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Abstract. Based on model set identification and unfalsification, rolpesfor-
mance measured in peak-to-peak gain is analyzed for heteeogs platoons,
inter-vehicle communication delays and actuator unaatites. The goal is to
demonstrate that safe platooning with acceptable perfocemaan be achieved
by utilizing the services already available on every conuiaéheavy truck with
automated gearbox. Experimental verification of a threeéclelplatoon is also
presented.
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1 Introduction

Safe control of vehicle platoons requires strict guarahterinds on inter-vehicle spac-
ing errors. In order to avoid collision the sampled erroesta@st measured by thel
norm, so the bounds represent the worst-case peaks of thmgmarors. Consistent
identification tools are the set membership methods irZthsetting, see e.g. [2, 5, 6].
The identified model sets are employed for on-line modetiedilbn and a priori analy-
sis of the control performance measured by the worst-cassrgperrors.

Controllers for autonomous vehicle platoons usually cgirei two levels of feed-
back controllers. At the lower level a local, vehicle speaifontroller is responsible for
performing acceleration demands. The higher level cordmlis common for all vehi-
cles, it is designed for satisfying string stability reguirents of the entire platoon. Very
short safety gaps can be guaranteed under certain comstoaitead vehicle maneu-
vers, when detailed engine, gearbox and brake system maréedsailable, see, e.g., in
references [1, 4, 9]. There is, however, some difficulty ia Widespread applicability
of these control methods. The required engine/gearbdeswgstem models are usu-
ally not available and not reliable for all commercial hedrycks. In addition these
controllers try to directly excite the brake cylinder pra®s and the throttle valve of
the engine, which could also conflict with the existing cohtmits, such as Electronic
Brake System (EBS) and Engine Control Unit (ECU).

In the paper the goal is to explore the performance of an aafieainvehicle string
where, in contrast to the former solutions, only the stadided and general services of
the EBS and ECU are used. This work is an extension of thenas#aat was presented



in the conference paper [11], where the focus was placed afehset identification

problems and the analysis of the spacing error bounds dubjbeterogeneity in vehi-
cle dynamics. A method for computing unfalsified perfornegimcorder to analyze the
effect of actuator uncertainties is also presented. Astilation is shown for the brake
system.

In Section 2 the mathematical model of the platoon is presefithe vehicle model
set identification method is provided in Sections 3. The granfince of a heteroge-
neous platoon and the effect of actuator uncertainties rrayzed in Section 4. The
experimental results are shown in Section 5.

Basic notationsThe peak norm of a sequenag) is denoted byju||. =sup|u(K)|,
l» denotes the space of sequences of finite peak norm. The pgmak norm of a
systemH is defined by|H||1 =sup, .o Hul=

ulle -

2 State-space model of vehicle platoons

In this section a discrete-time, linear time-varying stspp@ce model for the controlled
platoon is briefly summarized.
The longitudinal dynamics of a single vehicle is approxieadty the following first
order nominal model with sampling tinTg
di(k+1) =674 (k) +65ui(k), i=0,1,....n Q)
ai(k) = &(k) +vi(k) )
wherea; andu; denote the acceleration and acceleration demand of vehiléenotes
the acceleration output of the nominal mod#], and8;, denote constant parameters,

v; denotes additive disturbance representing actuator taicges. The spacing error of
theith follower vehicle and relative speed of vehickendi — 1 are defined by

& (k) = x (k) + L —xi—1(k) 3)
3i (k) = vi(k) —vi—1(k) (4)

whereL; denotes the desired intervehicular space. Without losemegalityl; can be
assumed to be zero in the analysis. The position and forwseedsof theth vehicle
are denoted by; andv;, respectively. By using Euler approximation of integrator

a(k+1) = e(k) +Tsdi(k) (5)
3i(k+1) = di(k) + Ts(ai (k) — ai-1(k)) (6)
the spacing error dynamics can be written for each follovedicle as follows
a(k+1) 1T 07 [ea(k) 00 00 a"ufai')‘)
A. * . * 1—
a(k+1) 006 | |a(k 06, 00 vi(K)
The open-loop model of the entire platoon

x(k+ 1) = Ax(k) + Bu(k) + Byv(K) + Eqr (k)



is constructed by introducing the state veotbe= [Apep 0181 €, 0, &n), control input
vectoru” = [uy -- - up], disturbance vector” = [vg --- vp] and reference signal= uo.

