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Abstract. Based on model set identification and unfalsification, robust perfor-
mance measured in peak-to-peak gain is analyzed for heterogeneous platoons,
inter-vehicle communication delays and actuator uncertainties. The goal is to
demonstrate that safe platooning with acceptable performance can be achieved
by utilizing the services already available on every commercial heavy truck with
automated gearbox. Experimental verification of a three vehicle platoon is also
presented.
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1 Introduction

Safe control of vehicle platoons requires strict guaranteed bounds on inter-vehicle spac-
ing errors. In order to avoid collision the sampled errors are best measured by theirℓ∞
norm, so the bounds represent the worst-case peaks of the spacing errors. Consistent
identification tools are the set membership methods in theℓ1 setting, see e.g. [2, 5, 6].
The identified model sets are employed for on-line model validation and a priori analy-
sis of the control performance measured by the worst-case spacing errors.

Controllers for autonomous vehicle platoons usually consist of two levels of feed-
back controllers. At the lower level a local, vehicle specific controller is responsible for
performing acceleration demands. The higher level controllaw is common for all vehi-
cles, it is designed for satisfying string stability requirements of the entire platoon. Very
short safety gaps can be guaranteed under certain constraints on lead vehicle maneu-
vers, when detailed engine, gearbox and brake system modelsare available, see, e.g., in
references [1, 4, 9]. There is, however, some difficulty in the widespread applicability
of these control methods. The required engine/gearbox/brake system models are usu-
ally not available and not reliable for all commercial heavytrucks. In addition these
controllers try to directly excite the brake cylinder pressures and the throttle valve of
the engine, which could also conflict with the existing control units, such as Electronic
Brake System (EBS) and Engine Control Unit (ECU).

In the paper the goal is to explore the performance of an automated vehicle string
where, in contrast to the former solutions, only the standardized and general services of
the EBS and ECU are used. This work is an extension of the research that was presented



in the conference paper [11], where the focus was placed on model set identification
problems and the analysis of the spacing error bounds subject to heterogeneity in vehi-
cle dynamics. A method for computing unfalsified performance in order to analyze the
effect of actuator uncertainties is also presented. An illustration is shown for the brake
system.

In Section 2 the mathematical model of the platoon is presented. The vehicle model
set identification method is provided in Sections 3. The performance of a heteroge-
neous platoon and the effect of actuator uncertainties are analyzed in Section 4. The
experimental results are shown in Section 5.

Basic notations. The peak norm of a sequenceu(k) is denoted by‖u‖∞ =supk|u(k)|,
ℓ∞ denotes the space of sequences of finite peak norm. The peak-to-peak norm of a
systemH is defined by‖H‖1 =supu 6=0

‖Hu‖∞
‖u‖∞

.

2 State-space model of vehicle platoons

In this section a discrete-time, linear time-varying state-space model for the controlled
platoon is briefly summarized.

The longitudinal dynamics of a single vehicle is approximated by the following first
order nominal model with sampling timeTs

âi(k+1) = θ∗i1âi(k)+ θ∗i2ui(k), i = 0,1, ...,n (1)

ai(k) = âi(k)+ νi(k) (2)

whereai andui denote the acceleration and acceleration demand of vehiclei, âi denotes
the acceleration output of the nominal model,θ∗i1 andθ∗i2 denote constant parameters,
νi denotes additive disturbance representing actuator uncertainties. The spacing error of
the ith follower vehicle and relative speed of vehiclei andi −1 are defined by

ei(k) = xi(k)+Li −xi−1(k) (3)

δi(k) = vi(k)−vi−1(k) (4)

whereLi denotes the desired intervehicular space. Without loss in generalityLi can be
assumed to be zero in the analysis. The position and forward speed of theith vehicle
are denoted byxi andvi , respectively. By using Euler approximation of integrators,

ei(k+1) = ei(k)+Tsδi(k) (5)

δi(k+1) = δi(k)+Ts(ai(k)−ai−1(k)) (6)

the spacing error dynamics can be written for each follower vehicle as follows
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(7)

The open-loop model of the entire platoon

x(k+1) = Ax(k)+Bu(k)+Bνν(k)+Edr(k)



is constructed by introducing the state vectorxT = [â0 e1 δ1 â1 · · ·en δn ân], control input
vectoruT = [u1 · · ·un], disturbance vectorνT = [ν0 · · · νn] and reference signalr = u0.

