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Abstract: The optimality in a generic two-degree of freedom control system can be decomposed into 
three major steps, because the control error has three major parts: design-, realizability- and modeling-
loss. The second term can be made zero for inverse stable processes only. This decomposition opens new 
ways for practical optimization of two-degree-of-freedom (TDOF) systems and helps the construction of 
new algorithms for robust identification and control. It is more reasonable to teach the optimization of 
control systems using these components. 
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1. INTRODUCTION 
 
Control system optimization is usually based on the error 
signal or the error transfer function of the closed-loop. The 
last one is called sensitivity function (SF), so any such 
optimization procedure is strongly connected to the 
sensitivity or the robustness of control systems. Optimization 
in classical control theory is a one step procedure. 
Historically first it was the optimization of an integral 

criterion, recently the 
 
H  and/or 

  
H

2
 norm formulated for 

the control error signal. These procedures were definitely one 
step methods, when the difficulty arised only from the 
strongly nonlinear constrained mathematical programming 
problem, so the education is also concentrated to these 
problems. These methods do not analyze the internal 
properties of the control error and the different contributing 
parts of the sensitivity. 
 
This is why we suggest a decomposition of the original 
problem, where the separate tasks can be easily understood 
and are well scaled in the selection parameters and factors. 
The introduced new decomposition helps to analyze the 
reachable minimum of the different components, so it is 
possible to see the theoretical limits of the optimization of 
control systems and much more understandable for students.  
 

2. CONTROL ERROR DECOMPOSITION  
 

Assume that the pulse transfer function of the discrete-time 
plant to be controlled is factorable as 
 

  

S = S
+
S = S

+
S z

d
=

B

A
=

B
+
B

A
z

d  (1) 

 

where 
  
S
+
= B

+
A  means the inverse stable (IS) and 

  
S =B  the inverse unstable (IU) factors, respectively.  z

d  

corresponds to the discrete time-delay, where  d  is the 
integer multiple of the sampling time. (In a practical case the 

factor 
 
S  can incorporate the underdamped zeros and 

neglected poles providing realizability, too). 
 
In a practical case only the model  M  of the process is 
known. Assume that the discrete-time model M  is similarly 
factorable as the process in (1) 
 

   

M = M
+

M = M
+

M z
d

m =
B̂

ˆA
z

d
m =

B̂
+
B̂

ˆA
z

d
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where 
  
M

+
= B̂

+

ˆA  means the IS, 
  
M =B̂  the IU factors, 

respectively.   z
d

m corresponds to the model discrete time 

delay, usually   z
d

m = z
d  is assumed (Wang (1988)). 

 
Introduce the additive 
 

 = S M  (3) 
 

and relative model errors 
 

  

=
M

=
S M

M
 (4) 

 
The complementary sensitivity function (CSF) of a one-
degree of freedom (ODOF) control system denoted by  T  is 
 

   

T =
RS

1+ RS
= T̂

1+

1+ T̂
     ;     

  

T̂ =
RM

1+ RM
 (5) 

 

where  R  is the pulse transfer function of the regulator in the 

feedback control loop and  T̂  is the CSF of the model based 

ODOF system. Let 
  
P

w
 denote the prescribed CSF, which can 

be considered as the design goal. The SF denoted by  E , 
which can be expressed as   E = 1 T , can be decomposed 
into additive components according to different principles 
(Keviczky et al. (2015), (2018a), (2018b)): 
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w
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E
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E
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E
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Here 
  
E

des
= 1 P

w( )  is the design, 
  
E

real
= P

w
T̂( ) is the 

realizability, 
  
E

id
= T T̂( ) = T̂ T is the modeling (or 

identification) degradation, respectively. Furthermore 

  
E

cont
= 1 T̂( )  and 

  
E

perf
= P

w
T( )  are the overall control 

and performance degradations, respectively. The SF depends 

on the model-based SF (  Ê = 1 T̂ ) as 
 

   

E =
1

1+ RS
= Ê

1

1+ T̂
= Ê + E

id
;
  

Ê =
1

1+ RM
 (7) 

