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Abstract. We survey the known polynomial families of solutions of the Dio-

phantine equation x3 + y3 + z3 = n. A search has been made for additional

families by interpolating on subsets of the 5417 solutions found by Koyama,
but no new polynomial solutions were discovered. Finally we mention Ra-

manujan’s solution, which is one of generating functions.

1. Introduction

We will be interested in representations

(1) n = x3 + y3 + z3

of various integers n as sums of three cubes. The cubic residues modulo 9 are 0, 1, 8,
so it follows by inspection of cases that for every integer solution to (1) we have
n 6≡ ±4 mod 9.

Any given solution can be written in one of the following forms for nonnegative
a, b, c:

|n| = a3 + b3 + c3,

|n| = a3 + b3 − c3, or

|n| = c3 − a3 − b3.

Therefore it suffices to consider nonnegative solutions to the equations a3 + b3 =
c3 ± n and a3 + b3 + c3 = n. (For n = 0 it is a case of Fermat’s last theorem that
there are no integer solutions.)

In practice we need only search for primitive solutions, i.e. those for which
gcd(a, b, c) - n, since the nonprimitive solutions for a fixed n are routinely obtained
from the primitive solutions for its divisors.

Finding all nonnegative solutions to a3 + b3 + c3 = n for a given n is a finite
computation, since necessarily a, b, c ≤ n. However, finding all solutions to a3+b3 =
c3 ± n is not.

2. Solutions for m3, m12, and 2m9

When n = m3 is a cube there tends to be a comparatively large number of
solutions to (1), and sometimes there are polynomial families among these solutions.
For n = 1, the first few solutions are given by the following table, where |x| ≤ |y| ≤
|z|.
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n x y z
1 −6 −8 9
1 9 10 −12
1 64 94 −103
1 −71 −138 144
1 73 144 −150
1 −135 −138 172
1 135 235 −249
1 334 438 −495
1 −372 −426 505
1 −426 −486 577

Some of these are given by the polynomial solution

(2) (9t3 + 1)3 + (9t4)3 + (−9t4 − 3t)3 = 1,

the first few solutions of which are as follows.

t n x y z
−5 1 −1124 5625 −5610
−4 1 −575 2304 −2292
−3 1 −242 729 −720
−2 1 −71 144 −138
−1 1 −8 9 −6

0 1 1 0 0
1 1 10 9 −12
2 1 73 144 −150
3 1 244 729 −738
4 1 577 2304 −2316
5 1 1126 5625 −5640

For other cubes, Davenport [2, pages 163–164] gives the Euler–Binet solutions
to x3 + y3 = z3 + w3: Every rational solution is proportional to the solution

x = 1− (p− 3q)(p2 + 3q2),

y = −1 + (p+ 3q)(p2 + 3q2),

z = (p+ 3q)− (p2 + 3q2)2,

w = −(p− 3q) + (p2 + 3q2)2,

for some rational p, q. While this generates all integer solutions, it does not provide
a finite way of computing all integer solutions for a given n = w3. One can obtain
specific polynomial families, however. For example, letting p = 3q, t = −2q gives
(2).

Lehmer [9] provides other polynomial families that can be obtained inductively
from (2) as follows. Let

(x0, y0, z0) = (9t4,−9t4 + 3t,−9t3 + 1),

(x1, y1, z1) = (9t4,−9t4 − 3t, 9t3 + 1).
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Define

xk+1 = 2(216t6 − 1)xk − xk−1 − 108t4,

yk+1 = 2(216t6 − 1)yk − yk−1 − 108t4,

zk+1 = 2(216t6 − 1)zk − zk−1 + 216t4 + 4.

