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The present paper investigates the real world feasibility of a purely vision based sense
and avoid system, required for small unmanned aerial vehicles (UAV) to routinely access
the national airspace. The two distinct functions, sensing and avoidance are integrated
into a common framework. No information is exchanged between aircraft, only passive 2-D
vision information is available to estimate the encountering traffic. Based on the predicted
intruder motion the time of the encounter and the minimum distance are predicted. In case
an intruder violates the minimum separation the onboard autopilot initiates an avoidance
maneuver. The viability of the system is demonstrated on several estimation approaches,
using Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) implementa-
tions. Since it is shown that for certain type of observer movements the estimation process
remains unobservable in bearings-only problems, the sensitivity of the estimation perfor-
mance and the resulting avoidance response with respect to different intruder motion is
investigated in a Monte-Carlo simulation. The system is tested on a high fidelity Hardware-
in-the-Loop (HIL) simulation platform, where flight control algorithms, scene rendering,
image processing and estimation algorithms are implemented individually over a network of
computers with special emphasis on parallel implementation of computationally intensive
tasks. Representative encounter scenarios are presented to provide performance measures,
including detection time and achieved miss distance of distinctive approaches to assess the
applicability of the results.

I. Introduction

The emerging role of Unmanned Aerial Systems (UAS) for both military and civil operations depends
on the ability to gain unrestricted access to national airspace. One of the key issues that must be resolved
to open up the skies for UAS is to be able to coexist safely and effectively with current manned operations
in the national and international airspace.1 This includes the ability to perform Sense and Avoid (SAA)
functions at an “equivalent level of safety” (ELOS) to manned aircraft while not negatively impacting the
existing infrastructure and manned Traffic Alert and Collision Avoidance System (TCAS) that create today’s
safe airspace.2,3 The UAS collision avoidance system, or SAA system, needs to operate for hazards within
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a defined volume of airspace surrounding the UAS. The system needs to detect a hazard, determine if a
maneuver is required, communicate and execute that maneuver in time to achieve a specified miss distance.
The elements of SAA represent segments of system design that must be studied together, with their perfor-
mance allocated between the elements so as to achieve statistically safe operation in the planned operating
environment. A purely camera based SAA system, which is applicable for tactical, mini and micro size ve-
hicles, would provide cost and weight advantages against radar based solutions currently under research.4,5
Feasibility and technical characteristics of such system are unknown, since solely electro-optical sensor based
approach has not yet been demonstrated on small scale vehicles, only on the Global Hawk UAS.6 Solutions
for the individual building blocks of a SAA system exist, but only ad-hoc approaches have been proposed to
build a complete system. Hence, legislation lacks the necessary in-depth knowledge about the interaction of
multidisciplinary system components and currently no solutions or standards exist for the non-cooperative
SAA problem.

Research aiming towards better understanding the limits and applicability of vision only SAA systems
would be greatly beneficial for the UAS community. It is of similar interest to provide trade-off analysis on
collision avoidance as a function of vehicle size, velocity and maneuver types and to clearly understand the
interaction of navigation, control and sensing-computing systems to provide guidelines for improved, highly
effective SAA systems applicable for smaller sizes UAVs. Based on these general results lightweight, vision
only, highly integrated SAA solution can be proposed for a limited class of airspace users, based on fusion
of novel sensing, navigation and control methods.

First the standalone estimation algorithms have to be compared to show the feasibility of the problem.
Even when no avoidance maneuver is required, the system has to track and propagate the motion estimates
of the surrounding traffic. The standard way of estimating unknown parameters in linear systems is to use
a Kalman filter.7 In the special case where both the dynamic and observation models are nonlinear but the
noises are additive and Gaussian the Extended Kalman filter (EKF)8 has been the standard technique usually
applied. But, for severe nonlinearities, the EKF can perform poorly or even go unstable. Hence it is important
to compare the EKF with other methods, to select the best possible approach used in the SAA problem. The
system components required for this comparison serves as a core for SAA system development, and denoted
consecutively as “Detection”, “Data Association & Tracking” and “Motion Prediction” on Figure 1. The

Figure 1. System interconnection of the SZTAKI SAA research platform

consecutive tasks depending on the estimation are mainly related to avoidance, and denoted consecutively
as “Collision Risk Estimation & Decision”, “Trajectory generation”, and “Flight Control”.