The platoon controller is a modified version of the constgaiceng strategy pre-
sented in [14, Section 3.3.4]. The modification resides at,tmstead of measured
acceleration, control input is transmitted through thewoek. Consequently, the gear
change has lower impact in the control signal than in thelacation, so each vehicle
can change gear without deceiving the followers; the vehickact quicker to maneu-
ver changes; and no need for filtering the rather noisy aat@@ measurements. The
control strategy in a general form is defined by the followaogiations

u(k) = u (k) + On(K) (8)
u(k) = Kix(k) (9)
Un(K) = Knx(K) + Gnr(K) + SUK) + Hyv(K) (10)

whereu, contains the locally available radar information. Gain mxal, can be con-
structed based on the following definition

ULﬁl(k) = —k151(k) — kzej_(k) (11)
uLi(K) = —kqpdi(k) — kogei(k), i>1 (12)

Control signaly is constructed from the information received from the comivation
network

un,1(K) = uo(k) (13)

UN,i(k) = Ui— 1(|() 1+q klu 2061 k2u zoej(k), i>1 (14)

whereky, k2, kia, kaq, kig andkog are design parameters, see [10] for a possible choice.
MatricesKy, Gn, Hy andScan be constructed based on (11)-(14).

The communication network has a sampling timeToE NTs and the packet is
transmitted afteh < T constant delay. Ity (k) denotes the variable to be transmitted
at the network input, then

1+03

~ o Jun(k—h)if &M is aninteger
On (k) = { Gn(k— 1) otherwise (15)

denotes the network output at the receiver.

The closed-loop system with the delayed communication iei in [10]. The
local partu of the controllers run with the faster sampling rateBy closing the loop
with ug, re-sampling withNTs, then closing the loop withuy” and assuming (k) =
r(k+1)=..=r(k+N-1)andv(k) =v(k+1) =... =v(k+N—1) we arrive at the
following closed-loop model with augmented state vector

2(k+N) = Az(K) + By v(K) + Exr(k),  z(K) = [UN i N)} (16)



where

A — Aﬁ—i—Bo(KN—i—SK_)Bl—i-BoS E _ En + BoGn B, ,— Byn + BoHn
zZ — KN"’SK_ S y =Z — GN ) Z—

h-1 ) N-1 .
Bi = %Aﬁ*HB, Bo:= ZHAE*“B, AL=A+BK,
j= i=

N—-1 Neloi N—-1 Neloi
En = ZOAL 'E,  Bw= ZOAL 'By,
= =

Notice the dependence Bf andBy on communication delaly. The spacing errors can
be observed through matrix€sdefined bye (k) = Ciz(k), i = 1,2,...n.

3 ldentification of nominal vehicle models

Nominal vehicle models defined by (1) and (2) are identifiethenworst-case setting.
Two circumstances motivate the application of this idecdiion approach. Both the
brake system and the drive-line are functioning as unknosimear, hybrid systems
with many thousands of program rows organizing finite staéehmes. An adequate
description of noise statistics is not available and onjuced order models can be
considered. It seems to be reasonable to assume only stuotb on disturbances and
unmodelled dynamics. Strict bounds are also useful in thestagase analysis of spac-
ing error bounds. On the other hand, available performaneéysis tools for model
sets with unmodelled dynamics may result in conservatividpaance bounds. Uncer-
tainty modelling is, therefore, confined to disturbance siling only. The correspond-
ing peak-to-peak system norm computation for LTI systenssifciently accurate.

