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Abstract: This paper presents the application of the concept of ��	detection filters to the detection of faults in nonlinear 

systems. The nonlinear dynamics in specific meaningful points of the operation is approximated by means of a matched array 

of linear systems. Then, linear ��	filters are designed for each particular subsystem and a switching scheme is applied to 

carefully choose the most suitable filter regarding the operational characteristics of the plant in real time. Stability of the 

switching process is guaranteed by keeping the switching time between two consecutive switching large enough to ensure a 

proper falloff of filter transients. Therefore, apart from the solution of the standard linear-quadratic optimization problem 

represented by the ��	detection filter design problem one has to derive sufficient conditions for the observation error 

dynamics to be globally asymptotically stable during switching. The goal is to find a common minimum of the switching time 

to each specific ��	level calculated separately for every single filter that can be used as a restriction for the switching signal. 

The idea is demonstrated with the application to the detection of faults in the air path of a diesel engine. The results can be 

considered as the extension of the standard linear ��	fault detection filtering problem to nonlinear systems. 

Keywords: Switched Linear System, Dwell Time, Switched ��	 Fault Detection Filter, MFARE 

 

1. Introduction 

The design of detection filters for nonlinear systems is a 

mature field of engineering. Therefore, in the past two 

decades a wide range of different methods have been 

investigated, also specially in the field of diagnostics of the 

combustion engines. A nonlinear unknown input observer 

(NUIO) for detection of actuator faults in diesel engines is 

presented. [1] For similar case another research proposes the 

usage of neural network for the filter implementation. [2] To 

comply with the severe requirements on recursion speed of 

the filter by using nonlinear models a fuzzy filtering 

approach was proposed for sensor fault detection and 

isolation in the diesel air path. [3] A fault detection in 

combustion engines using nonlinear parity equations is 

applied. [4] Geometric LPV (Linear Parameter Variable) fault 

detection filter for commercial aircrafts is designed. [5] A 

detection filter is applied for nonlinear systems by means of 

geometric view on inversion-based model. [6] 

Generally, in order to make the nonlinear problem 

formulations tractable, some form of model reduction, 

approximation and/or process simplification is often 

inevitable to tackle computational burden and satisfy 

eligibility requirements for implementation. Linearization 

and the reduction of the order of the dynamics are the most 

frequently used techniques for the reduction of complexity of 

physical processes normally represented by nonlinear system 

models. The main drawback of linearization is that in certain 

operating points (i.e., where the linearization was done) one 

may get big deviations from the ideal operating conditions 

making the approximation of linearization highly inaccurate 

that compromises the performance of the filter. Therefore, 

relying on a linear modeling approach may result in a 

completely useless filter design approach in demanding 

applications.  

In this paper a ��  detection filter design approach is 

proposed which is based on the concept of switched linear 
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systems. This includes the linearization of the plant in a 

number of equilibrium points and the design of a set of linear 

filters, one separate filter for each linearized subsystem. 

Then, a selection mechanism is applied to carefully choose 

the most suitable filter regarding the operational 

characteristics of the plant in real time. Thus, the nonlinear 

detection problem in specific meaningful points of the 

operation is approximated by means of a matched array of 

linear filters. This idea can be accomplished by means of the 

application of two solution methods: i) switching or ii) 

interpolation.  

Application of the idea of switching systems for nonlinear 

control have been extensively studied in earlier works. As a 

result, many useful results are now available. [7-11] A 

detailed survey on the theory of switched linear systems can 

be found in the references. [12-13] A common problem posed 

by most of the work was to ensure controller (filter) stability 

during the switching process. As it was stated by several 

authors. The asymptotic stability of the solution can be 

ensured when we switch between the subsystems slowly 

enough. To be more precise, when the intervals between two 

consecutive switching, which is called dwell time, are large 

enough. [7, 10, 13] 

In the following sections we propose a ��  filter design 

strategy where special attention is given to the stability of the 

estimation error of the detection when replacing a filter with 

another. 

When specifying a ��fault detection filter the robustness 

is ensured by the application of a design trade-off between 

the worst-case disturbance and the L2 -norm of the filter 

error. This method requires the solution of a linear-quadratic 

optimization problem that leads to the solution of the 

Modified Filter Algebraic Riccati Equation (MFARE). [14-

18] Adopting this concept to the switched system approach, 

the goal is to find a minimum dwell time for the switched 

��	filters. This dwell time constraint then will be used as a 

restriction for the switching signal that assures that the 

estimation error will be asymptotically stable. 

