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Abstract: Geometric fault detection and isolation filters are known for having excellent fault
isolation, fault reconstruction and sensitivity properties under small modeling uncertainty and
noise. However they are assumed to be sensitive to model uncertainty and noise. This paper
proposes a method to incorporate model uncertainty into the design. First, a geometric filter
is designed on the nominal plant. Next a robust model matching problem is solved to design a
post-filter that augments the performance of the geometric filter over the set of uncertain plants.
The method is compared with the standard H1 robust FDI filter design procedure, where the
robustness and performance of the residual generation are solved in one step, but disturbance
rejection and fault sensitivity are not decoupled from each other. Finally, an aircraft dynamics
example is presented to detect and isolate aileron actuator faults to asses the performance of
the di↵erent filter designs.

1. INTRODUCTION

Modern fly-by-wire aircraft flight control systems are be-
coming more complex with many actuators controlling
several aerodynamic surfaces. While performance goals,
like aerodynamic drag minimization and structural load
alleviation are becoming more and more important flight
must be kept at the same highest safety level. In parallel,
there is a clear trend towards the All-Electric Aircraft.
Recently, Airbus introduced on the A380 a new hydraulics
layout (Van den Bossche, 2006), where the three Hy-
draulics circuitry is replaced by a two Hydraulics plus two
Electric layout, which saves one ton mass for the aircraft.
Each primary surface has a single hydraulically powered
actuator and electrically powered back-up with the excep-
tion of the outer aileron, which uses the two hydraulic sys-
tems together. Consequently, the trends of complexity and
more-electric architectures, like Electromechanical Actua-
tors (EMA) with more fault sources, raise the importance
of availability, reliability and operating safety. For safety
critical systems, like aircraft, the consequences of faults
in the control system hardware and software are deeply
analyzed and rigorous design constraints are applied for
ensuring compliance with stringent safety regulations of
FAA, EASA and other aviation authorities.However, there
is a growing need for on-line supervision and fault diagno-
sis to satisfy the newer societal imperatives towards an
environmentally-friendlier aircraft with still the highest
level of safety and reliability. The traditional approach to
fault diagnosis in the wider application context is based on
hardware redundancy methods which use multiple sensors,
actuators computers and software to measure and control
a particular variable (Goupil, 2011). Based on the math-
ematical model of the plant, analytical relation between
di↵erent sensor outputs can be used to generate residual
signals. There is a growing interest in methods which
do not require additional hardware redundancy, and only
rely on the ever increasing level of computational power
onboard the aircraft. In analytical redundancy schemes,
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the resulting di↵erence generated from the consistency
checking of di↵erent variables is called as a residual signal.
The residual should be zero when the system is normal,
and should diverge from zero when a fault occurs in the
system. This zero and non-zero property of the residual
is used to determine whether or not faults have occurred.
Analytical redundancy makes use of a mathematical model
and the goal is the determination of faults of a system from
the comparison of available system measurements with a
priori information represented by the mathematical model,
through generation of residual quantities and their anal-
ysis. Various approaches have been applied to the resid-
ual generation problem, the parity space approach (Chow
and Willsky, 1984), the multiple model method (Chang
and Athans, 1978), detection filter design using geometric
approach (Massoumnia, 1986), frequency domain concepts
(Frank, 1990), unknown input observer concept (Chen and
Patton, 1999), dynamic inversion based detection (Edel-
mayer et al., 2003), and using rational nullspace bases
(Varga, 2003). Most of these design approaches refer to lin-
ear time-invariant (LTI) systems. The geometric concept
is further generalized to linear parameter-varying (LPV)
systems by Balas et al. (2003), while input a�ne nonlinear
systems are considered by De Persis et al. (2001). The
basic concepts underlying observer-based fault detection
and isolation (FDI) schemes are the generation of residuals
and the use of an optimal or adaptive threshold function
to di↵erentiate faults from disturbances, see the surveys
of Frank (1990); Patton and Chen (1996). Generally, the
residuals, also known as diagnostic signals, are generated
by the FDI filter from the available input and output
measurements of the monitored system. The threshold
function is used to robustify the detection of the fault
by minimizing the e↵ects from false faults, disturbances
and commands on the residuals. For fault isolation, the
generated residual has to include enough information to
di↵erentiate said fault from another, usually this is accom-
plished through structured residuals or directional vectors.
Robustness of the FDI algorithm is determined by its
capability to decouple the filter performance outputs from
disturbances, errors, and unmodelled dynamics. The rise
of robust control techniques in the 1980s led to an interest
in alternatives to the well known Kalman filter (Kalman,
1960), e.g. the H2 filter (a generalization of the Kalman
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filter) and the H1 filter ((Shaked and Theodor, 1991)).
These methods assume the signals are generated by a
known dynamic model and robustness with respect to
model uncertainty is an important consideration. Numer-
ous papers on robust filter design have appeared (Appleby
et al., 1991; Mangoubi, 1995; Sun and Packard, 2003;
Scherer and Köse, 2008).