The platoon controller is a modified version of the constant spacing strategy pre-
sented in [14, Section 3.3.4]. The modification resides in that, instead of measured
acceleration, control input is transmitted through the network. Consequently, the gear
change has lower impact in the control signal than in the acceleration, so each vehicle
can change gear without deceiving the followers; the vehicles react quicker to maneu-
ver changes; and no need for filtering the rather noisy acceleration measurements. The
control strategy in a general form is defined by the followingequations

u(k) := uL(k)+ ûN(k) (8)

uL(k) = KLx(k) (9)

uN(k) = KNx(k)+GNr(k)+Su(k)+HNν(k) (10)

whereuL contains the locally available radar information. Gain matrix KL can be con-
structed based on the following definition

uL,1(k) = −k1δ1(k)−k2e1(k) (11)

uL,i(k) = −k1βδi(k)−k2βei(k), i > 1 (12)

Control signaluN is constructed from the information received from the communication
network

uN,1(k) = u0(k) (13)

uN,i(k) =
1

1+q3
ui−1(k)+

q3

1+q3
u0(k)−k1α

i

∑
j=0

δ j(k)−k2α

i

∑
j=0

ej(k), i > 1 (14)

wherek1, k2, k1α, k2α, k1β andk2β are design parameters, see [10] for a possible choice.
MatricesKN, GN, HN andScan be constructed based on (11)-(14).

The communication network has a sampling time ofT = NTs and the packet is
transmitted afterh < T constant delay. IfuN(k) denotes the variable to be transmitted
at the network input, then

ûN(k) =

{

uN(k−h) if k−h
N is an integer

ûN(k−1) otherwise
(15)

denotes the network output at the receiver.
The closed-loop system with the delayed communication is derived in [10]. The

local partuL of the controllers run with the faster sampling rateTs. By closing the loop
with uL, re-sampling withNTs, then closing the loop with ˆuN and assumingr(k) =
r(k+1) = ... = r(k+N−1) andν(k) = ν(k+1) = ... = ν(k+N−1) we arrive at the
following closed-loop model with augmented state vector

z(k+N) = Azz(k)+Bν,zν(k)+Ezr(k), z(k) =

[

x(k)
uN(k−N)

]

(16)



where

Az =

[

AN
L +B0(KN +SKL) B1 +B0S

KN +SKL S

]

, Ez =

[

EN +B0GN

GN

]

, Bν,z =

[

BνN +B0HN

HN

]

B1 :=
h−1

∑
j=0

AN−1− j
L B, B0 :=

N−1

∑
j=h

AN−1− j
L B, AL := A+BKL,
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AN−1− j
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∑
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AN−1− j
L Bν,

Notice the dependence ofB1 andB0 on communication delayh. The spacing errors can
be observed through matrixesCi defined byei(k) = Ciz(k), i = 1,2, ...n.

3 Identification of nominal vehicle models

Nominal vehicle models defined by (1) and (2) are identified inthe worst-case setting.
Two circumstances motivate the application of this identification approach. Both the
brake system and the drive-line are functioning as unknown nonlinear, hybrid systems
with many thousands of program rows organizing finite state machines. An adequate
description of noise statistics is not available and only reduced order models can be
considered. It seems to be reasonable to assume only strict bounds on disturbances and
unmodelled dynamics. Strict bounds are also useful in the worst-case analysis of spac-
ing error bounds. On the other hand, available performance analysis tools for model
sets with unmodelled dynamics may result in conservative performance bounds. Uncer-
tainty modelling is, therefore, confined to disturbance modelling only. The correspond-
ing peak-to-peak system norm computation for LTI systems issufficiently accurate.

In order to obtain a preliminary view of the amount of uncertainty in the vehicle
dynamics and actuators including EBS and ECU softwares, uncertainty descriptions
of several different structures are identified in the section. The first one is an ARX-
type model structure with time-varying parameters. The basic concept originating in
the papers [8, 7] is briefly presented in the following subsection. Then, the results are
extended for obtaining minimal worst-case prediction error in Section 3.2. In the second
method an output error (OE) model structure is identified in Section 3.5. Both methods
are applied to the experimental data of a heavy truck. The OE model structure is also
applicable for the performance analysis method presented in Section 4.2.

