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 Introduction 

 In the last few years, a large number of association 
studies have been carried out with the goal of studying 
the inherited genetic basis of common diseases. Typically, 
candidate or tag single nucleotide polymorphisms (SNPs) 
in candidate genes or randomly distributed SNPs across 
the genome in genome-wide association studies (GWAS) 
are genotyped for cases and controls with the wish that 
those SNPs that are in linkage disequilibrium (LD) with 
a causal variant will show some signal of association with 
the phenotype. The success of this strategy will depend 
on both biological and statistical reasons: the genetic ar-
chitecture of the disease, controlled by rare high-pene-
trant mutations, rare disease-causing variants, common 
susceptibility alleles  [1]  or a combination of these situa-
tions, will affect the power of the specific study design 
and the statistical approach chosen for analysis. Specially 
challenging is the study of genetic diseases controlled by 
common susceptibility alleles, since, as observed in many 
recent GWAS, common variants are usually low pene-
trant, with low detectable odds ratios (ORs), typically 
 ! 1.5, and with little predictive value. Any polymorphism 
usually explains only 1–8% of the overall disease risk in 
the population, but the additive effect of several such risk 
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 Abstract 

  Objective:  Genomic profiling, the use of genetic variants at 
multiple loci simultaneously for the prediction of disease 
risk, requires the selection of a set of genetic variants that 
best predicts disease status. The goal of this work was to pro-
vide a new selection algorithm for genomic profiling.  Meth-

ods:  We propose a new algorithm for genomic profiling 
based on optimizing the area under the receiver operating 
characteristic curve (AUC) of the random forest (RF). The pro-
posed strategy implements a backward elimination process 
based on the initial ranking of variables.  Results and Conclu-

sions:  We demonstrate the advantage of using the AUC in-
stead of the classification error as a measure of predictive 
accuracy of RF. In particular, we show that the use of the clas-
sification error is especially inappropriate when dealing with 
unbalanced data sets. The new procedure for variable selec-
tion and prediction, namely AUC-RF, is illustrated with data 
from a bladder cancer study and also with simulated data. 
The algorithm is publicly available as an R package, named 
AUCRF, at http://cran.r-project.org/. 
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factors could make up the 20–70% of the overall disease 
risk that is attributed to genetic factors in most common 
diseases  [2] . In this context, genomic profiling (the use
of genetic variants at multiple loci simultaneously for the
prediction of disease risk) is of primary interest.

  Several statistical and data-mining alternatives have 
been proposed to explore complex patterns of genetic
susceptibility involving multiple loci. Some examples are 
the multifactor dimensionality reduction method  [3] ,
the model-based multifactor dimensionality reduction 
method  [4, 5] , or approaches based on random forest (RF) 
 [6]  and support vector machine  [7] . In this paper we will 
centre on the RF methodology, a classification algorithm 
developed by Leo Breiman  [8]  consisting in the aggrega-
tion of multiple classification trees generated from boot-
strap samples. The use of RF is increasingly common in 
genetic epidemiology, and its behaviour in different sce-
narios including LD has been extensively studied in the 
last few years.

  Genomic profiling consists in the selection of the set 
of genetic variants that best predicts the disease status 
and RF can be used for performing this selection process. 
Diaz-Uriarte and de Andrés  [9] , in the context of gene 
expression studies, proposed a backward elimination 
method for obtaining the optimal subset of variables pro-
viding the lowest overall classification error. Their meth-
od is implemented in the R package varSelRF and as a 
web-tool called GeneSrF  [10] . Diaz-Uriarte’s  [10]  variable 
selection method has proven to be useful and reliable in 
several gene expression studies  [11, 12] . However, this 
method has two main drawbacks or limitations that are 
especially manifest when analyzing unbalanced data sets: 
(1) by default, it performs the most voted class RF predic-
tion strategy (described below in the Methods section), 
and (2) it relies on the use of the out-of-bag (OOB) clas-
sification error rate (ER) of RF. On the one hand, as we 
will illustrate with an example in the Results section, for 
unbalanced data sets the most voted class strategy tends 
to classify almost all individuals in the largest class. On 
the other hand, ER mixes up false-positive (FP) and false-
negative (FN) results which can give a false impression of 
accuracy in unbalanced samples (for instance, in a sam-
ple with 80% controls and 20% cases, a method that cor-
rectly classifies all controls but classifies cases randomly, 
ER will be only 10%).

  In this paper, we propose an adaptation of the varSelRF 
approach that overcomes these limitations. The proposed 
algorithm, namely AUC-RF, uses the receiver operating 
characteristic (ROC) curve and the area under this curve 
(AUC) as the predictive accuracy of RF and then selects 

the set of variables with the highest AUC value. The goal 
of this work is twofold: to establish AUC as a preferable 
accuracy measure for RFs and to provide a modified se-
lection algorithm focusing on AUC instead of ER. In the 
context of a genetic study, the AUC-RF algorithm can be 
used for genomic profiling, i.e. for identifying the set of 
variants with the highest combined predictive value of 
individual risk of disease.