Lehmer proves that then x3k + y3k + z3k = 1, and thus we obtain integer solutions to
(1) with n = 1 for k ∈ N, t ∈ Z. One computes

x2 = 3888t10 − 135t4,

y2 = −3888t10 − 1296t7 − 81t4 + 3t,

z2 = 3888t9 + 648t6 − 9t3 + 1,

which produce the primitive solutions in the following table.

t n x2 y2 z2
−5 1 37968665625 −37867550640 −7583623874
−4 1 4076828928 −4055650572 −1016561087
−3 1 229571577 −226754730 −76054868
−2 1 3979152 −3816726 −1949111
−1 1 3753 −2676 −3230

0 1 0 0 1
1 1 3753 −5262 4528
2 1 3979152 −4148490 2032057
3 1 229571577 −232423416 76999654
4 1 4076828928 −4098117876 1021869505
5 1 37968665625 −38070050610 7603873876

Lehmer gives a closed-form expression for (xk, yk, zk), and from this one sees for
example that the degree of zk is 6k − 3 for k ≥ 1. However, not every solution
x3 + y3 + z3 = 1 can be obtained in this way: Of the 33 solutions with |x| ≤ |y| ≤
|z| ≤ 10000, only 13 appear in the above tables, and larger values of k produce only
larger solutions.

For n = 2, the solution

(3) (6t3 + 1)3 − (6t3 − 1)3 − (6t2)3 = 2

is well known. (Precisely one solution for n = 2 is known that is not given by this
family: 2 = 12149283 + 34802053 − 35288753. See references [1, 4].) Multiply both
sides of (3) by m9, and apply the change of variable t 7→ t/m to obtain the more
general solution

(4) (6t3 +m3)3 − (6t3 −m3)3 − (6mt2)3 = 2m9,

which is primitive for gcd(6t,m) = 1. If gcd(6t,m) > 1, then dividing (4) by
(gcd(6t3,m3))3 gives a primitive solution. For example, for l, k ≥ 1 the solutions

(3t3 + 23l−1m3)3 − (3t3 − 23l−1m3)3 − (2l3mt2)3 = 29l−2m9,(5)

(2t3 + 33k−1m3)3 − (2t3 − 33k−1m3)3 − (2 3kmt2)3 = 2 39k−3m9,(6)

(t3 + 23l−133k−1m3)3 − (t3 − 23l−133k−1m3)3 − (2l3kmt2)3 = 29l−239k−3m9(7)

are primitive for gcd(3t, 2m) = 1, gcd(2t, 3m) = 1, and gcd(t, 6m) = 1 respectively.
Equations (4)–(7) give polynomial families for n = 2, 128, 1458, 65536, 93312,
3906250, 28697814, . . . .
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An analogous procedure may be applied to (2) to obtain families of solutions
for numbers of the form m12. Multiplying both sides by m12 and applying the
transformation t 7→ t/m gives

(8) (9mt3 +m4)3 − (9t4 + 3mt)3 + (9t4)3 = m12,

which is primitive for gcd(3t,m) = 1. In particular, for 3 - m and k ≥ 1,

(9) (3kmt3 + 34k−2m4)3 − (t4 + 33k−1m3t)3 + (t4)3 = 312k−6m12

is primitive for gcd(t, 3m) = 1. Equations (8) and (9) give families of solutions for
n = 1, 729, 4096, 2985984, 16777216, 244140625, 387420489, . . . .

3. Computations on Koyama’s Table

Koyama [7] has generated a large table of integer solutions of

x3 + y3 + z3 = n

for noncubes n in the range 1 ≤ n ≤ 1000 and |x| ≤ |y| ≤ |z| ≤ 221 − 1. He
gives two tables: Table 1 (55 pages) contains the integer solutions, sorted by n, and
Table 2 (2 pages) lists the number of primitive solutions found for each n in the
search range.