 

The term 
  
E

id
 can be further simplified 

 

   

E
id
= E Ê = T̂ T =

T̂Ê

1+ T̂
= T̂E

0
T̂Ê  (8) 

 

It is easy to see that 
 
T̂Ê  has its maximum at the cross over 

frequency 
 c

, which means that the model minimizing 
  
E

id
 

is the most accurate around this medium frequency range. 
(Note that the accuracy of the estimated model at a given 
frequency is inverse proportional to the weight in the 
modeling error at that frequency. The realizability and 

identification degradations can be called as systematic (
  
E

syst
) 

and random (
  
E

rand
) components, too. 

 
For a two-degree of freedom (TDOF) control system 
(Horowitz, 1963) it is reasonable to request the design goals 

by two stable and usually strictly proper transfer functions 
  
P

r
 

and 
  
P

w
, that are partly capable to place desired poles in the 

tracking and the regulatory transfer functions, furthermore 
they are usually referred as reference signal and output 
disturbance predictors. They can even be called as reference 

models, so reasonably 
  
P

r
= 0( ) = 1 and 

  
P

w
= 0( ) = 1 are 

selected. 
 
Assuming that the overall CSF of a TDOF control system is 

  
T

r
= FT , where  F  is  the pulse transfer function of the 

reference signal filter, then similar decomposition can be 

introduced for the tracking error function 
  
E

r
= 1 T

r
 as for 

 E  in (6): 
 

  
E

r
= 1 P

r( ) + P
r

T̂
r( ) T

r
T̂

r( ) = E
des

r
+ E

real

r
+ E

id
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The overall transfer function of the TDOF system is 
 

   

T
r
= T̂

r

1+

1+ T̂
 (10) 

 

The term 
  
E

id

r  can be further simplified 

 

   

E
id

r
= T̂

r
T

r
=

T̂
r
Ê
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E

0
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In an ideal control system it is required to follow the 

transients required by 
  
P

r
 and 

  
P

w
 (more exactly 

  
1 P

w( ) ), 

i.e., the ideal overall transfer characteristics of the TDOF 
control system would be 
 

  
y

o
= P

r
y

r
1 P

w( )w = y
r

o
+ y

w

o  (12) 

 

while a practical, realizable control can provide only 
 

  

y = T
r
y

r
Ew = T

r
y

r
1 T( )w

ŷ = T̂
r
y

r
Êw = T̂

r
y

r
1 T̂( )w

 (13) 

 

for the true (
 
y ) and model-based (

 
ŷ ) closed-loop control 

output signals. 
 

Express the deviation between the ideal (
  
y

o ) and the 

realizable best (
 
y ) closed-loop output signals as 

 

  

y = y
o

y = P
r

T
r( ) y

r
P

w
T( )w =

= E
perf

r
y

r
E

perf

w
w

 (14) 

 

where 
  
E

perf

r  is the performance degradation for tracking and 

  
E

perf

w
= E

perf
 is the performance degradation for the 

disturbance rejection (or control) behaviors, respectively. 
Similar equation can be obtained for the deviation between 

the ideal (
  
y

o ) and the model based (
 
ŷ ) closed-loop outputs  

 

  

ŷ = y
o
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r
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r( ) y

r
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w
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where 
  
E

perf

r  is the realizability degradation for tracking and 

  
E

perf

w
= E

perf
 is the realizability degradation for the 

disturbance rejection (control) behaviors, respectively. So 
 

  
y = ŷ E

id

r
y

r
E

id

w
w( )  (16) 

 

It is important to note that the term 
  
E

real
 (and 

  
E

real

r ) can be 

made zero for IS processes only, however, for IU plants the 

reachable minimal value of 
  
E

real
 (and 

  
E

real

r ) always depends 

on the invariant factors and never becomes zero. In the sequel 
YP based control system will be discussed. 