The way the motion model is described in the problem setup can also have impact on the solution.
The dynamics of the intruder can be described with a simple point mass model. Including higher fidelity
dynamics, where wing level measurement is included or flight envelope constraints are enforced, might lead to
significantly higher computational load on the solution side, but possibly they can guarantee certain benefits
on the estimation and trajectory generation tasks. It is also not straight forward in which frame of reference
the problem has to be posed. Different state variables in the estimators, not conventional coordinates in the
Earth frame, may lead to computationally better posed problems.

The article is organized in the following way, Section II details the estimation problem using Kalman
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filtering methods, the first task of the system, gathering visual data and analyzing them is described in
Section III , the following avoidance tasks are detailed in Section IV. The system performance is analyzed
in detail using a Hardware-in-the-loop test environment, from which experimental results are described in
V. The article is concluded in Section VI, where future research directions are described towards onboard
implementation of the proposed scheme.

II. Kalman filtering based intruder detection

We assume there is only one intruder to be detected, so the case of multiple threats is not considered in
the paper. The detection of the intruder is formulated as a state estimation problem, where the dynamics
are the relative motion of the intruder to our aircraft. The measured output contains all information that
can be extracted from the camera images. Since the camera projects the 3D view onto a 2D plane, which is
a nonlinear mapping, the measured outputs are nonlinear functions of the relative position. Depending on
the model useda either the dynamics or the output equations will be nonlinear. Even if the motion of the
aircrafts are modeled by a linear system, the nonlinearity of the output equation makes it necessary to apply
Extended (EKF) or Unscented Kalman Filters (UKF).9,10 A fundamental “flaw” of the EKF is that the
distributions (or densities in the continuous case) of the various random variables are no longer normal after
undergoing their respective nonlinear transformations. Alternatively UKF uses a deterministic sampling
technique known as the unscented transform to pick a minimal set of sample points (called sigma points)
around the mean. These sigma points are then propagated through the non-linear functions, from which
the mean and covariance of the estimate are then recovered. The result is a filter which more accurately
captures the true mean and covariance. In addition, this technique removes the requirement to explicitly
calculate Jacobians, which for complex functions can be a difficult task.

Figure 2. Subtended Angle Relative State Estimation (SARSE) methods

A. Coordinate systems

The following three coordinate systems are used in the paper:

� North-East-Down (NED) - Fixed in one (latitude,longitude) point. We assume flat Earth and the
flying distance is short, where axes are: X positive in North, Y positive in the East and Z positive
towards the center of Earth (perpendicular to X-Y plane).

� Body - fixed to the c.g. of the aircraft. Xb positive forward, through the nose of the aircraft, Yb positive
to starboard, Zb axis - positive downwards, perpendicular to X-Y plane.

aIf the relative position, relative velocity and acceleration are chosen as state variables, the dynamics are linear, but the
output equations will be nonlinear. If the the inter-aircraft distance, direction vector and their derivatives constitute the state
vector (like in this paper, see section REF) then the dynamics are highly nonlinear, but the measurement is a subset of states.
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� Camera - a pan, tilt camera is assumed onboard, which is directed in the intended flight direction,
which is fixed throughout the entire flight. (The intended flight direction is the direction in which the
own aircraft would normally fly if the intruder did not come.) The camera has offset r0 from the c.g.,
and in the current paper the axes Xc; Yc; Zc are chosen to coincide with the axes of NED if the aircraft
flies from West to East.

