
348           Session 6: Emerging Technologies 
 

A Living Lab Architecture for  
Reproducible Shared Task Experimentation 

Timo Breuer, Philipp Schaer 

TH Köln – University of Applied Sciences, Germany 

{timo.breuer, philipp.schaer}@th-koeln.de 
 

Abstract 

No existing evaluation infrastructure for shared tasks currently supports both 
reproducible on- and offline experiments. In this work, we present an architec-
ture that ties together both types of experiments with a focus on reproducibility. 
The readers are provided with a technical description of the infrastructure and 
details of how to contribute their own experiments to upcoming evaluation tasks. 
 

Keywords: reproducibility; evaluation infrastructure; shared tasks 
 
 
 

1 Introduction 

Experimental evaluation has a long history in Information Retrieval (IR) and 
Recommender System (RecSys) research and is the main driver of inno-
vations and scientific progress in these fields. Shared task initiatives bring 
together community efforts and offer a platform for sharing and comparing 
different ideas and approaches. Especially in the field of IR, most experi-
ments are based on test collections (Sanderson, 2010) with topical relevance 
judgments. Since pertinent relevance decisions are not covered, we can con-
sider these in vitro approaches as offline experiments.  

Very often, evaluations are solely based on system-oriented measures, and 
online experiments with real users are neglected. Opposed to this, Interactive 
Information Retrieval (IIR) experiments have a user-oriented focus (Kelly, 
2007). Even though user-related aspects can be investigated in a very con-
trolled manner, these experiments are costly, and thus are usually conducted 
on a smaller scale. As a compromise, session logs from online field experi-

 



A Living Lab Architecture for Reproducible Shared Task Experimentation 349 

ments allow us to include user interactions (as part of the evaluations) on a 
larger scale at the price of control over user characteristics. 

A recent survey on shared task platforms shows, none of existing infra-
structures ties together both worlds of on- and offline evaluations and addi-
tionally guarantees reproducible experiments (Schaible et al., 2020). In this 
sense, we introduce a novel architecture that complements the portfolio of 
the existing evaluation infrastructures by making online as well as offline 
evaluations fully reproducible. In the following, we broadly outline this in-
frastructure for which an overview is provided in Figure 1. 
 

  

Fig. 1  Overview of the architecture 
 

Our framework mainly relies on Docker and its containerization technol-
ogy. An additional component is Git (or GitHub) as an attempt to make the 
whole infrastructure as transparent as possible. This is within the spirit of 
OpenScience and lets us focus on versioning, openness and reproducibility of 
runs and systems. 

Experimenters provide systems with retrieval and recommendation algo-
rithms and package them in Docker containers that are integrated into a  
multi container application (MCA). Multiple systems from possibly different 
experimenters are incorporated into the MCA. Search engine providers are 
referred to as sites. They provide access to data collections and, most im-
portantly, user interaction data. Each site will deploy one instance of the 
MCA on their backend servers. Via a REST-API the users’ queries can be 
conducted to the experimental systems. In return, the rankings and recom-



350           Session 6: Emerging Technologies 
 

mendations are sent back. Sites will then log user interactions and send this 
feedback to the MCA. Eventually, the MCA sends the user interaction data to 
the central server where it is stored and can be used for further analysis, 
training, and optimization of the experimental systems. 

The remainder is organized as follows. At first, we introduce each main 
component of our infrastructure and its functionalities, starting with the con-
tainer, and continuing with the MCA and the central server. Afterward, we 
revise existing work and previous attempts to provide newcomers with the 
current state-of-the-art in the field of living lab experimentation. Finally, we 
conclude and end with future work. 

 
 
 

2 The micro-services 

As mentioned before, experimenters contribute their IR and RecSys algo-
rithms as micro-services (or containers) that are integrated into the MCA. At 
the current state, the infrastructure provides two ways of contributing the 
corresponding systems or their outputs. In the following, we outline both to 
give the reader an impression of which one fits best to their evaluation prac-
tices. 
 

2.1 Pre-computed results 

Instead of submitting the entire IR or RecSys application, only its results are 
contributed for experimentation as illustrated in Figure 2. Like in previous 
living lab attempts (Jagerman et al., 2018), the pre-computed results are re-
stricted to a specific set of queries that is extracted from the top-k results of 
query logs. For these head queries, rankings and recommendations must be 
derived from a given document collection (that can be retrieved after regis-
tration). In order to make the transition from offline to online evaluations as 
smooth as possible, these results are contributed with TREC run file syntax as 
illustrated below. 
 