  We focus on variable selection for prediction which is 
different from variable selection for gene finding. In gene 
finding, the selection is based on statistical significance 
(joint or marginal) while for prediction the selection 
should be based on the predictive accuracy of the select-
ed set of variables. The main goal of variable selection for 
gene finding, using for instance (penalized or not) logis-
tic regression, is to minimize the number of false posi-
tives (FPs); the result is a small set of candidates that 
achieve the established significance threshold. It has 
been proven that, in general, this set of significant can-
didates has poor predictive power and that a better strat-
egy for prediction is to be less restrictive and to build a 
genomic profile with the most promising candidates 
even if it is clear that this larger set will include many FPs 
 [13] . This approach was used successfully in a GWAS in 
schizophrenia  [14]  where the SNPs were selected based 
on an extremely liberal threshold (p  !  0.5). Our approach 
is similar to this in the sense that AUC-RF will select a 
large number of variables, including both associated and 
non-associated SNPs. The larger the number of associ-
ated SNPs included in the set, the higher the predictive 
accuracy of the model. The difference (advantage in 
some settings) is that in AUC-RF the selection is based 
on the importance of each variable in an RF which allows 
capturing nonlinear associations.

  This work was motivated by the Spanish Bladder Can-
cer EPICURO Study. The goal was to examine the con-
tribution of the inflammation pathway on bladder carci-
nogenesis, and a stratified analysis by tobacco smoking 
risk group was also of interest. While the whole sample 
was approximately balanced, the stratified samples were 
strongly unbalanced and, in this case, the use of RF for 
variable selection based on ER was not satisfactory (see 
Results section). This was the basis for the new strategy 
proposed in this paper for variable selection using RF. A 
simulation analysis has been conducted to evaluate the 
effectiveness of the AUC-RF method for selecting caus-
ative SNPs. Balanced and unbalanced scenarios have 
been simulated considering different numbers of causal 
SNPs, relative risks, minor allele frequencies (MAF) and 
disease prevalence.
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  Though RF can be used for both discrete and continu-
ous dependent variables, we will explain the approach for 
a binary dependent variable representing case/control 
status in the context of a case-control study.

  Methods 

 AUC-RF Algorithm for Variable Selection 
 The AUC-RF algorithm consists of the following 4 stages (a 

detailed technical description of stages 1–4 is given later):
   Stage 1: Iterative Elimination Process.  A first RF is built, using 

all predictor variables, which provides the ranking of the vari-
ables. In the subsequent steps, a fraction of the less important 
variables according to the initial ranking is eliminated (by default 
20%). RF is built with the remaining variables and the OOB-AUC 
of the reduced model is computed. This is repeated until   the num-
ber of remaining variables is less or equal than a specified value.

   Stage 2: Visual Representation of the Elimination Process.  The 
elimination process is visualized with a curve describing the 
OOB-AUC value of the different RFs (y-axis) as a function of the 
number of predictor variables (x-axis).

   Stage 3: Selection of the Optimal Set of Predictors.  The optimal 
set of predictive variables is considered the one giving rise to the 
RF with the highest OOB-AUC, denoted by OOB-AUC opt . The 
number of selected predictors is denoted by k opt .

   Stage 4: Predictive Accuracy and Probability of Selection.  The 
obtained OOB-AUC opt  value cannot be considered as the genuine 
predictive accuracy of the selected variables on a new data set. It is 
inflated by the fact that it is measured on the same training data 
set that has been used for the selection process. A correction of this 
overoptimism is required. Also of special concern is the robust-
ness of the rankings and, consequently, of the selected variables 
 [15] . AUC-RF deals with these two important issues by performing 
a repeated cross-validation analysis. The results of this analysis 
provide a corrected estimation of the predictive accuracy of the 
selected variables and an estimate of the probability of selection 
for each variable  [16] . A detailed description is given in the online 
supplementary file (www.karger.com/doi/10.1159/000330778).

  RF Importance Measures 
 RF, as implemented in the R-package  randomForest  available 

at http://cran.r-project.org/, provides two different importance 
measures, mean decrease accuracy (MDA) and mean decrease 
Gini (MDG). MDA quantifies the importance of a variable by 
measuring the change in OOB prediction accuracy when the val-
ues of the variable are randomly permuted compared to the orig-
inal observations. The Gini index or Gini impurity of a node in a 
tree provides a measure of the heterogeneity in cases and controls 
of the node. The Gini impurity is minimum (zero) when the node 
is completely homogeneous (the node contains only cases or only 
controls). For a dichotomous variable (case/control), the Gini in-
dex is given by I = 2 p (1 –  p ), where  p  is the proportion of cases in 
the node. MDG is the sum of all decreases in Gini impurity due 
to a given variable (when this variable is used to form a split in RF) 
normalized by the number of trees.

  Strobl et al.  [17, 18]  studied different mechanisms that can in-
duce bias in the RF importance measures and Calle et al.  [19]  ex-

plored stability of these measures. On the one hand, both the MDG 
and MDA importance measures may be biased in the case of vari-
ables with different scales or in the case of categorical variables 
with different numbers of categories  [15] , but in the context of SNP 
data analysis (almost) all variables are three categorical. On the 
other hand, in terms of robustness, the ranks based on the MDA 
provide very unstable results  [17] . More research is needed to elu-
cidate the respective advantages and inconveniences of MDG and 
MDA in general. However, in the context considered, our prelim-
inary study has clearly shown that MDA performs consistently 
and substantially worse than MDG, probably because of its high 
instability (data not shown). We will thus use MDG in this paper 
for both the bladder cancer analysis and the simulation study.