The above problem can be posed in two different ways. 

Finding a common Lyapunov function, which leads to 

solving a group of Linear Matrix Inequalities (LMIs) for a 

common dwell time solution. This solution, however, might 

lead to a very conservative solution causing degraded 

detection performance which is a major disadvantage of the 

approach. This design restriction can be relaxed by using 

multiple Lyapunov functions which is the main contribution 

presented in this article. 

The problem of assuring robustness under minimal 

possible dwell time represents a design trade-off. On the one 

hand, the filter should be made robust according to the 

specified ��	 performance level. On the other hand, the 

design should provide the minimal possible dwell time 

between two consecutive switching.  

This poses additional requirements for the design of the 

fault detection filter, requiring the extension of the standard 

��	filter design problem with the finding of the multiple 

Lyapunov functions satisfying the dwell time condition. 

The paper is organized as follows. In Section 2 the 

application of the idea of ��	optimization to a switched 

linear system is formulated. In Section 3 the solution method 

of the determination of the common minimum dwell time is 

discussed. In Section 4 we demonstrate the applicability of 

the results to the fault detection filter design for detection of 

faults in the air path of a diesel engine.  

2. The Concept of Switched ��	 Fault 

Detection Filter 

Gain scheduling is a widely used technique for controlling 

certain classes of nonlinear or linear time-varying systems. 

This concept for purpose of the solution of robust control 

problems have been studied extensively in earlier works and 

useful results are now available. [7, 13, 19, 20, 21] Based on 

this idea, we pursue a similar solution method for the purpose 

of application to the robust fault detection filter design 

problem. According to this method, rather than seeking a 

single robust linear state estimator and specifying a single 

��	filter for the entire operating range, one has to design a 

linear state estimator for each relevant operating point of the 

system with respective ��	constraints. By assigning these 

filters to specific operating conditions and switching between 

the corresponding filters as the operating conditions change 

the design objective can be fulfilled. 

2.1. The Switched Linear System 

Consider the nominal representation of the LTI switched 

linear system in the form 

( ) ( )
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where for all �	 ≥ 0 , �(�) ∈ ℝ
 is the state vector, � ∈ ℝ
 is 

the arbitrary fixed initial condition, �(�) ∈ ℝ�  is the input 

vector, �(�) ∈  ℝ�  is the output vector, �(�): �0,∞) → �  is 

the piecewise constant switching function. ��(�)	 ∈
	ℝ
�
 , ��(�) ∈ ℝ
�� 	and	"�(�)	 ∈ ℝ��
	 are appropriate 

constant matrices. Assume, that the pairs (��(�)	, "�(�))  are 

observable for all �	 ≥ 0 . For further consideration let 

� = $1,… , '()  is the filter set consisting of '( 	number of 

filters. The index set * = 1,… , '(  denotes the sequence 

number of the switching.  

One can extend the system representation in (1) with the 

concept of perturbed system. [17] The switched linear system 

subject to disturbance and faults can be represented as 

follows:  
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where �+	�(�)	 = 	,�-,./0  denotes the worst-case input 
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direction and 1(�) ∈ 	.2	�0, 34  is the input function for all 

� ∈ �5  representing the worst–case effects of modelling 

uncertainties and external disturbances. It is to note, that the 

(2) does not include parametric uncertainty. [17] The 

cumulative effect of a number of k faults appearing in known 

directions .6  of the state space is modelled by the additive 

linear term ∑.6	�	�
	86	�
	  with .6  ∈  �
�9	and 86	�
  are the 

fault signatures and failure modes respectively. 86	�
  are 

arbitrary unknown time functions for �	 � �:6  , 0 ; � ; 3 , 

where �:6 is the time instant when the i-th fault appears and 

86 # 0, if �	 < �:6 . If	86	�
 # 0, for every i, then the plant is 

assumed fault free. Suppose, moreover, that only one fault 

appears in the system at a time.  

2.2. The Switched Linear ��	 Filter 

The state estimator for the system description (2) can be 

represented by the switched system as follows. Let z ∈ 	�� 

denote the output signal, then the state estimate can be 

obtained as 

              (3) 

where x> ∈ �?	represents the observer state, y> ∈ �A	represents 

the output estimate, and z>  ∈  �A	 is the weighted output 

estimate, C�	�
	 is the observer gain matrix and "D�	�
	 is the 

estimation weighting.  

