA growth. We evaluate the overall time scale to achieve gas−
particle equilibrium in both open and closed systems and
compare it to that obtained from the full numerical solution of
Shiraiwa and Seinfeld.14

2. ANALYTICAL SOLUTION FOR TRANSIENT
GAS−PARTICLE PARTITIONING

Transport of a vapor molecule to a particle involves three mass
transfer processes that occur in series: (1) diffusion from the
bulk of the gas phase to the particle surface, (2) transport
across the gas−particle interface, and (3) diffusion into the
interior of the particle. If reactions are occurring in the particle

Received: May 27, 2015
Revised: August 25, 2015
Accepted: September 4, 2015
Published: September 4, 2015

Article

pubs.acs.org/est

© 2015 American Chemical Society 11485 DOI: 10.1021/acs.est.5b02587
Environ. Sci. Technol. 2015, 49, 11485−11491

pubs.acs.org/est
http://dx.doi.org/10.1021/acs.est.5b02587


phase, these occur simultaneously with particle-phase diffusion.
In the present work, we do not explicitly consider the effect of
chemical reactions. Any of these three processes can be rate-
determining, depending on the particular set of conditions, and
the rate-determining step will govern the time scale for
achieving gas−particle equilibrium. The mathematical state-
ment of the transport problem joins gas-phase diffusion,
accommodation at the particle surface, and diffusion into the
particle bulk. It is assumed that at t = 0 the particle is free of the
condensing species and that the bulk gas-phase concentration
of the condensing species is maintained as constant for t > 0.
This latter condition restricts the analytical solution to a so-
called open system, one in which the bulk vapor concentration
is maintained at a constant level. In the corresponding closed
system, the total amount of vapor available is fixed so that as
condensation occurs the vapor concentration decreases. The
exact analytical solution of the coupled gas and particle phase
transport problem allows one to derive the expression for the
overall time scales to achieve equilibrium, from which one can
infer which transport step controls the overall approach to
equilibrium. A general numerical simulation that treats both
open and closed systems, such as that used by Shiraiwa and
Seinfeld,14 can account for change of particle size with
condensation and generation or depletion of the vapor by
chemical reaction.
We consider the analytical formulation for transient gas−

particle partitioning of a species with a fixed concentration in
the bulk gas phase into a particle free of that species at t = 0.
Letting G(r, t) and A(r, t) be the gas- and particle-phase
concentrations of the transporting species, the transient
boundary value problem describing the approach to equilibrium
is16
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where G∞ is the bulk gas-phase concentration of the
condensing species, Rp is the particle radius, α is the
accommodation coefficient of the condensing species on the
particle surface, v ̅ is the mean molecular speed of the
condensing species in the gas phase, Dg is the molecular
diffusion coefficient of the condensing species in the gas phase,
Db is the molecular diffusivity of the condensing species in the
particle phase, and H′ is the dimensionless Henry’s law
constant for the condensing species (H′ = HART). Equation 3
expresses the steady-state diffusion profile in the gas phase.
Under any circumstances, the time scale to establish a steady-
state concentration profile in the gas phase is extremely short;

therefore, the steady-state gas-phase profile for the condensing
species holds at all times.17

The use of a Henry’s law constant is customary when
describing the equilibrium of a dissolved solute in a relatively
dilute cloud droplet. Here, our primary interest concerns the
equilibrium of a solute between the gas phase and a
submicrometer aerosol particle, for which a gas−particle
equilibrium constant formulation is customary.1 The two
formulations for equilibrium can be related as follows.
Assuming an ideal mixture, the equilibrium partial pressure of
condensing species A is pA = xApA°, where pA° is the saturation
vapor pressure of species A and xA is the mole fraction of A in
the particle phase. The mole fraction of the condensing species
A is related to the mass fraction in the gas-phase, xA = (Ag/c*),
where Ag is the the mass concentration of condensing species A
in the gas phase (g (m3 of air)−1) and c* is the saturation mass
concentration of the condensing species. Assuming that the
molecular weight of the condensing species A is identical to
that of the absorbing particle phase and that individual
condensing species A is one of many in the particle phase,
the mole fraction of A can be written as

≈
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where Ap is the mass concentration of condensing species A in
the particle phase (g (m3 of air)−1) and cOA is the mass
concentration of absorbing phase (g (m3 of air)−1). Thus, the
distribution factor fA, the ratio of particle-phase mass
concentration to the gas-phase mass concentration, is
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and fA = HARTwL = H′wL, where HA is Henry’s law constant (M
atm−1) and wL is volume fraction of particle in the air ((m3 of
particle) (m3 of air)−1). Thus, the partitioning equilibrium
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and the dimensionless Henry’s law constant H′ is formally
related to the gas−particle partitioning equilibrium constant by
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where ρp is the density of particle (g (m3 of particle)−1). The
equilibrium fraction of organic material in the particle phase is
(1 + c*/cOA)

