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Establishing the current road type constitutes a significant assistance to car drivers, as, by default, the road type determines the
legal speed limit. Although there are GPS- and map-based navigation systems that can retrieve the actual road type and speed limit
and some can even access and indicate current traffic volumes, it was our aim to develop and test a software prototype of a road-
type detection (RTD) system that relies solely on video and sensor data collected on board. Such a system can still work during
GPS signal outages. The study presents a heuristic approach to RTD that is based on type and distance data relating to traffic
control devices (TCDs) installed along a road. The road is used by an ego vehicle with an on-board smart camera looking ahead
and with a number of vehicular sensors. A complex processing step—not detailed in the study—detects TCDs with reasonable
probability and error rate and locates them with respect to a 3D coordinate frame fixed to the ego vehicle. The prototype system
takes data describing the detected TCDs as its input. This data are then evaluated in a multiscale manner by computing empirical
statistics of occurrences over short, medium, and long patches of road. Such an evaluation is carried out in conjunction with each
considered road type, and the resulting values are compared to respective reference values. Heuristics is then used in decision-
making to resolve any interscale and interroad-type disaccords. The proposed decision rules take into account the possibility of
TCDs having been missed and of faulty detections. Short preprocessed synchronised video and signal sequences recorded in
different countries and road environments were used for testing the prototype system. These short sequences were carefully strung
together into coherent chains. Distance-based recognition precisions 78.9% and 88.9% were gained for European (continental)
and for UK roads, respectively.

1. Introduction

Many car drivers, particularly the ones who use obsolete
navigation systems in their cars, know the surreal feeling of
being lost in space (i.e., not knowing whether on or off the
road) and time (more precisely, estimated arrival time). Such
a feeling arises when the driver uses some obsolete navi-
gational system and/or software version along some recently
built patches of roads. Clearly, some prior effort exerted in
updating the navigational software application could pre-
vent the majority of such navigational hiccups. Nonetheless,
even taking such a precaution, situations, in which GPS
signals are not receivable, do occur [1].

According to an unpublished survey carried out by
Bosch some years back, for more than 5% of the path length
along the roads surveyed within Austria, Germany, Hun-
gary, and the UK, the current road type was wrongly given
by a then state-of-the-art GPS-based navigation system.
Considering this worse than expected GPS coverage, Bosch
Hungary initiated a joint research and development (R&D)
project on road-type detection (RTD). Obviously, GPS-
based routing and detection systems have been getting more
and more reliable since then; however, their coverage is still
not 100%.

Over time, public road networks tend to grow (i.e., new
roads are built, and when ready, these are incorporated into
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the road network). However, road networks may also shrink,
which is a serious concern for the drivers. Occasionally, such
shrinkages occur unexpectedly, e.g., some roads get blocked
(e.g., due to an accident) or get damaged (e.g., due to water
pipe breakage). In other cases, the shrinkage is linked to
roadworks or to temporary road closures. These are the cases
when the on-board RTD capability gains real importance.

Normally, these and similar situations can be algorith-
mically detected based on video, point cloud, and/or sensor
data. Certain detection methods rely on data collected on the
spot [2], while others consider data gathered from some
wider neighbourhood [3]. Also, one could differentiate
between static sensors (e.g., fixed traffic surveillance cameras
[4] and LiDARs [5] installed over or by the roads) and
mobile ones (e.g., cameras installed on board an ego car [6]
or cameras and/or GPS receivers carried by a number of
probe vehicles floating in the traffic [7-9]) used for the
purpose.

In road transport and road traffic-related applications,
fixed cameras are used mostly in busy junctions, and their
role is to safeguard the continuity and the undisturbed state
of the road traffic there. The video stream originating from
such cameras reaches and can be inspected and analysed in
urban or regional traffic control centres. Fixed cameras are
also installed to monitor straight patches of road. Such
installations appear mostly along expressways and motor-
ways, where the vehicle speeds are usually rather high. Often,
even these cameras—and their respective individual or
central traffic surveillance software—cannot track each and
every vehicle passing by, for this reason, individual speed
warnings are usually not possible. Even so, lane-based speed
measurements with speed warnings could be a viable option
for controlling speeders. Such warnings could be displayed
on varying message signs (VMSs). Authorities responsible
for road management and road safety need, however, to
consider costs involved in providing and maintaining such
electronic solutions against the benefits achieved through
their use. Presently, however, such detection and warning
facilities do not provide full coverage, not even for major
roads, and will not do so in the foreseeable future either.

It is a common practice—at least in our country, but
presumably in other countries as well—to install cameras/
speed detectors at the entry points of built-up areas. These
then view and monitor incoming vehicles and check their
speed and warn, if necessary, the drivers to decrease the
vehicle speed below the legal limit.

Though installations of fixed cameras—together with
some textual or sign-based feedback means—at regular
distances over the road network could result in higher se-
curity, increased traffic safety, and faster first response—in
case of accidents—and even in improved traffic moral,
particularly if the roads are monitored continuously in some
automated and/or artificial intelligence supported manner,
in respect to the present target application (i.e., RTD), there
are other competitive static/fixed alternatives. For instance,
road-side communication units could broadcast the local-
—fixed or varying—road type/speed limit using some V2X
communication channel. An even simpler and quite driver-

friendly approach in providing speed-limit/road-type
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information in an on-going manner is repetition. For in-
stance, in the Netherlands, the local speed limit is repea-
ted—using small versions of the traffic signs—on every
single line pole along the roads (at least along certain roads),
so whenever in doubt, the driver can watch out for the next
line pole on the road side and see the applicable speed limit.
Unfortunately, this simple solution is not part of the road
management practice elsewhere in Europe.

Now, let us turn our attention to mobile camera-based
solutions. In the context of road transport, it often means
that one or more camera is installed on board an ego car or
on an ego vehicle. These terms pop up many times herein
and pops up for good reason. Terms “ego car” and “ego
vehicle” have come to the automotive field from computer
vision (CV), and according to [10], the latter term is defined
as follows: “subject connected and/or automated vehicle, the
behaviour of which is of primary interest in testing, trialling,
or operational scenarios.” The term “ego vehicle” can be used
interchangeably with “subject vehicle” and “vehicle under
test.” The term is directly related to “ego motion” used in
CV, see the definition of this term in [11].