<qid> <Q0> <docid> <rank> <score> <identifier> 
 

Run file syntax used for precomputed results 
 



A Living Lab Architecture for Reproducible Shared Task Experimentation 351 

Each line contains the numeric query identifier (<qid>), a string identi-
fying the document (<docid>), an increasing rank number (<rank>), the 
corresponding score (<score>), and the tag chosen by the experimenters 
(<identifier>). The files have to be uploaded to the central server either 
with the help of HTTP requests (via the REST-API) or via the user interface. 
The infrastructure service will automatically prepare the uploaded files for 
integration into the MCA after they have been checked for validity and con-
sistency.  
 

 
 

Fig. 2  Sequence diagram for contributing precomputed results 



352           Session 6: Emerging Technologies 
 

More specifically, a new micro-service is automatically set up and inte-
grated into the MCA (cf. to the red boxes in Fig. 2). Furthermore, this sub-
mission type makes it possible to directly transfer over results from purely 
offline to living lab environments, facilitating the comparison of system-
oriented evaluation measures to those inferred from, e.  g., click feedback. 

 

2.2 Encapsulated systems 

Alternatively, experimenters can choose to submit the entire IR or RecSys 
application instead of systems’ outputs only. In this case, the applications are 
contributed as individual micro-services, as illustrated in Figure 3. 
 

 
 

Fig. 3  Sequence diagram for contributing encapsulated systems 
 



A Living Lab Architecture for Reproducible Shared Task Experimentation 353 

A project template in the form of a minimal Docker application is provid-
ed for the sake of compatibility between experimental systems and the MCA. 
Experimenters adapt these templates when integrating their applications. As 
a starting point, the project templates provide a minimal Python application 
based on the Flask web framework. But, of course, experimenters are not 
restricted to use Python at all and can modify the template as they see fit with 
the only requirement that resulting Docker containers respond to the defined 
REST endpoints correctly. These endpoints are then used by the MCA to 
index data or retrieve rankings and recommendations. An example of how to 
retrieve a ranking containing the first five results on the first page for the 
query vaccine is given below. 

 

GET container/ranking?query=vaccine&page=1&rpp=5 
 

REST endpoint for retrieving rankings from a single container 
 

In comparison to pre-computed results, these micro-services are more 
comprehensive in the sense that their responses are not limited to pre-
selected queries (or seed documents) only when rankings or recommenda-
tions are dynamically derived on-the-fly. The corresponding project template 
can be found in a public GitHub repository.1 

 
 
 

3 The multi container application 

Each IR or RecSys application is a micro-service integrated into the MCA. 
By using Docker as a packaging tool, it is assured that all systems are repro-
ducible and set up as intended, and likewise, the deployment effort is reduced 
to a minimum. Having a reproducible system evaluated across different do-
mains may help to gain insight in terms of generalizability. 

The MCA is the entrance for site providers to the infrastructure with a 
broker-like role. Sites communicate with the MCA (by a REST-API), mainly 
for retrieving ranking and recommendations and sending user feedback. 
When a user enters a query into the user interface, the site conducts this que-
ry to the MCA and receives a JSON-formatted response like it is exemplified 
below. 
                                                 
1  https://github.com/stella-project/stella-micro-template 



354           Session 6: Emerging Technologies 
 

{ 
    "body":{ 
        "1":{ "docid":"M27622217", "type":"BASE" }, 
        "2":{ "docid":"M27251231", "type":"EXP"  }, 
        "3":{ "docid":"M27692969", "type":"BASE" }, 
        "4":{ "docid":"M26350569", "type":"EXP"  }, 
        "5":{ "docid":"M26715777", "type":"EXP"  } 
    }, 
    "header":{ 
        "container":{ 
            "base":"rank_base", 
            "exp":"rank_elastic" 
        }, 
        "page":0, 
        "q":"vaccine", 
        "rid":3, 
        "rpp":5, 
        "sid":1 
    } 
} 

 

JSON-formatted ranking returned by the MCA 
 

Especially for small- to mid-scale experiments, traditional A/B tests are 
not feasible due to limited amounts of feedback data (Hofman et al., 2016). 
As a solution, we rely on relative user preferences by comparing systems 
side-by-side. Radlinski et al. (2008) introduced the Team Draft Interleaving 
(TDI), which interlaces two result lists. In contrast to A/B tests, less feedback 
data is required to infer which system performs better. 