The importance of this paper is on the application (simula-
tion) of the geometric approach based LTI FDI technique
to a nonlinear high-fidelity aircraft model, where issues of
model uncertainty, realistic disturbances and robustness
have to be accounted for in the design stage. This paper
proposes a method which incorporates model uncertainty
into the design. First, a geometric filter is designed on
the nominal plant. Next a robust model matching prob-
lem is solved to design a filter that robustly matches
the performance of the geometric filter over the set of
uncertain plants which is compared with the conventional
one-stepH1 formulation of the problem. The remainder of
the paper is structured as follows. Section 2 presents the
basic concepts of geometric fault detection filter design.
Section 3 formulates the robust fault detection filter de-
sign problem and describes the proposed solution method.
The application example of a civil aircraft is described
in Section 4. The method is applied to the high-fidelity
aircraft model example, which demonstrates the proposed
approach, given in Section 5. Finally, the paper is con-
cluded in Section 6.

2. GEOMETRIC FDI FILTERS

The geometric design approach (Massoumnia, 1986) is
known for its excellent fault isolation, fault reconstruction
and sensitivity properties under small modeling uncer-
tainty and noise. It is shown in (Seiler et al., 2011a) the
robust model matching problem has an interesting self-
optimality property for multiplicative input uncertainty
sets. Specifically, the filter designed on the nominal plant
is the optimal filter in the robust model matching problem.
The derivation of the geometric FDI filters is presented for
LTI systems with no disturbance, no uncertainty and the
detection and isolation of two faults. Consider the LTI
system with two additive actuator faults:

ẋ(t) = Ax(t) +Bu(t) + L1f1(t) + L2f2(t) (1)
y(t) = Cx(t)

where L1 and L2 represent the faults directions in the
state space. f1 and f2 are the fault signals. The fault
signals are zero if there is no fault but nonzero if the
particular fault occurs. Only actuator faults are considered
here but sensor faults can also be considered within the
theory. The fundamental problem of residual generation is
to synthesize residual generators (filters) with outputs r

i

(i = 1, 2) that have the following decoupling property: r
i

is
sensitive to f

i

but insensitive to f
j

, i 6= j. More precisely,
if f

i

= 0 then lim
t!1 r

i

(t) = 0 and if f
i

6= 0 then r
i

6= 0.

The solution of this problem depends on the (C,A)-
invariant subspaces and certain unobservability subspaces
(Massoumnia, 1986). A (C,A)-unobservability subspace S
is a subspace such that there exist matrices G and H with
the property that S is the maximal (A + GC) invariant
subspace contained in Ker HC. The family of (C,A)-
unobservability subspaces containing a given set L has a
minimal element. Define L

i

= Im L
i

(i = 1, 2) and denote
by S⇤ the smallest unobservability subspace containing
L2. Then the fundamental problem of residual generation
has a solution if and only if S⇤ \ L1 = 0 (Massoumnia
et al., 1989). The condition S⇤ \ L1 = 0 ensures that the
fault to be detected is not hidden in the unobservability
subspace of the detection filter. In fact, the fault direction
will be decoupled from the rest of the fault directions since
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Fig. 1. Geometric FPRG filter with H1 augmentation.

they are contained in the unobservability subspace of the
residual generator. This result can be extended to LPV
systems (Balas et al., 2003) and to nonlinear input a�ne
systems (De Persis et al., 2001).