3.1 Identification of the smallest unfalsified parameter sets for SISO transfer
functions

Consider the following discrete-time linear single input single output model structure

G(q) =
∑m

i=1biq−i

1+ ∑m
i=1aiq−i , θ := [a1, ...,am,b1, ...,bm]T ∈ Pθ(θ∗,ε) (17)

whereq is the forward shift operator. Time-varying parameter vector θ is defined in the
cubePθ(θ∗,εθ) := {θ : ‖W(θ∗− θ)‖∞ ≤ ε}, where the a priori given diagonal matrix



W = diag{ 1
εθ,1

, ..., 1
εθ,2m

} defines the shape of the cube with edges of length 2εθ,i . Given

input output data set{u(k),y(k)}l
k=1, the problem is to find the central parameterθ∗ and

the minimal sizeε of the cube such that for everyk = m, ..., l there exists a parameter
θ ∈ Pθ(θ∗,ε) not invalidated by the measurements, i.e.

Pθ(θ∗,ε)∩Dk 6= /0 ∀k = m, ..., l (18)

whereDk := {θ : y(k) = ϕT(k)θ(k)} and ϕT(k) = [−y(k− 1), ...,−y(k− m),u(k−
1), ...,u(k−m)]. This problem can be solved by minimizing a convex function as fol-
lows

ε = min
θ∗

max
m≤k≤l

|y(k)−ϕT(k)θ∗|
‖W−1ϕ(k)‖1

(19)

In the following subsection the model structure is augmented by an additive distur-
bance term, and the worst case prediction error is minimizedwhile an optimal shape of
the parameter cube and a bound for the disturbance are determined.

3.2 Unfalsified ARX model set of minimal prediction error in ℓ∞

With the notation of the previous section we can define the following ARX type model
structure, denoted byM

M = { y(k) = ϕT(k)θ(k)+ ν(k),θ(k) ∈ Pθ(θ∗,εθ),ν(k) ∈ Pν(εa), k = 1, ..., l } (20)

whereεθ = [εθ1, ...,εθ2m]T , W = diag
(

1
εθ,1

, ..., 1
εθ,2m

)

and

Pθ(θ∗,εθ) = {θ : ‖W(θ∗−θ)‖∞ ≤ 1}, (21)

Pν(εa) = {ν : |ν| ≤ εa} (22)

The shape and size of the uncertainty set characterized byεθ andεa are unknown pa-
rameters. The only information given a priori is the data set{u(k),y(k)}l

k=1.
In order to characterize consistency of the model set with the data, define hyperplane

Dk in then+1 dimensional extended parameter space ofp := [θT ν]T

Dk := {p : y(k) = [ϕT(k) ν(k)]p}

Let P(θ∗,εθ,εa) := {p = [θT ν]T : θ ∈ Pθ(θ∗,εθ), ν ∈ Pν(εa)} denote the parameter set
defining model setM in the extended parameter space.

Definition 1 (Consistency) Parameter set P(θ∗,εθ,εa) can reproduce the data if

P(θ∗,εθ,εa)∩Dk 6= /0 ∀k = m, ..., l (23)

For given dataϕ(k) and model set parametersθ∗, εθ andεa the outputy(k) that the
model set can generate lies between the bounds, ¯y(k) andy(k)

ȳ(k) := max
θ∈Pθ(θ∗,εθ)

ϕT(k)θ+ εa ≤ y(k) ≤ y(k) := min
θ∈Pθ(θ∗,εθ)

ϕT(k)θ− εa (24)

With these bounds, the parameter set identification problemcan be formulated as fol-
lows.



Problem 1 Assume that a data set{u(k),y(k)}l
k=1 is given. Find a model set character-

ized byθ∗, εθ andεa such that(23) is satisfied and that minimizesγ := 1
2‖ȳ(k)−y(k)‖∞.

3.3 Solution via linear programming

It will be shown that Problem 1 leads to the solution of a linear programming (LP)
problem. In contrast to the solution of [8], where for eachDk a minimum necessary size
parameterε = ε(Dk,θ∗) is determined for a givenθ∗, we characterize consistency with
the help of the output bounds

Lemma 1. Consistency condition(23) is satisfied if and only if there existθ∗, εθ and
εa such that

y(k)≤ϕT(k)θ∗ + |ϕT(k)|εθ + εa, k = m, ..., l (25)

y(k)≥ϕT(k)θ∗−|ϕT(k)|εθ − εa, k = m, ..., l (26)

where|.| element-wise takes the absolute value of the argument.