In the given example, the baseline (BASE) and an experimental (EXP) 
system compose the ranking. If multiple experimental systems can deliver 
results for a query, the system having the lowest number of impressions con-
tributes its results. At the current state, sites should log if and when there was 
a click on a document and send this information to the MCA. From there on, 
the MCA takes over and sends the logged feedback to the central server at 
regular intervals. While the MCA also offers the possibility to conduct tradi-
tional A/B tests, two things must be considered. First, it requires tremendous-
ly more feedback data to gain reliable (and significant) insights between two 
test groups (ibid.). Second, interleaved rankings can be used implicitly to 
control the overall retrieval and recommendation quality. When interlacing 
the result lists with outputs of established IR or RecSys algorithm, it can be 
guaranteed that at least half of the rankings or recommendations deliver rea-
sonable results. In contrast, exposing site users with entirely experimental 
results (by subpar systems) may cause frustration during search and, at the 
worst, damage the site’s reputation.   



A Living Lab Architecture for Reproducible Shared Task Experimentation 355 

Technically, the MCA is built with docker-compose2 – a build automation 
tool for multi container Docker applications. With the help of a YAML file, it 
is possible to define multiple micro-services and combine them into one ap-
plication. Each micro-service is defined by a separate entry in the YAML file. 
These entries will be automatically added by the infrastructure service once 
the systems passed the validation. A central micro-service administrates all 
other micro-services and provides the RESTful interface. It distributes in-
coming queries to the experimental systems, receives the logged feedback 
data, and posts them to the central server of the infrastructure. The imple-
mentation of the MCA is available in a public GitHub repository.3 

 
 

 

4 The server 

The central server of the infrastructure serves four basic functionalities, in-
cluding 1) the administration of the infrastructure users, 2) the dashboard 
service, 3) automated updates of the MCA, and 4) hosting the user feedback 
data. The underlying technology stack is given in Figure 4. 
 

 
 

Fig. 4  Technology stack of the server 
                                                 
2  https://docs.docker.com/compose 

3  https://github.com/stella-project/stella-app 



356           Session 6: Emerging Technologies 
 

Like the MCA and the template of the micro-services, the server applica-
tion is implemented with Flask. It handles the authentication of users, vali-
dates submissions by experimenters and automates the build process of the 
MCA. Furthermore, it offers a RESTful API that is used by the MCA to post 
feedback data. Likewise, experimenters can use this API to retrieve feedback 
data which is stored in a PostgreSQL database. 

After registration, new systems can be submitted by adding pointers to the 
corresponding GitHub-URL or by uploading pre-computed system results. 
Once systems’ outputs have been exposed to site users, the dashboard service 
provides plots with the number of impressions and total clicks. Since we 
evaluate the systems’ outputs with TDI, we can derive measures like wins, 
losses, and ties (Schuth et al., 2015). Figure 5 provides two examples of ana-
lytic tools that are provided by the dashboard service. These visualizations 
give first impressions of how the system performs in comparison to the base-
line. Once enough data is available, experimenters can start the feedback 
loops that are illustrated in Figures 2 and 3. Clicks and other interactions can 
be used as points of reference for improving the ranking and recommender 
systems and the changes made can be compared to those of the previous 
evaluation phase. The implementation of the server is available in a public 
GitHub repository.4 
 

 
 

Fig. 5  Examples from the dashboard 
 

 
 

                                                 
4  https://github.com/stella-project/stella-server 



A Living Lab Architecture for Reproducible Shared Task Experimentation 357 

5 Related work 

Primarily, IR and RecSys methods should return results that are relevant to 
target users. While it is out of the scope of this work to elaborate on what 
constitutes relevance, researchers commonly agree that different types of 
relevance exist. Topical relevance judgments complement test collections 
(Sanderson, 2010) and simplify experimental evaluation but do not reflect the 
pertinent needs of specific searchers with different contexts. 