The residual generator associated with fault direction L1
can be described by an observer of the form:

ẇ(t) = Nw(t)�Gy(t) + Fu(t) (2)
r1(t) = Mw(t)�Hy(t)

where u and y are the known input and measured output
signals of the original LTI system. w is the state of the
residual generator and r1 is the residual.

Denote by P the projection operator P : X ! X/S⇤. The
state matrices can be determined as follows (Massoumnia,
1986). H is a solution of the equation Ker HC = Ker C+
S⇤, and M is the unique solution of MP = HC. Consider
a gain matrix Ĝ chosen such that (A + ĜC)S⇤ ✓ S⇤ and
define Â = P (A+GC)PT . Â is not necessarily Hurwitz. To
obtain quadratically stable filters one can setN = Â+G̃M,
where G̃ := X�1K and X, K are determined from the
linear matrix inequality (LMI):

0 ⌫ ÂTX +XÂ+MTKT +KM (3)

0 � X = XT (4)

Then set G = PĜ+ G̃H and F = PB.

Using this approach there are as many filters as faults
to detect, and their state dimensions are equal to the
dimension of X/S⇤. The filter poles can be tuned by
imposing constraints in the LMI resulting in perfect re-
construction of fault signals f

i

. One issue is that the filter
design does not consider model uncertainty and the fault
detection performance may be not be robust. The next
section discusses a model matching approach for recovering
the geometric filter performance in the presence of model
uncertainty.

3. ROBUST MODEL MATCHING AUGMENTATION

It is a standard procedure to pose the FDI filter design
problem as an H1 optimization (Marcos et al., 2005). In
this approach fault reconstruction is achieved as a model
matching problem as shown in Fig. 2 and approximate
disturbance decoupling is is achieved in the H1 optimal
sense.

On the other hand the FPRG approach is able to pro-
vide exact decoupling between the fault(s) and the distur-
bances, but the resulting FPRG filter dynamics might not
be optimal for the detection purpose. To overcome this
weakness of the geometric approach, the FPRG filter can
be augmented with a post-filter, as shown in Fig. 1, where
the dynamics of the FPRG filter is shaped with suitable
output injection o. Fault reconstruction is achieved with
model matching using theH1 optimal filter FDI

h1, which
uses the independent outputs of the FPRG filter r1. The
main advantage of this approach is that elements of r1 are
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Fig. 2. Standard H1 FDI filter architecture.

all decoupled from the disturbances and hence the filter
FDI

h1 only acts on the signals which are sensitive for the
faults and can be fed back to shape the dynamics of the
FPRG filter.

4. AIRCRAFT MODEL

4.1 General Aircraft Characteristics

The aircraft model used in this paper is an aircraft from
Airbus. The aircraft has two engines and a nominal weight
of 200 tons. Some of its performance at cruise flight
condition are speed of 240 knots, altitude of 30000 ft.
The aircraft has 19 control inputs, and measurement of
6-DOF motion with load factor (n

x

, n
y

, n
z

), body rate
(p, q, r), velocity (V

T

), aerodynamic angles (↵,�), position
(X,Y, Z) and attitude (�, ✓, ) outputs. The inputs are:
pi1 left and pi2 right engine; AF (airbrake), which is
disabled at cruise flight condition, �

a,IL

Aileron internal
Left; �

a,IR

Aileron internal Right; �
a,EL

Ail external Left;
�
a,ER

Ail external Right; �
sp,1L Spoiler 1 Left; �

sp,1R
Spoiler 1R; Spoiler 23L; Spoiler 23R; Spoiler 45L; Spoiler
45R; �

sp,6L Spoiler 6L; �
sp,6R Spoiler 6R; �

e,L

Elevator
Left; �

e,R

Elevator Right; �
r

Rudder; and �
ih

Trimmable
Horizontal Stabilizer which is used for trimming purposes.