Let us now consider briefly the detection of road-
works—from the above examples for the construction of the
road network—using an on-board camera installed on the
ego car. Roadwork sites nowadays are carefully railed off and
marked garishly with a series of warning traffic signs (TSs)
and with a series of caution lights. Such sites can be iden-
tified and located, e.g., by an extended, camera-based TS
recognition (TSR) system [12] installed on board an ego car.
Also, shorter than usual lateral distances of the detected TSs
from the current lane—i.e., the lane used by the ego
car—could hint at roadworks being conducted there.

The edification of this example is that certain image-
based road transport related on-board measurements and
data analysis, e.g., for providing some novel or at least
uncommon ADAS functions, can be implemented through
appropriate extension and/or cooperation of different driver
assistance/autonomous driving (AD) subsystems available
on board [13, 14]. Various subsystems of the advanced driver
assistance systems (ADAS) and of AD systems are often
used—directly or indirectly—in smaller scale detection so-
lutions [15, 16]. In such solutions, the ADAS/AD subsystems
tend to profoundly rely on and have access to intelligent
cameras, though in many cases data originating from other
sensors is also drawn upon.

These sensors provide information on the situation
within the car [17] and on the environment surrounding the
car [18], e.g., in respect of the location, shape, and quality of
road [6, 19], on the location, size, type, shape, colour, co-
occurrence, etc., of traffic control devices (TCDs), such as
road markings [20] and TSs and traffic lights [21], and of
various static and dynamic elements of the road environ-
ment [22], which are often represented in a local dynamic
map [23].

Lim and Brédunl have recently published a methodo-
logical review as a pre-print [24] on the topic of visual road
detection and recognition for AD applications. They look at
approaches, methods, and procedures of road detection and
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recognition and evaluate and compare the practical
implementations of these.

Though road detection/recognition is not the same as
RTD targeted herein, the former has high relevance to the
latter, as in fact, vice versa. This is because road detection/
recognition and RTD go hand in hand with each other: for
RTD, one has to know where the road is within the image or
video frame and can then analyse the corresponding image
region closely; while if one intends to detect the road or the
driveable area of the road, it is good to know (e.g., it saves
computing time and/or reduces the need for costly com-
puting resources suitable for automotive applications) what
sort of road to look for in an image or in a video sequence.

The first part of the review by Lim and Bréaunl focuses on
conventional road detection algorithms and approaches,
which can distinguish between roads from nonroad regions.
In the second part, they survey state-of-the-art machine
learning techniques that have already been applied to visual
road recognition tasks. The authors are primarily interested
in convolutional neural network (CNN)-based techniques
that are applied for semantic segmentation. In a dedicated
section, the authors overview some relevant implementa-
tions coming from the industrial/commercial sector and
mention major alliances formed in this sector in regards to
R&D tasks pertaining to road detection and recognition.

Though, the review cites more than hundred research
papers in its target field and serves, therefore, as a good
starting point for anyone who intends to start research in the
field, here we comment only on two points from the section
dedicated to industrial/commercial implementations and
alliances.

Firstly, according to the mentioned section, a start-up
company called “comma.ai” specialises in providing assisted
and AD systems to the consumer market. Their goal is to
achieve full AD with existing road vehicles with after-market
devices. Herein, as well as in some of recent publications, we
have taken a somewhat similar approach in regards to novel
or at least not that common ADAS functions, methods, and
subsystems [12-14, 25]. We rely and build upon existing
ADAS functions/subsystems, e.g., lane-keep assist (LKA)
and TSR that are widely available in modern production
cars.

Secondly, also in the mentioned section, Lim and
Brdunl refer to AD functions, algorithms, and systems
developed by original equipment manufacturers (OEMs) of
sensors and computers (e.g., Mobileye, Nvidia, Velodyne,
and FLIR), international corporates (e.g., Google and
Uber), and automotive manufacturers (e.g., BMW, Volvo,
and Daimler). Clearly, the enumeration was not meant to
be exhaustive, but still another category, namely, that of the
automotive component and subsystem manufacturers,
such as Bosch and Continental, could also have been
mentioned either as a separate group or as a subgroup of
the automotive manufacturers. For this reason, we refer
here also to two other reviews [26, 27], as well as to a
conference paper [28] and to a technical news [29]. These
communications highlight some important activities
within the field, which are carried out by this (sub-) group.
These activities include extensive R&D projects, as well as

setting up useful publicly accessible AD datasets, and last
but not least forming important industrial alliances with
road vehicle manufacturers. The activities at Bosch provide
a backdrop to our present pilot study.

Intervehicular (i.e., vehicle-to-vehicle, V2V) and vehicle-
to-infrastructure (V2I), vehicle-to-network (V2N), and ve-
hicle-to-pedestrian (V2P) communications are fundamental
technological driving forces that make AD happen, spread,
and proliferate [30, 31]. New solutions, e.g., the side-link
communication [32, 33], open new horizons, and time scale
in local communications, and thereby make possible to
avoid or mitigate critical situations arising in busy road
traffic. Considering these technologies in the context of
RTD, on the one hand, the use of V2X communication
means and technology could increase its reliability; on the
other hand, complete reliance on software used by or on the
measurements and computations carried out by other ve-
hicles is not necessarily a good idea. It is particularly true in
regards to safety critical automotive applications and to
applications that can accrue financial consequences (e.g.,
longer routes and speeding tickets) as in case of navigation
on roads and also RTD. For instance, how should one dare to
modify a proprietary or even open road database without
proper moderation of the incoming data? What about ac-
cidents arising due to such modifications/extensions? Who
will be responsible for the data that turn out to be simply
wrong or even worse corrupted? Clearly, the security and
legal responsibility aspect requires further research and
reliable solutions for integrating external and/or crowd-
sourced data in this context. Furthermore, there are realistic
cases when there is no information available from other road
traffic participants (e.g., in the sparse road traffic late at
night), so reliable camera-based road-type detection for the
ego-vehicle is still a primary research and development
target.

The notion of road type is used herein as a collective
term for various public roads that share some important
characteristics. The notion includes motorways, express
roads, main roads, and other roads [34]. These road types
are associated with different spatial arrangements (e.g., lane
layout and number of lanes), geometrical dimensions, and
allowable road connections. Though, being car drivers
ourselves, it is quite clear for us what these perceptible
similarities and differences between these road types are,
but as engineers and researcher—developing transport and
vehicular systems and applications—we should look also at
the motivations and the reasons behind these. In the civil
and transport engineering literature, roads are categorized
by their functional forms. The choice of the functional form
of a road is controlled by standards and design guidelines.
As Wolhuter phrases it in the Functional Classification of
Roads section of his Geometric Design of Roads Handbook
[35], “For geometric design, the most useful form of
classification is functional classification, as it defines the
spectrum of road usage from pure mobility to pure ac-
cessibility. This, in turn, supports the selection of the design
speed and the design vehicle. These two parameters, in
combination with current and anticipated traffic volumes,
define geometric standards of the horizontal and vertical



alignment and intersections or interchanges and definition
of the cross section.”

