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A B S T R A C T

This work addresses the challenge of providing precise runway-relative position, velocity and orientation
reference to a landing aircraft based on monocular camera and low-cost inertial sensor data complemented
by barometric sensor readings. GPS information is excluded from this sensor set because it is intended to
use the developed estimator for GPS and Instrumental Landing System fault detection. The characteristic size
of the runway is assumed to be unknown and it is estimated run-time after verifying global observability
of the nonlinear system. The delay caused by image processing is dealt with a delayed-Error-State Kalman
Filter (ESKF). This algorithm considers dynamic propagation of the image information between acquisition
and application forward in time thus the delay does not appear in the system dynamics. The first evaluation
of the estimator is done for ideal simulated data to verify applicability of the delayed-ESKF and its flawless
implementation. Then more realistic simulated data with sensor biases and noise is considered to verify closer
to realistic performance and bias estimation precision. Finally, the estimator is tested with real flight data
collected in the VISION EU H2020 research project. Estimation results are compared to GPS SBAS-based data
and Airbus precision tolerances showing satisfactory performance. The methodological contribution of the
paper is the unique combination of existing methods and ideas leading to a new solution proven to work
satisfactorily even with real flight data.
. Introduction

In recent years several projects aimed to provide analytical re-
undancy (Goupil et al., 2015) and additional information sources to
n-board aircraft systems. Camera sensors are getting considered as an
dditional source of information as they are becoming more popular
ot only on unmanned aerial vehicles (UAVs) but also on passenger
irplanes (Gibert et al., 2018). A Europe–Japan collaborative research
roject called VISION (Validation of Integrated Safety-enhanced Intelli-
ent flight cONtrol) has explored the possibilities to use camera systems
uring aircraft landing between 2016–2019 see VISION (2016). VISION
ocused on critical flight scenarios especially on near ground maneuvers
nd aimed to improve the overall precision level of current navigation
ystems by adding image information. The work presented here is part
f the project. It focuses on IMU (Inertial Measurement Unit) and
amera-based runway-relative positioning of the aircraft excluding GPS
Global Positioning System) information as the results are applied in
PS and Instrumental Landing System (ILS) fault detection (see Grof
t al. (2019) and Grof and Bauer (2021)).

Exploring the literature of camera-based runway-relative position-
ng and navigation there are mainly two sets of possible approaches.
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E-mail addresses: groftamas96@gmail.com (T. Gróf), bauer.peter@sztaki.hu (P. Bauer), Yoko.Watanabe@onera.fr (Y. Watanabe).

The first set called visual servoing considers landing the aircraft based-
on the observed visual features without explicitly estimating its posi-
tion and velocity relative to the runway see e.g. Azinheira and Rives
(2008), Le Bras et al. (2009), Gibert and Puyou (2013) and Burlion
and Kolmanovsky (2020).

The second set of methods considers position estimation relative to
the surroundings. The work presented in this paper falls into this set.
Table 1 summarizes the main contributions of the most relevant exist-
ing literature sources (including also the author’s preceding work (Grof
et al., 2019)) regarding the applied sensors and the covered estimates
and challenges. The first column shows the contributions of the current
work for comparison. The first six rows contain the available sensor
units that are frequently used in aerospace applications. The second six
rows include the possible states to be estimated and other challenges to
be handled. In the next paragraph only the main characteristics of the
referenced articles will be mentioned. Further literature sources related
to this approach are e.g. Andert and Mejias (2015), Conte and Doherty
(2009) and Martinelli (2011).

In Zhang et al. (2019) an infrared-inertial navigation system with
barometric unit and radio altimeter is proposed for aircraft landing. It
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Table 1
Contributions relative to existing literature and previous work of the authors.

Current
work

Zhang
et al.
(2019)

Watanabe
et al.
(2019)

Watanabe
et al.
(2020)

Gibert
et al.
(2018)

Hiba
et al.
(2021)

Lynen
et al.
(2013)

Joo et al.
(2008)

Weiss
et al.
(2013)

Strydom
et al.
(2014)

Huang
et al.
(2017)

Grof et al.
(2019)

GPS x x x x x

IMU x x x x x x x x x x

Baro x x x x x

Mono vision x x x x x x x x x x

Stereo vision x x

Radio altimeter x

Position x x x x x x x x x x x x

Velocity x x x x x x x x x x

Orientation x x x x x x x x x x x

IMU Biases x x x x x x x

Delay handling x x x x x

Unknown runway x x
considers geographic terrain information and presents thorough com-
parison with other existing approaches for demonstrating the superior
performance of the developed algorithm in terms of accuracy.

Watanabe et al. (2019) considers vision-based aircraft relative nav-
igation to a runway with known size (in frame of the VISION project)
and applies a delayed-ESKF which utilizes the image trigger signal to
compensate the image processing delay forward in time.

Watanabe et al. (2020) extends the previous method by incorpo-
rating fault detection and protection level calculation. The developed
algorithm was implemented onboard the VISION test aircraft and real
flight tested.

Gibert et al. (2018) addresses the vision-based estimation of runway-
relative position assuming that the IMU provides ground relative veloc-
ity and orientation with sufficient precision (industrial grade sensors)
and the runway sizes are unknown.

Hiba et al. (2021) presents a method to estimate runway-relative
parameters solely from monocular camera images with known runway
sizes.

Lynen et al. (2013) proposes a ring-buffer scheme to process mul-
tiple delayed measurements. The proposed Multi-Sensor-Fusion EKF
(MSF-EKF) is tested in outdoor navigation with a combined Simulta-
neous Localization and Mapping (SLAM) system.

In Joo et al. (2008) an EKF (Extended Kalman Filter) formula
with delayed vision measurements is developed considering the noise
correlation during landing scenarios. The aircraft is equipped with
GPS and IMU unit while a moving rover along the runway monitors
the aircraft with a monocular camera. Bearing observations and rover
position are sent through wireless communication (causing most of the
delay) and then the onboard and external sources are fused with the
proposed delayed-EKF algorithm.

Weiss et al. (2013) introduces a loosely-coupled IMU-Camera navi-
gation filter in GPS (Global Positioning System) denied environment. It
estimates both acceleration and angular rate sensor biases. Nonlinear
observability analysis is performed and real flight test results underline
the applicability of the method requiring hundreds of reference points
to work properly.

Strydom et al. (2014) applies stereo vision and optic flow to position
a quadcopter along a trajectory by tracking several hundred (400 in the
example) feature points. The method is limited to 0–15 m flight altitude
range because of the stereo vision.

Huang et al. (2017) proposes a concept for UAV localization by
applying apriori known landmarks but it ignores the possible measure-
ment biases of the inertial unit.

In a previous work of the authors (Grof et al., 2019) a monocular
vision-based landing aircraft state estimation was presented neglecting
image processing delay and assuming known runway sizes. The method
2

considered only three reference points related to the runway which is
much less then the several points considered in other works.

To sum up the above part of literature survey one of the main
challenges is to estimate IMU sensor bias and unknown runway size at
the same time with low-cost IMU and without any apriori knowledge
(such as geo-localized landmarks). The common challenges which are
only partially covered by each source can be listed as (see also Table 1):

• The requirement to detect and track a large set of points in the
image or to use geo-referenced images

• The lack of acceleration and/or angular rate sensor bias estima-
tion which is unavoidable with low-cost IMU sensory systems

• The lack of precisely known velocity and/or orientation from
other systems

• The consideration of delay caused by image processing
• The assumption of known runway geometry

The goal of the current work is to fuse ideas and concepts from
the existing literature in a unique way applying measurements from
a limited set of sensor types and providing all required estimates.
The applied sensory measurements are IMU acceleration and angular
rate, barometer readings and mono camera runway corner points and
vanishing point readings. GPS is excluded from this sensor set as it is
intended to use the solution for GPS fault detection. The targeted states
to be estimated are runway-relative position, velocity and orientation
together with acceleration and angular rate biases and unknown run-
way size. Table 1 shows that none of the published methods can cover
such a large range of parameters especially based-on low-cost IMU data
(e.g. in Gibert et al. (2018) high precision aerospace grade IMU data is
considered). The effects of the image processing delay are considered
by implementing a delayed-ESKF algorithm (Watanabe et al., 2019)
knowing that the delay is measurable on the VISION test aircraft.

The developed method is first evaluated with simulated ideal data
(no noise, no biases), then with simulated realistic data (noise and
sensor biases). Finally, the method is applied and tested on real flight
data which was collected in frame of the VISION project to prove
real-life applicability.

The main contributions of this paper relative to the literature are
listed below:

• Considering unknown runway width with low-cost IMU and the
addition of barometric measurements. The fact that the knowl-
edge of the runway parameters is not required can be essential
during emergency landings of small UAVs

• Considering image processing delay with delayed-ESKF algorithm
• Verification of the delayed-ESKF solution with ideal (error/noise

free) simulated data
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Fig. 1. Reference systems for the simulated data.
Fig. 2. Septfonds (France) runway characteristics and significant LLA coordinates.