B. Equations of motions

To simplify the filter design, the vehicles (intruder and own aircrafts) are modeled in the NED frame by simple
point-mass dynamics. The intruder is assumed to fly along a straight path at constant velocity vector. Let
pint(t), vint, denote the position and velocity of the intruder and let pown(t), vown(t), aown(t) be the motion
parameters of the camera. (Note that, the camera is not in the c.g., so a coordinate transformation has to be
applied to obtain (pown(t),vown(t),aown(t)) from the aircraft’s motion vector expressed relative to the center
of gravity.) If we introduce

p = pint � pown; r = kpk; u =
p

r
; v = vint � vown = _(ur) = _ur + u _r

then the equations of motion in the relative coordinates can be expressed as follows11,12 :

_r =
1

kpk
� vT p = vTu

�r = �aTownu+ vT _u = �aTownu+ (r _uT + _ruT ) _u

= �aTownu+ r _uT _u+ _ruT _u = �aTownu+ rk _uk2
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or in state space form:

x =

2666664
u
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1=r
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b

3777775 ; _x =

2666664
x1
x2
x3

x4
x5

3777775 =
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�aown � 1r � 2
�

_r
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� _r
r �

1
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�
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�
0

3777775+ w = f(x; aown) + w (1a)

where w is an additive noise vector representing the effects of modeling inaccuracies and external distur-
bances.

By locating and tracking the intruder on the image plane the image processing unit can determine the
direction vector ub(t) in the camera frame, which is transformed into the direction vector in the NED frame
u(t) using the Direction Cosine Matrix (DCM),13 notice that the Euler angles used to form the DCM are
also subjected to measurement noise. The fourth measurement is the subtended angle �(t) = 2 arctan b

2r
under which the target is seen. (b is the unknown wingspan of the target, which is also to be estimated by
the filters). These parameters constitutes the measurement outputs of the system:

z(t) =

"
u(t)
b

2kp(t)k + �

#
= h(x(t)) + � (1b)
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where � is the measurement noise. The estimation task has to reconstruct the state vector x in order that
the motion parameters of the intruder could be determined. To implement a suitable EKF or UKF based
state estimator the model has to be discretized with given sampling time Ts:

xk+1 = xk + Tsf(xk; avk) + wk (2)
zk = h(xk) + �k (3)

Since the EKF and UKF formulations are fairly standard, given the system equations in (1) and (3), we
refer to 9,10,14 for further details on them.

C. Attributes of the estimation task

It is not difficult to see that the system in (1) is not observable for all input trajectories. Moreover, even if
the observability condition holds a less exciting control input may lead to ill-conditioned estimation problem,
which fails to converge due to numerical problems or results in unpredictably large estimation errors. Con-
sequently, the selection of a suitable control policy is a key point in the estimation task.15 Since the control
input is the acceleration aown, the input design means finding a suitable trajectory for the own aircraft. In
the current paper, an open-loop strategy is employed, with periodic up-down-left-right maneuvering of the
own platform as shown on Figure 9, which provides persistent excitation for the estimation problem.

It may often occur in a real application that the measurement data becomes corrupted by some unexpected
disturbance or due to some sensor failure. This results in wrong filter inputs, which are inconsistent with the
underlying dynamics. The wrongly feeded filter produces false estimation, which can lead to false alarms or
even collision. A simple method to detect - at least a part of - these situations is to run a bank of differently
initialized filters in parallel. If all filters converge to a same (similar) output we can accept the estimation,
otherwise the occurrence of a failure can be presumed and the estimation can not be used. On the other
hand, the nonlinearity of the model can also result in the divergence of filters, especially of those, which use
linearized dynamics. With careful selection of the model we use, the nonlinearity in itself does not impair
the convergence of the estimators, i.e. their outputs tend to the same values irrespective of the (rationally
chosen) initial state. Simulations that prove this observation are not shown in the last paper due to space.

The final goal is to determine all parameters from which the motion of the intruder can be reconstructed
and precisely estimated. Exploiting the assumption that the intruder flies at a constant velocity, it is clear
that two constant parameter vectors (each having three elements) are enough: the velocity vint and the
position pint,0 where the intruder was detected for the first time. From the estimated x̂ the velocity and the
current position can be directly obtained:

vint = vown + x̂2x̂3 + u
x̂4
x̂3
; pint = pown + ux̂3 (4)

By definition, pint = pint,0 + vintt with t = [0; Tsense], where Tsense denotes the time available for estimation.
To suppress the noise remained on the estimated signals, pint,0; vint are computed from pint and vint by
Least-Square method.