  RF Prediction and AUC Computation 
 The individual class prediction using RF is based on what are 

called the votes. The principle is that each tree ‘votes’ for a class 
and that the predicted class of an individual is finally the class 
with the most votes. However, the voting procedure differs de-
pending on whether one wants to compute the so-called OOB-ER 
or rather make predictions for new individuals from a test data set 
(DT). If the goal is to compute the OOB-ER, those trees for which 
an individual was OOB (i.e. was not used to build the tree) con-
tribute with a vote to the predictive class for this individual. For 
dichotomous class prediction (y = 0, y = 1), the votes are two vari-
ables (v 0 , v 1 ), where v 0  is the number of votes for class y = 0 and v 1  
is the number of votes for class y = 1. The total number v 0  + v 1  is 
the number of trees for which the individual was OOB: approxi-
mately a third of the total number of trees when ‘replace = TRUE’ 
is used. The OOB-ER is then defined as the proportion of indi-
viduals with predicted class different from the true class. If the 
goal is to predict new individuals from DT, the procedure is sim-
ilar but in this case all trees in the RF contribute with a vote (v 0  + 
v 1  = n tree ), since the individual was never used to build the trees. 
The default prediction procedure is to predict the most voted class 
and to provide the OOB-ER, which is used in Diaz-Uriarte’s pro-
cedure. Alternatively, AUC-RF explores the predictive accuracy 
of RF through its ROC curve and the corresponding AUC  [20] . 
The AUC-RF procedure computes the AUC based on OOB pre-
dictions, similarly to the OOB-ER, hence the notation ‘OOB-
AUC’. Each individual is characterized by the numbers v 0  or v 1  of 
trees predicting y = 0 and y = 1, respectively. The ROC curve plots 
sensitivity against 1 – specificity and can be obtained by varying 
the cut-off,  c , in the prediction procedure based on the votes. The 
 randomForest  package allows to specify the cut-off as a vector
(1 –  c ,  c ) and then predicts an individual as Ŷ = 1 if  �  0  �  c   !   �  1 (1 –  c ). 
The most voted class strategy corresponds to  c  = 0.5. The OOB-
AUC can be calculated directly from the mean rank of the cases, 
denoted by  r –  1, as

1
1

0

1 1
2 2
nAUC rn

  where  n  1  and  n  0  are the number of cases and controls, respective-
ly, and the ranks are based on the proportion of trees yielding
y = 1, that is v 1 /(v 0  + v 1 )  [21] . 

 Application 
 The Spanish Bladder Cancer EPICURO Study is a case-control 

study conducted in 18 hospitals in 5 areas in Spain (Asturias, Bar-
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celona metropolitan area, Vallès/Bages, Alicante, and Tenerife) 
aiming at evaluating the role of both genetic and environmental 
factors in bladder carcinogenesis. Eligible cases were aged 21–80 
years and had newly diagnosed, histologically confirmed carci-
noma of the urinary bladder from 1998 to 2001. Patients who had 
a previous diagnosis of cancer of the lower urinary tract were not 
eligible for the study, as were patients with bladder tumors sec-
ondary to other malignancies. Controls were selected from pa-
tients admitted to participating hospitals with diagnoses thought 
to be unrelated to the exposures of interest, such as tobacco use, 
and were individually matched to the cases for age at interview 
within 5-year categories, sex, ethnic origin and region. In this pa-
per, we centre our attention on the analysis of the joint effect of 
multiple genes in the inflammation pathway on bladder carcino-
genesis for which information on 282 SNPs genotyped in a total 
of 108 genes in this pathway is available. After excluding patients 
with  1 20% missing genotypes, the available sample for analysis 
consists of 1,150 cases and 1,149 controls. The remaining missing 
genotypes were imputed using function  rfimpute  provided in the 
 randomForest  library. Smoking is the most important risk factor 
for bladder cancer, and gene-smoking interactions have been re-
ported  [22, 23] . For this reason, we were interested in performing 
a stratified analysis by tobacco smoking risk group (current smok-
ers, former smokers and never smokers).

  Simulation Study 
 Linear Effects 
 We performed a simulation study with the goal of investigat-

ing the performance of the proposed AUC-RF method for select-
ing variables with predictive capacity. In this simulation, we did 
not consider the method by Diaz-Uriarte since it is not suitable 
for an unbalanced data set (see the results on the bladder cancer 
study in the Results section). We generated a set of k causal SNPs 
and 1,000 – k non-causal SNPs. We followed a strategy similar to 
Janssens et al.  [24]  for simulating the causal SNPs that assumed 
independence and an approximate multiplicative genetic model. 
All causal SNPs were assumed to be in Hardy-Weinberg equilib-
rium, to have the same effect size on the response and the same 
genotype frequencies. The difference from Janssens’s approach is 
that for each causal SNP we fixed the heterozygous relative risk 
(RR1) instead of the OR. We assumed that the minor homozy-
gous relative risk is RR2 = RR1 2 . We investigated the role of dis-
ease prevalence (p = 0.01, 0.1, 0.2, 0.3), effect size (RR1 = 1.1, 1.3, 
1.5), MAF (= 0.1, 0.2, 0.3) on balanced (n 0  = number of controls =
n 1  = number of cases = 2,000) and unbalanced (n 0  = 3,000 and
n 1  = 1,000) data sets. The number of causal SNPs was k = 10, 50 
and, for RR1 = 1.1, also k = 100. This yields a total of 192 scenar-
ios.