Kelly’s spectrum of IR experimentation contrasts experiments based  
on test collections with human-focused behavior studies at opposing ends 
(Kelly, 2007). IIR experiments can grasp very specific aspects of human be-
havior when interacting with search systems. However, these types of exper-
iments are usually conducted on a small scale, and the recruitment of test 
subjects is costly. In the middle of her spectrum, Kelly locates log-based 
studies. They serve as a compromise between these two extremes of expe-
riment designs, and one possible implementation of log-based studies are 
living labs (Kelly et al., 2009). 

Living labs became part of IR conferences and workshops in 2014. Balog 
et al. (2014) introduced an API that can be used to retrieve experimental rank-
ings for pre-selected queries, whereas Hopfgartner et al. (2014) introduced an 
infrastructure for real-time news recommendations. Both approaches share 
the idea of evaluating system performance with the help of user feedback that 
is provided in the form of clicks or other types of interaction with the pre-
sented search results. The living lab API for rankings was implemented in the 
LL4IR workshops (Schuth et al., 2015) as well as in the OpenSearch track 
(Jagerman et al., 2018), whereas the recommendation platform was used for 
the NEWSREEL campaign (Brodt & Hopfgartner, 2014). 

While these attempts demonstrate the feasibility of living labs in IR and 
RecSys research, there remain many open questions and issues, e.  g., regard-
ing the reusability of such test collections that are augmented by user feed-
back data (Tan et al., 2017). More recent examples of living lab implementa-
tions are APONE (Marrero & Hauff, 2018), Macaw (Zamani & Crawell, 
2020) and arXivDigest5. APONE is a living lab platform that is tailored to 
A/B tests as they are usually conducted in IIR studies. It is based on the 
PlanOut language developed by Facebook, which facilitates designing online 

                                                 
5  https://arxivdigest.org 



358           Session 6: Emerging Technologies 
 

field experiments by scripting them (Bakshy et al., 2014). Macaw has a focus 
on conversation information seeking, while its backend can either be fully 
algorithmic or set up as part of wizard of oz experiments. arXivDigest is a 
service that provides recommendations for research articles with the help of 
personalized email updates on recent publications based on interest profiles.  

Recently, Schaible et al. (2020) provided a state-of-the-art overview on 
shared task evaluation platforms and found that there is no platform that 
combines both reproducible and online field experiments (as implemented by 
living labs). The presented infrastructure’s underlying idea combines these 
two orthogonal research branches and can be framed with respect to larger 
reproducibility efforts in information retrieval (Breuer et al., 2019). Concep-
tually, the infrastructure takes account of the PRIMAD model (Ferro et al., 
2016) that defines essential components of a reproducible experiment (includ-
ing Platform, Research goal, Implementation, Method, Actor, Data). 

 
 
 

6 Conclusions and future work 

In this work, we introduced a novel architecture for living lab experiments in 
IR and RecSys research. Living labs offer a new perspective when evaluating 
ranking and recommender systems. Conventional test collections merely 
support topical relevance, but not pertinent information needs of specific 
users. As a solution, feedback data, inferred from living lab experiments, 
complements system-oriented evaluations with new insights. 

How does the proposed architecture differ from previous living labs? 
First, the way how systems are integrated into the infrastructure focuses on 
making the experiments reproducible. Furthermore, there is a frictionless 
transition from offline batch-style experiments to online environments. With 
the help of the introduced submission mechanism for pre-computed runs, 
system-oriented measures can be easily complemented by user feedback. 
Experimenters feed the datasets into their available ranking or recommender 
systems and simply upload the outputs for selected queries or target items to 
the central server of the infrastructure. 

Previous living labs made use of pre-computed results for top-k queries 
that were available from a web-based service (Jagerman et al., 2018). When 
contributing full-fledged systems in Docker containers, there is no limitation 
to the top-k queries and, likewise, latencies should be reduced to a minimum, 



A Living Lab Architecture for Reproducible Shared Task Experimentation 359 

since results do not need to be transferred over the web but will be retrieved 
from local servers at the sites. Furthermore, systems should be able to deliver 
rankings or recommendations on-the-fly when implementing them as micro-
services. In comparison to pre-computed results, the outputs of these docker-
ized systems are more comprehensive since they should be able to deliver 
results for more than just pre-selected queries or target items. To lower  
the entrance barrier even further, we plan to provide project templates with 
dockerized versions of popular open-source search engines like Elasticsearch 
or Solr. Likewise, it is worth investigating the feasibility of a shared index 
for multiple experimental systems, as exemplified by the CIFF format (Lin  
et al., 2020). 

