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Abstract:

Model based Fault Detection and Isolation (FDI) in aerospace have received considerable
attention and numerous algorithms are flying on-board commercial aircraft. Most of these
algorithms are based on local models of aircraft components or rigid body aircraft models.
On the other hand the ever more pressing requirement of performance and fuel efficiency
improvement makes aircraft structures more lightweight and flexible. Actuator fault detection
especially ailerons in the wing has to account for these flexible effects to provide the required
performance. Within the article we show the trend how decreasing detection time necessitates
the use of flexible dynamics based FDI, and show how detection and isolation performance are
changing. Moreover, the article also highlights the need of robust filter synthesis methods, since a
nominal H, synthesis has significantly lower performance in worst-case situation than a robust
1 synthesis based filter. The methods are demonstrated on a flexible aircraft demonstrator
platform simulation model from the FLiPASED project.
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1. INTRODUCTION

The purpose of Fault Detection and Isolation (FDI) is to
develop model based tools with which anomalous behavior
of dynamic systems, especially under stringent safety and
reliability aspects can be captured. Aerospace is one of
the premier application area of such methodology, since
often it is irrational to use massive hardware redundancy
and emply voting logics when the analytical redundancy
within the system allows detecting faulty sensors and actu-
ators (Goupil, 2011). Using sensor signals, flight controller
commands and the model of the system, an FDI algorithm
can detect faults in the actuators and sensors, e.g. loss of
efficiency or runaway of a control surfaces or offset and
noise in the sensor measurement. In case multiple fault
detection signals are calculated the cross-coupling between
so-called residuals have to be addressed as well in the
isolation problem. Since the FDI solution is meant to be
part of a safety system that is capable of reconfiguring
other sensor and actuator resources while adopting slightly
different control strategy to compensate for the detected
failure as described by (Péni et al., 2018).

A popular approach to FDI is to design optimal filters
that estimate the difference between the actual control
surface deflection and the control command, or the ac-
tual measured quantity and the estimate of the sensor
signal, calculating suitable residuals, as shown in (Chen
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and Patton, 2012)). One of the first application of optimal
H, filtering to FDI is elevator actuator and pitch rate
sensor fault detection of the Boeing 747 by (Marcos et al.,
2005). This article heavily depends on the work about
developing an appropriate model of the aircraft (Marcos
and Balas, 2004), since to use optimal filter design for FDI
a suitable model of the aircraft is required. In this article
and in the subsequent EU funded projects ADDSAFE
and RECONFIGURE (Goupil and Marcos, 2014) several
methods have been developed to improve FDI performance
but all the industrial applications were tested on rigid-
body aircraft models. With the rise of the Airbus A350
and the Boeing B787 airframe flexibility is becoming even
more pronounced in commercial aviation. Hence, mod-
els that include flexible behaviour may be required for
fault detection tasks. A flexible aircraft model is more
difficult to obtain as opposed to the classical rigid body
model which is usually the result of (CFD) modelling,
wind tunnel testing and possibly in-flight identification.
The flexible model also requires more expertise to create,
is generally more complex - includes hundreds of modes
vs. the 12 states in the rigid one and it is subject to
more uncertainty due to the substantial increase in model
parameters. The aircraft manufacturers have developed
their aeroelastic modelling frameworks to construct these
flexible aircraft models, what often includes finite element
(FEM) modelling, aerodynamic modelling (mostly panel
methods in NASTRAN) and possibly a ground vibration
testing (GVT) and in-flight identification campaign (Med-
daikar et al., 2019) to refine these models as opposed to
the classical rigid body model development (Beard and
McLain, 2012). The present paper builds on the prior
results of (Patartics et al., 2021) which is one of the first ar-
ticle about flexible aircraft FDI along with (Ossmann and

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.07.194



604 Balint Patartics et al. / IFAC PapersOnLine 55-6 (2022) 603-610

Fig. 1. The demonstrator aircraft built for the FLIPASED
project.

Pusch, 2019a) and (Liu et al., 2021). The present paper
aims to provide guidelines on what detection and isolation
performance can be achieved on aileron actuators, when
using robust FDI filtering in the presence of uncertainty,
based on rigid body and flexible aircraft modelling.