  For each scenario, we generated two data sets, a learning data 
set  and DT that was used for validation of the predictive accu-
racy of the selected set of SNPs. We performed the AUC-RF fea-
ture selection algorithm and kept the percentage (Pc) of causal 
SNPs that AUC-RF picks up and the predictive accuracy of the 
selected set of SNPs on DT, denoted by test AUC. This predictive 
accuracy depends on the ability of the algorithm to identify the 
causal SNPs but also on the predictive capacity of the causal SNPs. 
Thus, we also computed the predictive ability of the causal SNPs 
as follows; each individual is assigned a risk score given by

1 1 log log
k

j j
j

OR ORj j
1

G 1 1 G 2 2� �

  where OR1 is the OR of heterozygous versus major homozygous 
and OR2 is the OR of minor homozygous versus major homozy-
gous. We computed the AUC of predictions based on the above 
risk score, denoted by score AUC. The score AUC can be seen as 
the best empirical predictive accuracy provided by the causal 
SNPs, if they were known, and will be used as a reference for in-
terpreting the observed predictive accuracy of the AUC-RF meth-
od. We repeated this process 100 times for each scenario and av-
eraged the results over the 100 replications. 

 Nonlinear Effects 
 The advantage of AUC-RF over logistic regression may be 

more manifest under a nonlinear model. We have used the simu-
lated data sets at http://discovery.dartmouth.edu/epistatic_data/ 
for showing the improvement in RF over logistic regression for 
selecting the causal SNPs in the absence of main effects. These 
data sets have 1,000 variables, the first 2 being functional through 
an epistatic effect but without exhibiting a marginal main effect. 
The remainder (998 variables) were randomly generated. The 
case-control label is in the last column. Sample sizes include 200, 
400, 800 and 1,600, but we have only considered the data sets cor-
responding to a sample size of 1,600 (800 cases and 800 controls). 
Different scenarios are considered for different values of MAF 
(0.2, 0.4) and heritability (0.4, 0.3, 0.2, 0.1, 0.05, 0.025, 0.01). These 
data sets have been used for evaluating the performance of sev-
eral methods for exploring gene-gene interactions  [25, 26] .

  Results 

 Application: The Spanish Bladder Cancer EPICURO 
Study 
 We use the never-smoker group, an unbalanced data 

set consisting of 426 controls and 209 cases, for illustra-
tion of the proposed methodology, AUC-RF, and for 
comparison with varSelRF by Diaz-Uriarte.

  The backward elimination process performed by the 
varSelRF algorithm is depicted in  figure 1 . As anticipat-
ed, the use of the most voted classification strategy and 
the OOB-ER provides unsatisfactory results in the unbal-
anced non-smoker data set. The first RF, considering all 
variables, results in an OOB-ER of 0.32. Though, in some 
contexts, a predictive error of 32% could be acceptable, in 
this case, this value only reflects the proportion of cases 
in the sample, which are almost all incorrectly classified 
as controls. Indeed, all 426 controls are predicted as con-
trols (ER = 0) but only 12 out of the total 209 cases are 
classified as cases (ER = 0.94). A similar behaviour is ob-
served for the subsequent RF built in the backward elim-
ination process, providing always an OOB-ER around 0.3 
and, consequently, an OOB-ER curve almost flat, which 
is not useful for identifying the optimal subset of predic-
tors. In this case, the varSelRF feature selection algorithm 
selects only 3 variables providing OOB-ER = 0.31.
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  The backward elimination process performed by the 
AUC-RF algorithm using the MDG importance measure 
can be visualized in  figure 2 . The points in the curve cor-
respond to the OOB-AUC of consecutive RF obtained 
with the remaining variables, after the less important 
variables were removed. They were obtained from the 
right (all variables) to the left (1 variable). The optimal 
OOB-AUC is provided by the top 43 more important 
variables, giving an OOB-AUC opt  equal to 0.721. Correc-
tion for overfitting was performed with a 5-fold cross-
validated (CV) analysis and CV-AUC = 0.56 was ob-
tained.

  We also performed the AUC-RF analysis for smokers 
and former smokers (data not shown) and for the whole 
sample (without stratifying for smoking). The obtained 
CV-AUC in each group was 0.54, 0.55 and 0.56, respec-
tively. These results reflect the difficulty in obtaining a 
useful genomic profile for bladder cancer risk.

  An important concern of selection methods, especial-
ly when they are based on rankings, is the robustness of 
the rankings and, consequently, of the selected set of 
SNPs. It is possible that different sets of variables provide 
practically the same predictive accuracy. For this reason, 
it is very important to provide the list of selected variables 
together with a measure of robustness of this selection. 
The AUC-RF algorithm implements a repeated CV pro-
cess that provides the percentage of times that each vari-
able has been selected. In this data set, we repeated 20 
times a 5-fold CV process.  Table 1  provides the list of the 
most important SNPs that were selected by AUC-RF at 

least 70% of the times. We can see that the selection of this 
set of 18 SNPs is very robust, with the top 2 being selected 
almost every time. We compared these results with the 
results of a univariate analysis for every SNP using logis-
tic regression and three genetic models (dominant, reces-
sive and co-dominant; data not shown). Only 3 SNPs 
achieve significance after adjusting for multiple testing 
and all 3 belong to the optimal set selected by AUC-RF 
(they are indicated with an asterisk in  table 1 ), the first 2 
follow a dominant genetic model and the 3rd follows a 
recessive model. This shows that AUC-RF is able to iden-
tify those SNPs with a significant marginal effect. We 
want to emphasize that the goal of this analysis is to show 
the ability of the AUC-RF to select an SNP signature in 
the context of an unbalanced case-control study. To this 
end, we used a subset of SNPs not representative of the 
whole set genotyped by the bladder cancer study. Thus, 
the list of the selected SNPs cannot be taken as a defini-
tive result of the inflammatory genetic susceptibility of 
this neoplasm but as an example of the potential of the 
bioinformatic tool.