−1. Thus, for cOA = 1 μg m−3, a condensing
substance with c* = 1 μg m−3 will reside 50% in the particle
phase at equilibrium; a substance with c* = 0.01 μg m−3 will
reside 99% in the particle phase.
The solution for the normalized particle-phase concentration

of the condensing species defined by eqs 1−5 is15
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where ϕ = (A(r, t)/A∞), η = (r/Rp), θ = (Dbt)/Rp
2, and A∞ =

H′G∞ and A∞ is the particle-phase concentration of the
condensing species at equilibrium with the gas-phase
concentration G∞. βn is the nth positive root of

β β + − =Lcot 1 0 (7)

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b02587
Environ. Sci. Technol. 2015, 49, 11485−11491

11486

http://dx.doi.org/10.1021/acs.est.5b02587


where

=
+

−

− −L
v

v v
b

1

i
1

g
1

(8)

and the transport velocities for gas-phase diffusion, interfacial
transport, and particle-phase diffusion, respectively, are
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Physically, a limit of L≫ 1 implies that transport in the particle
phase is much slower than that in the gas phase or across the
interface, and a limit of L≪ 1 corresponds to the case in which
particle-phase diffusion is rapid relative to either gas-phase
diffusion or interfacial accommodation.
The time-dependent gas-phase concentration profile of the

condensing species is obtained from eq 6 on the basis of the
equality of fluxes, eq 2
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The e-folding time scale to achieve overall gas−particle
equilibrium partitioning is approximated by the exponent in the
first term of the infinite series in eq 6.
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This time scale represents that for the entire particle to achieve
equilibrium with the bulk gas-phase concentration G∞. Three
important limits can be identified on the basis of eq 11.

If the transport resistance is dominated by gas-phase
diffusion, i.e., vg ≪ vi and vg ≪ vb, then
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and β1 ≅ (3L)1/2 ≪ 1. In this case, both interfacial equilibrium
and a uniform particle-phase concentration are established
(Figure 1a). Letting L → 0 in eq 6, ϕ η θ = − θ
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and the equilibrium partitioning time scale is governed by
diffusion in the particle phase,
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If the transport resistance is dominated by interfacial
accommodation, i.e., vi ≪ vg and vi ≪ vb, then the parameter
L can be approximated as
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In this limiting case, the concentration profiles of the
condensing species in both the gas and particle phases are
essentially uniform, owing to relatively rapid particle-phase
diffusion (Figure 1b). The form of the dimensionless
concentration of the condensing species in the particle phase
in this limit is

Figure 1. Dimensionless concentration profiles in the particle and gas phase for three limiting cases: (a) gas-phase diffusion-limited partitioning, (b)
interfacial-transport-limited partitioning, and (c) particle-phase diffusion-limited partitioning. The region η ≤ 1 corresponds to the particle phase.
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If the overall transport resistance is dominated by particle-
phase diffusion, i.e., vb ≪ vg and vb ≪ vi, then eq 7 reduces to
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The equilibrium partitioning time scale in this limit, depicted
in Figure 1c, is simply that associated with diffusion in the
particle phase
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Table 1 presents parameter values that illustrate the three
limiting regimes of gas−particle equilibration. In each case, we
consider an organic species with saturation mass concentration
c* = 10 μg m−3, molecular weight M = 200 g mol−1, and a gas-
phase molecular diffusivity Dg = 10−1 cm2 s−1. Gas-phase-
diffusion-limited partitioning is likely to occur for large liquid
particles (i.e., droplets) with a vapor accommodation coefficient
α close to 1.0. Interfacial-transport-limited partitioning will hold
for small, somewhat viscous particles with a relatively small
vapor accommodation coefficient. Finally, particle-phase-
diffusion-limited partitioning is expected to occur for highly
viscous (e.g., semisolid) aerosols.

3. RESULTS AND DISCUSSION
3.1. Analytical Time Scales. Figure 2 shows the

dependence of the analytical gas−particle partitioning time
scale τeq on particle-phase diffusivity Db and accommodation
coefficient α for cloud droplets (Panel (a): Dp = 20 μm) and
fine-mode aerosols (Figure 2b, Dp = 100 nm). The dashed lines
in Figure 2 are intended to give a rough indication of the

Table 1. Examples of Three Limiting Casesa

gas-phase-diffusion-limited partitioning interfacial-transport-limited partitioning particle-phase-diffusion-limited partitioning

Rp (μm) 10 0.05 0.05
Db (cm

2 s−1) 10−5 10−9 10−18

α 1 10−3 10−2

νg/νi = 2.25 × 10−2 νi/νg = 2.2 × 10−4 νb/νg = 10−6

νg/νb = 10−7 νi/νb = 2.2 × 10−7 νb/νi = 4.5 × 10−4

ac* = 10 μg m−3; M = 200 g mol−1; Dg = 0.1 cm2 s−1; and H′ = 1011. Because H′ and c* are related by H′ = ρp/c*, where ρp is the density of the
particle, c* = 10 μg m−3 corresponds to H′ = 1011, given ρp = 1 g cm−3.