Our focus is on the unmanned demonstrator aircraft
developed within the (FLEXOP, 2015) and currently used
within the (FLiPASED, 2019) project, but the findings
within the paper can be further generalized to flexible
commercial aircraft. The demonstrator is built for flutter
control experiments which was the subject of several
research projects, e.g. (Ryan and Bosworth, 2014). The
airframe is depicted in Fig. 1. Our goal is to detect the
faults of the flutter control surfaces, what are the left and
right outermost ailerons (uq, 14, %q r4). These surfaces are
coupled mostly to the flexible motion of the wings as well
as to the lateral dynamics of the aircraft. Note that the
aircraft is equipped with four ailerons per wing and a V-
tail, hence the ruddervators affect both longitudinal and
lateral motion of the aircraft. For simplicity our focus will
be on the flexible and lateral dynamics, treating aileron
(ua = Uq, L1 = Uq,12 = Uq,L3 = —Ug,R1 = —Uq,R2 =
—Ug,Rr3), rudder (u, = u,rR1g2), plus left (uq r4) and
right (ug ra) flutter control surfaces as inputs. We will
continue to refer to the control surfaces as aileron and
rudder for simplicity. The block diagram of the FDI
filter design problem is depicted in Fig. 2. FDI filters
are designed at a range of target detection bandwidths
taking the nominal model (leading to an H, filtering),
or taking the uncertain model (leading to p optimal FDI
problem) into consideration. The same investigation, with
bandwidths ranging between realistic detection times, is
repeated for the rigid and the flexible model of the aircraft.
The nominal and worst-case behavior (Patartics et al.,
2020) are evaluated, and a simple decision mechanism
calculates the smallest detectable fault for single (left)
flutter control surface; as well as the minimum fault
magnitude what can be surely isolated from the other
(right) flutter control surface fault. Based on these results,
recommendations are made about modelling technique,
sensor configuration and choice of synthesis method to use
for certain performance requirements.

The rest of the paper is structured as follows. Section 2
introduces the rigid body and the flexible aircraft models,
along with the used sensors and actuators. Section 3
describes how the optimal FDI filter design problem is
set-up. Details of the performance evaluation with different
filters along with the calculation of the smallest detectable
and isolable fault is given in Section 4. Section 5 compares
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Fig. 2. Block diagram of the actuator fault detection and
isolation problem.
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Fig. 3. Control surface configuration and sensor positions
of the flexible aircraft. The control inputs and sensor

signals are marked at the corresponding control sur-
faces and sensors.

the achieved performance of various filters designed with
or without uncertainty taken into consideration, and gives
recommendations on when to use a flexible aircraft model.
Finally, our recommendations are summarised in Section 6.

2. RIGID AND FLEXIBLE AIRCRAFT MODELS

The demonstrator flexible aircraft, shown in Fig. 1,
was built for flutter experimentation for the (FLEXOP,
2015) and subsequently for the (FLiPASED, 2019) H2020
projects. It is a high aspect ratio (AR = 20), single-
engine aircraft, with a wingspan of 7 m, and nominal
takeoff weight of 65 kg. The vehicle is equipped with
large number of sensors, measuring both center-body and
wing accelerations as well as angular rates, as illustrated
in Fig. 3. Each wing is equipped with four ailerons, the
inner three reserved for rigid body, while the outermost
for flutter control purposes. Two models of this aircraft
are used in this paper for FDI filter design: a low order
rigid body and a higher order flexible model. Both are
linear models obtained in straight and level flight (at
50 m/s), which is below the open-loop flutter speed. For
FDI design purposes the longitudinal modes are removed,
while lateral and asymmetric wing modal states are kept,
corresponding to aileron effectiveness. Both rigid body and
flexible dynamics contain the stable open-loop dynamics
of the aircraft, without the baseline stability augmentation
loop for simplicity. A detailed description obtaining it is
discussed in (Takarics and Vanek, 2019) and (Meddaikar
et al., 2019).