The aerodynamic database, propriety of Airbus Opera-
tions S.A.S, is of high-fidelity. The rigid body aircraft
equations of motion are augmented with actuator (Goupil,
2011) and sensor characteristics. The nonlinear body-axes
rigid body dynamics includes 12 states: p, q, r body rates,
u, v, w velocities all in body axes, �, ✓, Euler angles, rep-
resenting the rotation between the body and inertial axes,
and X,Y, Z positions in the North-East-Down coordinate
frame, assuming Flat Earth for simplicity. The rigid body
aircraft model is augmented with nonlinear actuator and
sensor models on all input and output channels.

4.2 Linearized Aircraft Model

In the present article one design point, cruise flight con-
dition, is considered. The LTI model of the aircraft is ob-
tained at level flight, with p = q = r = 0 rad/s, v

x

= const.
m/s, v

y

= 0m/s, v
z

= const. m/s, at 9144 m altitude, see
Vanek et al. (2011) for details. The airbrake, which is dis-
abled at high Mach numbers, is removed from the control
inputs since it has no e↵ect on the aircraft. The model used
for trim is an open-loop model without the control loop
and, since the actuators and sensors are assumed to have
unit steady state gain and low-pass characteristics, their
dynamics are omitted. Trim is obtained with zero aileron,
rudder and elevator deflection, left and right engines are
providing the same amount of thrust to balance the yawing
motion. Pitch axis trim is obtained with the Trimmable
Horizontal Stabilizer, while the aircraft has constant angle-
of-attack. The resulting 12 state linear model is unstable.

The open loop aircraft model is slightly unstable around
the yaw angle ( ), and has two modes (X,Y ) which
are integrators. Since the FDI problem is invariant of

X,Y positions and yaw angle these states are removed
from the dynamics. The resulting model with nine states,
as described in (Vanek et al., 2011), almost perfectly
matches the original 12 states model in the behavior of
the remaining states, and outputs. The resulting system
with nine states is stable which is necessary for linear
estimator based FDI techniques. After investigation of
the FCC commands, assuming faults appear only on the
aileron, elevator, and rudder channels, the inputs of the
system can be simplified. The two engines are receiving
the same commands, the spoilers have a fixed coupling, the
two elevators are also moving in unison, hence the number
of inputs can be reduced to 9, namely: pi engine; �

a,IL

Aileron internal Left; �
a,IR

Aileron internal Right; �
a,EL

Ail external Left; �
a,ER

Ail external Right; �
sp

Spoiler
�
e

Elevator; �
r

Rudder; and �
ih

trimmable horizontal
stabilizer. The resulting LTI model is augmented with
first order sensor and actuator dynamics derived from the
high-fidelity simulation, to account for their e↵ect on the
aircraft behavior.

5. FDI FILTER DESIGN FOR THE AIRCRAFT

A geometric LTI FDI filter is designed for the left inner
aileron fault detection problem of the aircraft. First, the
filter design steps are detailed and supported by linear
analysis plots to show the optimality of the geometric
filter. Detailed simulations on the high-fidelity aircraft
model with injected aileron faults follows.

5.1 Filter Design Steps

The main idea behind the filter design formulation is
that aileron faults appear on the filter residual output,
while elevator and rudder faults are embedded in the
unobservability subspace of the filter. For that reason the
LTI model derived in Section 4.2 is augmented with left
inner aileron, left elevator, and rudder faults, by using
the successive input directions from the B and D matri-
ces as fault directions in the linear model. Load factor,
n
x

, n
y

, and n
z

, measurement is omitted from the model,
since the D matrix associated with these acceleration
outputs is nonzero, which makes the geometric FDI syn-
thesis more complicated. The resulting design model has
9 outputs, 12 inputs (including the three fault directions)
and 27 states, including actuator and sensor dynamics.
While the obtained filter, using the methods developed in
(Massoumnia, 1986), has 7 residual outputs, 18 inputs,
and 18 states. Since perfect decoupling is possible, the
transfer functions between elevator to residual and rudder
to residual are zero, while the residual all have nonzero
response for aileron faults. To be able to augment the
FPRG filter with an H1 post filter using output injection
the original 18 inputs of the system are augmented by
18 additional inputs, each of them directly acting on one
of the 18 states of the original FPRG filter. To pose an
H1 optimization problem for the post filter, a suitable
weighted interconnection have to be developed as shown
in Figure 3. The list of design weight are the following:
W