In order to obtain a preliminary view of the amount of uncittain the vehicle
dynamics and actuators including EBS and ECU softwaresertaioty descriptions
of several different structures are identified in the sectibhe first one is an ARX-
type model structure with time-varying parameters. Thachesncept originating in
the papers [8, 7] is briefly presented in the following sukisec Then, the results are
extended for obtaining minimal worst-case predictioneinr&ection 3.2. In the second
method an output error (OE) model structure is identifiedant®n 3.5. Both methods
are applied to the experimental data of a heavy truck. The @#8efrstructure is also
applicable for the performance analysis method present8ddgtion 4.2.

3.1 lIdentification of the smallest unfalsified parameter set for SISO transfer
functions

Consider the following discrete-time linear single inpinigde output model structure

_ Ziriil.biqii . T *
Ol0)= Tt g 0= [ananbi bl cRy@.E)  (17)

whereq is the forward shift operator. Time-varying parameter geétis defined in the
cubePy(6%,g9) := {0 : |[W(6" —0)|| < &}, where the a priori given diagonal matrix



W= diag{%, ceey 1m} defines the shape of the cube with edges of lenggh. Biven

€6.2m
input output data seftu(k), y(k) }L_;, the problem s to find the central parameieand
the minimal sizee of the cube such that for eveky=m,...|| there exists a parameter
0 € Py(8%,¢) not invalidated by the measurements, i.e.

Py(0°,6)NDx£0  Vk=m,...I| (18)

whereDy == {8: y(k) = ¢T(k)B(k)} and ¢ (k) = [-y(k—1),...,—y(k— m),u(k —
1),...,u(k—m)]. This problem can be solved by minimizing a convex functisria-
lows
_ min max Y =0T (67|
FT R e W]
In the following subsection the model structure is augmetbtean additive distur-

bance term, and the worst case prediction error is minimizgte an optimal shape of
the parameter cube and a bound for the disturbance are dietekm

(19)

3.2 Unfalsified ARX model set of minimal prediction error in /e

With the notation of the previous section we can define theviohg ARX type model
structure, denoted byf

M = {y(K) = T (K)B(K) +v(K),B(K) € Po(8",9),V(K) € Py(€a), k=1,...,1 } (20)

wheregg = [ggy, ..., €gom] T, W = diag(gfl, s ﬁ) and
Ps(6%,80) = {0 [W(8" —0)[|w < 1}, (21)

The shape and size of the uncertainty set characterized byde, are unknown pa-
rameters. The only information given a priori is the data{sgk),y(k)}_;.

In order to characterize consistency of the model set wihitita, define hyperplane
Dk in then+ 1 dimensional extended parameter spacp of [8" v]T

D= {p: y(k) = [" (k) v(k)]p}

LetP(0*,€q,€a) := {p=[B" V]T : B € Py(0*,€9), v € Py(€a) } denote the parameter set
defining model se®/ in the extended parameter space.

Definition 1 (Consistency) Parameter set F9*, €9, €5) can reproduce the data if
P(6*,€9,6a) NDx £ 0 vk=m,..,I (23)

For given data (k) and model set parametes €g ande, the outputy(k) that the
model set can generate lies between the bowtlsandy(k)

k) := Tke < v(k) < y(K) := ; Tke— 24
K 96'?(8*)-,(89)(') (k)8+2a < y(k) <y(k) eengIGD,se)q) (k)8 —ca (24)

With these bounds, the parameter set identification prolsl@mbe formulated as fol-
lows.



Problem 1 Assume that a data sét(k),y(k)}|._, is given. Find a model set character-
ized by*, g9 ande, such thai(23)is satisfied and that minimizgs= 1||y(k) — y(K) |/«

3.3 Solution via linear programming

It will be shown that Problem 1 leads to the solution of a Impeogramming (LP)
problem. In contrast to the solution of [8], where for e@a minimum necessary size
parametee = £(Dy,6*) is determined for a give@*, we characterize consistency with
the help of the output bounds

Lemma 1. Consistency conditio(23) is satisfied if and only if there exiét, g and
€, such that

y(KEDT (K)B" + [T (K)|€g + €a, kK=m,.... (25)
y(KpoT (k)" — (07 (K)|go —€a, k=m....| (26)
where|.| element-wise takes the absolute value of the argument.