The outputs are sensor signals including lateral motion
rigid body side acceleration (ay), roll (p) and yaw rate
(r), as well as flexible dynamics related wingtip acceler-
ations (a.,rr), as well as bending rates near the wingtip
(pLr), the LR’ standing for Left and Right. The sensor
choice is an important engineering decision and one of the
key differentiator between flexible and rigid model based



Balint Patartics et al. / IFAC PapersOnLine 55-6 (2022) 603—610 605

FDI. The obvious decision is to use the standard IMU
sensors in the c.g. as well as accelerometers in the wing -
since differential acceleration between left and right side
might indicate dedicated actuator movement. After fine
tuning the algorithm with only these sensors (a, rg) the
performance was not satisfactory - the minimum robustly
detectable fault with flexible model was 4.1 deg and with
the rigid model 23.5 deg. Hence wing angular rate sensors
(available on the demonstrator) are also included in the
problem. With torsion rate sensors (qrgz) the minimum
detectable fault is 4.7deg, and the rigid performance im-
proves only slightly (18.6 deg), introducing an artificial
pitch rate sensor. In case the bending rate (prg) is the
input to the filter, besides the normal accelerations, the
minimum robustly detectable fault decreases to 2.4 deg
in the flexible case and remains the same of 23.5 deg in
the rigid case, since it is essentially equivalent to roll rate
sensing at multiple locations. This led to a decision to use
normal acceleration and bending rate sensors within our
parametric detection and isolation performance investiga-
tion.

The sensor dynamics are assumed to be first order low pass
filters of the form
1

Gsens(s) = "5, 1 (1>
5og T 1

where 6 is the bandwidth. Additive white noise distur-
bance is assumed on the sensor outputs. Based on the
specifications of the sensors and test data with the demon-
strator, the standard deviations of the sensor noises along
with the bandwidths are listed in Table 1.

The four individual ruddervator tail control surfaces are
linked together with a common command u,, shown in
Fig. 3. The aileron command considered in this paper is
obtained by

Ua,LR1 = 0; Ua 123 = —Ua,R23 = Uq- (2)

Thus, the input of the lateral dynamics system is the con-
T .

trol command ue = [Ua Ua,L4 Ua,Ra Ur] . The actuators in

the wings are MKS HBL599, their dynamics are obtained
with system identification:
1817

Coctals) = 551035 + 1817 )
Since the four ruddervators are transformed to a single
rudder, only one actuator is included in the model. The
input of the unsteady aerodynamics consists of the control
surface deflections, their derivatives and second deriva-
tives, hence the derivatives of the output of Gact,a(s) are
also connected to the system.

The states of the system used for FDI design includes
lateral modes: v,p,r, ¢ (side velocity, roll- and yaw-rate,
roll angle), as well as 9 flexible modal states, their deriva-
tives and 2 aerodynamic lag states, based on the model
reduction framework of (Meddaikar et al., 2019), which
reduces the 1152 states ASE model to 56 states, including
the actuator dynamics. The rigid aircraft model is directly
obtained from the reduced flexible model by residualising
the flexible states (modal coordinates, their derivatives,
and the lag states). In practice, a rigid model is usually the
result of parameter identification or wind tunnel testing of
a standard rigid model. Our approach aims to avoid any
differences between the two models that do not arise from

flexibility, hence the simple rigid model is derived from the
flexible one.

3. FAULT DETECTION FILTER DESIGN

The FDI filter design is posed as an H., optimal synthesis
problem similarly to the solution of (Marcos et al., 2005),
but it goes even further by handling the structured un-
certainty in a systematic manner employing p synthesis.
It would be also possible to design LPV detection filters
(Vanek et al., 2014) scheduled with velocity for a larger
flight envelope, but the goal of this article is to highlight
the need of including flexible dynamics in the design,
what is already visible from a single velocity point. The
generalised plant interconnection is depicted in Fig. 4.

Here, f = [f1 f2]" is the fault vector which is modelled
as an additive disturbance on the two outermost flutter
control ailerons u,, ;,r4. The output of the FDI filter F(s)
is called the residual. It is an estimate of the fault signals

hence it can be denoted by f = [fl fﬂ . The control
command u, is normally the output of the flight controller
but since no controller is considered in the design process,
it is treated as a known external disturbance via a scaling
factor W,, which normalizes the 1 norm d,, signal to the
actuator limit of £15 deg.