u

represents the uncertainty weights, W
dr

is responsible
for Dryden wind gust disturbance, sensor noise is filtered
through W

d

, while fault tracking error is penalized by W
e

and to for well posedness the pseudo control signals of the
H1 filter are penalized by W

p

. Fault tracking is achieved
only in a limited frequency range described by T

id

. the
weighted interconnection with the FPRG filter including
has 29 states, 26 outputs and 43 inputs, and the resulting
H1 FDI filter, not considering the e↵ects of uncertainty
�, has 7 measurements and 19 control outputs. Combining
the FPRG filter and the FDI filter results in a 30 states,
18 input and 1 output filter after model order reduction.
On the other hand if we solve for the FDI filter in one
step without including the FPRG filter, than W

p

can
be omitted, but still the weighted interconnection has 31
states (2 more than the previous case), 28 outputs and 25
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Fig. 4. Input multiplicative uncertainty case, fault to
residual response.

inputs, while the resulting FDI filter, solving the complete
problem has 29 states, 1 output and 18 inputs. While
both of them achieves a � value of 0.0016, indicating that
without uncertainty the FDI problem is feasible and the
resulting solutions are almost the same. Moreover, if we
include input multiplicative uncertainty in the design (0.01
in low frequency and 0.2 in higher frequencies) with W

u

and �, and obtain the FDI filters with DK iteration, the
resulting filters will still have similar characteristics, as
projected by (Seiler et al., 2011b).

On the other hand, if we use output multiplicative un-
certainty on the sensor measurements with similar design
weights of 0.01 uncertainty in low and 0.2 uncertainty at
high frequencies, the resulting H1 and µ optimal filters
will di↵er significantly. The FPRG+ H1 solution achieves
a worst case gain of 9.25, while the FPRG+µ filter has
1.2106 value, indicating better handling of uncertainty. To
put the figures in context the plain H1 and µ solution
achieves worst case gain of 9.167 and 1.1213 respectively,
which is only slightly lower than the combined FPRG
solution.

To have more insight in the designs, the four filters
are compared in linear simulation first. Figure 4 shows
the residual output of the filters, including the nominal
behavior (red) and the response of 40 randomly sampled
models from the uncertainty space � for a step change
in aileron fault input. Excellent responses can be seen
without any variation across the uncertain models which
is due to the fact that input uncertainty does not change
the geometrical properties of the plant and the decoupling
is still valid after the uncertainty acts. All figures are
normalized due to Airbus confidentiality reasons.

Figure 5 shows the singular values plot of the control
inputs e↵ect across the uncertain plants on the residual of
the four filters. Notice that all of them achieves at least 20
dB attenuation on all control inputs combined, and even
more attenuation is achieved on the disturbances to the
residual channels.
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Fig. 5. Input multiplicative uncertainty case, e↵ect of
control inputs on residual.
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Fig. 6. Output multiplicative uncertainty case, fault to
residual response.
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Fig. 7. Output multiplicative uncertainty case, e↵ect of
control inputs on residual.

If we analyze the e↵ect of output uncertainty with similar
level of model mismatch, shown in Fig. 6, the results are
less ideal. The set of uncertain plants with the filters
designed for the nominal plant (using H1 synthesis),
have the same fault tracking response, while the two
designs taking uncertainty into consideration achieves less
satisfactory fault tracking behavior, but the responses
due to modeling error are not spread out. The di↵erence
between the designs can be seen on the control inputs to
residuals plot (Fig. 7), where at least 20 dB di↵erence
can be seen between the H1 and µ designs, irrespective
of if the FPRG pre-filter is applied to the plant or not.
The peak of the sigma plot on the H1 + FPRG, µ +
FPRG, H1, and µ are 12dB,�11.3dB, 10.7dB,�12dB
respectively, indicating slight edge over the plain one-step
design.
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Fig. 8. Output multiplicative uncertainty case, fault to
fault tracking error channel.
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Fig. 9. Output multiplicative uncertainty case, e↵ect of
disturbances and additional control surface faults on
residual.

The fault to fault tracking error singular value plot is
shown in Figure 8. It is clear that both methods achieve
better results, when the uncertainty is not taken into
account during the design, and the results are very similar.