  Simulation Study 
 Linear Effects 
 We summarize the results of the simulation study in 

terms of the percentage of selected causal SNPs, denoted 
by Pc, in  tables 2–4 . The predictive accuracy of the
selected set of SNPs on DT, denoted test AUC, is reported 
in  tables 5–7 . The score AUC is also provided in paren-
theses as a reference value of the maximum predictive 
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accuracy of the causal SNPs. In order to visualize some of 
the obtained results,  figures 3  and  4  show the results for 
k = 50 and a balanced data set.

  The percentage, Pc, of causal SNPs that AUC-RF is 
able to pick up is mainly affected by the effect size, fol-
lowed by MAF and the disease prevalence ( fig. 3 ;  tables 
2–4 ). For RR1 = 1.5, the percentage Pc is almost 100% in 

all cases, i.e. all causal SNPs are identified. When RR1 
reduces to 1.3 the efficacy remains for MAF = 0.3 and 0.2 
but reduces considerably for MAF = 0.1. For RR1 = 1.1, 
the percentage of selected causal SNPs reduces drastical-
ly to 30–40% for MAF = 0.3, 10–20% for MAF = 0.2 and 
it is almost 0% for MAF = 0.1. A slight effect of the disease 
prevalence is observed in some situations: for RR1 = 1.3 

Table 1. M ost important SNPs, MDG and probability of selec-
tion (P)

Gene (SNP No.) MDG P

abca1 (04) 3.7387 1
masp1 (53)* 2.6158 0.99
ephx2 (04) 2.6030 0.96
il10 (17) 2.1866 0.89
lta (04) 2.0868 0.89
fcgr2a (01)* 2.3368 0.88
ptgs2 (05) 2.0644 0.85
ccr2 (02)* 1.8030 0.80
csf1r (05) 2.0657 0.79
mbl2 (12) 1.9348 0.78
gdf15 (02) 1.8225 0.77
alox5 (10) 1.6049 0.77
tlr2 (04) 1.7858 0.74
il4r (10) 1.6247 0.74
cd86 (02) 1.6072 0.71
alox5 (28) 1.7345 0.70

Table 2.  Percentage (Pc) of selected causal SNPs for RR1 = 1.5 in 
balanced and unbalanced data sets at different prevalences (0.01, 
0.1, 0.2, 0.3)

Pc: balanced P c: unbalanced 
0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3

k = 10
MAF = 0.1  99.1  99.6  99.9 100  99.4  99.8  99.8 100
MAF = 0.2 100 100 100 100 100 100 100 100
MAF = 0.3 100 100 100 100 100 100 100 100

k = 50
MAF = 0.1  96.8  94.3  94.3  94.9  98.1  96.1  96.3  97
MAF = 0.2 100  99.8  99.4  99.3 100  99.7  99.5  99.3
MAF = 0.3 100 100  99.9  99.8 100  99.9  99.7  99.7

k = Number of causal SNPs.

Table 3. P ercentage (Pc) of selected causal SNPs for RR1 = 1.3 in 
balanced and unbalanced data sets at different prevalences (0.01, 
0.1, 0.2, 0.3)

Pc: balanced P c: unbalanced 
0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3

k = 10
MAF = 0.1 62.6  72  83.8  93.4 74.9 81.4  90.6  96
MAF = 0.2 96.8  98.5  99.9  99.9 98 98.4  99.6  99.9
MAF = 0.3 99.9 100 100 100 99.5 99.9 100 100

k = 50
MAF = 0.1 57.3  59.2  64.9  72.1 71.7 72.4  76  83.3
MAF = 0.2 94.2  92.9  92.7  94.3 96.5 94.8  94.8  96.5
MAF = 0.3 99.3  98.6  98.3  98.3 98.9 97.5  97.7  98.2

k = Number of causal SNPs.

Table 4. P ercentage (Pc) of selected causal SNPs for RR1 = 1.1 in 
balanced and unbalanced data sets at different prevalences (0.01, 
0.1, 0.2, 0.3)

Pc: balanced P c: unbalanced 
0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3

k = 10
MAF = 0.1  1.9  2.4  4.1  5.8  9.6 11.6 13.8 16.3
MAF = 0.2 14.8 18.8 21.8 27.7 31.5 31.6 40.4 50
MAF = 0.3 36.8 43.8 50.9 61.7 44.7 51.6 58.3 67.2

k = 50
MAF = 0.1  2.2  2.4  3.6  5  9.8 11.1 13 17
MAF = 0.2 13.4 16.3 20.2 27.3 30 34.1 37.7 45.3
MAF = 0.3 34.5 39.7 45.1 53.4 44 46.8 53.7 60.6

k = 100
MAF = 0.1  2  2.5  3.2  4.4  9.3 10.1 13.1 15.7
MAF = 0.2 13.6 15.5 18.5 22.4 29.3 31.9 36.5 40.7
MAF = 0.3 33.7 36.2 40.5 47 44.5 46.4 50.4 54.8

k = Number of causal SNPs.
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and MAF = 0.1 and RR1 = 1.1 and MAF = 0.3, 0.2, and 
the larger the prevalence, the higher the percentage Pc.