Proof. We only need to show that maxθ∈Pθ(θ∗,εθ) ϕT(k)θ = ϕT(k)θ∗ + |ϕT(k)|εθ and
minθ∈Pθ(θ∗,εθ) ϕT(k)θ = ϕT(k)θ∗−|ϕT(k)|εθ, then the statement follows from the defi-
nitions. The linear functionϕT(k)θ over a convex polytope takes up its extreme values
at the vertices of the polytope. Let the vertex set ofPθ(θ∗,εθ) be denoted byV ,

V =











θ : θ = θ∗ +







±εθ,1
...

±εθ,2m

















where± means all combinations. From this the claims follow.

The following theorem summarizes our results.

Theorem 1. The model setM which is consistent with the data set{u(k),y(k)}l
k=1 and

minimizesγ = 1
2‖ȳ(k)−y(k)‖∞ is the solution of the following LP problem.

min
θ∗,εθ,εa

γ subject to(25), (26)and γ ≥ |ϕT(k)|εθ + εa, k = m, ..., l (27)

The problem involves 4m+2 variables and 3(l −m+1) inequality constraints, and can
be efficiently solved by rutin CLP in the MPT toolbox for Matlab, [3].

3.4 Identification of ARX vehicle models

Several braking experiments have been carried out with a Volvo FH, 24 ton three-axle
truck. ARX models of orderm= 1 are identified in the following.

The LP method of Theorem 1 is applied to the model structure

a(k) = a(k−1)θ1(k)+u(k−1)θ2(k)+ ν(k) (28)
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Fig. 1: One step ahead prediction with the central model withparameterθ∗ in a braking experi-
ment. Bounds for the prediction, ¯y andy, are also plotted (thin dotted black lines)

whereθ(k) := [θ1(k) θ2(k)]T ∈ Pθ(θ∗,εθ), ‖ν(k)− ν∗‖∞ ≤ εa, anda(k) denotes the
longitudinal acceleration andu(k) denotes the acceleration demand. An offset error of
the measurements can be taken into consideration with parameterν∗. The unknown
parameters of the model are the central parametersθ∗ andν∗, and the bounds of the
parameter and noise variation,εθ andεa, respectively.

The one-step ahead prediction of the optimal model is plotted in Figure 1. The
central parametersθ∗1 andθ∗2 correspond to a time constant of 1.13s and a gain of 9.5
when the model is transformed to continuous time by zero order hold (Ts = 0.01s). For
the parameter variationεT

θ = [0.18 0.20] ·10−12 is obtained.
By fixing the maximum allowed noise levelεa, the optimization can be performed

in the remaining variables. Figures 2 and 3 show the dependence of the prediction er-
ror bound and the optimal parameters on the chosen noise levels, respectively. It can
be seen that forcing the model set to represent uncertainty by the time-variation of pa-
rameters will result in overly conservative models. At the optimum, the uncertainty is
described almost entirely by the noise term. A more sophisticated uncertainty descrip-
tion is necessary which will be provided in Section 4.2.

3.5 Identification of OE models of minimal error in ℓ∞

In this section an output error model structure is identifiedwith the smallest error inℓ∞.
Suppose, we are given a data set{u(k),y(k)}l

k=1 and the model structure of LTI SISO
systems in the form

ŷ(k) = G(q)u(k), G(q) =
∑m

i=1biq−i

1+ ∑m
i=1aiq−i (29)

y(k) = ŷ(k)+ ν(k) (30)

The set of parameters is divided asθa = [a1, ...,am] andθb = [b1, ...,bm]. We are looking
for θa andθb that minimizeγ := ‖y(k)− ŷ(k)‖∞. This optimization problem is nonlinear
in parameterθa, therefore a nonlinear programming method can be applied. In case of
small noises, good initialization forθa and determination of the model order can be
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attained by using the recent result [13]. Onceθa is fixed,θb can be computed by linear
programming as follows.

1. Simulatey j(k) = q−i

1+∑m
i=1aiq−i u(k), i = 1, ...,m and letY(k) = [y1(k), ...,ym(k)]T .

From this, ˆy(k) = θT
bY(k).