• Verification of the whole algorithm with real flight UAV data from
VISION project and evaluation of its precision in position and
orientation considering industrial tolerances provided by Airbus

The structure of the article is as follows: in Section 2 the related
mathematical model is presented. Section 3 analyzes the observability
of the system. Next, in Section 4 the proposed delayed-ESKF estimator
algorithm is introduced. Then Sections 5 and 6 validate the proposed
navigation system both with ideal and realistic simulated data. In
Section 7 the evaluation of the solution with real flight data including
delayed image information is presented. Finally, Section 8 concludes
the paper.

2. Runway-relative dynamics and measurements

This section summarizes the state dynamic and measurement equa-
tions applied in the formulation of the state estimator and gives some
information about the test aircraft and airfield.

In any flight dynamics related problem one has to first define the
applied reference systems. These are the North-East-Down (NED) frame
(𝑋𝐸 , 𝑌 𝐸 , 𝑍𝐸) considered to be an inertial one because of the short
flight distances during landing, the fixed runway frame (𝑋𝑅, 𝑌 𝑅, 𝑍𝑅)

ith origin (𝑂𝑅) placed at the center of threshold bars, the body
3

Fig. 3. Camera positions under the wings of the K-50 test aircraft.

frame (𝑋𝐵 , 𝑌 𝐵 , 𝑍𝐵) which is fixed to the aircraft and lastly the camera
frame (𝑋𝐶 , 𝑌 𝐶 , 𝑍𝐶 ) which can be body system aligned as in Fig. 1 or
unaligned as in Fig. 4. In case of real flight the camera was located
under one of the wings of the K-50 test aircraft meaning that the camera
frame is unaligned. This is shown in Figs. 3 and 4.

Fig. 2 shows the runway (Septfonds, France) on which the real flight
test was executed. The Latitude–Longitude–Altitude (LLA) of the origin
of the NED frame is assigned at

[

−44.179694◦ 1.597274◦ 193 m
]

denoted as No. 9. This is the point of aircraft preparation before taxi
and take-off. The NED coordinates of the origin 𝑂𝑅 of the runway frame
(see Fig. 1) were

[

164.16 m −306.265 m 6.72 m
]

.
After defining the reference systems the mathematical model is for-

mulated from the kinematic equations including the following variables
(similar to Watanabe et al. (2019)):

𝑥 =
[

𝑝𝑇𝑅 𝑣𝑇𝑅 𝑞𝑇 𝑏𝑇𝑎 𝑏𝑇𝜔 𝑊
]𝑇 (1)

𝑢 =
[

𝑎𝑇𝐵 𝜔𝑇𝐵
]𝑇 (2)

𝜂 =
[

𝜂𝑇𝑎 𝜂𝑇𝜔 𝜂𝑇𝑏𝑎 𝜂𝑇𝑏𝜔 𝜂𝑇𝑊
]𝑇 (3)

𝑧 =
[

𝑧𝑇𝐿 𝑧𝑇𝑅 𝑧𝑇𝑣𝑝 𝑧𝑇𝑏𝑎𝑟𝑜
]𝑇

(4)

𝜈 =
[

𝜈𝑇 𝜈𝑇 𝜈𝑇 𝜈𝑇
]𝑇
. (5)
𝑧𝐿 𝑧𝑅 𝑧𝑣𝑝 𝑧𝑏𝑎𝑟𝑜
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Here, 𝑥 is the state vector with 𝑝𝑅 =
[

𝑝𝑥 𝑝𝑦 𝑝𝑧
]

runway-
relative position, 𝑣𝑅 =

[

𝑉𝑥 𝑉𝑦 𝑉𝑧
]

runway-relative velocity, 𝑞 =
[

𝑞0 𝑞1 𝑞2 𝑞3
]

quaternion representation of runway-relative orien-
tation and 𝑏𝑎 =

[

𝑏𝑎𝑥 𝑏𝑎𝑦 𝑏𝑎𝑧
]

, 𝑏𝜔 =
[

𝑏𝑝 𝑏𝑞 𝑏𝑟
]

bias parameters of
accelerometers and gyroscopes. Finally 𝑊 is the runway threshold bar
width added as a new state (31 m in Fig. 2). The 𝑢 input vector includes
the IMU measurements such as acceleration 𝑎𝐵 =

[

𝑎𝑥 𝑎𝑦 𝑎𝑧
]

and
angular rate 𝜔𝐵 =

[

𝑝 𝑞 𝑟
]

in body frame. The 𝜂 vector consists
of the process noise variables affecting IMU measurements 𝜂𝑎, 𝜂𝜔, IMU
bias values 𝜂𝑏𝑎, 𝜂𝑏𝜔 and runway width state 𝜂𝑊 . The latter three are
artificial noises influencing the bias values and runway width which are
modeled as first-order Markov processes. 𝑧 includes the measurements
with 𝑧𝐿 and 𝑧𝑅 image plane coordinates of left and right threshold
line corners, 𝑧𝑣𝑝 projection of the vanishing point and 𝑧𝑏𝑎𝑟𝑜 barometric
altitude measurement. The related measurement noise parameters in 𝜈
are 𝜈𝑧𝐿 , 𝜈𝑧𝑅 , 𝜈𝑧𝑣𝑝 and 𝜈𝑧𝑏𝑎𝑟𝑜 . Note that the model equations are delay free
similarly to Watanabe et al. (2019) as the consideration of the known
image measurement delay does not require delayed dynamics. The
measurement update is done considering the dynamic effects between
image acquisition and update forward in time as presented in Section 4.

The kinematic equations that describe the aircraft motion are pre-
sented in Eqs. (7) to (11) in input affine form:

̇ = 𝑓 (𝑥, 𝜂) +
𝑚
∑

𝑖=1
𝑔𝑖(𝑥)𝑢𝑖

𝑧 = ℎ(𝑥, 𝜈).

(6)

𝑝̇𝑅 = 𝑣𝑅 = 𝑓𝑝𝑅 (𝑥, 𝜂) + 0 (7)

𝑣̇𝑅 = 𝑇𝑅𝐵(𝑎𝐵 − 𝑏𝑎 − 𝜂𝑎) + 𝑔 = 𝑓𝑣𝑅 (𝑥, 𝜂) + 𝑔𝑣𝑅 (𝑥)𝑎𝐵 (8)

̇ = −𝑄(𝑞)𝜔𝐵 +𝑄(𝑞)(𝑏𝜔 + 𝜂𝜔) = 𝑓𝑞(𝑥, 𝜂) + 𝑔𝑞(𝑥)𝜔𝐵 (9)

𝑏̇ =
[

𝑏̇𝑎
𝑏̇𝜔

]

=
[

06×6 𝐼6 06×1
]

𝜂 = 𝑓𝑏(𝑥, 𝜂) + 0 (10)

𝑊̇ =
[

01×12 1
]

𝜂 = 𝑓𝑊 (𝑥, 𝜂) + 0 (11)

Here, 𝑓𝑣𝑅 (𝑥, 𝜂) = 𝑇𝑅𝐵(−𝑏𝑎 − 𝜂𝑎) + 𝑔 and 𝑔𝑣𝑅 (𝑥) = 𝑇𝑅𝐵 are the
components of the input affine form of the differential equation for 𝑣𝑅.
The other terms are formulated similarly. If there is a 0 on the right
hand side that means no input effect in the given equation (𝑔𝑖(𝑥) = 0).
Here 𝑇𝑅𝐵 is the body to runway transformation matrix and 𝑄(𝑞) is
the matrix with quaternion terms in the quaternion dynamics similarly
to Weiss et al. (2013). 𝐼6 is the six dimensional unit matrix.

The measurement equations were formulated by using a perspective
camera projection model. The first two reference points are the thresh-
old line corners of the runway while the third is the so called vanishing
point aligned with the runway heading direction (coinciding with the
runway frame 𝑋𝑅 axis). Details about runway feature detection can be
found in Hiba et al. (2018) and Hiba et al. (2021).