Proof. We only need to show that mgp, e« ¢ &' (K)8 = ¢T (k)6* + ¢ (K)[€s and
MiNgep, 6+ ¢5) @' (K)O =T (K)B* — |97 (K)|€q, then the statement follows from the defi-
nitions. The linear functiop™ (k)8 over a convex polytope takes up its extreme values
at the vertices of the polytope. Let the vertex sePgib*,eg) be denoted by,

+€g1
V=¢0:0=0"+
+€gom

where4+ means all combinations. From this the claims follow.

The following theorem summarizes our results.

Theorem 1. The model seb/ which is consistent with the data set(k), y(k)}|_, and
minimizesy = 1|y(k) — y(K)||» is the solution of the following LP problem.

min vy subject to(25), (26)and y> ¢ (k)|eg +€a, k=m, ..., 1 (27)

0*,€q,€a
The problem involvesi+ 2 variables and @ — m+ 1) inequality constraints, and can
be efficiently solved by rutin CLP in the MPT toolbox for Métlq3].
3.4 Identification of ARX vehicle models

Several braking experiments have been carried out with @oMeH, 24 ton three-axle
truck. ARX models of ordem = 1 are identified in the following.
The LP method of Theorem 1 is applied to the model structure

a(k) = a(k—1)83(k) + u(k— 1)82(K) + v(K) (28)
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Fig. 1: One step ahead prediction with the central model péttamete®* in a braking experi-
ment. Bounds for the predictiog,andy, are also plotted (thin dotted black lines)

where8(K) := [81(k) 82(K)]T € Py(8*,£g), ||V(K) — V|l < €a, anda(k) denotes the
longitudinal acceleration ana(k) denotes the acceleration demand. An offset error of
the measurements can be taken into consideration with gaeaui. The unknown
parameters of the model are the central paramé&eedv*, and the bounds of the
parameter and noise variatiaa,ande;, respectively.

The one-step ahead prediction of the optimal model is mlotteFigure 1. The
central parametef@; and®; correspond to a time constant of 1.13s and a gain of 9.5
when the model is transformed to continuous time by zerordrdiel (Ts = 0.01s). For
the parameter variatice} = [0.18 0.20] - 10 2is obtained.

By fixing the maximum allowed noise leve}, the optimization can be performed
in the remaining variables. Figures 2 and 3 show the dep&edefithe prediction er-
ror bound and the optimal parameters on the chosen noisks |egspectively. It can
be seen that forcing the model set to represent uncertayntyebtime-variation of pa-
rameters will result in overly conservative models. At thgimum, the uncertainty is
described almost entirely by the noise term. A more soplaittd uncertainty descrip-
tion is necessary which will be provided in Section 4.2.

3.5 lIdentification of OE models of minimal error in ¢,

In this section an output error model structure is identifigth the smallest error .
Suppose, we are given a data $etk),y(k) }|_, and the model structure of LTI SISO
systems in the form

909 = Glaul). 6@ - A (29)

y(k) = y(k) +v (k) (30)

The set of parameters is divided&s= [ay, ..., am] and6, = [by, ..., by]. We are looking
for 8, andBy, that minimizey := ||y(k) — Y(K)||». This optimization problem is nonlinear
in parameteB,, therefore a nonlinear programming method can be applecase of
small noises, good initialization fd; and determination of the model order can be
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Fig. 3: Parameter bounds as functions of fixed noise beyiinlthe ARX model structure

attained by using the recent result [13]. O¥gés fixed, B, can be computed by linear

programming as

1. Simulatey; (k) =

follows.

q—i

Wu(k), [

From this,y(k) = 8] Y (k).
2. Solve the LP problem

3.6

miny s.t. —y< y(k) —8lY(k) <y, k=m,...
b

Identification of OE vehicle models

1,...mand letY(k) = [y1(K),...,ym(K)]".