III. Image processing

The main task of image processing is to determine the direction u(t) and the subtended angle �(t) of the
intruder on the raw camera image frames. In the previous paper16 it is assumed, that the image sequence
is obtained by a gimballed, 2-axis inertial stabilized camera platform which points towards a fixed direction
in the NED frame, however this assumption is dropped in the present paper and the image sequences are
obtained by a body fixed camera. The image processing algorithm obtains images from the camera, which
is fixed to the nose of the aircraft. Its offset relative to the c.g. in the body frame is r0, which is defined
as shown on Figure 3. The Field of View of the camera is 120 deg, the maximum currently achievable
with the FlightGear engine, but in the hardware platform we are using an array of 5 cameras covering the
recommended 220 deg FOV.17

The raw images, from the image acquisition tool are sent to the processing algorithm, the flowchart
schematics is shown on Figure 4. The input images of the algorithm are at least one megapixel. As shown
on Fig. 4 the first step is a space variant adaptive threshold18 to filter out the slow transitions on an image.

5 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 B

al
in

t V
an

ek
 o

n 
Ja

nu
ar

y 
27

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
2-

47
03

 



This can be the entire raw image or a smaller sub-image of it, according to that the current picture is the
first on which an object is detected or it is part of a sequence where the object is present. To reduce the
input image size and speed up the computation, a window containing the intruder airplane according to the
previous location and size is cut. In this way the information calculated by the previous step to the location
of the other aircraft on the image plane is used. The adaptive threshold results a binary image containing
some of the points of the aircraft. On this binary image a centroid calculation18 is applied. The center of
Region of Interest (ROI) is determined by the centroid co-ordinates. The size of the ROI is determined by
the previously calculated wingspan plus 20 pixels in each direction. In that way two images are cut: one
from the original picture (colored ROI image) and one from the result of the adaptive threshold (binary ROI
image).

The aircraft is composed of darker and brighter pixels than the intensity mean value of the original
picture. On the colored ROI image two thresholds are ran. The first one is calculated on the inverse picture
of the grayscale image created from the red channel of the colored ROI image. With this threshold the pixels
brighter than the intensity mean value of the original picture are found. The result is a binary image with
the brighter pixels. The other threshold is calculated on the blue channel of the colored ROI image and with
it the darker pixels are found. We used the blue channel because the sky is blue and the difference between
the background and foreground pictures is the largest in this channel. The result is a binary image with
the darker pixels. A logical OR is applied for the two threshold images. The result is a binary picture with
the found pixels of the aircraft and with some other pixels. In some cases the parts of the airplane are not
connected in this picture. A closing18 is applied to connect the components. From the binary ROI picture we
have an approximation for the aircraft and from the previously calculated picture we have the pixels of the
whole airplane with some noise. A recall19 is applied according to the binary ROI for the double threshold
image.

A small picture with the shape of the airplane is obtained in this way. On this picture the centroid in
pixels and the pixel count between the left and right wingtip of the aircraft is determined. Based on the
outputs provided by this algorithm the direction of the incoming aircraft can be determined in radians in
the following way:

� = arctan
x

xmax
tan 40�; � = arctan

y

ymax
tan 15� (5)

where x; y is the position of the centroid in pixels, xmax; ymax is the horizontal and vertical resolution of the
image (e.g. 2208 � 600), 40� and 15� are the half of the FoVs in the two directions. The angles � and �
are measured between the direction vector pointing towards the intruder and the y-z (horizontal) and x-z
(vertical) plane of the camera, as it is depicted in Fig. 3. In the possession of the coordinate transformation
between the camera frame and NED, the direction vector u can be determined from � and �.
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(a) The fixed North-East-Down (NED) and
the camera frame x-y-z.
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(b) Measured variables

Figure 3. Coordinate systems and measured variables
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Figure 4. Diagram of the image processing algorithm
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IV. Avoidance

The avoidance maneuvering is executed by supplying new target waypoints to the flight control system,
hence it is assumed that the UAV is equipped with a proper autopilot, which can receive such commands.