When considering camera position away from the CoG of the air-
craft a 𝛥𝑝𝑐𝑎𝑚 position and 𝛥𝑞𝑐𝑎𝑚 orientation transformation of the
camera (see Fig. 4) should be applied to get the correct camera position
and orientation in runway frame

𝑝𝐶𝑅 = 𝑝𝑅 + 𝑇𝑅𝐵𝛥𝑝𝑐𝑎𝑚 (12)

𝑞𝐶𝑅 = 𝑞 ⊗ 𝛥𝑞𝑐𝑎𝑚. (13)

Here, ⊗ refers to the quaternion product as in Sola (2017). The
rotation matrix from the runway frame to the camera frame can be
expressed as 𝑇 (𝑞𝐶𝑅 ). The camera frame coordinates of the threshold bar
corners and the vanishing point can be obtained as

𝑟𝐿∕𝑅 = 𝑇 (𝑞𝐶𝑅 )(𝑓𝐿∕𝑅 − 𝑝𝐶𝑅), 𝑟𝑣𝑝 = 𝑇 (𝑞𝐶𝑅 )
⎡

⎢

⎢

1
0
⎤

⎥

⎥

. (14)

⎣0⎦ m

4

In case of coinciding body and camera frame origins and orientation
𝛥𝑝𝑐𝑎𝑚 = 0, 𝛥𝑞𝑐𝑎𝑚 = 0 and so the relations are:

𝑟𝐿∕𝑅 = 𝑇𝐶𝐵𝑇𝐵𝑅(𝑓𝐿∕𝑅 − 𝑝𝑅), 𝑟𝑣𝑝 = 𝑇𝐶𝐵𝑇𝐵𝑅
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

. (15)

In this case 𝑇 (𝑞𝐶𝑅 ) simplifies to 𝑇𝐶𝐵𝑇𝐵𝑅 where 𝑇𝐵𝑅 = 𝑇 𝑇𝑅𝐵 is the
runway to body frame transformation and 𝑇𝐶𝐵 is the simplified rotation
matrix from body to camera system representing only axis swapping as

𝐓𝐶𝐵 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

. (16)

𝑓𝐿 =
[

0 −𝑊
2 0

]𝑇
and 𝑓𝑅 =

[

0 𝑊
2 0

]𝑇
are the unknown

left and right coordinates of threshold corners while
[

1 0 0
]𝑇 is the

direction of the vanishing point in the runway frame (see Fig. 1). It
is important to note that the runway threshold area is assumed to be
flat resulting in the given positions of the corner points 𝑓𝐿 and 𝑓𝑅. The
perspective projection of these points onto the image plane is given by
(17).

𝑧𝑗 =
𝑓
𝑟𝑗,𝑧

[

𝑟𝑗,𝑥
𝑟𝑗,𝑦

]

+ 𝜈𝑧𝑗 = ℎ𝑧𝑗 (𝑥, 𝜈) 𝑗 ∈ {𝐿,𝑅, 𝑣𝑝} (17)

Considering subscripts 𝑥, 𝑦, 𝑧 as the coordinates of the vectors. This
equation together with (14) shows how the uncertainty in the runway
width estimation can affect the position and from that the velocity
estimation. Surely, fluctuations in width estimation will cause an error
in position estimation and slight changes in velocity estimates.

As mentioned before unknown runway characteristics require ad-
ditional sensory information besides the camera and IMU. The supple-
mentary sensor unit was chosen to be a barometric altitude sensor. The
equation for the barometric sensor measurement can be expressed as
follows:

𝑧𝑏𝑎𝑟𝑜 = −𝑝𝑧 + 𝑝𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝜈𝑧𝑏𝑎𝑟𝑜 = ℎ𝑏𝑎𝑟𝑜(𝑥, 𝜈). (18)

Here, 𝑝𝑧 = 𝑝(𝐶)𝑅 (3) is the altitude of the aircraft in runway frame
(negative in upward direction) and 𝑝𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 is the runway height above
sea level (positive upward). The 𝑝𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 correction is required since
the barometric sensor measures aircraft altitude above sea level.

Summarizing the system dynamics and measurements in the form
of (6) results in:

𝑥̇ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑝̇𝑅
𝑣̇𝑅
𝑞̇
𝑏̇
𝑊̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓𝑝𝑅 (𝑥, 𝜂)
𝑓𝑣𝑅 (𝑥, 𝜂)
𝑓𝑞(𝑥, 𝜂)
𝑓𝑏(𝑥, 𝜂)
𝑓𝑊 (𝑥, 𝜂)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑓 (𝑥,𝜂)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝑔𝑣𝑅 (𝑥)

0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝑔1(𝑥)

𝑎𝐵 +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0

𝑔𝑞(𝑥)
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝑔2(𝑥)

𝜔𝐵 (19)

𝑧 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑧𝐿
𝑧𝑅
𝑧𝑣𝑝
𝑧𝑏𝑎𝑟𝑜

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

ℎ𝑧𝐿 (𝑥, 𝜈)
ℎ𝑧𝑅 (𝑥, 𝜈)
ℎ𝑧𝑣𝑝 (𝑥, 𝜈)
ℎ𝑏𝑎𝑟𝑜(𝑥, 𝜈)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
ℎ(𝑥,𝜈)

. (20)

The targeted goal is to estimate the runway-relative position, veloc-
ty and orientation of the aircraft together with the width of the runway
nd the biases of the acceleration and angular rate sensors based-on
hese equations. However, considering any realistic vision sensor there
s a significant delay which mostly comes from the image processing
ime. Since the processed image will include information about the past
tates it will corrupt the filter and result in inaccurate estimates (see
ater in Sections 5–7). Therefore the delay is compensated with delayed-
SKF algorithm from Watanabe et al. (2019) (briefly summarized in
ection 4) by propagating the past measurement forward in time to
ake a correct measurement update.
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. Observability of the nonlinear system

Before the design of any estimator the first task is to check system
bservability considering the dynamic Eqs. (19) and the selected mea-
urements (20) of the system. As discussed before, the estimator cannot
ely on GPS position or velocity information so there is no possibility for
ensor selection. The observability of the system with monocular image
nd barometric altitude information (20) should be verified instead.
s the delayed ESKF is derived in Watanabe et al. (2019) based-
n Larsen et al. (1998) there is no need to consider delay effects in the
valuation of observability. This is because the time stamp of image
easurements is known and so the effect of system dynamics between
easurement acquisition and availability of the processed image can

e considered directly in the measurement update of the filter. For the
asic understanding of this process see Larsen et al. (1998) presenting
he solution for the linear Kalman Filter.

Neglecting the random noises (𝜂, 𝜈) in the input affine form (6) the
system can be formulated as:

̇ = 𝑓 (𝑥) +
𝑚
∑

𝑖=1
𝑔𝑖(𝑥)𝑢𝑖

𝑧 = ℎ(𝑥).

(21)

There is a broad range of literature about the observability of
nonlinear systems. Montanari and Aguirre (2020) and Aguirre et al.
(2018) give good overview about the possible methods. From these the
Lie derivative-based observability calculation is the most straightfor-
ward and applicable calculating the observability co-distribution of the
system. This method was extended to systems with inputs (such as ours
represented by (21)) for example in Vidyasagar (1993). The algorithm
can be summarized as in (22).

𝜓0 = 0
𝑓,𝑔𝑖

ℎ(𝑥) = ℎ(𝑥)

𝜓1 = 1
𝑓,𝑔𝑖

ℎ(𝑥) = 𝜕ℎ
𝜕𝑥

(𝑥)𝑓 (𝑥) +
𝑚
∑

𝑖=1

𝜕ℎ
𝜕𝑥

(𝑥)𝑔𝑖(𝑥)𝑢𝑖

𝜓2 = 2
𝑓,𝑔𝑖

ℎ(𝑥) =
𝜕𝜓1
𝜕𝑥

(𝑥, 𝑢)𝑓 (𝑥) +
𝑚
∑

𝑖=1

𝜕𝜓1
𝜕𝑥

(𝑥, 𝑢)𝑔𝑖(𝑥)𝑢𝑖

𝜓 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜓0
𝜓1
⋮

𝜓𝑁−1

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑖𝑚(𝑥) = 𝑁

 =
𝜕𝜓
𝜕𝑥

𝑟𝑎𝑛𝑔() = 𝑁

(22)

Here, 𝑗𝑓 ,𝑔𝑖 is the 𝑗th Lie derivative of a function with respect to
the functions 𝑓, 𝑔 . For the detailed formal definition see the equations
𝑖 c

5

in (22). The observability co-distribution  results by stacking the
defined Lie derivatives 𝜓0 …𝜓𝑁−1 into a vector 𝜓 and taking its spatial
derivative with respect to the state variable 𝑥. If the rank of  equals
the dimension of the state space 𝑁 at every (𝑥, 𝑢) point then the system
is globally observable.

If  is symbolically calculated and is full column rank (in case of
multiple measurements there can be more rows than columns) then
the system can be globally observable. In case if the symbolic matrix
is rank deficient then the system is globally unobservable. Note that
here symbolic calculation means the symbolic substitution of functions
ℎ(𝑥), 𝑓 (𝑥), 𝑔𝑖(𝑥) (from (19) and (20)) and is not related to the symbolic
observability methods considering only the structure of these functions
(Bianco-Martinez et al., 2015; Letellier & Aguirre, 2009).

The symbolic calculation is done by applying the Matlab Symbolic
Toolbox substituting Eqs. (7) to (11) and (17) to (18) neglecting the
effect of camera orientation (𝛥𝑞𝑐𝑎𝑚) and position (𝛥𝑝𝑐𝑎𝑚) relative to
the body system as these are known constant parameters so should
not affect observability. Symbolically calculating the observability co-
distribution according to (22) with 𝑧𝑣𝑝, 𝑧𝐿∕𝑅, 𝑧𝑏𝑎𝑟𝑜 measurements (1)
gives full rank (rank 17) so there is no global unobservability prob-
lem. Note that there are 17 states summing up position (3), velocity
(3), quaternion (4), acceleration bias (3), angular rate bias (3) and
runway width (1) dimensions. The rank is the same with 𝑧𝐿∕𝑅, 𝑧𝑏𝑎𝑟𝑜
measurements (2) so the measurement of the vanishing point is not
mandatory. However, with 𝑧𝑣𝑝, 𝑧𝐿∕𝑅 measurement only (3) the sym-
bolic rank is 16 meaning global unobservability so the barometric
measurement is mandatory.