The desired response of the residual signals to the faults
is defined as

Tdes(s) = mi—i—lb’ (4)

where I is a 2 X 2 identity matrix. The time constant
k is a design parameter that sets the target bandwidth
(hence the speed of the response), which is part of the
investigation. Fault isolation is imposed by the off-diagonal
0 terms, what ensures that f; will have minimal impact on
ro and fy on 1. The subsequent weight of the estimation
error is also chosen to correspond to the bandwidth of
Taes(s). It is defined as

0.01ks +1
Wels) = ks +1

Is. (5)
Noise cancellation is required on the frequency range
beyond the bandwidth of Tyes(s). This is captured by the
noise weighting function

_ R10\/§Hs+ 1

Wa(s) = (6)

%s +1
where R is a diagonal matrix with the standard deviations
of the individual noise signals in the diagonal. The weight

of the input multiplicative uncertainty is
(s +759) (s* 4 26.22s + 298.4)
(s +680.4) (s + 188.4) (s + 17.66)
This is chosen so that the uncertain plant
Gplant () (I + Wa(s) A(s)) (8)

has 10% uncertainty at low frequencies, 50% at the ele-
vator actuator bandwidth, and 100% at high frequencies.
Notice that W,(s) does not depend on & since it describes
the accuracy of the model regardless of the target band-
width requirement. These weighting functions for k = 1s
are compared in Fig. 5.

Wu(s) = (7)

Denote the weighted design interconnection, depicted in
Fig. 4, with F(s) and A(s) left out by
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Table 1. Sensor bandwidth and standard deviation of the measurement noise.

“ Ay,c ‘ b ‘ r ‘ Azw l Pw
type MTI-G-710 xSense MPU-9250
bandwidth (0) 200 Hz 200 Hz

std. dev. of the noise

0.008m/sZ | 0.14°/s | 0.14°/ s

0.042m/s% [ 0.14°]s
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Fig. 5. Weighting functions used for the H,/u synthesis.
The value of the design parameter is k = 1s. (Since
the standard deviations of the noise channels are
different, W, (s) is represented by multiple lines.)

WA
ZA f
€l =M(s) | du | . (9)
Ym d,
Ue r

To connect A(s) and F'(s), let us define the Linear Frac-
tional Transformations (LFTs). For any two complex ma-

. . X1 Xio
t d t X = d Y, th
rix (or dynamic system) {le ng] and Y, the

upper LFT exists if X1; has the same size as Y7 and it is
defined as

Fo(X,Y)=XnY (I - X1Y) ' Xio+ Xao.  (10)
Similarly, if X5, has the same size as Y7, then
FoX,Y) = X2V (I — X0oY) " Xoy + X131, (11)
The uncertain generalised plant is then
P(A, s) = Fu(M(s), A(s)) - (12)

The objective of the design is to find a filter F(s) such
that the Hoo norm of Fr(P(A, s), F(s)) is minimal for all
possible uncertainties, i.e the optimisation problem is

min Fr(P(A, s), F(s
min | x| (P(A, 3), F(s)) |
Since P(A, s) is robustly stable (stable for all admissible
A(s)), this is equivalent to
mln || DFL(M(s) IH

max

(13)

(14)

dy(4) Ym(7)

plant ﬁ—’
dn—» Wp

Fig. 6. Interconnection of the uncertain aircraft model and
the p or Hy, FDI filter design used in the performance
evaluation.

|
=

This optimization, without D scales is solved using the
standard H., synthesis tool implemented in the hinfsyn
function of MATLAB. The version which takes uncertainty
structure into consideration is an approach to minimize
the upper bound for u(M) < infpep a(DMD™!) called
D-K synthesis, implemented in the dksyn function of
MATLAB. For details about the robust design techniques,
see (Skogestad and Postlethwaite, 2007).

4. EVALUATION OF THE FAULT DETECTION
PERFORMANCE

For the evaluation of the FDI filter, the weighting func-
tions and performance output channels are removed from
the generalized plant in Fig. 4. Hence, we consider the
interconnection in Fig. 6. Here, F(s) is the filter designed
by the process described in Section 3. Let us denote the
system in Fig. 6 by

dy
dn

For the ease of understanding, we describe the tools used
to evaluate the performance of the aileron fault detection.
The additional step of calculation employed for the fault
isolation are also highlighted. The theoretical background
of the computations involved in this section are described
by (Skogestad and Postlethwaite, 2007).

The effect of the control command on the residual is
measured by the worst-case gain of T(A, s) from the input
dy to the output r1g2. Denote this gain by

&2 = T(A, S) (15)

f1&2]
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T2 eue (B 8) Wl (16)

2= max

[A(s)]] oo <1
where W,, = I,4415° is a scaling matrix that represents the
maximum control input. Details of deriving the worst-case
gain for a single frequency point can be found in (Packard
and Doyle, 1993), which is generalized for obtaining worst-
case response at multiple selected frequency points in
(Patartics et al., 2020). We use the approximation that
if there is no noise and fault in the system (i.e. n = 0
and f = 0), then the residual produced by the control
command alone is at most ¥, (ie. [|[rig2l|l, < Pa) for
all admissible values of the uncertainty A(s). Note that
strictly speaking, instead of the H,, norm, the induced
Lo, should be used. However, the induced L., norm is
difficult to compute in the presence of uncertainty. Also,
these two norms bound each other up to a constant factor,
therefore trends we want to observe are not influenced by
the choice of the norm.