| (31)

Experimental data used in Section 3.4 is applied now fortiieation of the OE model

structure

a(k) =a(k—1)81+u(k—1)824+v(k) —v(k—1)84,

Iv(k) —

Vo <€ (32)

The LP method presented in Section 3.5 is applied for idgntifo,, while 6, is deter-
mined by simple line search. The optimal parameters coorebfo a time constant of
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Fig. 4: Fit of the OE model with parameter to the measuremaradraking experiment. Bounds
for the error are also plotted (thin dotted black lines)

0.9s and a gain of 1.25 when the model is transformed to camtimtime by zero order
hold (Ts = 0.01). The fit of the model and the error bounds are plotted infgi@. This
model can serve as nominal models in the performance asalie platoon.

4 Performance analysis

4.1 Effects of platoon heterogeneity

For the case of heterogeneous platoons with nominal LTI ispflebounds on spacing
errors are analyzed.Assume that the allowable referepegiin= up satisfies|ug||e <
Umax Whereumaxis a given bound and there are no actuator uncertaintiesQ. Then,
the worst-case peaks of the spacing errors, as functionsnofrunication delays, can
be computed as follows

[ee]

g = |allo = zo|QA;EZ|umM i=1,..,n (33)
J=l

In the following numerical analysis, i = 1,...,n, are computed when the platoon is
not homogeneous in nominal vehicle parame®¢rst is assumed that bo8)j; and6;’,
may differ from vehicle to vehicle ' '

. * * * * k * * s « _ IsQi
Org 1= [91,1 e1,2 e2,1 e2,2 en,l en,z]v ei,l =1- I_i’ 6i,2 = -[_?a (34)
T € {0.6,0.8}, g €{09,11}

where time constarty and gaing; are parameters of the continuous-time vehicle mod-
els and may take up their extremal values. It can be showrittbatiorst-case platoon
configuration is the case when the vehicle model parametersdremal and alternat-
ing in order. This means that if the platoon is of length 1, it is enough to compute
(33) for 41 systems. Taking the maximum and minimum for tié%4systems, Fig-
ure 5 shows the worst-case and best-case bounds as funefitims vehicle index

for dmax= 2m/52. The lower bounds are achieved in case of homogeneous ptatoo



Upper bounds correspond to platoons of alternating veligteamics. For a given set
of allowable maneuvers, this analysis directly providegshon choosing safety gaps
between the vehicles in the different control modes, sudh asg;, assuming zero ini-
tial conditions. The analysis is carried out for a range d#voek delays fromh =0 to

h = 8Ts, but network delay of this range has negligible impact orbivends.

Peak bounds for spacing errors with different delays
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Fig. 5: Lower and upper bounds on spacing errgréor different network delays. Uncertainty is
defined by (34). Lower bounds (around zero) correspond tagemeous platoons.

In the case when gain coefficients are estimated on-lineeXample with the help
of parameter adaptation methods described in [14], aat@ardemand can always
be scaled so thalj, parameters can be set ¢gp= 1. Then, for the uncertainty set
characterized by

Or:=1[011051 ... 6h4], G171 =1~ T_is’ i2= T_is’ 1,€{0.6,0.8; (35)
the spacing errors are bounded as shown in Figure 6. The beaddced to about one
meter.

4.2 Effects of actuator uncertainties

In this section, homogeneous platoons are assumed andyntleeeéffects of brake
actuator uncertainties are estimated. The appropriateilbotion to the spacing errors
is defined by

&y = J;lélciA%B\),ZJ |Vl,max (36)

where the allowable disturbances sati§fy||« < Vimax i =0,...,n andB, ;| denotes
columnl of B, ;. It can be shown that the general case can be approximatée Isyin
of boundsy ; andg; obtained in this and the previous sections, respectivelydfving
experiments, the case is a bit more complicated, see [12].