Since the writing of the above cited handbook, road
vehicles of increased automation and connectivity have
appeared on public roads. A recent review looks into the
necessary and/or induced changes in the geometric and
other design parameters of the roads and the road infra-
structure (e.g., lanes can be narrower for AD vehicles) due to
the fast-evolving, highly automated, and connected trans-
port and vehicle technology [36]. These important changes
mean that, in the above quotation, the automation and
connectivity level of design vehicles should be taken as a
crucial design parameter in the road design from now on.

At some later stage of road design process, the type and
location of the necessary TCD including TSs and lane
markers are specified. On the one hand, the—default and
actual—speed limits and other related road characteristics
are set in accordance with the road’s functional categori-
zation. On the other, from these speed limits—either in-
dicated by explicit speed limit signs or by traffic signs
indicating the actual road type—and from the other road
characteristics, it is possible to infer—either statistically or
logically—the type of the road currently used. For instance, a
speed limit of 90 km/h traffic sign will not occur by a road or
street within a built-up area, and a speed limit of 30 km/h
traffic sign will not occur on motorways and expressways
(except perhaps in case of some on-going roadworks, or in
case of certain critical, or extraordinary traffic situations and
even then possibly indicated by variable sign boards). These
and similar statistical or logical observations are used in
inferring the road type of the road currently used.

Research related to our present topic, that is to automatic
identification/detection of the current road type, appears in
the smart driving and AD literature with far less emphasis
and as the topic of significantly smaller number of publi-
cations than, say, the intensively researched and widely
communicated driver assistance tasks of lane detection and
TSR do.

The knowledge of the current road type and therefore
also its on-board identification, i.e., the automated RTD
ADAS/AD function, are important for the following main
reasons. Firstly, at many road locations, it is the road type
that determines the legal speed limit, as this is the default
case. Secondly, different rules apply for and different TCDs
are expected along different road types and the driver should
be aware—for obvious traffic safety reasons—of the appli-
cable rules and of the probable TCDs that may appear.
Thirdly, the knowledge of the actual road type can be used to
optimize fuel consumption and to choose appropriate mode
of operation (e.g., speed, acceleration and deceleration
ranges, and appropriate gear) for the ego vehicle, not only in
case of an autonomous vehicle [37] but also in case of a smart
vehicle driven by a human driver [38]. Fourthly, the work
load of a human driver can be better estimated, traced, and
monitored by the smart ego vehicle if it has on-going access
to the current road-type information. Fifthly, if two roads
are located very close to each other and run parallel to each
other, then the RTD function could help the on-board
navigation device to properly place the ego car on its map.
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In the next few paragraphs, the history of the RTD
research is summarized via sketching the main contributions
of five relevant publications written in the last decade.

A paper by Tang and Breckon from 2011 analyses
images—taken by a low-cost forward-looking camera
mounted on board an ego car—in order to distinguish
between on-road and off-road environments [39]. Their
method computes and relies on various colour and texture
features extracted from multiple regions of interest within
each image. A trained classifier was used to resolve this two-
class classification problem. The multiclass road environ-
ment classification problem relating to the off-road, urban,
major/trunk road, and multilane motorway/carriageway
environments was also addressed in their paper. A good
classification performance—achieved at a near real-time
classification rate—was reported for the former problem,
while the results in respect of the latter problem were
somewhat less impressive.

In 2012, the topic of RTD popped up again in a con-
ference paper by Taylor et al. [38]. They analysed the driving
speed and some other signals made available by various
intravehicular sensors (e.g., steering wheel angle, gear po-
sition, and suspension movement). Thereby, they analysed
the manner in which drivers drove on the road, rather than
the road itself or its environment. Indeed, the car drivers
assisted the RTD rather than the other way round. The
authors, referred to, had access to and compared their results
to those achieved by an existing, but unpublished RTD
system developed by a major car manufacturer. According to
the authors, the unpublished system followed a model-based
approach, while they used a data mining approach instead.
The input data used by Taylor et al. were collected from the
controller area network (CAN). The data collection exercise
encompassed a single car that was driven by a number of
drivers on UK roads. Several data mining and temporal
analysis techniques—along with a number of ensemble
classifiers—were deployed for the purpose of RTD.
According to the findings reported in the paper, the random
forest ensemble algorithm with access to summaries of the
speed and the steering data for the last few seconds achieved
a good classification performance.

In 2014, Huang et al. classified urban roads into three
classes based on their conditions, namely, into clean roads
without lane markings, simple roads with lane markings and
with a small amount of disturbances (e.g., vehicles), and
complex roads with lane markings and with a large number
of disturbances [40]. They used this classification to improve
their lane detection results. Their lane detection method
processed bird’s eye view images—gained through appro-
priate transformation from forward-looking camera
images—and implemented class-dependent strategies to
complete any missing/hidden lane marking segments.

Also, in 2014, Slavkovikj et al. presented an image-based
algorithm for classification of paved and unpaved roads [41].
Their method was programmed to learn discriminative features
from training data in an unsupervised manner. For validation
purposes, the authors set up a road image dataset that consists
of a total of 20,000 sample images. These sample images had
been taken at thousands of different paved and the unpaved
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road locations. The presented experimental results—in regard
to images of the mentioned dataset—indicate that their al-
gorithm can achieve good performance for the aforementioned
two-class road classification problem.

In 2016, Seeger et al. presented a number of methods for
road-type classification [42] based on fused occupancy grids.
These occupancy grids were built from a number of point
clouds acquired by various LIDAR and radar sensors
mounted on an ego car and from the spatial reconstruction
derived from stereo images acquired by an on-board stereo
camera. The occupancy grids corresponding to different time
instants were analysed separately, thereby information was
lost on previous classifications and semantic labelling. The
road types considered in the study were freeways, highways,
parking lots, and urban roads. The authors compared the
performance of an end-to-end convolutional neural network
classifier to that of a support vector machine that had been
trained on hand-crafted features. They tested the various
methods on a dataset that contains 700 local occupancy grids
(LOGs)—for training purposes—in regard to each of the
mentioned four road categories and 150 LOGs—for testing
purposes—again in regard to each road category. Some of
their methods achieved test accuracies over 90%.