A. Estimating the time to collision and miss distance

To reliably detect the risk of collision, we need the position and time when the intruder flies closest to our
aircraft. Since the own aircraft tracks a rapidly varying trajectory (to maintain the persistency of excitation)
it has to be clearly defined what do we mean by this closest point. In this paper we apply the following
concept: at each time instant we connect the actual position of the own craft with a remote future waypoint
on the intended path and consider a straight line trajectory that our aircraft would fly if it would immediately
finish the estimation and would start to return with constant velocity �vown to the intended path along this
straight line, as shown in Figure 5. Since the intruder flies also at constant speed the problem of determining

Figure 5. Closest Encounter Calculation (Time To Collision and Est. Miss Distance)

the ’time to collision’ t�, the time needed to reach the encounter point, and ’miss distance’ d�, the distance
between aircrafts at encounter point, boils down to the minimization of a quadratic function:

t� = arg min
t
V (t); d� = V (t�)1=2; V (t) = kpint + vintt� pown � �vowntk2

By taking the gradient vector of V (t) and equating it to 0 the parameters t� and d� can be computed
directly, without on-line optimization. In the current investigation it is assumed that the intruder reaches
the encounter point of Xi = [0; 0;�20000] m (North, East, Down reference frame) at 75 s, while the future
waypoint is located at the same height as the encounter point at Xwp;n = [0;�150;�20000] m, 150 m ahead
of the own aircraft and the same distance behind the intruder aircraft. But due to obvious reasons this
waypoint can be selected differently, not to take into account the unknown time of encounter.

B. Decision Making Algorithm and Connection to the Flight Control System

Due to common air traffic rules and to simplify the task of the decision making algorithm, four pre defined
avoidance maneuvers are available in case the onboard decision making algorithm detects a potential collision.
Selection is based on the estimated miss distance calculated above: in case the average over a period of 10 s
of the estimated miss distance d� exceeds 100 m, no action is taken, on the other hand if it is below this
threshold the following actions are taken: 1.) the vector d� is projected onto the future predicted normal
plane of the own craft path, 2.) the resulting projection on the normal plane can lie in four different quadrant,
as shown in Figure 7, and based on this the direction of encounter is determined, 3.) new waypoints are
issued to the flight control system: the first one has 100 m offset from the middle point between the current
own position and the predicted own position at timet� , when the closest encounter occurs, the second
waypoint has the same offset (either towards left, right, up, or down) but from the predicted own position at
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Figure 6. The original path and the corresponding avoidance trajectories, in straight level flight towards West

timet� as shown in Figure 6. This forces the UAV, that if time is available for avoidance maneuvering, that
the minimum separation is met within 0:5(t � t�), allowing a sufficient safety factor. The command issued

Figure 7. Decision Making Logic (Based on the projection of the Est. Miss Distance)

by the logic is calculated based on the offset (as shown in Figure 7), in case the predicted collision scenario
involves the intruder flying above the own craft, the issued command is to fly towards down, in case the
encounter is from the left, than the issued command is to move towards righ, an similarly in the other cases.

V. Simulation

A. Simulation environment

To analyze and demonstrate the functionality of a vision-based system it is important to have real or at least
realistic camera images available. In indoor tests these images are generated by an appropriate simulator,
which is able to provide realistic 3D views from the flight scenarios. The FlightGear simulator is chosen for
this purpose, since it has a flexible interface with Simulink via the Aerospace blockset and the software is
open source, hence the interface with the image processing algorithm can be customized as well.

For the sake of calculating precise input data for the estimation algorithm the FlightGear program has to
be calibrated. To asses the rendering capability of Flightgear, first the Field of View (FoV) and aspect ratio
settings are measured. A Cessna 172P aircraft model was used for these measurements due to the popularity
of this light weight airplane type. It is foreseen that small UAVs will share airspace with similar type of
aircrafts, and most of them have no radar and use visual sensing for collision avoidance. The wingspan of
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Cessna 172P is 11 m. The FoV of the rendered image from the following model is calculated