The effect of the noise on the residual is captured by
the standard deviation of 7r1g9 due to the noise. This is
calculated as the Hy norm of T(A, s) from d,, to r1g2, i.e.

0'2 = ‘|Tf1&2<—dn (0’ 3)”2 (17)
Recall that W, is a diagonal matrix input scaling within
T4, ¢s«d, With the standard deviations of the noise signals
on the diagonal. We use A(s) = 0 to indicate that the value
of A(s) is arbitrary in this computation since our model
assumes no uncertainty in the system in the channels from
the noise to the residual.

The above quantities are used to define the detection
time and the smallest robustly detectable fault. We use
a simple threshold decision logic to decide whether a
fault actually occurred. In the practical implementation
of an FDI system, an integration-based or an up-down
counter-based decision logic is usually used as described
by (Ossmann and Pusch, 2019b), and (Wheeler, 2011)
respectively. A simple threshold logic approximates the
behavior of those more complex solutions. The decision
threshold is the maximum residual caused by the control
input plus one standard deviation of the residual signal,
i.e. U, + 0a.

If the residual is ¥, + 1.30, in steady-state and without
noise, then the probability that r, > 9,40, in the presence
of noise is 90%. Therefore, we call the fault corresponding
to this residual the smallest robustly detectable fault. It is
denoted by ¢, and is defined by the equation

Troc-£.(0,0) o0 = Vs + 1.30,. (18)
Note that similarly to the noise, there is no uncertainty
in the channels from f to r. Therefore, the uncertainty
sample A(s) = 0 is used again in the computations.
In accordance with the definition of ¢,, the detection
time 7, is defined as the time when the step response
of T, 1,(0, s) ¢, crosses the threshold ¥, + 0,. These
quantities are illustrated in Fig. 7.

The isolation decision is only slightly complicated than
this. We derive the ”surely” (in the worst-case sense)
isolable fault using the principles described above. In our
case fault a has to be distinguished from fault b. This
means a size 1, fault coming from the cross channel b
on the residual r, plus the effect of noise (1.30,) and
control disturbance (¢,) should be less than the response
of the minimum isolable fault ¢, minus the effect of noise

r, when

n=2~0
\MI !
0 Ta

time [s]
Fig. 7. Definition of the detection time and smallest
detectable fault.

Table 2. Detection and isolation performance
(flexible design on flexible model, x = 0.196).

| Hy nom. | Hy w.c. | ppnom. | p w.c.

Det. (°) 0.1 22.7 0.8 1.7
Tsol. (°) 0.2 155 1.7 13

and control disturbance, following arguably conservative
arguments, hence the description ”surely”.

e 2(9 + 1.30,)
¢ Traefa (07 O) - T”'aefb (07 0) .

For demonstration purposes, we show these performances
by evaluating the filter design on the rigid aircraft model
at Kk = 0.271 s and on the flexible aircraft model at
k = 0.196 s. For these filter designs, we use the mea-
surements described above, including the left and right
bending rates (prg). Different time constants are cho-
sen for the two designs, since a detailed evaluation for
multiple values of x, presented in Section 5, led to these
parameter values as a compromise between detection time
and minimum detectable performance. The construction
of the worst-case uncertainty sample is done using the
algorithms from (Patartics et al., 2020). In the present
paper two distinct frequency points are chosen to realize
the worst case uncertainty sample A - one correspond-
ing to the classical worst-case gain, the frequency where
T fi, (Aw.c., w1)Wal| = Pa, and the other at wy = 0 to
obtain the worst DC gain, which leads to the worst steady
state response in time domain simulations.