At the current state, the provided datasets of the upcoming evaluation 
campaigns do not have topical relevance judgments. While it is possible to 
annotate specific rankings or recommendations after feedback data has been 
collected, it is a major challenge to infer the query logs’ underlying infor-
mation need and this may be a topic for future research. Queries are the  
users’ verbalization and understanding of their information needs. In the 
outlined setup, we do not have any information about the users, thus no con-
text knowledge. Different information needs may translate into the same 
query. Even if we are provided with the query, the resulting ranking, and the 
corresponding feedback data, it is not enough to reach any definitive conclu-
sions about the information need. Similar problems occur for RecSys evalua-
tions. In contrast to rankings, recommendations are not part of an active 
search process, but likewise we do not have any context knowledge and thus 
do not know what may have caused the users to click on a recommended 
item. 

As part of our future evaluations, it is worth evaluating the infrastructure 
by comparing results from encapsulated systems to pre-computed results. 
Since experiments with pre-computations resemble older living lab attempts, 
we can treat them as a baseline when evaluating the new implementation of 
the living lab paradigm with the help of Docker.  

In 2021, there is the Living Labs for Academic Search (LiLAS6) evalua-
tion campaign at CLEF 2021 (Schaer et al., 2020). Interested readers are in-
vited to contribute their IR and RecSys experiments and have them evaluated 
in the living lab environment that is introduced in this work. As part of the 
STELLA project, TH Köln, GESIS, and LIVIVO team up to offer lab partici-

                                                 
6  https://clef-lilas.github.io 



360           Session 6: Emerging Technologies 
 

pants the possibility to expose their systems’ results to users from the social 
and life sciences. A demo setup of the entire infrastructure can be found in a 
public GitHub repository.7 

 
 
 

References 

Bakshy, E., Eckles, D., & Bernstein, M. S. (2014). Designing and deploying online 
field experiments. In Proceedings of the 23rd International Conference on World 
Wide Web – WWW ’14, pp. 283–292. https://doi.org/10.1145/2566486.2567967 

Balog, K., Kelly, L., & Schuth, A. (2014). Head First: Living Labs for Ad-hoc Search 
Evaluation. Proceedings of the 23rd ACM International Conference on Infor-
mation and Knowledge Management – CIKM ’14, pp. 1815–1818. https://doi.org/ 
10.1145/2661829.2661962 

Breuer, T., Schaer, P., Tavakolpoursaleh, N., Schaible, J., Wolff, B., & Müller, B. 
(2019). STELLA: Towards a Framework for the Reproducibility of Online Search 
Experiments. In OSIRRC 2019, the Open-Source IR Replicability Challenge (pp. 
8–11). Aachen: RWTH Aachen. http://ceur-ws.org/Vol-2409/position01.pdf 

Brodt, T., & Hopfgartner, F. (2014). Shedding light on a living lab: The CLEF 
NEWSREEL open recommendation platform. In Proceedings of the 5th Infor-
mation Interaction in Context Symposium – IIiX ’14 (pp. 223–226). New York, 
NY: ACM. https://doi.org/ 10.1145/2637002.2637028 

Ferro, N., Fuhr, N., Järvelin, K., Kando, N., Lippold, M., & Zobel, J. (2016). Increas-
ing Reproducibility in IR: Findings from the Dagstuhl Seminar on “Reproduci-
bility of Data-Oriented Experiments in e-Science”. SIGIR Forum, 50(1), 68–82. 
https://doi.org/10.1145/2964797.2964808 

Hofmann, K., Li, L., & Radlinski, F. (2016). Online Evaluation for Information  
Retrieval. Foundations and Trends® in Information Retrieval, 10(1), 1–117. 
https://doi.org/10.1561/1500000051 

Hopfgartner, F., Kille, B., Lommatzsch, A., Plumbaum, T., Brodt, T., & Heintz, T. 
(2014). Benchmarking News Recommendations in a Living Lab. In E. Kanoulas, 
M. Lupu, P. Clough, M. Sanderson, M. Hall, A. Hanbury, & E. Toms (Eds.),  
Information Access Evaluation. Multilinguality, Multimodality, and Interaction 
(pp. 250–267). Cham: Springer International Publishing. https://doi.org/10.1007/ 
978-3-319-11382-1_21 