The filter error system of (3) is 

                  (4) 

where �E(t) and ε(t) are the state error and weighted output 

error defined respectively as  

                             (5) 

 

Figure 1. Scheme of the filter estimation error system. 

The scheme of the filter estimation error system of the 

switched state estimator in acc. with (4) is showed in Figure 

1. 

According to the robust �� filtering problem the quadratic 

cost function is composed of the weighted output error and 

worst-case unknown inputs. The extension of this idea to the 

switched linear system is defined as 

                   (6) 

where F�	�
 G 0 is a positive constant. The goal is to find an 

estimate z> which minimizes the cost function in (6) under the 

worst-case input assumption. Technically this means the 

minimization of the ��	norm of the transfer function from 

the worst-case input to the filter output denoted by HH	κ.  

     (7) 

The filter gain C�	�
	 can be obtained by solving the 

standard linear-quadratic optimization problem with H-

infinity constraint. The goal of the linear-quadratic 

optimization is to obtain the smallest L2-gain of the 

disturbance input that is guaranteed to be smaller than a 

positive constant F�6
�	�
	. 

The observer Eq. (3) can be rewritten as  

         (8) 

From the bounded-real lemma we have ‖KL+‖� <

F�6
�	�
, if and only if there exists M�	�
 G 0, such that the 

MFARE for all �	�
: �0,∞
 → � can be defined as 

         (9) 

where M�	�
	 ∈ N

�
 is the positive definite decision variable 

corresponding to the solution of the respective MFARE.  

However, since the asymptotic stability of the state 

estimation error (4) during the switching has to be ensured, 

solving the MFARE (9) does not deliver the optimal solution 

and the F�6
�	�
 minimal disturbance magnification level as 

well. This concept has to be extended with considering the 

minimum dwell time constraint. 

A general switching scheme for the problem defined above 

can be seen in the Figure 2. A number of state observers 

(1,… , '() are applied to the nonlinear process P in parallel. 

Then, a switching supervisor O	�
  governs the switching 

process at each instant of time based on the input signal 

P	�
	by selecting one out of the '( available observers based 
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on the value of the scheduling variable �(�): �0,∞
 generated 

by O	�
. [22] This concept has been successfully applied to 

switching controller design in the past. [7, 9, 10] 

 

Figure 2. General scheme of the switched filter architecture with using '( 

observers. 

3. Filter Gain Specification with Dwell 

Time Constraint 

Ensuring stability of the state estimation error dynamics is 

the crucial part of the design of the switched filtering scheme 

characterised in the previous section. It is our basic 

assumption that the matrices �Q , *	 ∈ �  are Hurwitz, 

consequently the corresponding systems are asymptotically 

stable. It follows that the switched stability can be ensured 

when we switch slowly enough between the subsystems in 

order to let the transients to dissipate. [9-11] 

3.1. Dwell Time Condition for Switched Filter Stability 

Let us define the total length of the time needed by a 

particular subsystem to fully falloff in its transient and call it 

the dwell time τS G 0. [9, 19, 20, 23] 

Let �ℓ  and tℓ5V  denote two successive switching times 

satisfying tℓ5V W	tℓ 	� 	 τS . Then the selection of the 

piecewise constant switching function defined as 

�	�
: �0,∞
 → �	for	all	�	�ℓ, �ℓ5V4 

ensures, that the equilibrium point � # 0 of the system in (1) 

is globally asymptotically stable. Consequently, when 

designing a switched filtering scheme, we also have to make 

sure that the time difference between two consecutive 

switching is not smaller than τS , thus the asymptotical 

stability of the switched linear system is preserved. 

The following discussion introduces the problem of 

stability of switched linear systems for nominal disturbance 

free cases. [13, 19]  

Consider the representation of the continuous-time 

switched linear system as 

                (10) 

for any �	�
: �0,∞
 → �. As the switching occurs within the 

finite set of *	 ∈ � # $1,… , '()  subsystems, the system 

description in (10) can be simply represented by the matrices 

�Q as  

                (11) 

for any *	 ∈ � . Let us assume that the matrices �Q  are 

Hurwitz. Consequently, the corresponding subsystems are 

asymptotically stable for all * ∈ �.  