 

 

2.1 YOULA-parameterization 
 

If the applied regulator design is based on the YOULA- 
parameterization (YP) (Maciejowski, 1989), (Keviczky et al. 
(2015)), (Keviczky et al. (2018a)), then the realizable best 
and the model based regulators are 
 

  

R =
Q

1 QS
     ;     

  

R̂ =
Q

1 QM
 (17) 

 

where 
 
Q  is the YOULA parameter. Thus the CSF's of the 

true and model-based ODOF control systems are 
 

   

T =
R̂S

1+ R̂S
=

QM 1+( )
1+ QM

     ;     
  

T̂ =
RM

1+ RM
= QM  (18) 

 

Only in case of YP one can also compute the realizable best 
CSF 
 

   

T
*
=

RS

1+ RS
= QS = QM 1+( ) = T̂ 1+( )  (19) 

 
The SF of the model based and true closed-loops are now 
 

  

Ê =
1

1+ R̂M
= 1 QM  (20) 

 

and 
 

   

E =
1

1+ R̂S
=

1 QM

1+ QM
=

Ê

1+ T̂
 (21) 

 

The realizable best SF, corresponding to 
 
T

*
 is 

 

   

E
*
=

1

1+ RS
= 1 QS = 1 QM 1+( ) = Ê T̂  (22) 

 
The decomposition of the SF is 
 

   

E = 1 P
w( ) + P

w
T̂( ) T T̂( ) = E

des
+ E

real
+

+E
id
= 1 P

w( ) + P
w

QM( )
QM 1 QM( )

1+ QM

 (23) 

 
where the identification degradation is 
 

   

E
id
=

QM 1 QM( )
1+ QM

0

QM 1 QM( )  (24) 

 
It is interesting to note that for the realizable best case the 

decomposition of 
  
E

*
= 1 T

*
 results in 

 

  

E
*
= 1 QS = E

des
+ E

real
+ E

id

*
=

= E
des

+ E
perf

*
= 1 P

w( ) + P
w

QS( )
 (25) 

 
where 

   
E

id

*
= QM =

1

E
E

id
 (26) 

 

This last expression is different from the form (8), because at 
the optimal point, when  M = S , the Y-parameterized closed-

loop virtually opens, therefore the weighting by  Ê  is missing 
here. 
 
The decomposition of the tracking error function for the YP is 
 

  

E
r
= 1 T

r
= 1 P

r( ) + P
r

Q
r
M( ) T

r
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r( ) =
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r
+ E
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r
+ E

id
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 (27) 

 
where 
 

   

E
id

r
=

Q
r
M 1 QM( )
1+ QM

0

Q
r
M 1 QM( )  (28) 

 

3. A GTDOF CONTROLLER FOR STABLE 
LINEAR PLANTS 

 
In many practical cases the plant to be controlled is stable, 
and a TDOF control system is required because of the high 
performance double tracking and regulatory requirements 
(Horowitz, 1963). An ideal solution for this task is the 
generic two-degree of freedom (GTDOF) scheme introduced 
in Keviczky (1995). This framework and topology is based 
on the YP (Maciejowski, 1989), (Keviczky et al. (2015)), 
(Keviczky et al. (2018a)) providing stabilizing regulators for 
open-loop stable plants and capable to handle the plant time-
delay, too. 
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Fig. 1. The generic TDOF (GTDOF) control system 
 

A GTDOF control system is shown in Fig. 1, where  w  is the 
output disturbance signal. The realizable best regulator of the 
GTDOF scheme can be given by an explicit form 
 

  

R
*
=

Q
*

1 Q
*
S
=

P
w

K
w

1 P
w

K
w

S
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P
w

G
w

S
+

1

1 P
w

G
w

S z d
 (29) 

 

where 
 

  
Q

*
= Q

w

*
= P

w
K

w
= P

w
G

w
S
+

1  (30) 

 
is the associated optimal Y-parameter furthermore 
 

  
Q

r

*
= P

r
K

r
= P

r
G

r
S
+

1 ; 
  
K

w
= G

w
S
+

1  ;
  
K

r
= G

r
S
+

1  (31) 

 
The regulator (29) can be considered the generalization of the 
TRUXAL-GUILLEMIN method for stable processes. It is 
interesting to see how the transfer characteristics of the 
closed-loop look like: 
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r
K

r
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r
+ 1 P

w
K

w
S( )w = T

r
y

r
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*
=

= P
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G
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where 
  
y

t
 is the tracking (servo) and 

  
y

d
 is the regulating 

(control or disturbance rejection) independent behavior of the 
closed-loop response, respectively. 
 