FoV =
2 arctan 5:5

d

wa
w

where where FoV is in degree, d is the distance of the two aircrafts in meters, wa is the measured width
of the aircraft in pixels, w is the width of the rendered image in pixels. From the measurements it turned
out, that two regions can be defined from rendering point of view: a far region (d>20m), where this model
can be used and a close region (d<20m), where distortions of this model are observed. The images can
be used without post filtering or additional compensation, since the far region is of interest in our case,
and no emergency situation is considered yet. We have to detect the other aircraft far enough to do the
avoiding maneuver. It also turns out that FlightGear does not take care about the aspect ratio parameter.
If geometry is not 1:1, the FoV is set to the bigger size and the image is cropped by FlightGear. According
to the measurements that are not detailed here, it can be asserted that the geometry used by FlightGear is
linear perspective.

In Fig. ??. the diagram of the simulation environment is shown. The flight control is running on hardware
in the loop system, shown at the upper left corner. The aircrafts are simulated by Matlab/Simulink. For
the own aircraft a high fidelity mathematical model has been identified using the measurement data collected
from the Ultrastick unmanned aircraft.20 The intruder is modeled as a simple double integrator. For the
own aircraft a trajectory tracking controller has been designed, which runs on an MPC5200 embedded
microprocessor.

The flight simulator PC communicates with the image processing computer via Ethernet. On the image
processing PC a modified FlightGear is running, which contains the image processing package as an embedded
component. The information extracted from the image is then sent to an FPGA unit via USB. The FPGA
realizes a Kalman filter and calculates the Motion Prediction data required by the control block. These data
are forwarded to the control block by the image processing PC via Ethernet, (see Fig. ??). The decision
logic is than implemented in the Aircraft PC, which than sends the new waypoints to the autopilot realized
on an embedded micro controller (MPC5200).

Our aim is to implement the image processing algorithm on the FPGA in a later stage of the project,
to reduce the power consumption together with the mass and volume of the system and to mature it for
onboard implementation.

B. Simulation Results

The performance of the EKF and UKF based estimation algorithms are compared in different simulations,
and the UKF based solution proved to be more stable and robust for the initial conditions and it provided
tighter covariance bounds on the estimates, �1 � � bounds are only 10 � 15m 25s after the start of the
estimation with the UKF as shown in Figure 8, after performing a few maneuvers exciting the system
dynamics. The EKF based solution provided very similar position estimate, but the associated covariance
is significantly (5� 10 times) higher.

42 different encounter scenarios with different intruder motions are investigated in the simulations, as
shown on Figure 9. The own aircraft flies an up-down-left-right path towards West, starting from X0;own =
[0; 1500; 20000] m to ensure the persistency of excitation. The intruder aircraft (Cessna 172P) comes from
West towards East, from different initial locations, as shown in Figure 9. The trajectories are determined
by two parameters, at time t = 75 s the intruder is at Xt;int = [0; 0; 20000] m, at the ideal collision point,
and secondly the constant velocity vector of the intruder is rotated with azimuth angle � an elevation angle
�, where � = [�10 : 5 : 15] deg and � = [�45 : 15 : 45] deg, which determines the initial coordinate as well,
(see Fig. 9). � and � are selected according to the size limitation of the FlightGear window.

It is also assumed, that the intruder is approaching with 20m=s, while the nominal speed of the own UAV
is also 20m=s, but can vary with the trajectory. The resolution of the images captured from the FlightGear
simulator are 2208 � 600. Applying this resolution an intruder of size of a Cessna can be reliably detected
from a range of 3000m. In the examined scenarios the intruder was therefore visible from the very beginning
of the simulation.

The accuracy of the measurements provided by the camera and the image processing unit are analyzed
in Fig. 10. The true and measured values of the unit vector coordinates are compared in two representative
scenarios. The figures show that the measurement follows the true values with acceptable precision, the
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Figure 10. Coordinates of the direction vector - true values and their measured counterparts generated by
the image processing unit.

maximal error is only 4 � 10�3 radian, detected in the north coordinate of u in the first scenario.