In 2019, Balado et al. presented results concerning an
important subtask of RTD, namely, concerning the road
environment semantic segmentation [43]. Their input data
consisted of mobile laser scanning point clouds that were
automatically divided into sections during the preprocessing
stage. The authors presented competitive classification
results—achieved via the use of the PointNet deep learning
architecture—in respect of the road surface, ditches, em-
bankments, guardrails, borders, and fences, as well as other
road objects and vegetation. All these road infrastructure
elements and objects serve as important traits in the iden-
tification of road types. Table 1 provides a summary of the
RTD methods and systems cited herein.

2. Materials and Methods

2.1. The Development of Software Prototype for Road-Type
Detection. In the frame of an R&D project, it was our aim to
build a software prototype of the RTD ADAS/AD function
that can determine the type of a road based solely on video
and vehicular data originating from on-board camera and
from other on-board sensors, respectively, and on data
derived from such data. In other words, GPS information
and map data were not to be relied upon.

On the one hand, such a function should be suprana-
tional, in the sense that it can determine the type of a road
that is located in any country of the world, regardless of the
hand of traffic used there, regardless of the varying styles of
TCDs across countries, and—theoretically—regardless of
the intensity of road traffic. On the other hand, the RTD
could be more precise if the country, where this ADAS
function is to be used, is known by the RTD subsystem in
advance.

Road scenes can be rather complicated and difficult to
grasp instantly by a human driver or by an autonomous self-
driving system. Therefore, in the given context, some

intelligent filtering mechanism that excludes data con-
cerning TCDs that do not pertain to the ego vehicle is of
great significance [44].

Even if well-tested processing modules are used and even
if the mentioned intelligent reliable filtering mechanisms are
in place, the reliance on prior processing steps and inter-
mediate results should not be absolute. In practice, during
the execution of complex processing steps—such as image
segmentation, object recognition, and tracking—errors in-
evitably occur over time, e.g., TSs installed along the road
can be missed due to complete or partial occlusion by ve-
hicles, the intelligent object filtering might be impeded for
the same reason, or TSs can be misinterpreted by the TSR
module due to their fading colour. Against these hopefully
infrequent detection, tracking, and classification processing
errors, the RTD method must be robust.

In order to confine the R&D work and to make good use
of the available software resources, the development of a
partial software prototype (PSP) of the RTD ADAS/AD
function was agreed upon. This meant that existing pro-
prietary solutions could be utilized for the complex pro-
cessing steps mentioned above.

2.2. The Development Framework Chosen for the Road-Type
Detection. The abovementioned existing solutions were
provided as modules to be executed within the Automotive
Data and Time-triggered Framework (ADTF) [45]. This
automotive software development framework was created
and has been marketed by a global supplier of embedded and
connected software products and services for the automotive
industry. Consecutive versions of ADTF have been serving
the needs of developers of automotive measurement, data
processing, and data communication solutions for more
than a decade now and since then have been used worldwide
in numerous projects implementing, testing, and evaluating
various ADAS/AD functions, see e.g., [46, 47].

As the existing modules that we could rely on in
building the software prototype were developed to be
used in ADTF, it was quickly decided that also the RTD
PSP should be implemented in and run by the same
framework. Furthermore, it was decided that the RTD
PSP would take type and distance data relating to certain
TCDs installed/painted along the road used by the ego car
as its input. To compute these data, existing proprietary
software modules were used in respect of real-time TCD
recognition and real-time object localisation. The former
included the subtasks of TSR, lane-marking, and lane
detection, while the latter did the subtasks of lateral
localisation of the ego car within its current lane and the
TS localisation with respect to the ego car.

The respective intermediate results were stored—also in
a synchronised manner—together with the synchronised
video and vehicular data in compound data sequences for
further processing. We note here that video sequences in-
herent in these compound sequences can be played real time
with ADTF, while the associated actual signal values can be
displayed numerically or as registered curves along with the
video sequence also in real time.
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TaBLE 1: Summary of the most important features of the cited research papers on road-type detection methods and systems.

Authors and

Aim Sensors Features Performance Remark

year

(i) Frame-based processing . .
Tang and . (i) Low-cost forward- (ii) Multiple ROIs (i) Involving an
Breckon, (i) On/off road . . Good unknown number of

looking camera (iii) Using colour and texture .
2011 vehicles
features

As above (i) Several road types As above As above Medium As above

(i) Recording of CAN data M I.nvolvmg a single
Taylor et al (i) Intravehicular vehicle

4 ” (i) Several road types Medium (ii) Relies heavily on

2012

Sensors

(ii) Random forest ensemble
classifier

driving speed and
style

(i) “Srange” road types

(i) Transforming images into
bird’s eye view images
(ii) Class-dependent

Specific to the

(i) Involving an

?olﬁng et al, (ii) Improve lane Egrrl::r;ward—looklng strategies to complete concrete unknown number of
detectign results missing or hidden lane application vehicles
markings
(iii) Vehicles as disturbances
. . .. (i) Learning discriminative (i) Involving an
(i) Camera viewing in 8 8
) TAVIEWINE I features from training data in . unknown number of
. . varied directions . Good results (in .
Slavkovikj (i) Paved and the an unsupervised manner respect of the vehicles
etal, 2014  unpaved roads " (ii) A dataset of 20,000 road- P "
(i) Also Google . database) (ii) Image sequences
L surface subimages was ;
street view images taken by cyclists
(i) Freeways, high-ways, . . (i) Based on fused local (i) Involving an
parking lots, and urban gi)Dlzlﬁgmotlve occupancy grids (LOGs) unknown number of
roads taken at discrete time instants vehicles
Seeger et al., (ii) Automotive
2016 radars . ) Very good (i) 4 * 700 LOGs for
. . . (ii) No tracking between ..

(ii) Sensor fusion (iii) Forward-looking LOGs training and 4 * 150
on-board stereo LOGs for testing
camera

ile)grslf;?l:;tilofn of the (i) Automatical sectioning of E)lf) ig;%?g;r: subtask

Balado et al., road environment (i) Automotive the point cloud detection
Very good

2019

(ii) Road surface,
ditches, embankments,
guard rails, etc.

LiDARs

(ii) Using the PointNet deep
learning architecture

(ii) Involving a single
vehicle

A plug-in module can be used to extract a video sequence
and/or various signal values from a stored compound se-
quence, process the associated data, and display the results
synchronised to the video in real time. In line with these, the
PSP was implemented as a plug-in module, which was added
to the other processing modules. The synchronised data
communication between the modules is guaranteed by the
ADTF, and the detection results—in this case RTD
results—could be shown in real time. The processing carried
out within a plug-in module is very similar to the processing
carried out by a real-time routine—developed for the same
purpose—that is executed within an on-board intelligent
automotive camera.