However, the possible local loss of observability should also be
examined theoretically for all (𝑥, 𝑢) pair and parameter values as the
nonlinear relations can be singular or vanish at some points. Practically
only the critical points should be examined but there is no systematic
way to generate them thus the chance of false evaluation is large. So
formally examining the singularities and vanishing values can be faster
and safer.

From the literature the graph-based approach (Aguirre et al., 2018;
Letellier et al., 2018) can help in the detection of dependencies and
in detailed examination of the singularities and vanishing connections.
So at first, the inference diagram of the system was drawn (see Fig. 5)
considering the Jacobian of ℎ(𝑥) representing the effect of state changes
to the output, the Jacobian of 𝑓 (𝑥) representing the effect of state
hanges to the states and 𝑔𝑖(𝑥) as the effect of inputs to the states
see Aguirre et al. (2018)). In the diagram in Fig. 5 non-singular, never
anishing connections are denoted with solid lines while nonlinear,
ossibly singular and/or vanishing ones with dashed lines. 𝐼3 is the
hree dimensional unit matrix, 𝑒3 is its last row, 𝑧𝑏𝑎 is the measured
arometric altitude 𝐵𝑎(𝑞, 𝑏𝑎) and 𝐵𝜔(𝑏𝜔) are matrices including the
uaternion and sensor bias values. Both of them can be zero in the ideal
ase with zero biases.
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Fig. 5. Inference diagram of the system with image and barometric altitude measure-
ments. Black lines (solid: never vanishing, dashed: possibly singular and vanishing) are
the initial connections, solid red lines are the detected non-singular and never vanishing
ones.

𝑔𝑖(𝑥) give the connections with 𝜔𝐵 and 𝑎𝐵 through −𝑄(𝑞) (9) and
𝑇𝑅𝐵(8). 𝑇𝑅𝐵 is an orthogonal rotation matrix which is never singular
and the acceleration measurement 𝑎𝐵 includes gravity and so it is never
zero. That is why there is always a connection between the orientation
𝑞 and the velocity 𝑣𝑅 (solid line). As −𝑄(𝑞) gives the derivative of the
quaternion from the angular rate this connection is never zero as any
nonzero angular rate should cause a change of the orientation. This is
also true for the 𝑄(𝑞)𝑏𝜔 part its only zero when 𝑏𝜔 = 0.

The third coordinate of the position is directly measured through the
barometric altitude 𝑧𝑏𝑎 so this connection never vanishes. However, the
effects of 𝑝𝑅, 𝑞 and 𝑊 to 𝑧𝐿∕𝑅 and 𝑧𝑣𝑝 image measurements should be
examined in detail.

As 𝑊 is the constant runway width its time- and state-dependence is
zero and hence its effect should be evaluated through ℎ(𝑥) instead of the
Jacobian of ℎ(𝑥). The singularity of ℎ𝑧𝑗 (𝑥), 𝑗 ∈ {𝐿,𝑅} from (17) occurs
if 𝑟𝑗,𝑧 = 0. This is the case when the feature point is in the 𝑋𝐶 − 𝑌 𝐶
camera plane (see Fig. 1) which case the feature point is outside camera
field of view (which is 67◦ for the wide angle camera in the VISION
project). Consequently the runway width effect is never singular. The
next step is to evaluate if this connection can vanish. Examining (17)
by substituting the terms from (14) shows that the runway width effect
can vanish either on 𝑧𝐿 when the camera points directly to 𝑓𝐿 or on 𝑧𝑅

hen the camera points directly to 𝑓𝑅 but never together. This means
hat there will always be runway width effect on the measured corner
oint images but sometimes only on one of them.

After examining the runway width effect the effects from 𝑝𝑅 position
nd 𝑞 quaternion should be examined through the Jacobian of ℎ𝑧𝑗 (𝑥):

𝜕ℎ𝑧𝑗
𝜕𝑥𝑖

(𝑥) =

⎡

⎢

⎢

⎢

⎣

− 𝑓𝑟𝑗,𝑥
𝑟2𝑗,𝑧

𝜕𝑟𝑗,𝑧
𝜕𝑥𝑖

+ 𝑓
𝑟𝑗,𝑧

𝜕𝑟𝑗,𝑥
𝜕𝑥𝑖

− 𝑓𝑟𝑗,𝑦
𝑟2𝑗,𝑧

𝜕𝑟𝑗,𝑧
𝜕𝑥𝑖

+ 𝑓
𝑟𝑗,𝑧

𝜕𝑟𝑗,𝑦
𝜕𝑥𝑖

⎤

⎥

⎥

⎥

⎦

𝑗 ∈ {𝐿,𝑅, 𝑣𝑝}, 𝑥𝑖 ∈ {𝑝𝑅, 𝑞}. (23)

ere 𝑓 is the focal length of the camera. These expressions again will
e singular when 𝑟𝑗,𝑧 = 0 which is not possible in realistic situations
limited camera field of view). To detect if these connections can
anish vanishing of 𝑟𝑗,𝑥, 𝑟𝑗,𝑦,

𝜕𝑟𝑗,𝑧
𝜕𝑥𝑖

,
𝜕𝑟𝑗,𝑥
𝜕𝑥𝑖

,
𝜕𝑟𝑗,𝑦
𝜕𝑥𝑖

should be examined. The
etailed examination is rather lengthy so it is omitted here due to space
onstraints. The final conclusions are listed as:

• The position change effect on 𝑧𝐿∕𝑅 will never vanish.
• The quaternion change effect on 𝑧 will never vanish.
𝐿∕𝑅

6

• The quaternion change effect on 𝑧𝑣𝑝 can vanish in special cases:

1. 𝑍𝐶 camera axis points to left runway corner point (𝑓𝐿) and
aircraft motion in 𝑍𝐶 − 𝑌 𝐶 camera plane.

2. 𝑍𝐶 camera axis points to left runway corner point (𝑓𝐿) and
aircraft motion in 𝑍𝐶 −𝑋𝐶 camera plane.

3. 𝑞𝑠1 =
[

1 0 0 0
]

special quaternion orientation and
free other coordinates.

Of course the 𝑍𝐶 camera axis can also point towards the right
unway corner point (𝑓𝑅) instead of the left, but this does not change
he observability results. Realistic numerical values of the states for the
bove 1 − 3 cases are generated as follows:

∶ 𝑝𝑅 =
⎡

⎢

⎢

⎣

−200
−15

−10.4816

⎤

⎥

⎥

⎦

, 𝑣𝑅 =
⎡

⎢

⎢

⎣

30
0
0

⎤

⎥

⎥

⎦

, 𝑞 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9997
0

−0.0262
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑏𝑎 = 0, 𝑏𝜔 = 0

𝑊 = 30, 𝑎𝐵 =
⎡

⎢

⎢

⎣

0.5134
0

9.7966

⎤

⎥

⎥

⎦

, 𝜔𝐵 = 0

2 ∶ 𝑝𝑅 =
⎡

⎢

⎢

⎣

−200
−15

−10.4816

⎤

⎥

⎥

⎦

, 𝑣𝑅 =
⎡

⎢

⎢

⎣

27.9616
2

1.4654

⎤

⎥

⎥

⎦

, 𝑞 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9997
0

−0.0262
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑏𝑎 = 0, 𝑏𝜔 = 0

𝑊 = 30, 𝑎𝐵 =
⎡

⎢

⎢

⎣

0.5134
0

9.7966

⎤

⎥

⎥

⎦

, 𝜔𝐵 = 0

3 ∶ 𝑝𝑅 =
⎡

⎢

⎢

⎣

−200
−15

−10.4816

⎤

⎥

⎥

⎦

, 𝑣𝑅 =
⎡

⎢

⎢

⎣

30
0
0

⎤

⎥

⎥

⎦

, 𝑞 =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑏𝑎 = 0, 𝑏𝜔 = 0

𝑊 = 30, 𝑎𝐵 =
⎡

⎢

⎢

⎣

0
0

9.81

⎤

⎥

⎥

⎦

, 𝜔𝐵 = 0.

Checking numerically 1 and 2 with these values also gives full
rank so the system is globally observable from 𝑧𝑣𝑝, 𝑧𝐿∕𝑅, 𝑧𝑏𝑎𝑟𝑜 or from
𝑧𝐿∕𝑅, 𝑧𝑏𝑎𝑟𝑜. To have more redundancy in measurements 𝑧𝑣𝑝, 𝑧𝐿∕𝑅, 𝑧𝑏𝑎𝑟𝑜
are applied in the development of the delayed-ESKF.

4. Brief summary of the delayed-ESKF algorithm

For the targeted estimation task the delayed measurement ESKF
algorithm developed in Watanabe et al. (2019) is applied. It is briefly
overviewed in this section.