Figure 2. Analytical equilibrium partitioning time scale as a function of particle-phase diffusivity Db and accommodation coefficient α for two particle
diameters: (a) 20 μm and (b) 100 nm. Other physical parameters are identical for the two panels: M = 200 g mol−1, Dg = 10−1 cm2 s−1, H′ = 1011.
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location of the transition regions between those representing
different controlling mechanisms. Although our principal
interest in this work is the equilibration behavior of organic
atmospheric aerosols, it is also informative to examine the
implications of the theory for typical cloud droplets. The
equilibration time scale for a solute dissolving in a cloud droplet
with typical aqueous-phase diffusivities is gas-phase diffusion
controlled for values of α = 0.01. Because of the relatively large
size of cloud droplets, theoretical gas−droplet equilibration
time scales are much longer than the typical lifetime of a cloud
droplet. Most relevant for the present work is Figure 2b. For
particles in the size range of typical atmospheric organic
aerosols (∼50−500 nm), the gas−particle equilibration time
scale is governed by either interfacial accommodation or
particle-phase diffusion. For α ≳ 0.01 and Db ≲ 10−13 cm2 s−1,
gas−particle equilibration is controlled by particle-phase
diffusion. When α ≲ 0.01, interfacial accommodation is
controlling, and τeq is asymptotically proportional to α. For α
≳ 0.1, the time scale for a fine mode aerosol particle to achieve
gas−particle equilibrium is on the order of minutes for all but
the smallest particle-phase diffusion coefficients. For submi-
crometer atmospheric aerosols, gas-phase diffusion of the
condensing species is not a limiting process to achieve gas−
particle equilibrium. The transitional boundaries between
limiting regimes can be defined approximately by the
intersection of the corresponding asymptotic solutions. For
example, a rough indication of the particle size range where the
transition between gas-phase-diffusion-limited and interfacial-
transport-limited regimes occurs can be obtained by combining
eqs 14 and 17.

α
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v

4
p

g

(21)

Figure 3 shows τeq as a function of particle diameter Dp and
Henry’s law constant H′ and c* with α = 1.0. Figure 3a is for Db
= 10−8 cm2 s−1, and Figure 3b is for Db = 10−13 cm2 s−1. For
SOA, the gas−particle equilibrium state is commonly
characterized by the gas-phase saturation mass concentration
c* and the gas−particle partitioning equilibrium constant Kp,
which as we have shown can be related to H′. τeq increases with
particle diameter because the smaller surface area per unit
volume for larger particles is less efficient for vapor uptake.
Gas−particle partitioning between a highly volatile organic
compound (c* ≳ 106 μg m−3) and a liquid particle (Figure 3a)
is rapid. If the condensing species is less volatile, then more
material ultimately condenses into the particle at equilibrium.
The larger amount of condensing material must be transported
into the particle through the gas phase and the interface, which
leads to a longer equilibration time. Because particle-phase
diffusion alone does not depend on the volatility of the
condensing species, the limiting step changes from particle-
phase diffusion toward interfacial transport or gas-phase
diffusion for low volatility species. Figure 3b presents the
comparable calculation for a highly viscous particle. Owing to
hindered diffusion in the particle phase, equilibration times are
longer than in the liquid particle for the same particle size and
species volatility.

3.2. Numerical Simulation in Open and Closed
Systems. An alternative to the analytical evaluation of
equilibration time scales is detailed numerical simulation of
the process of vapor molecule diffusion to and uptake in a
particle or a population of particles. The kinetic multilayer
model (KM-GAP)18,19 for gas−particle interactions in aerosols
and clouds allows evaluation of τeq by numerically simulating
the evolution of the condensing species concentrations in gas
and particle phases.14 The model is general in terms of whether

Figure 3. Analytical equilibrium partitioning time scale as a function of particle diameter Dp and Henry’s law constant H′ (or equivalent saturation
mass concentration c*). (a) Liquid particles; Db = 10−8 cm2 s−1. (b) Highly viscous particles; Db = 10−13 cm2 s−1. Other physical parameters are
identical for the two panels: M = 200 g mol−1, Dg = 10−1 cm2 s−1, ρp = 1 g cm−3, α = 1.
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the overall system is open (vapor concentration maintained as
constant) or closed (finite amount of vapor). The analytical
solution above assumes an open system, i.e., the bulk gas-phase
concentration of the condensing species is constant. In a closed
system, the bulk gas-phase concentration decreases as
condensation into the aerosol phase proceeds.
It is instructive to compare the analytical approximation for