2.3. The Inputs of the Partial Software Prototype. In the frame
of the R&D project mentioned above, a few hundred short,
i.e., from 10-second to 3-minute long, compound sequences
were made available for us. These compound sequences were

annotated with the ground truth road types (i.e., roads
within built-up area, country roads, expressways, and mo-
torways). The annotation was carried out by the authors of
the present paper based on the inherent video sequences
stored within the compound sequences.

The RTD PSP developed in the project relies on a number of
input signals that can be extracted from the stored compound
sequences. These input signals comprise type, distance, and
dimensional data related to TCDs. The method implemented in
the RTD PSP considers different pieces of information for the
different road types. The input signals relied on are the width of
the current lane, types of the detected TSs—including those
types that are directly linked to one of the road types—as well as
the lateral, longitudinal, and vertical positions of the TSs with
respect to ego car and spatial frequencies of the detected TSs.

2.4. The Relationship between the Input Signals and the Road
Types. Firstly, the statistical relationships between the input
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signals and the road types had to be empirically established
and analysed, as such empirical data provide the basis for
inferring the current road type from the input signals. If, for
example, most of the input signals have values that are
characteristic to a particular road type, then the chances are
good that the actual patch of road belongs to that road type.

One of the input signals chosen for RTD purpose was the
width of the current lane. The lane widths had been com-
puted frame by frame in the preprocessing phase by the lane
detection module mentioned in Section 2.2, and this lane-
width data had been stored in the compound sequences.
These stored lane widths were sampled for the purpose of
RTD at equidistant path lengths along the ego-car’s tra-
jectory. The sampling process is sketched in Figure 1.

Still as part of the data gathering, the number of oc-
currences was counted for each input signal and road-type
pair in the prerecorded compound sequences. We note here
that some of these sequences were used solely for data
gathering and training purposes, while different ones were
used for testing. The full range of each input signal was
partitioned into subranges. Table 2 shows, for example, the
partitioning of the full lane-width range into subranges or
“bins.” The lane-width distribution over these bins is given
in the same table for each road type. These empirical dis-
tributions are also presented graphically in the bar chart of
Figure 2 in different colours.

As it can be seen from the bar chart, the most likely bin
both for built-in area roads and for country roads is Bin 3,
more precisely, Bin 3 for roads within the built-up areas, and
Bin 3 for country roads, respectively. According to the top
row of Table 2, Bin 3 corresponds to the sampled lane-widths
falling between 3.2m and 3.6 m. For expressways and mo-
torways, on the contrary, the most likely bin is Bin 4, more
precisely Bin 4 for expressways, and Bin 4 for motorways,
respectively. According to the top row of Table 2, Bin 4
corresponds to lane widths falling between 3.6 m and 4.0 m.

According to the above observation, expressway and
motorway lanes tend to be somewhat wider than lanes of
roads within built-up areas and of country roads. This shift
in lane width is, of course, intentional and is due to the road
design standards and guidelines that serve to ensure the high
level of road safety. This shift in lane widths reflects the
intended functions of the roads and constitutes an aspect of
their functional forms. With respect to RTD, this shift in
lane widths serves as a clue for decision-making.

The described partitioning helps to determine the
characteristic signal values for each road type, but it does not
provide an obvious basis for comparison across road types.
Clearly, there exist several mathematically well-founded
statistical classification methods with proven optimality and
these could have been used for the purpose [48]. However, to
allow for intuition and traceability, a unified and simple
evaluation scheme was devised to represent the influence of
input signal values on the decision to be made about road
types and could provide an easy-to-comprehend basis for the
comparison of bins across road types. For this scheme, an
indicator value—called “score”—was introduced. Each bin
within the full range of each input signal was associated with

\ \
[
Left ~ Current Right
lane lane lane

FIGURE 1: Sampling lane width of the current lane.

a rating called “score” for each road type. See the example of
the lane-width scores in Table 3.

The way we assign scores to bins is pragmatic: the
scores are derived through simple calculations. The scores
aim to characterize the relative likeliness of the consid-
ered road types for a given input value. If, for instance,
the lane currently used by the ego car is 3 m wide, then,
according to Table 3, the ego car is probably being driven
in a built-up area that has the highest score, namely, 5,
though the location could perhaps be a country road that
has the second highest score, namely, 3. On the contrary,
the location is probably neither an expressway nor a
motorway location as for both road types the associated
scores are rather low, namely, -5.

The score associated with a road type (rt) and a bin
number (bn)—denoted by score,,;,—has been calculated
according to the following simple formula:

score,; ,, = minscore + (maxscore — minscore)

OCCUITENCES,; p,, (1)

max(occurrences,t bn)
bn ?

The occurrences,;, can be looked up in Table 2 for
road type rt and bin number bn, while the minscore and
the maxscore values were chosen experimentally, in a way
that a negative score value associated with a certain road
type—especially when the negative score summed up
with corresponding scores calculated for TS densities and
TS types still remains negative—makes the given road
type a highly unlikely candidate, while some positive
score value indicates that the given road type is a realistic
choice.

Having assigned scores to each bin of each input signal
for each road type, alook-up table (LUT) can be constructed.
Then, the scores for any value of any input signal can be
extracted for any of the road type from this LUT.

In our final road-type choice for a given road location,
we take into account the scores of each considered input
signal for that location, as well as the scores corresponding to
a number of road locations that have already been passed by
the ego car. These processing steps towards RTD are detailed
in the following sections.
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TaBLE 2: The number of lane-width occurrences—measured and counted at equidistant discrete path lengths—within each lane-width
range, or “bin,” computed for the chains of compound sequences used for training.

Lane-width ranges <2.8m 2.8-3.2m 3.2-3.6m 3.6-4m 4-44m 44-48m >4.8m
Built-up area 926 4800 7554 4929 1580 612 996
Country road 2634 12080 22999 7782 2138 1575 678
Expressway 125 454 3422 7133 3065 129 98
Motorway 51 770 9548 17434 3549 590 735
x10*
2.5 T T T T T T T

Number of occurrences

1 2 3 4 5 6 7
Lane-width bin numbers
B Built-up area 3 Expressway
mmm Country road B Motorway

FiGure 2: Empirical distributions of the sampled lane widths over the lane-width subranges (bins) according to Table 2.

TaBLE 3: The “scores”—associated with the lane-width “bins” shown in Table 2—used in the proposed RTD method.