Peak bounds for spacing errors with different delays
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Fig. 6: Lower and upper bounds on spacing errgréor different network delays. Uncertainty is
defined by (35)

For some vehicle; <y; = 1.13 is obtained by the method presented in Section 3.6
for the identified/»-bound on the output of the nominal model. By assuming that th
same bound holds for every vehicle, (36) is calculated fo0, ..., n. Figure 7 presents,
with black solid line, the calculated spacing error bounaisesponding to this distur-
bance model. The bound aboutithdicates that an amplitude bounded but otherwise
arbitrary additive disturbance might be a too conservatieglel for evaluating spac-
ing performance. Assume, therefore, that brake actuasturitiance is generated by the
model

vi(k) =Wei(a)gi(k),  [&lle <1, i1=0,.,n @37
whereW,; is a bounded, stable and stable invertible operator satgsfy
IV (a) (@i (k) = Vi(@)ui (k) [l < 1, (38)

i.e. a consistency condition with available experimentabda; (k), uj (k) }R_,. A sub-
set of all consistent models can be finitely parameterizedekample, via finite im-
pulse response representation, by using Laguerre or Kaseshor by pole-zero-gain
parametrization of fixed order. L8}, denote the parameter vector of modé|(q, 6y, ).
Then, performance of the platoay,:= ¥, &, not falsified by measurement data can
be obtained as the solution of the following optimizationlgem

=g, 33 [P (AW (6,8 )l st (38) (39)

whereR, j (q) denotes the transfer function from disturbamgéo spacing error. By
using a pole-zero-gain parametrization ¥y (g, 6y, ) with two real and a complex pair
of poles and zeros, respectively, confined to a stable se€titie unit disc, the opti-
mization provided a significant reduction of spacing errauitds to 6m, see red dotted
line in Figure 7.
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Fig. 7: Spacing error bounds; in brakingexperiments.

Fig. 8: Experimental vehicles in project TruckDAS

5 Experimental results

The control strategy presented in Section 2 is implementes mlatoon of three heavy
trucks and tested on a 3km long runway. The leader vehidsmby a driver, is a 18
ton MAN TGA two-axle tractor with load cage. The second véhis a 24 ton Volvo
FH three-axle truck. The third one is a 18 ton Renault Magnwordxle tractor with
a semitrailer, See Figure 8. All vehicles are equipped witftoatic gear change. The
communication network consists of radio transceivers aifreg on the open 868MHz
ISM narrow-band.

The experimental scenario is started with a ’joining in’ raver in which the leader
vehicle passes the others which are travelling at conspes@cs When the last vehicle
in the platoon is caught by the radar of the joining vehicld &s driver enables au-
tonomous mode, the joining vehicle is accelerated and lrblgegiven constant val-
ues and for sufficient time so that the vehicle arrives apprately at the prescribed
distance and speed close to that of the platoon. After thkiriygeriod the spacing



controller is switched on. When both joining maneuvers anistiied, the leader vehicle
can freely accelerate and decelerate.

Nine experiments of similar maneuvers were carried out dinaldng road. One of
them is shown in Figure 9. The maximum spacing error was rezttgr than B1during

braking maneuvers. During driving maneuvers, the maximegnatas not greater than
8m.

Communication with both preceding and leader vehicle

speed [km/h]

T e S P ey
2 e

spacing error [m]

I
a
T

. .
20 40 60 80 100 120 140

Control signal [m/s?]

0 80
time [s]

Fig. 9: Platoon control experiment

6 Conclusions

Spacing error analysis of heterogeneous platoons with-ugtieicle communication and
actuator uncertainties has been presented. The acceteaatil deceleration commands
provided by the implemented controller have been carriddguhe external demand
services of ECU and EBS, respectively. According to our egpees in both unfalsi-
fication based model analysis and experimental tests witlatagn of three vehicles
with different types and properties, we can conclude thafetg gap of & can be safe

if the acceleration/deceleration of the leader vehicleisgneater than®/s?.
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