  A similar behaviour is observed in terms of predictive 
accuracy of the set of selected SNPs ( fig. 4 ;  tables 5–7 ). 
For RR1 = 1.5, the test AUC is very high (around 0.8–0.9), 
which corresponds to very accurate predictions. Indeed, 
the obtained test AUC after feature selection is very sim-
ilar to the score AUC provided by all causal SNPs (given 
in parentheses). The effect of the genotype frequencies is 
observed, with MAF = 0.3 giving slightly better results 
than for MAF = 0.2 and better than for MAF = 0.1. In-
stead, the disease prevalence effect is not apparent in 
terms of test AUC. For RR1 = 1.3, the predictive accu-
racy is around 0.7–0.8 when MAF = 0.2 or 0.3 and around 

0.65 when MAF = 0.1. The loss in predictive capacity 
(com paring the obtained test AUC with the score AUC) 
is more apparent for low values of MAF (around 7% 
when MAF = 0.1). In this case, the effect of disease prev-
alence is not apparent. For RR1 = 1.1, the predictive ca-
pacity of the selected set of SNPs is in general very low or 
non-existent. Note, however, that in this setting the score 
AUC given by all causal SNPs is also very low. Only for 
k = 100 and MAF = 0.3 we obtain more acceptable pre-
dictive values, around 0.6. This is in accordance with 
Janssens et al.  [27]  who state that a genomic profile from 
a set of causal SNPs with such a weak marginal effect on 
the phenotype will require a larger number of SNPs to 
jointly get a useful predictive accuracy. Indeed, looking 

Table 5. T est AUC of the selected SNPs and score AUC (in parentheses) of the causal SNPs for RR1 = 1.5 at different prevalences (0.01, 
0.1, 0.2, 0.3)

Predictive accuracy: balanced dataset P redictive accuracy: unbalanced dataset

0.01 0.1 0.2 0.3 0. 01 0.1 0.2 0.3

k = 10
MAF = 0.1 0.63 (0.66) 0.64 (0.67) 0.66 (0.69) 0.69 (0.71) 0.61 (0.66) 0.63 (0.67) 0.65 (0.69) 0.68 (0.71)
MAF = 0.2 0.67 (0.7) 0.69 (0.72) 0.71 (0.74) 0.73 (0.76) 0.66 (0.7) 0.68 (0.72) 0.7 (0.74) 0.73 (0.76)
MAF = 0.3 0.7 (0.73) 0.71 (0.74) 0.73 (0.76) 0.76 (0.78) 0.69 (0.73) 0.7 (0.74) 0.72 (0.76) 0.75 (0.78)

k = 50
MAF = 0.1 0.78 (0.81) 0.77 (0.82) 0.78 (0.83) 0.79 (0.85) 0.77 (0.81) 0.76 (0.81) 0.77 (0.83) 0.79 (0.85)
MAF = 0.2 0.85 (0.88) 0.84 (0.87) 0.84 (0.88) 0.85 (0.89) 0.84 (0.87) 0.83 (0.87) 0.83 (0.88) 0.84 (0.89)
MAF = 0.3 0.88 (0.9) 0.86 (0.89) 0.86 (0.9) 0.87 (0.91) 0.87 (0.9) 0.85 (0.89) 0.85 (0.89) 0.86 (0.91)

k = Number of causal SNPs.

Table 6. T est AUC of the selected SNPs and score AUC (in parentheses) of the causal SNPs for RR1 = 1.3 at different prevalences (0.01, 
0.1, 0.2, 0.3)

Predictive accuracy: balanced data set P redictive accuracy: unbalanced data set

0.01 0.1 0.2 0.3 0. 01 0.1 0.2 0.3

k = 10
MAF = 0.1 0.54 (0.6) 0.56 (0.61) 0.58 (0.62) 0.6 (0.64) 0.54 (0.6) 0.55 (0.61) 0.57 (0.62) 0.59 (0.64)
MAF = 0.2 0.59 (0.63) 0.6 (0.64) 0.62 (0.66) 0.64 (0.68) 0.58 (0.63) 0.59 (0.64) 0.61 (0.66) 0.63 (0.68)
MAF = 0.3 0.61 (0.65) 0.62 (0.66) 0.64 (0.68) 0.66 (0.7) 0.6 (0.65) 0.61 (0.66) 0.63 (0.68) 0.65 (0.7)

k = 50
MAF = 0.1 0.63 (0.71) 0.64 (0.72) 0.66 (0.74) 0.69 (0.76) 0.64 (0.71) 0.64 (0.72) 0.66 (0.73) 0.69 (0.76)
MAF = 0.2 0.73 (0.77) 0.73 (0.78) 0.75 (0.79) 0.76 (0.81) 0.72 (0.77) 0.72 (0.77) 0.74 (0.79) 0.76 (0.81)
MAF = 0.3 0.76 (0.8) 0.77 (0.8) 0.78 (0.82) 0.79 (0.84) 0.76 (0.8) 0.75 (0.8) 0.76 (0.81) 0.78 (0.83)

k = Number of causal SNPs.
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at  tables 5–7 , we can observe that the larger the number 
k of causal SNPs the larger the AUC (both score AUC and 
test AUC) in all settings. Instead, this effect of the num-
ber of causal SNPs is not observed in the efficacy of the 
AUC-RF method for detecting causal SNPs ( tables 2–4 ). 