Lane-width ranges <2.8m 2.8-32m 3.2-3.6m 3.6-4m 4-44m 4.4-4.8m >4.8m
Associated bin number 1 2 3 4 5 6 7
Built-up area —4 5 12 6 -2 -5 -4
Country road -4 3 12 0 —4 -5 -5
Expressway -6 -5 3 12 2 -6 -6
Motorway -6 -5 4 12 -2 -5 -5

2.5. Cumulative Effect of the Input Signals. As the video  the path covered by the ego vehicle, and the sum of scores
sequence—inherent in a compound sequence—runs and the  corresponding to these road locations are stored in first-
data stored in the compound sequence is processed by the  in-first-out (FIFO) queues. Such a score queue is shown
ADTF modules, each considered input signal takes on some  in Table 5. The summed scores for the most recent road
value. At the next road location to be considered, the PSP looks ~ location are also indicated in the table. These appear at the
up the scores corresponding to the actual input values for each ~ top of the queues, while the prior summed scores appear
road type from the LUT. The lane-width subarray of this LUTis ~ below. As the car moves, the oldest row of scores eventually
given in Table 3. The local scores for a road location—derived ~ drops out, so after the initial fill up, the length of the queue is
using the mentioned LUT—appear in the corresponding  kept constant.
columns of Table 4. Note that the same lane width—i.e.,
3.0 m—of the current lane is assumed here as in the example
given in the previous section; this way the first numeric column  2.6. Distance Scales for RTD. 'The score queues are evaluated
in Table 4 is the same as the score column for Bin 2 in Table 3. at three different distance scales. In these scales, data cor-
The extracted scores of the individual input signalsare ~ responding to road locations within a short range, within a
summed within each row of the table, resulting in sum of =~ medium range, and within a long range from the current
scores for each road type. The final decision on the  location are evaluated. So, for example, the short-range (SR)
perceived road type is based on these summed scores. The  evaluation takes into account the scores of the most recently
sampling and accumulation of the input signals is donein  covered patch of road. The corresponding scores appear in
an equidistant manner, more precisely, equidistant over  the first few rows of the score queues. In the sample score
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TaBLE 4: The local scores computed for lane width, TS types, and the spatial frequency of the TSs—measured/taken at a particular road
location—in respect to the considered road types. These scores are summed up for each road type in the right most column.

Scores computed for lane
width

Scores computed for TS

Scores computed for TS spatial Sum of these

types frequency scores
Built-up area 5 15 10 30
Country road 3 5 7 15
Expressway -5 -5 0 -10
Motorway -5 -10 1 -14
TaBLE 5: The score queues for the considered road types.
Most recent Included in Included in Included in Scores for Scores for Scores for Scores for
road location short range medium range long range built-up area country road expressway motorway
v v v v 30 15 -10 ~14
v v v 29 10 -12 -15
v v v 26 14 -12 -16
v v Y 27 10 -12 -15
v v v 28 11 -12 -12
v v 20 11 -12 -12
v v 26 9 -10 -12
v v 13 9 -5 4
v v 13 9 -5 5
v 5 3 2 10
v 6 3 2 12
v 5 6 15
v 6 0 8 16

TaBLE 6: Aggregated short-range scores computed from the scores appearing in Table 5.

Short-range aggregate score for ~ Short-range aggregate score for
built-up area country road

Short-range aggregate score for Short-range aggregate score for
expressway motorway

140 60

-58 =72

queues presented in Table 5, the first five data rows con-
stitute the SR.

The medium-range (MR) evaluation looks at a
somewhat larger number of rows, while the long-range
(LR) evaluation considers an even larger number of rows
of the score queues. These ranges are indicated with ticks
in the data rows. The summed scores are aggrega-
ted—again simply summed—for each distance scale. As an
example, the aggregated SR scores for the considered road
types—calculated from the summed scores given in
Table 5—are presented in Table 6.

The motivations for evaluating the score queues over
different distance scales are to enable the RTD to react
quickly to abrupt road-type changes, on the one hand, and to
make robust and reliable RTDs that rely on the continuity of
the road characteristics along a given road, on the other.

Admittedly, the multiscale heuristic RTD approach
detailed below is a hand-crafted approach for detecting
change in stochastic signals in the given context. It should be
noted that this topic, ie., change detection in stochastic
signals, has a vast mathematically well-founded literature on
its own right, see [49, 50].

In case of a sudden road-type change, the subsequent
scores associated with the new road type suddenly start to

grow. MR evaluation of the scores could be used to support
or defy the road-type candidates chosen by SR and the LR
evaluations, especially, if the two candidate road-types are
different. The MR, however, will not be used in the heuristic
decision rules proposed herein.

Having derived the aggregated scores for SR, MR, and
LR, respectively, a method that determines the road type
from these aggregated scores is required. The method should
take into account the dynamics of road-type changes in the
given country and should compare the aggregated road-type
scores within and across the distance scales.

2.7. Categories Used in the Road-Type Selection. A heuristic
approach was devised for the abovementioned comparison,
which introduces categories that are used in conjunction
with each distance scale. Based on the evaluation of the
aggregated scores, a road type may be assigned to each
category for each distance scale. These categories are as
follows.

Very best (i.e., road type with the best aggregated score
by far): the aggregated score for a given road type—over a
certain distance scale—exceeds each of the other road-types’
aggregated scores—over the same scale—at least by some
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predefined value (different predefined threshold values are
used in the different distance scales).

Greatest: the aggregated score for a given road type—
over a certain distance scale—exceeds each of the other road-
types’ aggregated scores over the same scale.

Second greatest: the aggregated score for a given road
type—over a certain distance scale—exceeds each but one of
the other road-types’ aggregated scores over the same scale.

Worst-by-far (ie., the road-type with the lowest ag-
gregated score by far): the aggregated score for a given road
type—over a certain distance scale—is less than each of the
other road-types’ aggregated scores, respectively—over the
same scale—at least by some predefined value (different
predefined threshold values are used in the different distance
scales).

For each distance scale, the aggregated scores are
checked against the above criteria. Over each distance scale,
each category is associated with at most one road type at a
particular road location. To ensure this property—even
when there are a number of identical aggregated scores over
some distance scale—the following convention is used: if
there are two or more equally high aggregated scores over a
particular distance scale, then the greatest and the second
greatest categories are assigned randomly amongst these
high aggregated scores.