The asymptotic stability of the switched system (11) for 

any admissible switching signal �	�
 is satisfied, when along 

an arbitrary �	�
 trajectory the Lyapunov function and also 

its derivative satisfy 
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for any * ∈ �, �	�
 \ 0 and ]Q  ∈ N
�
 G 0. 

For all � ∈ 	�ℓ, �ℓ5V4	, where �ℓ5V # �ℓ ^ 3ℓ , (ℓ = 0,..,	'ℓ W

1
 with 3ℓ 	� 	3_ G 0 and 'ℓ is the number of the switching 

and at � # �ℓ5V the switching jumps to �	�
 # ` ∈ �.  

Assuming that for some 3_ G 0 there exists a collection of 

positive definite matrices $]V , … , ]
( 	)  of compatible 

dimensions such that the LMIs 
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hold, then the time switching control of �	�
: �0,∞
 → � 

makes the equlibrium solution � # 0 globally asymptotically 

stable. 

It is seen from (13) that for all � ∈ 	�ℓ, �ℓ5V4  the time 

derivative of the Lyapunov function (12) along an arbitrary 

trajectory of (11) is satisfied. That ensures, that there exist 

some a G 0 and b G 0 scalars for wich for all � ∈ 	�ℓ, �ℓ5V4 
is satisfied, that 

( )( )2 ( )
( ) .

t t
x t e V x t
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For two consecutive switching �ℓ, �ℓ5V	 the Lyapunov 

function (10) becomes 
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where the second inequality holds due to the fact that  

 .
T

q d q dA T A T

q qe P e P≤                        (16) 

is true for every c # 3ℓ W 3_ G 0. Consequently, there exists 

μ ∈ 	0, 1
 such that 
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( )( ) ( )( )0 , ,l
lV x t V x lµ≤ ∀ ∈Θ                  (17) 

which, together with (14) implies that the equilibrium 

solution � = 0  is globally asymptotically stable. [19] This 

means that the sequence of Lyapunov functions are positive 

and decreasing.  

Based on this, the filter synthesis technique proposed in 

the following part is originated in the results from the 

research of Geromel Jose C. and Colaneri Patrizio in 2008. 

[19] By adopting their results formulated in the robust 

nonlinear control problem to the framework of ��  detection 

filter design by dualization. However, in contrast with this, 

where a single worst-case γ for all controllers together with 

the related dwell time is calculated, in our present paper we 

solve the dwell time optimization problem for each specific 

��	performance level. This approach, as it is expected, will 

result in a less conservative filtering scheme with improved 

detection performance. 

3.2. ��	 Filter Synthesis Involving Dwell Time Constraint 

In the switched ��	detection filter design problem our 

goal is to find a common minimum dwell time, that assures 

the estimation error will be asymptotically stable for all 

specified ��	level calculated separately for each filter. It was 

shown that following this procedure the robust stability of the 

estimation error system (4) can be preserved under the worst-

case disturbance.  

The direct solution of this problem associated with the 

Hamilton-Jacobi-Bellmann equation for any given dwell time 

would be extremely difficult due to the algebraic structure of 

the set �. [19] A more realistic interpretation of the problem 

can be given by using a two-step design procedure that can 

be formulated as follows: (i) solve the MAFARE and 

calculate the ��  constrained filter gain for each particular 

subsystem, then (ii) determine the subjected common 

minimum possible dwell time for all * ∈ �. This takes the 

determination of Tfgh?(F_), for specified F_Q ≥ F�6
Q  for all 

* ∈ �	 such that �(�): �0,∞) → �	 and tℓ5V −	tℓ 	≥
	Tfgh?	hold.  

The MFARE for each * ∈ � is defined as 

 
2

1

0,

T
q q q q

T T
q q q z q zq q

q

T
q q

A Y Y A

Y C C C C Y

B Bκ κ

γ

+ −

 
 − − +
 
 

+ =

                    (18) 

which can be factorized by using the transformations as 
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Introducing the matrix notation 

,
zq

q q q
q

C
H A W

C

  
= −   

  
                       (24) 

 

2

0 0

0

0
.

0 0

T T
q q q q q

T
q q q

Q W W B B
I

I
W W

κ κ

γ

  
= + −   

  

 
−  

 

          (25) 

the final form of the factorization of (18) reduces to the 

Riccati equation 

0, .T
q q q q qH Y Y H Q q+ + = ∀ ∈Θ                 (26) 

Note that the optimal gain iQ is determined by the unique 

stabilizing solution of the MFARE (18) such that the matrix 

KQ  is Hurwitz for each * ∈ � . The Riccati equation (26) 

admits a positive definite solution since it was created by 

means of the factorization of the MFARE (18).  