For instance, in  table 5  when MAF = 0.1, the percentages 
Pc of identified causal SNPs are larger for k = 10 than for 
k = 50.

  We have compared the new algorithm with genomic 
profiling using logistic regression (selecting those vari-

Table 7. T est AUC of the selected SNPs and score AUC (in parentheses) of the causal SNPs for RR1 = 1.1 at different prevalences (0.01, 
0.1, 0.2, 0.3)

Predictive accuracy: balanced dataset P redictive accuracy: unbalanced dataset

0.01 0.1 0.2 0.3 0. 01 0.1 0.2 0.3

k = 10
MAF = 0.1 0.5 (0.53) 0.5 (0.53) 0.5 (0.54) 0.5 (0.54) 0.5 (0.52) 0.5 (0.53) 0.5 (0.53) 0.5 (0.54)
MAF = 0.2 0.5 (0.54) 0.51 (0.55) 0.51 (0.55) 0.51 (0.56) 0.5 (0.54) 0.51 (0.54) 0.51 (0.55) 0.52 (0.56)
MAF = 0.3 0.51 (0.55) 0.51 (0.55) 0.52 (0.56) 0.52 (0.57) 0.51 (0.55) 0.51 (0.55) 0.51 (0.56) 0.52 (0.57)

k = 50
MAF = 0.1 0.5 (0.56) 0.5 (0.57) 0.5 (0.58) 0.51 (0.59) 0.51 (0.55) 0.51 (0.56) 0.51 (0.57) 0.52 (0.58)
MAF = 0.2 0.52 (0.58) 0.52 (0.6) 0.53 (0.61) 0.54 (0.63) 0.52 (0.58) 0.53 (0.59) 0.54 (0.6) 0.55 (0.62)
MAF = 0.3 0.53 (0.6) 0.54 (0.61) 0.55 (0.63) 0.57 (0.65) 0.54 (0.59) 0.54 (0.61) 0.56 (0.62) 0.57 (0.64)

k = 100
MAF = 0.1 0.51 (0.58) 0.51 (0.59) 0.51 (0.6) 0.51 (0.62) 0.51 (0.57) 0.52 (0.58) 0.52 (0.6) 0.53 (0.61)
MAF = 0.2 0.53 (0.62) 0.53 (0.63) 0.54 (0.65) 0.56 (0.67) 0.54 (0.61) 0.55 (0.62) 0.56 (0.64) 0.57 (0.66)
MAF = 0.3 0.56 (0.64) 0.57 (0.65) 0.58 (0.67) 0.6 (0.69) 0.57 (0.63) 0.57 (0.64) 0.59 (0.66) 0.61 (0.68)

k = Number of causal SNPs.
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  Fig. 3.  Percentage of selected causal SNPs (Pc) for k = 50 and balanced data sets.  + : MAF = 0.3;  I : MAF = 0.2;  d : MAF = 0.1. 



 Genomic Profiling with Random Forest Hum Hered 2011;72:121–132 129

ables with p  !  0.05 without adjusting for multiple test-
ing) for the simulated data sets. The following plots,  fig-
ures 5  and  6 , provide the relative improvement in pre-
dictive accuracy of AUC-RF versus logistic regression 
with respect to the predictive accuracy of all causal 
SNPs in a DT: [AUC-RF (DT) – AUC_logistic (DT)]/
max AUC (DT).  Figure 5  corresponds to balanced data 
sets and  figure 6  to unbalanced data sets. The x-axis pro-
vides MAF (0.1, 0.2 and 0.3). Different values of preva-
lence provided very similar results; the plots provide the 
mean relative improvement for the different prevalence 
values.

  We can see in both plots that when the marginal effect 
of the causal SNPs is strong (RR = 1.5 and RR = 1.3) the 
standard logistic regression approach is more effective 
(approximately a 5% relative improvement of logistic re-
gression to AUC-RF in prediction accuracy). However, 
when the effect is very small (RR = 1.1) the logistic regres-
sion has a poorer performance in identifying causal SNPs 
than AUC-RF. In this case, the improvement in predic-
tive accuracy of AUC-RF versus logistic regression is 
more manifest for unbalanced data sets and increases 
with the number of causal SNPs and MAF. The largest 
advantage (around 10% of relative improvement) is found 
in an unbalanced data set scenario, with k = 100 causal 
SNPs and MAF = 0.3.

  Though the results show that there is not a ‘universal 
best method’ and that the advantage of one method over 
the other will depend on the specific situation, the fact 
that AUC-RF performs much better in the scenario with 
many SNPs with small effect is very promising. The 
known genetic variants for most common diseases up to 
now explain a small proportion of the disease risk. It has 
been hypothesized that part of the remaining disease risk 
is given by the joint effect of a large number of variants, 
with each one having a very low effect.