τeq on the basis of eq 11 with that derived from numerical
simulation using KM-GAP. We consider numerical simulation
of a population of particles growing in open and closed systems.
For simplicity, gas- and particle-phase chemical reactions are
not considered in this comparison. Figure 4a shows the
equilibrium partitioning time scale as a function of saturation
mass concentration c* at different particle number concen-
trations caer in a closed system. The analytical approximation
and the numerical simulation are essentially identical for
relatively volatile species, c* ≳ 103 μg m−3. The analytical
prediction based on the assumption of a fixed bulk gas-phase
concentration of the condensing species and the numerical
simulation based on a closed system in which the bulk
concentration declines with time begin to diverge for c* ≲ 103

μg m−3. This divergence is the result of two effects that are not
explicitly treated in the analytical solution: (1) particle size
change (The KM-GAP model tracks the change of particle size
due to condensation of vapor.) and (2) vapor depletion (In a
closed system, as vapor condenses on the particle, the bulk gas-
phase concentration decreases.) Each of these two effects
becomes negligible for a sufficiently volatile condensing species
(c* ≳ 103 μg m−3) because an overall smaller amount of vapor
species condenses into the particles. Consequently, the gas−
particle equilibrium time scale computed from KM-GAP shows
no dependence on the aerosol number concentration caer in this

region. For condensing species with a saturation mass
concentration in the range 2 × 102 μg m−3 ≲ c* ≲ 103 μg
m−3, the discrepancy between the open and closed system
arises from the effect of particle growth. The equilibrium
particle size increases dramatically in this region, as shown in
Figure 4b, so the actual time for the system to achieve gas−
particle equilibrium can be considerably longer than that
estimated on the basis of the initial particle size. For decreasing
particle concentration caer, the equilibrium particle size
increases, because a greater amount of vapor condenses into
each particle. For number concentrations characteristic of urban
conditions (caer = 105 cm−3), the condensing vapor is
distributed over a relatively large number of particles, and the
effect of particle size change on the equilibration time scale is
negligible, as shown in Figure 4b. However, in the closed
system, the effect of gas-phase depletion begins to dominate the
equilibrium time scale: As the vapor becomes depleted, a
progressively smaller amount of vapor transfers into the particle
phase, and the equilibrium time scale decreases.
For less volatile vapor, c* ≲ 2 × 102 μg m−3, in the closed

system, gas−particle partitioning is dominated by gas-phase
depletion of the condensing species. Less volatile condensing
species transfer predominantly into the particle phase, and as
volatility decreases, τeq and the equilibrium particle size
eventually become independent of the volatility of the
condensing species because virtually all of it effectively
condenses.

3.3. Implications for Atmospheric Models. Atmospheric
models simulate the formation and growth of organic aerosols.
At present, these processes are assumed in most models to be
the result of instantaneous gas−particle equilibrium. In
addition, most atmospheric models do not resolve the ambient

Figure 4. Effect of an open vs closed system. The analytical equilibration time scale for the open system is given by eq 11. The equilibration time
scale for the closed system is computed by the KM-GAP numerical model. (a) Equilibrium partitioning time scale as a function of saturation mass
concentration c* at different particle number concentrations caer for both open and closed systems. (b) Equilibrium particle growth factor in the
closed system as a function of particle number concentration from KM-GAP. Physical parameters used in the KM-GAP model simulations are α =
1.0, τd = 10−9 s, ρp = 1 g cm−3, Db = 10−8 cm2 s−1, Dg = 10−1 cm2 s−1, M = 200 g mol−1, and Dp,0 = 200 nm.
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aerosol size distribution. Under a number of ambient situations,
the rate at which that equilibrium is achieved can be slower
than the rates at which other atmospheric processes are
changing. The numerical machinery needed to resolve these
microscopic gas−particle interactions would add substantially
to an already heavy computational load. Using a combination of
analytical transport theory and numerical modeling, the present
work delineates the broad conditions governing the time scales
for establishing gas−particle equilibrium. These conditions
depend on the surface accommodation coefficient and volatility
of the species in question, the diffusivity of the condensing
organic species in the particle phase, and the particle size. In
most ambient modeling circumstances, surface accommodation
coefficients for condensing species and viscosities of particles
(from which diffusion coefficients have to be inferred) are not
known with precision. Thus, a high degree of uncertainty will
attend any computation based on microscopic particle
dynamics; nonetheless, the results of the present work provide
a framework for estimation of the possible effect of non-
equilibrium growth in atmospheric models of organic aerosols.
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