Assume that for any �(�): �0,∞) → �	 and for all � ∈
(�ℓ, �ℓ5V4	 , where �ℓ5V = �ℓ + 3ℓ  with 3ℓ 	≥ 	3_ > 0  and at 

� = �ℓ5V  the switching jumps to �(�) = ` ∈ � , where the 

corresponding solution of the Lyapunov function along a 
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trajectory of the switched filter error system is expressed by 
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The above already mentioned ��  state feedback control 

problem can be associated to the corresponding �� filtering 

problem by duality. [19] Based on (26) and the Lyapunov 

function (27) formulated along a trajectory of the state 

estimation error system in (4) one can derive the LMI which 

can be used to obtain a common minimum dwell time for all 

specified ��	level in the following way.  

Assume that for a given 3_  there exists a collection of 

positive definite matrices $jV, … , j
( 	)  of compatible 

dimensions such that the LMIs 
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hold. Then under the worst-case input assumption (2) for any 

switching signal �	�
: �0,∞
 → � satisfying the condition 3_ 

= �ℓ5V W	�ℓ 	� 	3_�6
. Then, the equilibrium solution of the 

state estimation error system (4) is globally asymptotically 

stable. Additionally for all * ∈ � filters is ensured a F_Q �

F�6
Q  minimal disturbance magnification level.  

Because of the matrix kQ  in (26) depends on the value of 

F�6
Q , it is not positive definite for any * ∈ �. Note that for 

the feasibility of the LMIs in (28) as well as for existing 3_ 

the satisfaction of the condition kQ  � 0 is necessary. In other 

cases, however, γm G γgh?m can always be chosen such that 

kQ  � 0 holds. 

To sum up, solving the LMI (28) the common minimum 

dwell time 3_�6
  for each ��	 performance level can be 

calculated by searching the minimum of 3_.  

This calculation can be carried out by performing the 

followings procedure: 

1. For each * ∈ � one has to solve the MFARE (18) for 

MQ  and FQ�6
, then calculate iQ by (20). 

2. From the formulas in (24) and (25) the matrices KQ  and 

kQ  can be calculated, in a respective way.  

3. If the condition kQ  � 0 doesn’t hold, then choose γfm 

G γgh?m  such that kQ  � 0  holds. Then recalculate MQ  

and KQ , accordingly 

4. Formulate the LMIs in (28) as a multivariable 

feasibility optimization problem for each * ∈ �. 

5. Initialize the 3_ G 0, arbitrary. 

6. Calculate the matrix exponent nop	qr for this 3_. 

7. Solve the LMIs in (28) iteratively by successive 

reduction of 3_ 	until the feasibility constraint for jQ 

satisfies. The minimal value of 3_ # 3_�6
  is obtained 

as the common minimum dwell time. 

By using the solution of (18) the filter gain matrix for any 

* ∈ � can be obtained as 

                            (29) 

With the use of FQ�6
 the detection threshold of the filter 

for any * ∈ � is given  

min 2
( ) .q z qCτ γ κ=                         (30) 

The transfer function from the unknown input to the filter 

residual for a given filter gain CQ  can be written as 

               (31) 

Analogously, the transfer function from the fault to the 

filter residual for the given filter gain CQ  is obtained as 

           (32) 

The upper bound for the ��  attenuation level of the 

switched filter system is, therefore 

max (s)ub q
q

G εκγ
∈Θ

> .                             (33) 

Then, the guaranteed filter sensitivity can be defined as 

 
( )

.
max ( )

q

lb

q
q

G s
S

G s

ευ

εκ

∞

∞∈Θ

=                           (34) 

3.3. Solution of the Constrained MFARE 

It was shown in the previous sections that the problem of 

finding a common minimum dwell time for every specified 

��	performance level can be solved in the framework of 

LMI representations. In this section the solution process is 

detailed as follows. 

At first, we have to solve the corresponding MFARE in 

(18) for each particular subsystem * ∈ �. It is explained how 

the MFARE in the LMI framework can be formulated. [12]  

We can get the LMI for the q-th subsystem by letting 

NQ # MQ
sV and applying the Schur lemma. [18]  

        (35) 

which has a solution NQ # NQ
q , 	NQ G 0 ∈ �
	�	� for FQ G 0. 