2. Solve the LP problem

min
θb

γ s.t. − γ ≤ y(k)−θT
bY(k) ≤ γ, k = m, ..., l (31)

3.6 Identification of OE vehicle models

Experimental data used in Section 3.4 is applied now for identification of the OE model
structure

a(k) = a(k−1)θ1+u(k−1)θ2+ ν(k)−ν(k−1)θ1, ‖ν(k)−ν∗‖∞ ≤ εa (32)

The LP method presented in Section 3.5 is applied for identifying θ2, while θ1 is deter-
mined by simple line search. The optimal parameters correspond to a time constant of
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Fig. 4: Fit of the OE model with parameter to the measurementsin a braking experiment. Bounds
for the error are also plotted (thin dotted black lines)

0.9s and a gain of 1.25 when the model is transformed to continuous time by zero order
hold (Ts = 0.01). The fit of the model and the error bounds are plotted in Figure 4. This
model can serve as nominal models in the performance analysis of the platoon.

4 Performance analysis

4.1 Effects of platoon heterogeneity

For the case of heterogeneous platoons with nominal LTI models,ℓ∞-bounds on spacing
errors are analyzed.Assume that the allowable reference input r = u0 satisfies‖u0‖∞ ≤
umax, whereumax is a given bound and there are no actuator uncertainties,νi = 0. Then,
the worst-case peaks of the spacing errors, as functions of communication delays, can
be computed as follows

εi := ‖ei‖∞ =
∞

∑
j=0

|CiA
j
zEz|umax, i = 1, ...,n (33)

In the following numerical analysisεi , i = 1, ...,n, are computed when the platoon is
not homogeneous in nominal vehicle parametersθ∗i . It is assumed that bothθ∗i,1 andθ∗i,2
may differ from vehicle to vehicle

Θτg := [θ∗1,1 θ∗1,2 θ∗2,1 θ∗2,2 . . . θ∗n,1 θ∗n,2], θ∗i,1 = 1− Ts
τi

, θ∗i,2 = Tsgi
τi

,

τi ∈ {0.6,0.8}, gi ∈ {0.9,1.1}
(34)

where time constantτi and gaingi are parameters of the continuous-time vehicle mod-
els and may take up their extremal values. It can be shown thatthe worst-case platoon
configuration is the case when the vehicle model parameters are extremal and alternat-
ing in order. This means that if the platoon is of lengthn+ 1, it is enough to compute
(33) for 4n+1 systems. Taking the maximum and minimum for the 4n+1 systems, Fig-
ure 5 shows the worst-case and best-case bounds as functionsof the vehicle indexi
for dmax = 2m/s2. The lower bounds are achieved in case of homogeneous platoons.



Upper bounds correspond to platoons of alternating vehicledynamics. For a given set
of allowable maneuvers, this analysis directly provides hints on choosing safety gaps
between the vehicles in the different control modes, such asLi > εi , assuming zero ini-
tial conditions. The analysis is carried out for a range of network delays fromh = 0 to
h = 8Ts, but network delay of this range has negligible impact on thebounds.
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Fig. 5: Lower and upper bounds on spacing errors,εi for different network delays. Uncertainty is
defined by (34). Lower bounds (around zero) correspond to homogeneous platoons.

In the case when gain coefficients are estimated on-line, forexample with the help
of parameter adaptation methods described in [14], acceleration demand can always
be scaled so thatθi2 parameters can be set togi = 1. Then, for the uncertainty set
characterized by

Θτ := [θ∗1,1 θ∗2,1 . . . θ∗n,1], θ∗i,1 = 1−
Ts

τi
, θ∗i,2 =

Ts

τi
, τi ∈ {0.6,0.8} (35)

the spacing errors are bounded as shown in Figure 6. The bounds reduced to about one
meter.

4.2 Effects of actuator uncertainties

In this section, homogeneous platoons are assumed and merely the effects of brake
actuator uncertainties are estimated. The appropriate contribution to the spacing errors
is defined by

εν,i :=
∞

∑
j=0

n

∑
l=0

|CiA
j
zBν,z,l |νl ,max (36)

where the allowable disturbances satisfy‖νi‖∞ ≤ νi,max, i = 0, ...,n andBν,z,l denotes
columnl of Bν,z. It can be shown that the general case can be approximated by the sum
of boundsεν,i andεi obtained in this and the previous sections, respectively. For driving
experiments, the case is a bit more complicated, see [12].
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Fig. 6: Lower and upper bounds on spacing errors,εi for different network delays. Uncertainty is
defined by (35)