4.1. ESKF process

In the ESKF framework the nonlinear system in consideration (6)
will be decomposed into a nominal system (subscript 𝑛) and an error
system (denoted with 𝛿) such that the nominal system does not include
any uncertainty. First, the nominal state system can be defined as
{

𝑥̇𝑛 = 𝑓 (𝑥𝑛, 0) +
∑𝑚
𝑖=1 𝑔𝑖(𝑥𝑛)𝑢𝑖

𝑧𝑛 = ℎ(𝑥𝑛, 0).
(24)

The error state is defined as 𝑥 = 𝑥𝑛 ⊕ 𝛿𝑥 with an injection operator
⊕. Here, the same state decomposition is applied as in Watanabe et al.
(2019) with a linear decomposition 𝑊 = 𝑊𝑛 + 𝛿𝑊 for the additional
runway width state:

𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑝𝑅
𝑣𝑅
𝑞
𝑏𝑎
𝑏𝜔

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑝𝑅𝑛 + 𝑇𝑅𝐵𝛿𝑝𝑅
𝑣𝑅𝑛 + 𝑇𝑅𝐵𝛿𝑣𝑅
𝑞𝑛 ⊗ 𝑞(𝛿𝜃)
𝑏𝑎𝑛 + 𝛿𝑏𝑎
𝑏𝜔𝑛 + 𝛿𝑏𝜔

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑝𝑅𝑛
𝑣𝑅𝑛
𝑞𝑛
𝑏𝑎𝑛
𝑏𝜔𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⊕

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑝𝑅
𝛿𝑣𝑅
𝛿𝜃
𝛿𝑏𝑎
𝛿𝑏𝜔

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑥𝑛 ⊕ 𝛿𝑥. (25)
𝑊
⎣

𝑊𝑛 + 𝛿𝑊 ⎦ ⎣

𝑊𝑛 ⎦ 𝛿𝑊
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Here, 𝑞(𝜃) represents a quaternion defined from a rotation vector
𝜃 ∈ R3 (See Sola (2017)). It should be noted that because of this
approximation of the rotation 𝛿𝑥 has one-dimension less (𝑑𝑖𝑚(𝛿𝑥) = 16)
than the original and nominal state vectors (𝑑𝑖𝑚(𝑥) = 𝑑𝑖𝑚(𝑥𝑛) = 17).

Finally, the error system becomes the following linear one
{

𝛿𝑥̇ = 𝐴(𝑥𝑛, 𝑢)𝛿𝑥 + 𝐵(𝑥𝑛)𝜂
𝛿𝑧 = 𝑧 − 𝑧𝑛 = 𝐶(𝑥𝑛)𝛿𝑥 +𝐷(𝑥𝑛)𝜈.

(26)

Here, the matrix 𝐴 is given with 𝑎𝑛 = 𝑎𝐵 − 𝑏𝑎𝑛 and 𝜔𝑛 = 𝜔𝐵 − 𝑏𝜔𝑛
and the matrix 𝐵 becomes constant as follows

𝐴(𝑥𝑛, 𝑢) =

⎡

⎢

⎢

⎢

⎢

⎣

−
[

𝜔𝑛×
]

𝐼3×3 𝑂3×3 𝑂3×3 𝑂3×3 𝑂3×1
𝑂3×3 −

[

𝜔𝑛×
]

−
[

𝑎𝑛×
]

𝐼3×3 𝑂3×3 𝑂3×1
𝑂3×3 𝑂3×3 −

[

𝜔𝑛×
]

−𝐼3×3 𝑂3×3 𝑂3×1
𝑂7×3 𝑂7×3 𝑂7×3 𝑂7×3 𝑂7×3 𝑂7×1

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐵(𝑥𝑛) =
[

𝑂3×13
𝐼13×13

]

.

Here, [𝑣×] means the matrix representation of vector cross product
with any 𝑣 vector. The error system measurement 𝛿𝑧 for the image
coordinates of left and right corner positions is given by

𝛿𝑧𝐿∕𝑅 = 𝑧𝐿∕𝑅 − ℎ𝑧𝐿∕𝑅 (𝑥𝑛, 0) = 𝐻(𝑟(𝐿∕𝑅)𝑛 )𝛿𝑟𝐿∕𝑅 + 𝜈𝐿∕𝑅. (27)

The Jacobian matrix 𝐻(𝑟(𝐿∕𝑅)) of the image projection function
results as:

𝐻(𝑟(𝐿∕𝑅)) =
𝑓

𝑟(𝐿∕𝑅)𝑧

[

𝐼2×2 −
1

𝑟(𝐿∕𝑅)𝑧

[

𝑟(𝐿∕𝑅)𝑥
𝑟(𝐿∕𝑅)𝑦

]]

.

From (14) and (15):

𝐿∕𝑅𝑛 = 𝑇 (𝑞𝐶𝑅,𝑛)(𝑓𝐿∕𝑅𝑛 − 𝑝
𝐶
𝑅𝑛
) = 𝑇𝐶𝐵

(

𝑇𝐵𝑅,𝑛
(

𝑓𝐿∕𝑅𝑛 − 𝑝𝑅𝑛
)

− 𝛥𝑝𝑐𝑎𝑚
)

.

hen its difference from the real position 𝑟𝐿∕𝑅 is affine approximated
y

𝑟𝐿∕𝑅 = 𝑟𝐿∕𝑅 − 𝑟𝐿∕𝑅𝑛 =

𝐶𝐵

⎛

⎜

⎜

⎝

−𝛿𝑝𝑅 +
[

𝑇𝐵𝑅,𝑛
(

𝑓𝐿∕𝑅𝑛 − 𝑝𝑅𝑛
)

×
]

𝛿𝜃 ∓ 𝑇𝐵𝑅,𝑛
⎡

⎢

⎢

⎣

0
𝛿𝑊 ∕2

0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

.
(28)

n a similar manner, the error system measurement for the vanishing
oint can be obtained as follows:

𝑧𝑣𝑝 = 𝑧𝑣𝑝 − ℎ𝑧𝑣𝑝 (𝑥𝑛, 0) = 𝐻(𝑟𝑣𝑝𝑛 )𝛿𝑟𝑣𝑝 + 𝜈𝑣𝑝, 𝑟𝑣𝑝𝑛 = 𝑇𝐶𝐵𝑇𝐵𝑅,𝑛𝑒1
𝛿𝑟𝑣𝑝 = 𝑟𝑣𝑝 − 𝑟𝑣𝑝𝑛 = 𝑇𝐶𝐵

[

𝑇𝐵𝑅,𝑛𝑒1×
]

𝛿𝜃.

Here, 𝑒1 =
[

1 0 0
]𝑇 . The error system measurement for the

barometric altitude is given by

𝛿𝑧𝑏𝑎𝑟𝑜 = 𝑧𝑏𝑎𝑟𝑜 − ℎ𝑏𝑎𝑟𝑜(𝑥𝑛, 0) = −𝑒𝑇3 𝑇𝑅𝐵,𝑛𝛿𝑝𝑅 + 𝜈𝑏𝑎𝑟𝑜.

Here, 𝑒3 =
[

0 0 1
]𝑇 . Hence the matrix 𝐶 in (26) becomes (with

2 =
[

0 1 0
]𝑇 )

(𝑥𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐻(𝑟𝐿𝑛 )𝑇𝐶𝐵
[

−𝐼3×3 𝑂3×3
[

𝑇𝐵𝑅,𝑛
(

𝑓𝐿𝑛 − 𝑝𝑅𝑛
)

×
]

𝑂6×3 − 1
2
𝑇𝐵𝑅,𝑛𝑒2

]

𝐻(𝑟𝑅𝑛 )𝑇𝐶𝐵
[

−𝐼3×3 𝑂3×3
[

𝑇𝐵𝑅,𝑛
(

𝑓𝑅𝑛 − 𝑝𝑅𝑛
)

×
]

𝑂6×3
1
2
𝑇𝐵𝑅,𝑛𝑒2

]

𝐻(𝑟𝑣𝑝𝑛 )𝑇𝐶𝐵
[

𝑂3×3 𝑂3×3
[

𝑇𝐵𝑅,𝑛𝑒1×
]

𝑂6×3 𝑂1×3

]

[

−𝑒𝑇3 𝑇𝑅𝐵,𝑛 𝑂1×13

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Finally, 𝐷(𝑥𝑛) = 𝐼7×7.
Since the nominal state is propagated in a deterministic manner the

idea of ESKF is to apply a linear KF to estimate the error state 𝛿𝑥 instead
of the true state 𝑥. In the ESKF process after each KF correction the
estimated error state 𝛿𝑥̂ is injected into the nominal state and then
it is reset to zero. The estimation error covariance 𝛿𝑃 is also reset
accordingly. This injection and reset operation makes the error state
to operate always around the origin and so its linear approximation
holds.

The local observability of this linear error system can be checked
with the rank of the observability matrix defined with 𝐴(𝑥𝑛, 𝑢) and
(𝑥𝑛). As these are pointwise linearizations of the nonlinear dynamics

or which global observability was proven in Section 3 there will be no
bservability problem.
7

Fig. 6. ESKF process timeline with delayed measurement.