So the delay  z
d  and 

 
S  can not be eliminated, 

consequently the ideal design goals 
  
P

r
 and 

  
P

w
 are biased by 

  
G

r
S  and

  
G

w
S . We can not reach the ideal tracking 

  
y

r

o
= P

r
y

r
 and regulatory 

  
y

w

o
= 1 P

w( )w  behaviors (see 

(12)), because of the un-compensable time-delay and the so-

called invariant factors (mainly zeros) in the IU factor
 
S . 

The realizable best transients, corresponding to (13) and (32), 

is given by 
  
P

r
G

r
S z

d  and 
  

1 P
w

G
w

S z
d( )  respectively, 

where 
  
G

r
 and 

  
G

w
 can optimally attenuate the influence of 

 
S . 

 

After some straightforward block manipulations the GTDOF 
control system can be transformed to a simpler form shown 
in Fig. 2. This form is special because the controller consists 
of two parts. The first part depends only on the design 
parameters and the invariant process factor (at a selected 
optimality criterion), while the second one depends only on 
the realizable inverse model of the plant. 
 

The model based version of the YP regulator 
 
R̂ = R M( )  in 

the GTDOF scheme means that  S  is substituted by  M  in 
equations (29)-(31). 
 

 

Fig. 2. Simplified form of the GTDOF control system 
 

The decomposition of the SF in the true GTDOF control 
system by (23) is 
 

   

E = E
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+ E
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+ E
id
= 1 P

w( ) + P
w

1 G
w
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P

w
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w
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G
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4. OPTIMIZATION SOLUTIONS AND SCHEMES 

 

The optimization of the GTDOF control system is usually 

based on a proper selected norm of 
 
E . Corresponding cost 

functions for the tracking and control properties can always 
be constructed by using the triangle inequality 

  

J
tracking

J
des

r
+ J

real

r
+ J

id

r
= E

des

r
+ E

real

r
+ E

id

r

J
control

J
des

w
+ J

real

w
+ J

id

w
= E

des
+ E

real
+ E

id

 (34) 

 
4.1. Minimization of the design loss 
 
The minimization of the first terms can be formulated by 
 

   

P
r

opt
= arg min

P
r

J
des

r( )
u U

= arg min
P

r

1 P
r

u U

P
w

opt
= arg min

P
w

J
des

w( )
u U

= arg min
P

w

1 P
w

u U

(35) 

 

The goal of this optimization step is to minimize the design 

loss. Here the fastest reference models 
  
P

r
= P

r

opt  and 

  
P

w
= P

w

opt  must be found by minimizing the introduced 

criteria 
  
J

des

r
= 1 P

r
 and 

  
J

des

w
= 1 P

w
.  

 
One should expect that this optimization step results in the 
best reachable reference models corresponding to the existing 
constraints   u U  for the control action, where  U  is the 

(mostly amplitude: 
   
U : u 1  and/or rate) constrained input 

signal domain. This is usually the boundary of the linear 
operational domain. 
 
For low (e.g. first) order reference models it is easy to 
compute the maximum pick (overshoot) of the closed-loop 
step response with simple algebraic formulas for the 
reachable bandwidth. With a first order reference model 

  

P
w
= 1+ a

1( ) 1+ a
1
z

1( )  the inequality, necessary to 

maintain in case of an amplitude limit 
  
U

L
, is 

 

  

1+ a
w

b̂
1

U
L

 (36) 

 

and the applicable reference model parameter is 
 

  
a

w
b̂

1
U

L
1 (37) 

 
It is not so widely known that the robust stability condition 

   

T̂ < 1  (and 
   
QM < 1 for the YP controllers) can also 

give a constraint for the reachable closed-loop bandwidth 

formulated by 
  
P

w
. This condition is very simple for the 

GTDOF system 
 

   