(19)

When analysing the flexible design on the flexible model
with x = 0.196 s, the resulting filter bandwidths are
B, = 6.82rad/s for the y, and By, = 8.81rad/s for the
H, flexible model based filters, shown in Fig. 8. At these
frequencies, the model uncertainty is still low, therefore
design conditions can be met with p = 0.426 and H., gain
of 0.00012 for the two cases. When analyzing the filter
obtained by p synthesis designed and evaluated on the
flexible aircraft model the effect of the control input to
the residuals is Unom. = 7.9 x 107%° and ¥y, = 1.3°, in
the nominal and worst-case respectively. The noise also
affects the estimation of f; significantly, which is reflected
by the value o, = 0.56°. The steady state detection gain
is relatively far from unity 7}, r, = 0.848, while the cross
coupling term is almost negligible T’., .z, = 0.0025. In case
of the H, filter these values are slightly different, better
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FDI detection and isolation response to f1

residual r

pw.c.

residual ry
=
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
time (s)

Fig. 8. FDI filter response on the flexible aircraft model,
comparing p and Hs solutions. Steady disturbance
from —0.5 s, fault from 0 s.

Table 3. Detection and isolation performance
(rigid design on rigid model, k = 0.271s).

| He nom. | Hy w.c. | pnom. | p w.c.

Det. (°) 0.4 35.6 100 | 13.6
Tsol. (°) 0.8 715 20.8 284
FDI detection and isolation response to f1
z - -
:_—‘_ 051 77 =
[} 4
LA
) ol""f, 1
II
sl | | | | |
0 0.5 1 1.5 2 25
time (s)
T
04l ZW.C 1
o~ H,
§ 0-2|l —— wac B
=
3 _— e et SRS T L L L e e o =
= 0|Ir Frm————
I
1. | | | | |
0 0.5 1 1.5 2 25
time (s)

Fig. 9. FDI filter response on the rigid aircraft model,
comparing p and H, solutions. Steady disturbance
from —0.5 s, fault from 0O s.

in the nominal case and much worse in the worst-case
response. The effect of the control input to the residuals is
Ynom. = 1.4x107%° and ¥y ... = 22.59°, in the nominal and
worst-case respectively. The noise rejection is excellent, it
barely affects the estimation of fig9, which is reflected
by the value o, = 0.074°. The steady state detection
gain is Ty, = 0.999, while the cross coupling term is
Ty, = 0.0035.

In the rigid body model based synthesis, shown in Fig.
9, when k = 0.271 s, the resulting filter bandwidths are

B, = 6.26rad/s for the p and By, = 6.36rad/s for the H,
filters. At these frequencies, the model uncertainty is still
low, therefore design conditions can be met with p = 0.475
and H,,=0.00035. When analyzing the filter obtained by
1 synthesis on the rigid aircraft model, the effect of the
control input to the residuals is Ypom. = 3.7 x 1077° and
Pw.c. = 3.47°, in the nominal and worst-case respectively.
The value ¥y .. is 2.7 times higher in the rigid case than
the flexible, which indicate significant performance limita-
tions. The noise on the other hand affects the estimation
of fig2 more, which is reflected by the value o, = 7.41°,
meaning significant sensitivity to noise when uncertainty
is explicitly handled in the optimisation. The steady state
detection gain is T}, r, = 0.953, while the cross coupling
term is Ty, s, = 0.041. In case of the H, filter these
values are slightly different, better in the nominal case
and much worse in the worst-case response. The effect of
the control input to the residuals is Ypom. = 5 x 1076° and
Yw.c. = 35.17°, in the nominal and worst-case respectively.
Literally meaning no fault can be detected within the
actuator limits if the uncertainty is not favorable. The
noise on the other hand affects the estimation of f;g2 much
less, which is reflected by the values o, = 0.33°. The steady
state detection gain is T}, ¢, = 1, while the cross coupling
term is Ty, = 0.0042. At this bandwidth, the rigid
and flexible models are different, wing flexibility exhibits
extra degrees of freedom, what are well captured by the
wingtip acceleration and angular rates sensors. Therefore
the difference between the performance measures are pro-
nounced. The degradation is especially significant for the
noise sensitivity (o,) in the consecutive (flexible vs. rigid)
1 based fault estimations, and worst-case effects using the
H, solution also show severe degradation in ¥.., due
to the fact that uncertainty structure is not part of the
synthesis.