Unable to find a digital version, I obtained a hard copy of the tables from the
collections in the Center of American History at the University of Texas at Austin.
Once scanned into a .pdf file, I performed major automated and manual formatting
manipulation on the raw text to recover the tabular structure. Significant auto-
mated error correction was also necessary, as the data had not been digitized with-
out errors. Specifically, I wrote a program to verify that each solution (n, x, y, z) in
the table was in fact a solution; if a 4-tuple failed to satisfy (1), then the program
attempted to guess the correct solution under the assumption that only one of the
four numbers n, x, y, z had been read incorrectly. This generally worked very well,
although in a few cases two distinct solutions were corrected into the same solution;
I detected these when I compared Koyama’s Table 2 with my own counts of solu-
tions for each n (and in doing this I actually discovered more errors in Koyama’s
Table 2 than in my processed data). Because of the error correction techniques
used, I do not know if any typos are present in Koyama’s Table 1, since minor er-
rors would have been automatically corrected. However, while verifying that all of
the corrected solutions were indeed primitive, I did discover the erroneous inclusion
of the nonprimitive solution

352 = −1649303 − 1935743 + 2272763

in Koyama’s Table 1. Excluding this solution, Koyama’s table gives 5417 primitive
solutions to (1). A (corrected) digital version of Koyama’s data is available from
my web site.

Aside from the cases n = 2 and 128, no polynomial families of solutions to (1)
are known for noncubes 1 ≤ n ≤ 1000. I systematically searched for polynomial
solutions for each noncube n in this range. For each n, my program looks at the set
S of the first (at most) eight known solutions s1 = (x1, y1, z1), . . . , s8 = (x8, y8, z8),
as given by Table 1. For each subset S′ ⊂ S and each 8-tuple (σ1, . . . , σ8) of
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permutations on {x, y, z}, it interpolates polynomials px, py, pz on the three se-
quences x(σ1si1), . . . , x(σksik); y(σ1si1), . . . , y(σksik); and z(σ1si1), . . . , z(σksik) re-
spectively, where i1 < · · · < ik. If n = (px(k + 1))3 + (py(k + 1))3 + (pz(k + 1))3,
then a potential polynomial solution has been found.

Several positive results were returned in the search, but except for 2 and 128 these
did not represent general solutions and indeed did not provide any numeric solutions
not already appearing in Koyama’s table. (For 2 and 128 the program found the
known polynomial solutions but no additional polynomial solutions.) As a typical
example of these false positives, consider the interpolating quadratic polynomials
on the coordinates of the permutations (−1, 3, 8), (11,−4,−9), (17,−10,−15) of
the solutions (−1, 3, 8), (−4,−9, 11), (−10,−15, 17) for n = 538. The interpolating
polynomials obtained are

px(t) = −3t2 + 21t− 19,

py(t) = t2/2− 17t/2 + 11,

pz(t) = 11t2/2− 67t/2 + 36,

the values of which for the first few t are as follows.
t px(t) py(t) pz(t) px(t)3 + py(t)3 + pz(t)3

0 −19 11 36 41128
1 −1 3 8 538
2 11 −4 −9 538
3 17 −10 −15 538
4 17 −15 −10 538
5 11 −19 6 −5312
6 −1 −22 33 25288
7 −19 −24 71 337228

4. Ramanujan’s Solution

It should finally be noted that Ramanujan discovered an infinite family of solu-
tions to (1) for n = ±1 that is given not by polynomials but by generating functions.
Let

∞∑
n=0

anx
n =

9x2 + 53x+ 1

x3 − 82x2 − 82x+ 1
,

∞∑
n=0

bnx
n =

−12x2 − 26x+ 2

x3 − 82x2 − 82x+ 1
,

∞∑
n=0

cnx
n =

−10x2 + 8x+ 2

x3 − 82x2 − 82x+ 1
.

Then a3n + b3n = c3n + (−1)n. Hirschhorn [5, 6] has given two proofs. The existence
of this result, however, appears to hinge on special circumstances of the solution

(A2 + 7AB− 9B2)3 + (2A2− 4AB+ 12B2)3 = (2A2 + 10B2)3 + (A2− 9AB−B2)3,

and it is not obvious how to generalize it or systematically search for similar results.

Added 2013–5–5: Piezas [12] has found a way to generate other Ramanujan-like
families of solutions.
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