The e↵ect of windgust disturbances and elevator or rudder
faults to residual singular value plot is shown in Figure 9.
Where the uncertainty plays an important role again. The
peak of the sigma plot on the H1 + FPRG, µ+ FPRG,
H1, and µ are �1.39dB,�24.5dB,�2.77dB,�18.5dB re-
spectively, indicating a slight advantage of the FPRG
based design.

To further analyze the performance of the filters, theH1+
FPRG and the H1 based solution are applied to the
nonlinear aircraft model after taking the trim values into
consideration, on both control input and sensor output sig-
nals. Since the simulation is implemented under Simulink
with 0.01sec fixed step size, the corresponding filters are
also discretized with the same sampling time using bilinear
transformation, the investigation with the µ based filters
are omitted since their high frequency poles prohibited
their implementation with 0.01sec sampling time. It is also
worth mentioning, that the simulation is in closed-loop
with the flight control system set to altitude and heading
hold mode and moderate atmospheric windgust distur-
bances are perturbing the aircraft flight. For threshold se-
lection purposes the filters are applied to the nonlinear air-
craft model at various cruise conditions with appropriate
trim scheduling, moderate Dryden windgust disturbance.
The Left elevator drifts from commanded position with
5 deg/s rate starting at 20 s. The simulation starts from
a typical flight condition of 200knots and 26000ft, c.g.
position is x

cg

= 0.3 and weight is 200000kg. The change in
aircraft behavior is clearly noticeable, large pitch excursion
can be seen on Figure 10, while the flight control system
counteracts with the adjacent elevator. Both LTI FDI
residual have very similar behavior as they reach maximum
0.175 value. The main advantage of the FPRG design lies
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Fig. 10. Left elevator runaway scenario, fault occurs at 20s.
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Fig. 11. Left elevator runaway, LTI (left) and LPV (right)
FDI filter residual.

in the fact, that it can be easily generalized to the linear
parameter varying (LPV) case, where the aircraft model
state space matrices are a�ne functions of velocity and
altitude. The same algebraic solution can be obtained with
the LPV description of the plant (Szaszi et al., 2005),
without computationally expensive LMI optimization and
the previously derived H1 post filter can be applied to
the LPV FPRG filter. The LPV FDI residual reaches
only 0.105 value during the maneuver, indicating better
fault isolation properties, hence detection thresholds are
selected as 0.105⇥ 1.5 and 0.175⇥ 1.5 respectively.

The detection performance is analyzed on a left inboard
aileron jamming scenario at 20s (bias on the rod sensor,
shifts the surface with a normalized value of �0.134 from
commanded position). The flight is at a representative
cruise condition, with moderate Dryden windgust, and
o↵ from the previously selected nominal design condition,
V
CAS

= 170knots and h = 23000ft, x
cg

= 0.3, and
m = 200000kg.

Detection time performance (relative to the performance
specification) of 0.00725 is achieved with the LTI approach
and 0.00508 with the LPV method, LPV reconstruction
performance is still excellent showing the advantage of
the LPV method. Since the FPRG based solution is more
suitable to design the filters with the LPV model it is more
advantageous to use in FDI problems.

6. CONCLUSIONS

This paper considers the design of geometric fault detec-
tion filters and their application to a high fidelity aircraft
model, and shows the advantages of advanced model-
based methods, those are candidates for future industrial
implementation. First, a geometric filter is designed on the
nominal plant. Next a robust model matching problem is
solved to design a filter that robustly matches the per-
formance of the geometric filter over the set of uncertain
plants. It is then shown that the robust model matching
problem has an interesting self-optimality property for
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Fig. 12. Left aileron liquid jamming scenario, fault occurs
at 20s.
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Fig. 13. Aileron liquid jamming, LTI (left) and LPV (right)
FDI filter residual.

multiplicative input uncertainty sets. The proposed LTI
filter is then applied to a high-fidelity aircraft model, where
di↵erent aileron faults are successfully detected and when
designed properly isolated from elevator and rudder faults
in reasonable time. Further research should extend the
validity of the present approach and based on the present
findings provide a fault detection approach for a larger
flight envelope.
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