QM <
1

     or     

   

<
1

QM
 (38) 

 
Thus the robust stability strongly depends on the model  M  

and how the model-based Y-parameter 
  
Q = P

w
G

w
M

+

1  is 

selected. In this case  



 

 

   
QM = P

w
G

w
M

+

1M = P
w

G
w

M z d
= P

w
 (39) 

 

where 
  
G

w
M = 1 , (because of the optimization), 

furthermore 
  

z
d
= 1  (which is well known) were used, thus 

finally 
 

   

sup 1 P
w

     or     
   

1 P
w

 (40) 

 
Because the right hand side of this inequality depends only 

on 
  
P

w
, which is the reference model for the regulatory 

property of the GTDOF system, this means that this is a 
special controller structure, where the performance of the 
closed-loop is directly influenced by the robustness limit (via 

the selected 
  
P

w
). Observe that this method can be considered 

a new kind of loop-shaping via 
  
P

r
 and 

  
P

w
, which are direct 

and well understandable design goals. 
 
4.2. Minimization of the relizability loss 
 
The goal of this optimization step is to minimize the 

realizability loss 
  
J

real

w  using optimal embedded filters 

  
G

r
= G

r

opt  and 
  
G

w
= G

w

opt  attenuating the influence of the 

invariant model factor 
 
M  

 

  

G
r

opt
= arg min

G
r

J
real

r( ) = arg min
G

r

P
r

1 G
r
M z

d( )

G
w

opt
= arg min

G
w

J
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w( ) = arg min
G

w

P
w

1 G
w

M z
d( )

(41) 

 
This task corresponds to the model matching approach of 
control system design. The realizability degradation is 
considerably different for IS and IU processes. For the IS case 

  
M z

d
= 1, so there is no optimization problem to be solved 

and the trivial 
  
G

r
= G

w
= 1  selections can be used. The 

realizability degradation is zero now. 
 

For IU case the minimization of 
  
J

real

r  and 
  
J

real

w  can be 

performed in 
  
H

2
 and 

 
H  norm spaces (Keviczky et al. 

(1999)). If using 
  
H

2
 norm a DIOPHANTINE equation (DE) 

should be solved to optimize these filters only and not the 

whole regulator itself. If the optimality requires a 
 
H  norm, 

then the NEVANLINNA-PICK (NP) approximation is applied. 
Applicable procedures can be found in Wang et al. (1988) 
and Keviczky et al. (1999). 
 
4.3. Minimization of the modeling loss 
 
The goal of this optimization step is to minimize the 

identification (or modeling) loss 
  
J

id

r  via the optimal external 

excitation 
  
y

r
= y

r

opt  and the optimal model  M = M
opt . This 

is a minimax problem 
 

  

M
opt

= arg min
M

max
y

r

J
real

r( ) = arg min
M

max
y

r

E
id

r( )
 (42) 
 
where 
 

   

E
id

r
=

P
r
G

r
M z d

1 P
r
G

r
M z d( )

1+ QM
0

P
r
G

r
M z d

1 P
r
G

r
M z d( )

 (43) 

 
So this optimization can be done in two steps. The first step is 
the so-called optimal input design, where the optimized 
"maximum variance" type excitation produces the worst 
maximal modeling error to be minimized in the next 
identification step. 
 
The same procedure can not be exactly applied for 

minimizing the loss 
  
J

id

w , because the output disturbance  w  

does not depend on us. However, it is simply possible to use 

  
P

w
 instead of 

  
P

r
 in (42) and (43). 