                                                 
7  https://github.com/stella-project/stella-search 



A Living Lab Architecture for Reproducible Shared Task Experimentation 361 

Jagerman, R., Balog, K., & Rijke, M. D. (2018). OpenSearch: Lessons Learned from 
an Online Evaluation Campaign. Journal of Data and Information Quality, 10(3), 
1–15. https://doi.org/10.1145/3239575 

Kelly, Diane (2007). Methods for Evaluating Interactive Information Retrieval  
Systems with Users. Foundations and Trends® in Information Retrieval, 3(1–2), 
1–224. https://doi.org/10.1561/1500000012 

Kelly, D., Dumais, S., & Pedersen, J. O. (2009). Evaluation Challenges and Direc-
tions for Information-Seeking Support Systems. Computer, 42(3), 60–66. https:// 
doi.org/10.1109/MC.2009.82 

Lin, J., Mackenzie, J., Kamphuis, C., Macdonald, C., Mallia, A., Siedlaczek, M., 
Trotman, A., & de Vries, A. (2020). Supporting Interoperability Between Open-
Source Search Engines with the Common Index File Format. In Proceedings of 
the 43rd International ACM SIGIR Conference on Research and Development in  
Information Retrieval (pp. 2149–2152). New York, NY: ACM. https://doi.org/ 
10.1145/3397271.3401404 

Marrero, M., & Hauff, C. (2018). A/B Testing with APONE. In The 41st Internation-
al ACM SIGIR Conference on Research & Development in Information Retrieval 
(pp. 1269–1272). New York, NY: ACM. https://doi.org/10.1145/3209978.3210164 

Radlinski, F., Kurup, M., & Joachims, T. (2008). How does clickthrough data reflect 
retrieval quality? In Proceeding of the 17th ACM Conference on Information and 
Knowledge Mining – CIKM ’08 (pp. 43–52). New York, NY: ACM. https:// 
doi.org/10.1145/1458082.1458092 

Sanderson, M. (2010). Test Collection Based Evaluation of Information Retrieval 
Systems. Foundations and Trends® in Information Retrieval, 4(4), 247–375. 
https://doi.org/10.1561/1500000009 

Schaer, P., Schaible, J., & Garcia Castro, L. J. (2020). Overview of LiLAS 2020 – 
Living Labs for Academic Search. In A. Arampatzis et al. (Eds.), Experimental 
IR Meets Multilinguality, Multimodality, and Interaction (pp. 364–371). Cham: 
Springer International Publishing. https://doi.org/10.1007/ 978-3-030-58219-7_24 

Schaible, J., Breuer, T., Tavakolpoursaleh, N., Müller, B., Wolff, B., & Schaer, P. 
(2020). Evaluation Infrastructures for Academic Shared Tasks: Requirements and 
Concept Design for Search and Recommendation Scenarios. Datenbank-Spek-

trum, 20(1), 29–36. https://doi.org/10.1007/s13222-020-00335-x 

Schuth, A., Balog, K., & Kelly, L. (2015). Overview of the Living Labs for In-
formation Retrieval Evaluation (LL4IR) CLEF Lab 2015. In J. Mothe et al.  
(Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction 
(pp. 484–496). Cham: Springer International Publishing. https://doi.org/10.1007/ 
978-3-319-24027-5_47 



362           Session 6: Emerging Technologies 
 

Tan, L., Baruah, G., & Lin, J. (2017). On the Reusability of “Living Labs” Test Col-
lections: A Case Study of Real-Time Summarization. In Proceedings of the 40th  
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (pp. 793–796). New York, NY: ACM. https://doi.org/10.1145/ 
3077136.3080644 

Zamani, H., & Craswell, N. (2020). Macaw: An Extensible Conversational In-
formation Seeking Platform. In Proceedings of the 43rd International ACM 
SIGIR Conference on Research and Development in Information Retrieval (pp. 
2193–2196). New York, NY: ACM. https://doi.org/10.1145/3397271.3401415 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

In: T. Schmidt, C. Wolff (Eds.): Information between Data and Knowledge. Informa-

tion Science and its Neighbors from Data Science to Digital Humanities. Proceedings 
of the 16th International Symposium of Information Science (ISI 2021), Regensburg, 
Germany, 8th—10th March 2021. Glückstadt: Verlag Werner Hülsbusch, pp. 348—362. 
DOI: doi.org/10.5283/epub.44953.