For some vehicleν j ≤ γ j = 1.13 is obtained by the method presented in Section 3.6
for the identifiedℓ∞-bound on the output of the nominal model. By assuming that the
same bound holds for every vehicle, (36) is calculated fori = 0, ...,n. Figure 7 presents,
with black solid line, the calculated spacing error bounds corresponding to this distur-
bance model. The bound about 19m indicates that an amplitude bounded but otherwise
arbitrary additive disturbance might be a too conservativemodel for evaluating spac-
ing performance. Assume, therefore, that brake actuator disturbance is generated by the
model

νi(k) = Wνi(q)ξi(k), ‖ξi‖∞ ≤ 1, i = 0, ..,n (37)

whereWνi is a bounded, stable and stable invertible operator satisfying

‖W−1
νi (q)(ai(k)−Vi(q)ui(k))‖∞ ≤ 1, (38)

i.e. a consistency condition with available experimental data{ai(k),ui(k)}N
k=0. A sub-

set of all consistent models can be finitely parameterized, for example, via finite im-
pulse response representation, by using Laguerre or Kautz bases or by pole-zero-gain
parametrization of fixed order. Letθνi denote the parameter vector of modelWνi(q,θνi ).
Then, performance of the platoon,εν := ∑n

i=1 εν,i , not falsified by measurement data can
be obtained as the solution of the following optimization problem

εν := inf
θνi ,i=0,...,n

n

∑
i=1

n

∑
l=0

‖Pν,il (q)Wνl (q,θνl )‖1 s.t. (38) (39)

wherePν,il (q) denotes the transfer function from disturbanceνl to spacing errori. By
using a pole-zero-gain parametrization forWνi(q,θνi ) with two real and a complex pair
of poles and zeros, respectively, confined to a stable sectorof the unit disc, the opti-
mization provided a significant reduction of spacing error bounds to 6m, see red dotted
line in Figure 7.
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Fig. 7: Spacing error boundsενi in brakingexperiments.

Fig. 8: Experimental vehicles in project TruckDAS

5 Experimental results

The control strategy presented in Section 2 is implemented on a platoon of three heavy
trucks and tested on a 3km long runway. The leader vehicle, driven by a driver, is a 18
ton MAN TGA two-axle tractor with load cage. The second vehicle is a 24 ton Volvo
FH three-axle truck. The third one is a 18 ton Renault Magnum two-axle tractor with
a semitrailer, See Figure 8. All vehicles are equipped with automatic gear change. The
communication network consists of radio transceivers operating on the open 868MHz
ISM narrow-band.

The experimental scenario is started with a ’joining in’ maneuver in which the leader
vehicle passes the others which are travelling at constant speed. When the last vehicle
in the platoon is caught by the radar of the joining vehicle and its driver enables au-
tonomous mode, the joining vehicle is accelerated and braked by given constant val-
ues and for sufficient time so that the vehicle arrives approximately at the prescribed
distance and speed close to that of the platoon. After the braking period the spacing



controller is switched on. When both joining maneuvers are finished, the leader vehicle
can freely accelerate and decelerate.

Nine experiments of similar maneuvers were carried out on a 3km long road. One of
them is shown in Figure 9. The maximum spacing error was not greater than 3mduring
braking maneuvers. During driving maneuvers, the maximum leg was not greater than
8m.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Communication with both preceding and leader vehicle

sp
ee

d 
[k

m
/h

]

 

 

v
0

v
1

v
2

0 20 40 60 80 100 120 140
−15

−10

−5

0

5

10

15

sp
ac

in
g 

er
ro

r [
m

]

 

 

e
1

e
2

0 20 40 60 80 100 120 140
−4

−3

−2

−1

0

1

2

C
on

tro
l s

ig
na

l [
m

/s
2 ]

time [s]

 

 

u
0

u
1

u
2

Fig. 9: Platoon control experiment

6 Conclusions

Spacing error analysis of heterogeneous platoons with inter-vehicle communication and
actuator uncertainties has been presented. The acceleration and deceleration commands
provided by the implemented controller have been carried out by the external demand
services of ECU and EBS, respectively. According to our experiences in both unfalsi-
fication based model analysis and experimental tests with a platoon of three vehicles
with different types and properties, we can conclude that a safety gap of 8mcan be safe
if the acceleration/deceleration of the leader vehicle is not greater than 2m/s2.
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