 
In Section 3 it was shown that in the vicinity of the exact 

model case  M = S  the term 
  
E

id
 in  E  becomes 

  
E

id

*  (see 

(26)), which can also be used instead of (42) 
 

   
E

id

*
= QM = P

r
G

r
M z d  (44) 

 
There exist several closed-loop identification (ID) schemes to 
obtain a good model  M . There is a natural possibility to 
perform this task, avoiding the well known "circulating 
noise" issue (Åström et al. (1984)), namely to apply the ID 
between  û  (see Fig. 1) and

 
y . In this approach (called KB-

parameterization (Keviczky et al. (2001)))  û  depends on the 

a-priori model estimate 
 
M

i
, so only iterative schemes can be 

constructed. After some straightforward computation the 

model output (or ID) error 
 ID

 is 
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= y y
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= y Mû =

=
P
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M z d( ) 1 P
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w
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r
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where 
 

  
û = P

r
K

r
y

r
= P

r
G

r
M

+

1
y

r
 (46) 

 



 

 

is the model input and 
  
y

m
= Mû  the model output. Note that 

the weighting filters in (43) and (45) are the same. This 
means that a proper selection of the identification criterion 
for the model error (45) can also solve the simultaneous 

minimization of a proper norm of 
  

E
id

r . 

 

It is easy to check that 
  
H

KB
 has its maximum at the cross 

over frequency 
 c

, which means that the model minimizing 

 ID
=

KB
 is the most accurate around this medium 

frequency range (see Eq. (8)). At the end of the iteration one 
can switch to Eq. (44) and the accuracy improves according 

to a weighting factor given by 
  
P

r
. 

 
5. AN ITERATIVE OPTIMIZATION SCHEME 

 
The introduced decompositions are natural, useful and 
correspond to the control engineering practice. Based on the 
previous section the following generic optimal design 
procedure can be constructed for the model based 
optimization: 
 

   

E = 1 P
w( ) + P

w
1 G

w
M z d( ) P

w
G

w
M z d

                                      

  P
w

opt M( )        G
w

opt M( )         M opt
;y

r

opt

 (47) 

 
The solution of this decomposed optimization problem can 
only be an iterative procedure, because each term depends on 
the model of the process. A reasonable order of these steps is 
the following (starting with an available a-priori initial model 

  
M

o
): 

 

1. Having known an a-priori model 
 
M

i
 and reference models 

  
P

r

i  and 
  
P

w

i  solve (41) to get 
  
G

r

i
= G

r

opt  and 
  
G

w

i
= G

w

opt , then 

compute the model based regulator 
 
R̂

i
= R

i
M

i( )  using (29). 

 

2. Solve (35) to obtain 
  
R

r

i+1
= R

r

opt  and 
  
R

w

i+1
= R

w

opt . This 

optimization can be done by simulation in a model based or 
(if the technological requirements allow) by real experiments 
in the true closed-loop. 
 

3. Using 
 
M

i
, 

  
P

r

i , 
  
P

w

i , 
  
G

r

i  and 
  
G

w

i  perform the optimal 

input design to determine the best external excitation 
  
y

r

opt . 

 
4. Apply this optimal reference signal to the closed-loop and 
collect the measured output variable 

 
y . Compute the 

auxiliary signal  û . Perform the ID step based on 
 ID

=
KB

 

to identify the best model 
  
M

i+1
= M

opt . 

 
5. The iterative process is continued from step 1, while a stop 
condition is not fulfilled. 

6. CONCLUSIONS 
 

It is shown that the sensitivity function of a GTDOF control 
system can be decomposed into three major parts, 
corresponding to the design, realizability and identification 
degradation. 
 

The minimization of the design loss can be performed in 

connection with finding the fastest reference models 
  
P

r
 and 

  
P

w
 under available constraints for the control action. The 

robust stability condition can also be provided by applying 

proper constraints to the reference model 
  
P

w
. This step can 

be considered a new kind of loop-shaping via 
  
P

r
 and 

  
P

w
, 

which are direct and well understandable design goals, at the 
same time. 
 

The realizability degradation is zero for IS processes. For IU 

plants the realizability degradation can be minimized in 
  
H

2
 

and 
 
H  norm spaces. 

 

The minimization of the modeling part is connected to the 
optimal ID of the process model. Properly selected norms can 
be found which help to minimize both the weighted 
identification loss and the realizability degradation loss 
simultaneously. 
 

The new control error decomposition approach gives an 
excellent new way to teach control system optimization. 
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