In Table 7, the SR categories assigned to the four road-
types considered herein are presented for a particular road
location as an example. These categories have been calcu-
lated from the aggregated scores given in Table 6. The score
difference that was required for the “very best” category in
SR was 40, while for the “worst-by-far” category in SR, it was
20. Using these thresholds, the “very best” category was
assigned to a road type, namely, to the roads within built-up
area, while the “worst-by-far” category was not assigned to
any.

2.8. Dealing with Incorrect Input Signals. Besides the SR, MR,
and LR evaluations, a further somewhat special evaluation is
made. It takes into account all the input signals and detected
TCDs except for the TSs directly indicating a road type.

The motivation to include this category is to make the
detector capable of filtering out the cumulative effect of the
road-type-related TSs, such as “start of expressway” or “end
of expressway” TSs. The latter TS appears at the road lo-
cation shown in Figure 3, but the information conveyed by
the TS does not apply for the ego car. If this TS is still
considered, then it deflects the TS statistics and possibly even
the perceived road type.

This fourth evaluation has been implemented only for
the long-range computations and abbreviated as LWO.

To illustrate the multiscale approach taken towards RTD,
two screenshots taken while running the RTD PSP are in-
cluded herein. These show two road locations in Hungary
and display the corresponding multiscale categories for
them. The categories and their associated road types appear
at bottom of the screenshots; these are shown in Figures 4
and 5, respectively. The categories and their associated road
types are repeated in Tables 8 and 9, respectively, for better
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legibility. We use there the denominations applied
throughout in the present study (e.g., “medium range” is
used instead of “midterm,” “built-up area” instead of “in-
town,” and “very best” instead of “Kicker;” the latter was
abbreviated as “K” in the screenshot).

2.9. Heuristic Decision Rules Used in the RTD Method.
Taking the category values determined for the three different
distance ranges (i.e., SR, MR, and LR), as well as for LWO,
and their associations with various road types as input,
sequential decision rules—i.e., rules to be evaluated from the
first one proceeding to consecutive ones until one of the
rules evaluates true—are used to determine the perceived
road-type. Though, in the present rule set, the MR labels are
not used at all, neither are certain categories in SR and LR
(e.g., SR second greatest); it should be noted that these could
be still useful, if the rule set is to be revised (e.g., other road
features are also to be taken into account).

The evaluation of the decision rules is carried out in the
following general order. The evaluation starts with that of the
SR-related rules. These rules are evaluated firstly to ensure
that the RTD software reacts promptly to sudden changes in
the road type. The evaluation the LWO is carried out next.
The motivation for this special “range” coming next was to
ensure that incidental faulty or highly unlikely TS detections
are identified as such at an early stage of the decision-making
so that their disadvantageous effect can be minimised. Then,
the rules concerning the LR categories are evaluated.

The cases which are specifically addressed with rules are
given below. We note here that similar, but fewer decision
rules, had been used in conjunction with a road environment-
type (RET) detection method, which was proposed in [11].
The method presented there relies on TS and crossroad data.
A tabular representation of these rules was suggested in [25].
Herein, the rules are represented graphically—in the form of
rule-tables—using a slightly modified version of the repre-
sentation proposed therein. The following colour convention
is used in the rule tables; green cell: the perceived road type
will be the one associated with that category according to the
given rule; pink cell: the perceived road type will not be the
one associated with that category; it will be the one appearing
in the green cell. Still the given cell is referred to in the given
rule. Greyish cell: the road type will be set unknown if the rule
is applicable; white cells with grey characters: categories and
associated road types are not referred to in the rule. Cells left
blank: categories and associated road types not used at all in
the rule set. Between cells, solid and dashed lines represent
equality and nonequality, respectively. These are placed
according to the conditions appearing in the rules. These
should be read as “the road type associated with the category
given in the first cell is equal/not equal to the one associated
with the category given in second cell.”

Rule 1: if there is a road type associated with the SR very
best category and it differs from the one associated with LR
greatest, then the former road type is chosen as perceived.
Explanation of the rule: the situation described in the rule
typically occurs when there is a clear-cut, easy-to-detect
road-type change implied by a reliable detection of an
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TaBLE 7: Short-range categories assigned to road types based on the aggregated scores in Table 6. The score difference required for the “very
best” category—in this scale—was 40, while for the “worst-by-far” category—also in this scale—it was 20.

Short-range categories
for built-up area

Short-range categories for
country road

Short-range categories Short-range categories
for expressway for motorway

Very best and greatest Second greatest

N/A N/A

FIGURE 3: A directly road-type-related TS—namely, the “end of expressway” TS appearing in the right-hand side of the photo—that does not

apply for the ego car moving in the left lane.

FIGURE 4: Screenshot showing a road location on a motorway near
Budapest, Hungary. The multiscale category values displayed at the
bottom are repeated in Table 8 for readability.

FIGURE 5: Screenshot showing a road location on a country road in
Hungary.

explicit road-type-related TS. The tabular representation of
the rule is given in Table 10.

Rule 2: if there is a road type associated with the SR
worst-by-far and it is the same as the one associated with LR
greatest, then the road type associated with the SR greatest is
declared as perceived. The tabular representation of the rule
is given in Table 11.

Rule 3: if there is a road type associated with the LWO
very best and it is the same as the one associated with LR
second greatest, then this common road type is chosen as
perceived. Explanation of the rule: the situation described
typically occurs when an incorrectly identified explicit road-
type-related TS diverts the LR greatest; in this case, the LR
evaluation of the TSs and of the road data—disregarding

TaBLE 8: Multiscale category values derived for the road location
shown in Figure 4.

SR
Very best Motorway
Greatest Motorway
Second greatest Country road
Worst-by-far N/A

MR
Very best N/A
Greatest Country road
Second greatest Motorway
Worst-by-far Expressway

LR
Very best N/A
Greatest Built-up area
Second greatest Country road
Worst-by-far Expressway

LWO

Very best N/A

Greatest
Second greatest
Worst-by-far

Built-up area
Country road
Motorway

road-type-related TSs—may set the situation straight. The
tabular representation of the rule is given in Table 12.

Rule 4: if there is a road type associated with the LWO
worst-by-far, and it is the same as the one associated with LR
greatest; furthermore, the road type associated with LWO
greatest is the same as the one associated with the LR second
greatest; then, the latter road type is declared as perceived.
Explanation of the rule: this typically happens when an
explicit road-type-related TS is detected incorrectly. The
tabular representation of the rule is given in Table 13.

Rule 5: if the road type associated with the LR greatest is
the same as the one associated with the LWO worst-by-far,
then the perceived road type is set to unknown. The tabular
representation of the rule is given in Table 14.