Consequently, the MFARE minimizing FQ with respect to 

NQ ≻ 0  subject to (35) can be sought in the following 

optimization problem: 

2

min

. . 0

0 0.

0

q

q

T T T
q q q q q q z q q q

zq q

T
q q

s t R

R A A R C C C R B

C I

B R I

q

κ

κ

γ

γ


 >


 + −
 

− < 
  −   

∀ ∈Θ

 (36) 
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The LMI in (36) is formulated as a linear objective 

minimization problem that can be solved by using the mincx 

function of the LMI Control Toolbox in MATLAB. [23, 25] 

The corresponding MATLAB code for the solution of the 

LMI formulation (36) is described by Horváth Zsolt and 

Edelmayer András. [18] 

In the following we pursue finding the mimimum dwell 

time for each subsystem * ∈ �, that can be done for fixed FQ 

obtained from the solution of the LMIs in (36). This can be 

posed as the following time dependent multivariable 

optimization problem: 

min

. . 0

0

0

0.
T

q d q d

d

q

j

T
q q q q q

H T H T

j q q

T

s t Z

Z

H Z Z H Q

e Z e Z X

q j


 >
 >

 + + <


− + <
∀ ≠ ∈Θ

         (37) 

Since the matrix-exponential, which includes the design 

variable 3_ 	is nonlinear, the LMI in (37) cannot be treated as 

a simple scalar value minimization and casted as a linear 

objective minimization problem, and the value 3_	 is 

immediately obtained. [25, 23, 27] 

In order to overcome this difficulty, we implemented an 

algorithm called 3_ -iteration, which is based on interval 

halving. The algorithm decreases the value of 3_  until the 

constraints of the LMIs (28) are no longer feasible, 

consequently any of jQ	, * ∈ �  , have no longer a positive 

definite solution. The 3_�6
 	which is so reached, is within the 

limits given by an arbitrarily small tolerance H′ > 0 and is the 

common minimum dwell time for each specified 

��	performance level, thus it holds, that 3_�6
 	≤ cv. For the 

the feasibility solution of the LMIs the combination of the 

interval halving method with the standard LMI solver seems 

computationally efficient. The complete algorithm for 3_ -

iteration was earlier presented. [28-29]  

4. Switched ��	Filter Design for Fault 

Detection in the Air Path of a Diesel 

Engine 

In the following part the above characterised switched 

filter design is applied to the detection of faults in the air path 

of diesel engines.  

4.1. Model Approach 

A simplified nonlinear model of the air path of diesel 

engines was first proposed for purpose of robust control. [30] 

In our earlier investigations we adopted the linearized version 

of this model at a chosen operating point to get an LTI 

formulation of the filter synthesis. [31] The corresponding 

linear H-infinity detection filter solution was published that 

showed promising single point performance. [14, 18] 

Following the idea presented in this article a switched linear 

system model was developed with choosing 64 operating 

points along the whole trajectory. This corresponds to the most 

typical low and medium speed load points of the engine 

covering the New European Drive Cycle (NEDC) specification. 

[30] The inputs of the switched representation (2) are the 

actuation signals of the Exhaust Gas Recirculation Valve 

(EGR-Actuator) and Variable Geometry Turbocharger (VGT-

Actuator). For gross simplification, we considered fuelling as a 

constant input of the air path. The disturbance was modelled as 

a fluctuating change of the engine speed, which is normally 

caused by the variable load during the engine’s operation.  

For simplicity we linearized the system in 7 operating 

points only, letting to derive 7 stable LTI-systems from the 

nonlinear representation. [22] The set of 7 LTI systems are 

then used to design the ��	detection filters.  

According to the design method presented in Section 3 we 

have to solve the MFARE (18) as linear minimization problem 

in (36) for each subjected subsystem 	* ∈ �  in LMI 

formulation. The solution method was presented in our earlier 

investigation with using the LMI-Toolbox in MATLAB. [18] 

4.2. Filter Design 

Based on the above 	FQ�6
  and MQ  are obtained, then the 

matrices KQ  and kQ  calculated in accordance with (24) (25). 

Note that in this case the condition kQ  ≥ 0 was not satisfied, 

therefore, γfm > γgh?m were chosen such, that kQ  ≥ 0 holds, 

iteratively. Then MQ  and KQ  are recalculated, accordingly. 