  Nonlinear Effects
  We applied AUC-RF and logistic regression for vari-

able selection to the simulated data sets that contain two 
causal SNPs without main effects. AUC-RF selects the 
optimal set of variables as exposed in the Methods sec-
tion. For logistic regression, the usual variable selection 
procedure is to select those SNPs with a p value smaller 
than an established significance level  � . The results for 
 �  = 0.05 (not shown) indicated a very poor performance 
of logistic regression. Since AUC-RF tend to select a 
larger number of SNPs than logistic regression, one may 
argue that the observed advantage of AUC-RF over lo-
gistic regression is only due to the different numbers of 
selected SNPs. In order to make the results from both 
methods comparable, we provide in  tables 8  and  9  the 
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  Fig. 4.  AUC of the selected SNPs for k = 50 and balanced data sets.  + : MAF = 0.3;  I : MAF = 0.2;  d : MAF = 0.1. 
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  Fig. 6.  Relative improvement in predictive accuracy of AUC-RF versus logistic regression with respect to the predictive accuracy of all 
causal SNPs in an unbalanced DT.       
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our AUC-based approach has the major advantage that it 
does not depend on a specific arbitrary cut-off value but 
implicitly incorporates all possible cut-off values into a 
single measure of accuracy. The use of the AUC is espe-
cially appealing after the recent increasing interest in this 
measure in the molecular and genetic epidemiology field 
 [24, 27–33] . Wray et al.  [21]  related the maximum value of 
the AUC of a genetic risk predictor model with the heri-
tability and prevalence of the disease. They proved that 
the maximum AUC is particularly constrained for more 
common or low heritability diseases. Moreover, the use 
of the AUC instead of ER as an accuracy measure does 
not induce any additional computational effort com-
pared to standard RFs. Thus, our procedure could prob-
ably be easily integrated into a software implementing 
RFs for genome-wide data, e.g. the RandomJungle tool 
 [34] .

  In real applications, it is very usual to have correlated 
SNPs due to LD. AUC-RF handles SNPs in LD exactly as 
RFs, hence it suffers from the same limitations of RF in 
this context, that is diminished variable importance for 
the true causal SNPs. In this context, the AUC-RF meth-
od can be combined with existing strategies for RF when 
SNPs are in LD  [35] .

  In the proposed approach, the same initial ranking is 
used for all iterations in the backward elimination pro-
cess. Jiang et al.  [36]  proposed a backward elimination 
strategy for variable selection using RF similar to Diaz 
Uriarte’s method, the main difference being the recom-
putation of the importance of the remaining variables at 
each step of the elimination process. In our opinion, a 
potential drawback of this strategy is that it might accen-

results of AUC-RF and logistic regression variable selec-
tion with the same number of selected SNPs (the num-
ber of selected SNPs, k opt , is determined by AUC-RF and 
then we select the top k opt  SNPs with the smallest p
values according to logistic regression). The perfor-
mance of both methods is described through p2, the 
percentage of times that the 2 causal SNPs are selected, 
and p1, the percentage of times that only 1 causal SNP 
is selected, using AUC-RF and logistic regression. The 
results in  tables 8  and  9  are conclusive: AUC-RF outper-
forms logistic regression in all scenarios. The power of 
logistic regression for selecting SNPs in the absence of 
main effects is null (p1 only reflects probability of ran-
dom selection) while AUC-RF is able to detect them 
with high probability when the heritability parameter is 
not very small.

  Discussion 

 In this work, we propose a new feature selection strat-
egy using RF which is based on optimization of the AUC 
in a backward elimination process which provides the set 
of variables that best predicts the outcome. We have il-
lustrated with data from a real bladder cancer study that 
the default RF most voted class prediction strategy to-
gether with the use of ER provides unsatisfactory results 
in unbalanced data sets. However, even for balanced data 
sets, the use of the AUC is preferable to ER because ER is 
dependent on the case/control rates in the sample which 
not necessarily represent the case/control rates in the 
population. In comparison to single-cut-off approaches, 

Table 8. P ercentage of times that 2 causal SNPs are selected (p2) 
and percentage of times that only 1 causal SNP is selected (p1) us-
ing AUC-RF and logistic regression for variable selection, with the 
same number of selected SNPs in both methods and MAF = 0.2

Heritability AUC-RF L ogistic regression

p2 p1 p2 p1

0.4 92 6 0 5
0.3 85 7 0 9
0.2 60 19 2 24
0.1 28 20 2 25
0.05 14 21 2 27
0.025 12 23 2 26
0.01 5 25 2 25

Table 9.  Percentage of times that 2 causal SNPs are selected (p2) 
and percentage of times that only 1 causal SNP is selected (p1) us-
ing AUC-RF and logistic regression for variable selection, with the 
same number of selected SNPs in both methods and MAF = 0.4

Heritability AUC-RF L ogistic regression

p2 p1 p2 p1

0.4 81 9 0 7
0.3 61 15 0 10
0.2 42 20 0 20
0.1 25 17 0 25
0.05 23 17 4 22
0.025 17 18 3 25
0.01 6 23 3 22



 Calle   /Urrea   /Boulesteix   /Malats   

 

Hum Hered 2011;72:121–132132

tuate the over-fitting problem already existing in any 
elimination process. In future research, an improvement 
might also be obtained by using a permutation variable 
importance based on AUC decrease rather than accuracy 
decrease when ranking the variables at the beginning of 
the procedure.
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