5. COMPARISON OF THE RIGID AND FLEXIBLE
MODEL BASED DESIGNS

In this section, we compare directly the FDI filters de-
signed for the rigid and flexible aircraft models, rigid de-
signs are evaluated on rigid models and flexible on flexible
to give a fair comparison. The performance metrics we
consider are the smallest detectable fault and smallest
surely isolable fault vs. the filter bandwidth as defined in
Section 4. In order to study directly the effect of flexible vs.
rigid model based designs all the performance weights and
synthesis methods are kept the same at the corresponding
k, nominal speed of response points as described in Section
3. Our investigation revealed that besides the accelerom-
eters placed to the wing tips, significant improvement is
seen on the flexible model side when using bending rate
sensors, hence this is the sensor configuration fixed for
the investigation - with which the smallest fault could be
detected using any sensor, model, or speed of response
setting.

Figure 10. presents the trade-off between the smallest
detectable fault and the detection time requirement for the
actuator fault f7 detection. Six lines, representing six cases
are shown, including rigid vs. flexible cases using the filters
obtained by p/D — K synthesis. In addition the better
performing, flexible model based, trends are compared to
the responses with the H., filter based solutions. Within
each set (rigid-p,flexible-u,flexible-H,) the nominal case,
with A = 0 and the worst case sample A = A, . are
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Fig. 10. Trade-off between the minimum detectable fault
and the filter bandwidth for the aileron (uq,z4) fault
detection.

also shown. A first clear trend, that nominal values are
always lower than worst-case values is clearly visible. The
amount of difference is 2 — 4° in the p synthesis case
and 6 — 35° in the H,, case. This behavior is expected,
but it is worth to mention that at low target bandwidth
the H,, filter outperforms the u based filters, since the
problem is dominated by noise and not by uncertainty,
and the H., solution is able to handle that better due
to fewer objectives. On the other hand as higher target
bandwidth is required and the problem is more dominated
by uncertainty the worst-case response with the Ho,
filter becomes unacceptable. At lower frequencies the rigid
model based detection performance is slightly better than
the flexible model based, but as frequency increases the
detection performance degrades. On the other hand the
flexible model based filter improves significantly as target
bandwidth reaches 0.3 rad/s and stays there all the way
till 30 rad/s, where the gap in minimum detectable fault
is more than 15°. The only exception is the narrow range
around 3 rad/s where the rigid-body roll mode interacts
unfavorably with the flexible modes, what makes the
aileron fault detection difficult at this particular frequency
point.

Figure 11 presents the trade-off between the smallest
surely isolable fault, defined in (19), and the target band-
width. Four lines all corresponding to the p-synthesis
based filter designs are compared. The best performance
is achieved at moderately high frequency range with the
flexible model based filtering, applied to the flexible model.
The rigid model based method, applied to the rigid aircraft
model, even though resulting in a significantly lower state
order, achieves far worst isolation performance. Taking the
15° actuator limits into account the rigid model based
method is only able to isolate faults realistically if the
uncertainty is smaller and not at its worst-case sample.

The trends in detection and isolation are very similar with
a rough scaling factor of two, due to the fact that the
cross coupling term T, . f,(0, 0) is almost always small
compared to the direct fault to residual channel. The
isolation problem, as well as the detection problem is more
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Fig. 11. Trade-off between the minimum surely isolable
fault between the ailerons (isolate wq, 4 from ug ra)
and the filter bandwidth.

difficult at high frequencies with the rigid model and the
best values are obtained using flexible model based design
at a relatively high target bandwidth. We conclude that
the performance of the aileron actuator fault detection is
impacted greatly by the choice of design model, as well as
the sensor configuration. It must be noted, that to perform
a more realistic assessment both rigid-, and (reduced
order) flexible-model based filters should be tested on the
high-fidelity simulation platform of the aircraft to have a
better overall picture about the real-world application of
them.

6. CONCLUSIONS

Based on a specific case study, motivated by the needs
of the FLIPASED demonstrator aircraft and its flutter
control surfaces, guidelines are established on when it is
advantageous to use flexible model based FDI filter design.
It is concluded that major performance improvement is
achieved in the medium to high target bandwidth range
when using flexible model based filter synthesis. When
considering structured uncertainty on the input channels
the performance of nominal model based filters degrade
rapidly as the target bandwidth increases. At the cost
of loss in detection and isolation performance at the
nominal point, it is more advantageous to use filter design
methods capable of handling uncertainty systematically,
when considering the whole range of possible uncertainties.
Both the rigid and the flexible model based synthesis
setups are able to achieve very small cross-coupling, when
the problem solution is not influenced on the fault to
residual path with uncertainty.
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