4.2. Delayed ESKF process

In this filter it is considered that the measurement 𝑧 is taken at a
time instant 𝑡𝑚 and arrives at 𝑡𝑧 > 𝑡𝑚 with delay. As stated earlier this
is the case for the vision sensor measurements due to image processing
time which can vary for each image. But a nice thing about the vision
sensor is that the time of image acquisition 𝑡𝑚 can be controlled by an
image trigger thus it is known. The delayed-ESKF algorithm is designed
based-on this fact. For simplicity this paper assumes that the time delay
does not exceed the image sampling time. Fig. 6 shows the ESKF process
timeline with the delayed vision measurement.

Let 𝑥𝑛(𝑡𝑚) be the nominal state obtained at time 𝑡𝑚. Let 𝛿𝑥̂−(𝑡) = 0
and 𝛿𝑃−(𝑡) be the predicted error state estimate and its estimation error
covariance at a time 𝑡 (𝑡𝑚 < 𝑡 ≤ 𝑡𝑧). It should be noted that the predicted
error state always remains zero. The measurement which arrives at 𝑡𝑧
contains an information on the state at 𝑡𝑚 so the mathematical model
of the delayed measurement is:

𝑦(𝑡𝑧) = 𝑧𝑛(𝑡𝑧) + 𝛿𝑧(𝑡𝑧) = ℎ(𝑥𝑛(𝑡𝑚), 0) + 𝐶(𝑥𝑛(𝑡𝑚))𝛿𝑥(𝑡𝑚) +𝐷(𝑥𝑛(𝑡𝑚))𝜈(𝑡𝑧).

A modified ESKF correction process can be applied to directly up-
ate the predicted state at 𝑡𝑧 from this delayed measurement according
o Larsen et al. (1998) considering the effect of system dynamics
orward in time between 𝑡𝑚 and 𝑡𝑧:

𝛿𝑥̂(𝑡𝑧) = 𝛿𝑥̂−(𝑡𝑧) +𝐾(𝑡𝑧)(𝑧(𝑡𝑧) − 𝑧𝑛(𝑡𝑧)) = 𝐾(𝑡𝑧)(𝑧(𝑡𝑧) − ℎ(𝑥𝑛(𝑡𝑚), 0))

𝑃 (𝑡𝑧) = 𝛿𝑃−(𝑡𝑧) −𝐾(𝑡𝑧)𝐶(𝑥𝑛(𝑡𝑚))𝛿𝑃−𝑇
𝑧𝑚

𝐾(𝑡𝑧) = 𝛿𝑃−
𝑧𝑚𝐶(𝑥𝑛(𝑡𝑚))⋅

(

𝐶(𝑥𝑛(𝑡𝑚))𝛿𝑃−(𝑡𝑚)𝐶𝑇 (𝑥𝑛(𝑡𝑚)) +𝐷(𝑥𝑛(𝑡𝑚))𝑅𝜈 (𝑡𝑧)𝐷𝑇 (𝑥𝑛(𝑡𝑚))
)−1 .

(29)

Here, 𝛿𝑃−
𝑧𝑚 = E

[

𝛿𝑥̂−(𝑡𝑧)𝛿𝑥̂−𝑇 (𝑡𝑚)
]

is the correlation between the
redicted error state at 𝑡𝑧 and 𝑡𝑚 and 𝑅𝜈 (𝑡𝑧) = E

[

𝜈(𝑡𝑧)𝜈𝑇 (𝑡𝑧)
]

is the
easurement noise covariance. In the presented case as there is no

ntermittent other measurement the correlation matrix simply becomes
𝑃−
𝑧𝑚 = 𝛷(𝑡𝑚 ,𝑡𝑧)𝛿𝑃

−(𝑡𝑚) with a state transition matrix 𝛷(𝑡𝑚 ,𝑡𝑧) of (26) from
𝑚 to 𝑡𝑧. This is a function of the nominal state 𝑥𝑛 and the IMU input 𝑢
ver the time interval from 𝑡𝑚 to 𝑡𝑧.

Knowledge of the image trigger time allows the estimation filter
o avoid storage of nominal state and IMU input histories and so the
omputational load will be distributed over the time steps. When the
mage trigger signal is received at 𝑡𝑚 one can calculate and store 𝑧𝑛(𝑡𝑧) =
(𝑥𝑛(𝑡𝑚), 0), 𝐶(𝑥𝑛(𝑡𝑚)) and 𝐷(𝑥𝑛(𝑡𝑚)), and initialize the state transition
atrix by 𝛷(𝑡𝑚 ,𝑡𝑚) = 𝐼 . Then upon each KF prediction when a new

MU measurement is received the state transition matrix is updated
y 𝛷(𝑡𝑚 ,𝑡+𝛥𝑡) = 𝑒𝐴(𝑥𝑛(𝑡),𝑢(𝑡))𝛥𝑡𝛷(𝑡𝑚 ,𝑡). When the vision measurement 𝑧(𝑡𝑧)
rrives at 𝑡𝑧 and 𝑅𝜈 (𝑡𝑧) is determined (in case if time-dependent) all
he necessary matrices to calculate the Kalman gain 𝐾(𝑡𝑧) and execute
29) are available.

When considering the time-delay of the image-based measurements
he first nine rows of the measurement matrix 𝐶(𝑥𝑛) in (26) will be
odified multiplying form the right with the inverse of the state-

ransition matrix 𝛷(𝑡𝑚 ,𝑡). Since 𝛷(𝑡𝑚 ,𝑡) is full rank this will not affect local
bservability of the system near the aircraft approach trajectory.
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Fig. 7. Deviation of estimated position from simulated reference values in case of ideal
ata.

. Test on ideal simulated data without and with delay compen-
ation

After formulating the system equations in Section 2, checking ob-
ervability in Section 3 and designing the delayed-ESKF algorithm in
ection 4 the developed estimator is tuned and applied to different data
ets to gradually test its capabilities.

First, it is tested with Matlab/Simulink simulation-generated sensor
nd flight data. The Simulink simulation includes the model of the K-
0 test aircraft (see Fig. 3) and an ILS model from the VISION project.
he ILS is applied to guide the aircraft towards the runway without
losing the control loop with the vision-based estimator. The simulation
ontains a block that generates the aircraft runway-relative position,
elocity and orientation. These are considered as reference data in the
valuation of the estimator.

As it was stated earlier in Section 4 the IMU, the barometric sensor
nd the image processing unit operate with different measurement
requency. In the implemented ESKF algorithm the correction step is
nly applied when there is a new processed image. Otherwise only
he prediction steps are propagated. In the simulation the IMU unit
requency was 100 Hz while the camera frequency was set to 10 Hz
nd the barometric measurement was simply modeled by the runway-
elative altitude. It was assumed to have the same frequency and the
ame amount of delay as the camera sensor because no measurement
pdate can be done from solely the barometric measurement due to
oss of observability.

First, the estimator was tested with ideal data sets without sensor
ias and noise. The goal was to test the ESKF algorithm with non-
elayed and delayed image data and the delayed-ESKF algorithm with
elayed image data to see the effect of delay compensation and check
f the filter implementations are flawless. In the simulation the initial
osition had both vertical and horizontal offset from the glide slope
nd localizer causing transients in aircraft motion and so a dynamic
ituation for the position estimation. Figs. 7–10 show the errors of
he estimated states. The initial estimated states were set as perfectly
ccurate except for the runway width which was set to 20.22 m with
0 m error from the real value (30.22 m).

In Figs. 7–10 the No Delay legend refers to the case when no image
rocessing delay is considered and the ESKF is applied. The Delay case
hows how the applied image processing delay affects the estimates of
he ESKF filter. Finally, in the Delay corrected case the image processing
elay is applied to the data and handled by the delayed-ESKF algorithm.

The simulated delay was set to 0.09 s considering 10 Hz image fre-
uency in order to correctly model the real scenario. In the Delay case
he estimation lagged behind the real values. The biggest difference was
xperienced for the position estimates. The deviation scales with the
ength of the camera delay. For example in case of the Along error a
.09 s delay time results in approximately 3 m position estimation error

see Fig. 7) which is consistent with the 30 m/s along speed and the

8

Fig. 8. Deviation of estimated velocity from simulated reference values in case of ideal
data.

Fig. 9. Deviation of estimated orientation from simulated reference values in case of
ideal data.

Fig. 10. Deviation of estimated runway width from real value in case of ideal data.

almost 0.1 s delay. The delayed camera measurements also affect the
early transient period in both length and magnitude as it can be seen
in the figures. Note that the position values are the most sensitive to
the delay as their error is directly proportional to the velocity.