In order to find the common minimum dwell time, we 

must solve the feasibility problem in (37) for each subsystem 

q ∈ Θ using matrices MQ , KQ  and kQ . This can be performed 

by using the algorithm 3_ -iteration. [28-29] The algorithm 

reduces the value of 3_ 	until the constraints of the LMIs in 

(28) are no longer feasible, that means for any 	jQ	, * ∈
�	have no longer positive definite solutions. The 3_�6
	which 

is so reached can be interpreted within the limits given by an 

arbitrarily small tolerance H > 0. 

The common minimum dwell time is represented by 

3_�6
	. This means, that between the switches of the filters a 

bigger waiting time than 3_�6
	 is to be applied to allow the 

filter estimation error system transients to dissipate.  

4.3. Simulation Results 

The individual parameters of the results provided by the 

3_	–iteration algorithm implemented for above mentioned 7 

linear ��	 filters are summarized in Table 1. For the 

minimum dwell time the value 3_�6
 = 0.106x	 was 

obtained. In Table 1 the originally specified �� -level for 

each single filter F�6
Q  was increased to γfm  > γgh?m  such, 

that the feasibility condition kQ  ≥ 0  holds. The feasible 

solutions for jQ	and the corresponding MQ	and kQ  matrices are 

also shown. Finally, the filter gains CQ  for each subsystem 

based on the representation (29) are calculated.  

In order to show that the designed filter works properly the 

following computer simulation was compiled and performed. 

In the system model, bias faults in the VGT-Actuator and 
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also in the EGR-Actuator signals were modelled, in which 

the amplitude of the signals at 2.5 sec was increased up to 

30% of the nominal value, step-wise. This fault enters the 

system in the same direction of the state space as the input 

does, which can be represented by an additive term. 

Detection problem of this kind for linear systems was already 

discussed in the past. [14, 18] A disturbance was modelled as 

a fluctuation of the engine speed by 10%. 

Though the residuals, as shown in Figure 3-4, according to 

the different filter gains are scattered, the fault signatures can 

still be safely reproduced.  

 

Figure 3. VGT-Actuator bias fault residuals occurring at t=2.5 sec in the 

presence of engine speed disturbance. The filter is switched between the 7 

operating points in the engine entire operating range. Residuals: yz (blue 

line), y{ (cyan line), y| (green line). 

 

Figure 4. EGR-Actuator bias fault residuals occurring at t=2.5 sec in the 

presence of engine speed disturbance. The filter is switched between the 7 

operating points in the engine entire operating range. Residuals: HV (blue 

line), H2 (cyan line), H} (green line). 

In order to verify filter robustness, the transfer functions 

calculated from the disturbance and also from the faults to 

the filter residuals for the corresponding filter gains CQ  are 

shown in Figure 5. It can be seen that a proper separation at 

about 50 ~�	 can be guaranteed between the disturbance 

effect and the modelled faults. It can be concluded that this 

sensitivity is normally satisfactory to detect both faults under 

the worst-case disturbance effect.  

 

Figure 5. The magnitude (maximal singular values) of the transfer functions: �QL+ (red line), �QL�(�� (green line), �QL���� (cyan line). 

 



 American Journal of Mechanical and Industrial Engineering 2019; 4(1): 1-10  9 

 

Table 1. Results provided by the 3_	–iteration algorithm implemented for the 7 linear ��	filters.  