The EKF and UKF filters were run with the following parameters:

Initial state (EKF,UKF) u(0) = actual value from im. proc.; _u(0) = 0;

r(0) = 1000; _r(0) = �20; b(0) = 15

State covariance (P0) 0:1 � diag([0:01; 0:01; 0:01; 0:01; 0:01; 0:01; 0:01; 0:01; 1])

Process noise covariance diag([0:03; 0:00015; 0:003])

Observation noise covariance diag([0:0001; 0:0001; 0:0001; 0:1])

These initial values corresponds to physical quantities, taking the worst case the initial estimate for range
is 1000 m, the wingspan is 15 m, while the closing speed between the two vehicles is 20 m=s, the velocity
of the own craft. It was demonstrated previously16 that based on the measurement data from the image
processing unit, corrupted by delay and quantization, the filters (both completed with an LS estimator) are
able to produce estimates for the position and velocity of the intruder.

The more important quantities here are the time to collision and estimated miss distance, which are
calculated from the estimated position and velocity components. The difference between the true and
predicted time to collision values are depicted in Fig. 11. It can be seen that both EKF and UKF filter
based predictions provide reasonable good estimates, and the values are within 2 s from each other. On the
other hand, it has to be noted, that the EKF based solution converges faster and the solutions are less spread
out than in the case of the UKF. Moreover the filters converge in all cases less than 35 seconds, note that the
estimation starts at 10 s, not form the beginning of the simulation. At the time of acceptable convergence
the distance between the two aircrafts is at least 1000m, therefore 25 seconds remains to launch and execute
the avoidance maneuver (if needed).

The difference between the calculated and predicted miss distance values are depicted in Fig. 12. It is
important to notice, that the error in predicting a close encounter is less than �20 m, even when the aircrafts
are almost 2000 m apart. In the EKF case one estimate converges slower, which is due to the fact that the
image of the intruder plane leaves the rendering window, and held constant until found again.

Based on the calculated miss distance the decision logic is issuing avoidance commands in different
directions, depending on the encounter type (see Fig. 13). In the current investigation the decision is made
always at 40 s, given a 10 s long averaging preclude it, and based on our experience it takes at least 20 s for
the estimation algorithms to converge.

The predicted and calculated miss distances of the individual simulations are depicted in Figure 14. It
can be seen, that all encounter scenarios, without the avoidance mode activated are violating the required
100 m minimum separation distance. On the other hand, when the avoidance mode is active 41 out of the
42 simulation cases are outside the required minimum range, with the only exception of the case when the
image of the plane goes out of the FlightGear window.
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Figure 14. Predicted and true miss distance between vehicles

The miss distance prediction is further strengthened with Figure 14, where the total distance between
the two aircrafts can be seen as a function of time. This leads to the same conclusion, that in all but one
situations the avoidance system is providing adequate separation, while supporting also the applicability of
the proposed method of calculating the predicted miss distance and time of collision.
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Figure 15. Predicted and true total distance between vehicles

The simulation results confirmed the feasibility of the vision only sense and avoid system, even when the
measurements are obtained from a realistic scene rendering engine. Moreover, the estimator performance
showed sensitivity to the ownship maneuvers. A promising way of assessing the estimator performance is
by minimizing the trace of the state estimator covariance matrix by appropriate choice of guidance inputs.
Further research is necessary on this topic to address the problem in a noisy environment, when convergence
times are important to leave sufficient time for the avoidance maneuver. It is also demonstrated that a rela-
tively simple avoidance logic, coupled to the autopilot of the aircraft can provide reasonably good avoidance
maneuvers. While the problem of constrained field of view, and loosing the track of the encountering aircraft
remains an issue.
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VI. Conclusion

Development of a sense and avoid system consist of multiple individual problems, worth considering
independently, but the system has to be evaluated as a whole. In the present article the feasibility of a
vision only sense and avoid system is presented. Moreover, the coupling between estimator performance and
flight trajectory is highlighted here, which indicates the need for strong coupling of estimation and flight
control onboard the future autonomous UAS. To build a feasible SAA system the potential strengths and
weaknesses of all system components has to be understood, hence a comprehensive HIL simulation platform is
also laid out in the article. This platform helps to find the best possible SAA architecture compromise, which
is computationally feasible for implementation onboard a UAV, while provides the necessary performance
required for safe separation in the airspace.
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