Therefore, the Along and Altitude values are the most susceptible
to the delay time for the aircraft landing scenario. The other states
such as orientation, velocity and runway width are almost constant
during the simulation so their estimation errors are the same for both
estimators apart from the early transient period. Applying the delayed-
ESKF algorithm it can be seen that the algorithm corrects the delay
effects and provides almost inseparably the same results as the ESKF
with non-delayed data. In the No delay and Delay corrected cases after
the early transient period ends the persisting error for all variables is
approximately zero. Therefore, it can be concluded that the delayed-
ESKF algorithm is capable of estimating all the desired states of the
aircraft and the algorithm implementations are flawless.
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Fig. 11. Deviation of estimated position from simulated reference values in case of
ealistic data.

Fig. 12. Acceleration bias estimation results in case of realistic data.

. Test on realistic simulated data without and with delay com-
ensation

After validating the ESKF and delayed-ESKF algorithms with ideal
imulated data several realistic data sets were generated including
ensor noises and biases to further verify proper operation.

The primary goals were to test the noise tolerance and the precision
f bias estimation. The latter cannot be verified on real flight data
s the sensor biases are unknown. Furthermore, offset values were
dded to the initial estimated states to evaluate filter convergence.
he offset values for the position, velocity, orientation and runway
idth were 2 m, 1 m∕s, 1◦ and −10 m respectively. They were ap-

plied for every component of their vectors. The simulated sensor bias
values were 𝑏𝑎 =

[

−3 4 3
]

m∕s2 for the accelerometer and 𝑏𝜔 =
[

−0.3 −0.2 0.1
]

rad∕s for the gyroscope.
The added noise was zero mean, gaussian with a variance of

0.001 (m∕s)2 for accelerations and 0.001 (rad∕s)2 for angular rates.
Again, ESKF and delayed-ESKF were both tested considering non-
delayed and delayed image data. The legends Delay, No Delay and Delay
orrected in Figs. 11–13 follow the same terminology as in Section 5.
ig. 11 shows that the position estimation errors are similar to the ideal
ata case.

Verifying correct sensor bias estimation is an important step and can
e observed in Figs. 12 and 13. They show that the algorithm correctly
stimates the simulated sensor biases both for the accelerometer and
yroscope.

Table 2 shows the root mean square errors (RMSEs) of the esti-
ated states after the transient period. The results indicate the same

onclusions as in Section 5 the Along and Altitude values are the most
ensitive to the delay. The other states have nearly zero RMSE values
n all cases. It is important to note that longer image processing times
.e. larger delay would result in greater steady state errors without
elay compensation.
 i

9

Fig. 13. Angular rate bias estimation results in case of realistic data.

Table 2
’Steady state’ Root mean square error of the estimated states for Non-delayed, Delayed
and Delay corrected cases.

Variable No delay Delay Corrected

𝑉𝑥[
𝑚
𝑠
] 0.003 0.01 0.004

𝑉𝑦[
𝑚
𝑠
] 0.02 0.021 0.036

𝑉𝑧[
𝑚
𝑠
] 0.021 0.021 0.035

𝐴𝑙𝑜𝑛𝑔[𝑚] 0.003 2.7 0.003
𝐶𝑟𝑜𝑠𝑠[𝑚] 0.001 0.001 0.001
𝐴𝑙𝑡[𝑚] 0.001 0.14 0.001
𝑅𝑜𝑙𝑙[𝑑𝑒𝑔] 0.037 0.037 0.07
𝑃 𝑖𝑡𝑐ℎ[𝑑𝑒𝑔] 0.038 0.038 0.066
𝑌 𝑎𝑤[𝑑𝑒𝑔] 0.04 0.04 0.07
𝐴𝑐𝑐𝑏𝑖𝑎𝑠[ 𝑚

𝑠2
] 0.002 0.003 0.002

𝐴𝑛𝑔𝑏𝑖𝑎𝑠[ 𝑟𝑎𝑑
𝑠
] 0.002 0.002 0.002

𝑅𝑢𝑛𝑤𝑎𝑦[𝑚] 0.001 0.001 0.001

These estimation results show that an automated landing scenario
is executable since the average position error is about 0.03 m for the
ross track and altitude while the speed of the aircraft is estimated
ith a precision of about 0.02 m∕s. This applicability question will
e examined in detail also for real flight data. The simulation tests
how that the developed algorithm runs with adequate precision. Thus
ccurate information can be provided for the autopilot system in case
f an automated landing scenario or for fault detection. The next step is
stimator evaluation with real flight data summarized in the following
ection.

. Test on real flight data with delay compensation

In this section the ESKF and delayed-ESKF filters are evaluated on
eal flight data with unknown runway width. Flight data sets were
ollected in frame of the VISION EU H2020 research project at a
unway in Septfonds, France (see Fig. 2) during the summer of 2019.
he K-50 aircraft was equipped with all the necessary sensors (IMU,
PS SBAS, Barometric, Camera). The filters are compared to GPS with
atellite Based Augmentation System (SBAS) measurements.

Guilhamu (2019) gave a detailed presentation about AIRBUS Fleet
eadiness for GBAS/SBAS systems. The presentation declares that the
BAS and Ground Based Augmentation System (GBAS) technology is
eady to be applied in automated landing as it meets the precision re-
uirements. Therefore, the SBAS technology can be considered accurate
nough for autopilot systems. Tessier et al. (2017) also declares that
NSS with augmentation systems such as SBAS could be considered
s the successor of the ILS regarding precision levels. These references
ustify our choice of using the GPS SBAS measurements as reference
alues to evaluate the precision of the vision-based algorithms.

Algorithm tuning was done by trial and error starting from realis-
ic noise covariances partially based-on real measurements. The final
ovariances are presented and explained in Appendix.

The objective of tuning was to provide similarly accurate results
n position and velocity estimation as the GPS SBAS system. In the



T. Gróf, P. Bauer and Y. Watanabe Control Engineering Practice 125 (2022) 105211

.

A
a
m
a
R
d
i
w
m
e

G

Fig. 14. Along and Cross deviation of estimates from SBAS reference values in case of
real flight data.

Fig. 15. 𝑉𝑥 and 𝑉𝑦 estimates deviation from SBAS reference values in case of real flight
data.

test flights the IMU and the GPS SBAS unit ran at 50 Hz and 20 Hz
respectively. The camera was slower with close to 10 Hz frequency.
Because of the different sampling frequencies an interpolation was
applied to the SBAS values to match 50 Hz. The barometric sensor
had a frequency of approximately 2 Hz. Therefore extrapolation was
performed from the last altitude based on system dynamics in Eqs. (7)
and (8) so that the barometer operates at the same frequency as the
camera.

Again both algorithms were executed but now only for delayed
data as there is no delay-free data set in the real flight tests. The
initial values of the estimated states were set based on GPS SBAS
data assuming a scenario where GPS SBAS signal is available at the
beginning of landing. Later the SBAS correction signal can be lost and
in that case the IMU–Camera–Barometric estimator should take over.
The information about the runway was assumed to be unknown setting
the initial estimate of its width to 20.3 m instead of the actual 25.3 m.
It is worth noting that the knowledge of precise GPS SBAS position
can make this initialization more accurate by obtaining a more realistic
initial guess despite the unknown geo-location of the threshold line.

Figs. 14–17 display the results with one of the test flight data
sets. The estimates are compared to the reference GPS SBAS values so
SBAS is included in the legends of the estimation errors. The legend
SBAS-ESKF delay refers to the results when the image processing time
delay was not considered in the ESKF and therefore it corrupts the
estimation. On the other hand SBAS-ESKF corrected displays how the
delayed-ESKF algorithm corrects the estimates. Fig. 17 shows also the
pairwise differences of the measured altitudes labeled as SBAS-baro and
SBAS-Camera. Those signals correspond to the deviation between the
SBAS values and the barometric or pure visual measurements obtained
according to Hiba et al. (2021).

The relatively large inaccuracy in the initial runway width estimate

resulted in large errors observed at the beginning especially in position

10
Fig. 16. Estimated 𝑉𝑧 deviation from SBAS reference values and threshold line length
(runway width) estimate in case of real flight data.

Fig. 17. Altitude deviation from SBAS reference values in case of real flight data.

Table 3
’Steady state’ RMSE values for Delayed and Delay corrected cases with real flight data

Variable Delay Corrected

𝑉𝑥[
𝑚
𝑠
] 1.567 1.40

𝑉𝑦[
𝑚
𝑠
] 3.38 1.43

𝑉𝑧[
𝑚
𝑠
] 1.63 1.51

𝐴𝑙𝑜𝑛𝑔[𝑚] 8.03 3.25
𝐶𝑟𝑜𝑠𝑠[𝑚] 4.38 4.47
𝐴𝑙𝑡[𝑚] 1.32 0.80
𝑅𝑢𝑛𝑤𝑎𝑦[𝑚] 0.71 0.41

estimation. Fig. 14 shows that at the beginning even about 25 m errors
can occur in the Along position. Since the runway width determines
the image scaling its estimation error directly influences the position
estimation through Eq. (17). The slow convergence of the sensor bias
values along with the early uncertainty of the runway width estimation
causes the filters to provide unreliable early estimates.