� ����� ���  ��  ��  ��  

1 4.9224 8.0640 

10� ∗   10� ∗  

0.1810 -0.2182 -0.0002 81.6979 -17.0197 -0.1127 1.4041 0.1807 1.6580 

-0.2182 2.7837 0.0006 -17.0197 244.1857 0.2370 0.1807 0.1792 0.2614 

-0.0002 0.0006 0.0000 -0.1127 0.2370 0.0103 1.6580 0.2614 5.8559 

2 4.8757 8.7323 

10� ∗   10� ∗  

0.1209 -0.2449 -0.0002 61.5844 -18.0647 -0.1088 1.8447 0.2959 2.0206 

-0.2449 3.0927 0.0006 -18.0647 249.8336 0.2452 0.2959 0.1944 0.3692 

-0.0002 0.0006 0.0000 -0.1088 0.2452 0.0120 2.0206 0.3692 5.8282 

3 4.8217 9.0668 

10� ∗   10� ∗  

0.0854 -0.2658 -0.0001 48.0245 -19.4905 -0.1127 2.4749 0.4923 2.5544 

-0.2658 3.1959 0.0008 -19.4905 250.7915 0.2733 0.4923 0.2441 0.5643 

-0.0001 0.0008 0.0000 -0.1127 0.2733 0.0142 2.5544 0.5643 5.9937 

4 4.5688 8.9252 

10� ∗   10� ∗  

0.0428 -0.3092 -0.0001 24.1243 -21.7061 -0.1440 6.8097 2.1976 5.0418 

-0.3092 3.4441 0.0006 -21.7061 246.8474 0.2150 2.1976 0.8580 1.6961 

-0.0001 0.0006 0.0000 -0.1440 0.2150 0.0118 5.0418 1.6961 6.1133 

5 4.4186 9.3250 

10� ∗   10� ∗  

0.0428 -0.3717 -0.0001 18.4410 -23.5689 -0.1205 9.8455 3.6942 6.3182 

-0.3717 4.0587 0.0005 -23.5689 260.8637 0.1745 3.6942 1.5341 2.4347 

-0.0001 0.0005 0.0000 -0.1205 0.1745 0.0088 6.3182 2.4347 6.0289 

6 4.1948 10.3314 

	10� ∗   10� ∗  

0.0385 -0.3596 -0.0001 13.2562 -21.7716 -0.1215 1.4072 0.6114 0.7877 

-0.3596 3.8118 0.0004 -21.7716 231.8670 0.1571 0.6114 0.2806 0.3482 

-0.0001 0.0004 0.0000 -0.1215 0.1571 0.0093 0.7877 0.3482 0.6131 

7 3.7459 11.4722 

10� ∗   10� ∗  

0.0422 -0.4162 -0.0000 8.0359 -21.3598 -0.1014 2.5028 1.3657 1.0974 

-0.4162 4.2496 0.0002 -21.3598 217.5342 0.1136 1.3657 0.7613 0.6037 

-0.0000 0.0002 0.0000 -0.1014 0.1136 0.0073 1.0974 0.6037 0.6259 

 

5. Conclusions 

This paper deals with the application of ��	 detection 

filters to fault detection in nonlinear systems. The idea is that 

the nonlinear dynamics in specific meaningful points of the 

operation is approximated by means of a matched array of 

linear systems and a linear ��	filter are designed for each 

particular subsystem. Then, a switching scheme is applied to 

carefully choose the most suitable filter regarding the 

operational characteristics of the plant in real time. Stability 

of the switching process is guaranteed by keeping the 

switching time between two consecutive switching large 

enough to ensure a proper falloff of filter transients. The goal 

is to find a common minimum dwell time that can be 

considered as the worst-case minimal waiting time for the 

filter transitions to eliminate between consecutive switching. 

This dwell time can be considered as a restriction for the 

switching signal that assures that the state estimation error 

will be asymptotically stable for each specified 

��	 performance level calculated separately for each 

particular filter. 

The solution method presented in this paper is based on 

the dualized results from the research of Geromel Jose C. 

and Colaneri Patrizio in 2008. [19] In contrast with this 

solution method, in our approach the dwell time 

optimization problem is solved according to each specific 

��	performance level, i.e., to each specific γq based on the 

multiple Lyapunov function approach. This approach 

results in less conservative filtering with improved 

detection performance. The results can be considered as 

the extension of the standard linear ��	 fault detection 

filtering problem to nonlinear cases. 

The simulation results indicate the applicability of the 

proposed filtering approach to fault detection in nonlinear 

systems with satisfying sensitivity. Further studies are 

required to investigate the conditions of real industrial 

applications. 

Though the waiting time between two consecutive 

switching obtained in our recent simulation study (i.e., 0.16 

sec) could be tolerated in many slow industrial processes, it 

may provide a significant limitation for applications in plants 

with fast dynamics, such as in combustion engine 

applications. It can be expected that this limitation can be 

relieved by using a higher resolution filter lattice, i.e., by 

increasing the number of operating points in the engine’s 

linearized operation range and working with a richer set of 

filters in the filter lattice, correspondingly. Another 

possibility is the application of an optimized switching 

strategy according to which the neighboring filters are 

considered only for selection instead of relying on a fully 

connected filter network. 
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