Similarly to the results presented in Sections 5 and 6 the states
most affected by the image delay are the 𝐴𝑙𝑜𝑛𝑔 and 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 positions.

gain, the velocity state is less susceptible to the delay issues as it is
lmost constant. During the test flights the delay time was approxi-
ately 0.107 s which mainly originates from the image processing time

nd minor additional delays such as UART (Universal Asynchronous
eceiver–Transmitter) delay, image grab delay and software trigger
elay. Fig. 17 shows that the altitude estimates are closer to the
mage data than to the barometric measurement as the estimator was
eighted to rely mainly on the image data. As the uncertainty in image
easurements decreases by approaching the runway the estimation

rrors also decrease.
Table 3 shows the RMSE values of the estimations compared to the

PS SBAS reference. The steady state errors for the 𝑉𝑧 and 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒
states are approximately 1.5 m∕s and 0.8 m respectively which can be
acceptable in a landing scenario.
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Fig. 18. Cross and Altitude error compared to the control constraints (continuous
horizontal red lines).

Fig. 19. Runway-relative roll (𝜙), yaw (𝜓) and flight path angle error compared to
he control constraints (continuous horizontal red lines).

Burlion and Kolmanovsky (2020) proposes a vision-based con-
trained control solution for final approach scenarios. That article
rovides a set of control constraints proposed by Airbus in the frame-
ork of VISIOLAND project. The mentioned constraints can be written

n the following form:

−22 m ≤ 𝛥𝑝𝑦 ≤ 22 m (30)

−7.5 m ≤ 𝛥𝑝𝑧 ≤ 7.5 m (31)

−3 deg ≤ 𝛾 − 𝛾𝑑 ≤ 3 deg (32)

15 deg ≤ 𝜓 ≤ 15 deg (33)

−5 deg ≤ 𝜙 ≤ 5 deg. (34)

Where 𝛥𝑝𝑦 and 𝛥𝑝𝑧 refer to the cross and altitude errors. 𝜓 and 𝜙
re the yaw and roll angle errors. The deviation from the designated
𝑑 flight path angle is also evaluated. It is considered to be the GPS
BAS-based actual flight path angle.

In order to complete the approach phase the aircraft state deviations
hould be inside these limits. Essentially if the estimates provided by
he delayed-ESKF algorithm fall into the mentioned intervals relative
o the GPS SBAS measurements the auto landing can be executed by
losing the control loop with its results. Figs. 18 and 19 display the
stimation errors from the reference GPS SBAS values for all six test
lights along with the limit sets given in Eqs. (30)–(34). Note that
egends listing the flight test cases are not provided as the main message
f the figures is that the errors are inside the limits most of the time
n all flights. Fig. 18 shows that the cross and altitude errors fall into
he designated intervals for every test flight after a short transient
eriod and are well inside the limits after convergence. Due to the fact
hat the GPS SBAS is unable to provide information about the aircraft
11
rientation the reference attitude values were retrieved from an IMU-
ased estimator algorithm of the flight avionics system. Unfortunately
he roll angle has large uncertainty giving sometimes unrealistic values
s it is estimated from the acceleration vector. Consequently the roll
rror values in Fig. 19 are unacceptable. Regarding the yaw angle
he onboard estimates are more realistic and the estimation errors are
ithin the desired limits after the transient.

Finally, the flight path angle values were obtained both for the GPS
BAS reference (𝛾𝑑) and the estimated data (𝛾) using a moving window
echnique with line fitting over the Along position-Altitude position values
sing 100 samples for each fit corresponding approximately to a 2 s
ampling interval. 𝛾𝑑 and 𝛾 can be calculated from the slope of the lines.
he flight path angle estimation errors are converging to the limits and
ostly reach the desired intervals at around 𝑋 = −200 m well before

he flare phase. Note that in this case both the designated and estimated
light path angles are inaccurate and so this comparison is uncertain.
aving an ILS system would provide more precise references to check

he estimates.
As a summary, it can be stated that the developed delayed-ESKF

lgorithm is capable to estimate aircraft runway-relative position, ve-
ocity and orientation together with the unknown runway width and
ensor biases. The algorithm gives acceptable results considering real
light data with a low-cost IMU and on-board camera system having
stimation errors well inside the industrial tolerance values.

. Conclusion

This work proposed an IMU–Camera–Barometric sensor-based esti-
ation method for aircraft navigation during final approach. The aim

f the proposed algorithm is to estimate the runway-relative position,
elocity and orientation of an aircraft from IMU data, barometric data
nd runway features detected by a monocular camera. The challenge
as to estimate the unknown IMU biases and runway size at the same

ime which has been rarely treated in the related work in literature. The
aper first proved that the system model is globally state observable
n realistic conditions of aircraft final approach. Then delayed-ESKF
as applied in order to handle the time delay of the image-based
easurements.

The estimation filter was first evaluated with simulated ideal data
no bias, no noise) and then with non-ideal data (sensor bias and
oise added). Both non-delayed and delayed image data are considered
o demonstrate the effectiveness of the delayed-ESKF compared to
he normal one. When using delayed image information unacceptable
esults of the normal ESKF became acceptable with the delayed-ESKF.
he simulated data tests also verified that sensor biases are accurately
stimated.

After the simulation-based testing showed reliable performance the
stimators (ESKF and delayed-ESKF) were tested on real flight data
ollected onboard the K-50 test aircraft. The estimated states converge
round the reference GPS SBAS values for the delayed-ESKF proving
he real flight applicability of the method.

The precision of estimates is further evaluated considering tol-
rances provided by Airbus in the VISIOLAND project as industrial
equirements. Cross track, altitude and yaw errors were well inside
heir tolerance ranges. The roll angle could not be accurately evalu-
ted because of uncertain reference data. The flight path angles are
nly approximately calculated (from along position and altitude) and
how convergence towards the tolerance range but with some outliers.
onsidering the fact that cross track, altitude and yaw angle errors are
ell acceptable the results are promising. Future work may include

mplementation on the K-50 system (or other test aircraft) and testing
he estimator in real-time during final approach.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.



T. Gróf, P. Bauer and Y. Watanabe Control Engineering Practice 125 (2022) 105211

a
𝐑
s
i
o
t
b
l
T

R

A

A

A

H

H

J

L

L

L

L

L

M

M

S

S

T

V
V

Acknowledgments

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No.
690811 and the Japan New Energy and Industrial Technology Devel-
opment Organization under grant agreement No. 062800, as a part of
the EU/Japan joint research project entitled ‘‘Validation of Integrated
Safety-enhanced Intelligent flight cONtrol (VISION)’’.

The research reported in this paper and carried out partially at BME
has been supported by the NRDI Fund (TKP2020 IES, Grant No. BME-
IE-MIFM) based on the charter of bolster issued by the NRDI Office
under the auspices of the Ministry for Innovation and Technology.

Part of this research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the Autonomous
Systems National Laboratory Program.

The work of P. Bauer was partially supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences and the
ÚNKP-20-5 New National Excellence Program of the Ministry for Inno-
vation and Technology.

The work of T. Gróf was partially supported by the ÚNKP-20-2
New National Excellence Program of the Ministry for Innovation and
Technology.

The authors gratefully acknowledge the work of the Editor and
Reviewers, the review comments in the first round greatly contributed
to clarify the message of the paper, in the second round to improve
the quality of presentation and detail observability and delay handling
issues and in the third round to improve English language presentation.

Appendix. Noise covariances for real flight data

The following covariance matrices are considered while running the
estimator on real sensor data sets:

𝐐 = 0.1673 ⋅ ⟨𝜃𝑝, 𝜃𝑎, 𝜃𝜔, 𝜃𝑏𝑎, 𝜃𝑏𝜔, 𝜃𝑊 ⟩

𝜃𝑝 = ⟨0.01, 1, 1.02⟩

𝜃𝑎 = ⟨0.91, 0.1, 0.1⟩

𝜃𝜔 = ⟨0.1, 0.1, 0.1⟩

𝜃𝑏𝑎 = ⟨35 ⋅ 10−2, 35 ⋅ 10−3, 35 ⋅ 10−3⟩

𝜃𝑏𝜔 = ⟨35 ⋅ 10−3, 35 ⋅ 10−3, 35 ⋅ 10−3⟩

𝜃𝑊 = ⟨64 ⋅ 10−4⟩

𝐑 = ⟨9, 4, 9, 4, 9, 4, 100⟩

𝐏0 = ⟨10, 0.1, 0.1, 1.1, 0.1, 0.1, 0.1, 0.1, 0.1, 10.8, 0.8, 0.8, 0.1, 0.1, 0.1, 6⟩

In these equations diagonal matrices are denoted with ⟨..⟩. The 𝐐
nd the 𝐏 covariance matrix values were set by trial and error, but the
covariance matrix represents the known measurement noises in the

ystem. The camera error variance is known as (4−9)2 pixels2. Accord-
ng to the measurements the barometric sensor has an error variance
f around 9 meters2 compared to the GPS SBAS altitude. However, the
uning phase clearly showed that if the estimator relies heavily on the
arometric sensor measurements the runway width estimation becomes
ess accurate which corrupts the velocity and position values as well.
his has led to the adjusted last term in the 𝐑 covariance matrix.
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