Rule 6a: if the road type associated with the LR greatest is
the same as the one associated with LWO greatest, then this
common road type is chosen as perceived. The tabular
representation of the rule is given in Table 15.
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TABLE 9: Multiscale category values derived for the road-location
shown in Figure 5.
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TaBLE 14: Tabular representation of Rule 5.

SR Long-range Long-range w/o TSs
Very best N/A
Greatest Country road Greatest
Second greatest Built-up area \
Worst-by-far N/A Worst-by-far
MR
Very best Country road TaBLE 15: Tabular representation of Rule 6a.
Greatest Country road
Second greatest Built-up area Long-range Long-range w/o TSs
Worst-by-far N/A
LR Greatest Greatest
Very best Country road
Greatest Country road
Second greatest Built-up area
Worst-by-far Expresswa
A WO P Y TABLE 16: Tabular representation of Rule 6b.
Very best Country road Long-range Long-range w/o TSs
Greatest Country road
Second greatest Built-up area Greatest S
Worst-by-far N/A 2nd greatest

TaBLE 10: Tabular representation of Rule 1.

Short range Long-range

Very best =

Greatest

TaBLE 11: Tabular representation of Rule 2.

Short range Long-range

/ Greatest

TaBLE 12: Tabular representation of Rule 3.

Greatest

Worst-by-far

Long- range

/ Very best
2nd greatest

TaBLE 13: Tabular representation of Rule 4.

Long-range w/o TSs

Long-range Long-range w/o TSs
Greatest Greatest
2nd greatest x(
Worst-by-far

Rule 6b: if the road type associated with the LR greatest is
the same as the one associated with LWO second greatest,

TaBLE 17: Tabular representation of Rule 6c¢.

Long-range Long-range w/o TSs

/ Greatest
2nd greatest

TaBLE 18: Tabular representation of Rule 7.

Short-range Long-range Long-range w/o TSs
Very best Very best
Greatest Greatest Greatest

2nd greatest 2nd greatest

Worst-by-far Worst-by-far

then this common road type is chosen as perceived. The
tabular representation of the rule is given in Table 16.
Rule 6¢: if the road type associated with the LR second
greatest is the same as the one associated with LWO greatest,
then this common road type is chosen as perceived. The
tabular representation of the rule is given in Table 17.
Rule 7: if none of the above conditions have been sat-
isfied, then the perceived road type is set to unknown. The
tabular representation of the rule is given in Table 18.
The sequential application of the above rules is
shown in Figure 6. The rules that have one or more green
cell in their tabular representations (i.e., Rules 1, 2, 3, 4,
6a, 6b, and 6¢) lead to some concrete road type (e.g.,
motorway) on their “applicable” branches, while the rules
with one or more grey cell in their tabular representations
(i.e., Rules 5 and 7) lead to unknown road type. Note
that Rule 7 is not represented explicitly in Figure 6; it is
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Category values derived for the road location

applicable

not applicable

not applicable

v

Road-type set to unknown

FiGURre 6: The sequential application of Rules 1-5, 6a, 6b, and 6¢
leading to the decision on the current road type. Note. Rule 7 is
represented only as the “not applicable” branch of Rule 6c¢.

Category values as given in Table 8

<>

FiGure 7: The steps through which the road-type decision is
reached for road location shown in Figure 3.

applicable

Road-type is set to Motorway

instead represented by the “not applicable” branch of
Rule 6c.

To illustrate the use of the above decision rule set, let us
now use the road locations shown in Figures 4 and 5 as
examples. The category values derived for these road loca-
tions are given in Tables 8 and 9, respectively.

Let us consider first the road location shown in Figure 4. As
the road type associated with the SR very best category—i.e.,
motorway—differs from the one associated with LR great-
est—i.e., road in built-up area—in Table 8, the former road type
is identified as perceived based on Rule 1. No further rules need
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to be evaluated in this case, as it is can be seen in Figure 7. The
road-type classification reached is correct in this case.

For the road location shown in Figure 5, the first five
rules in the heuristic rule set need to be evaluated before Rule
6a finally leads to a positive decision on the road type. The
process of decision-making is shown in Figure 8. The road
location is perceived as Country road. Again, the road-type
classification reached is correct.

2.10. Evaluation of Road Data with the RTD Software
Prototype. A car-based data collection had been carried out
by Bosch engineers and their support team along roads of
Austria, Germany, Hungary, and the UK before the launch
of the R&D project mentioned in Section 2.1. They used an
unspecified number of cars equipped with intelligent mono
cameras. These cameras were developed by Bosch for au-
tomotive applications.

The video recordings and the corresponding vehicular data
were stored as compound sequences that can be opened, played/
displayed, evaluated, and processed using ADTF modules.
These compound sequences were later at some stage pre-
processed using various low- and medium-level image pro-
cessing, image understanding, object recognition, object
tracking, computer vision and spatial measurement ADTF
modules, and the relevant outputs and results were stored back
in the sequences.

An assortment of several hundred incoherent, unsorted,
and preprocessed short compound sequences were made
available for the authors from the collected road data. These
sequences were then annotated with the ground truth road
types by the authors. A good portion of these annotated
sequences were used in the algorithm development—i.e., for
training and validation—purposes; others were used for
testing purposes.

Having viewed all the road video sequences made
available for the project, we believe that the total number of
cars that had been involved in recording these sequences was
between two and four.

The road-type composition of training data is presented
in Table 19, while its hand-of-traffic—or rule-of-road-
—composition is given in Table 20.

The speed of the ego car(s) was always below 50 km/h for
built-up area roads, below 90 km/h for country roads, below
110km/h for expressways, and below 130km/h for mo-
torways. However, for most of the time, the driving speed
was close to the respective speed limits. The traffic appeared
to be relatively light in the short sequences that we received.
All the recordings were taken at daylight.

Though different weather conditions occurred during the
data collection and were then recorded in short sequences, the
effect of the unfavourable weather conditions on the RTD was
not systematically analysed. This was the case also for road
objects (e.g., roundabouts and flyovers) that were not in direct
focus of the present study. Still, such road objects do occur in the
recordings, as can be verified for a particular UK chain that is
described in Table 21.

We chose to experiment only with reliable TS and lane
detections, reliable according to the proprietary ADTF
detector modules used in our experiments. These reliability
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Category values as given in Table 9

not applicable

not applicable

applicable
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>/ Road-type set to Country road /

FIGURE 8: The steps through which the road-type decision is reached for road location shown in Figure 5.

TaBLE 19: The road-type composition of the training road data.

Total length of roads within built-up areas 76 (km)
Total length of country roads 91
Total length of expressway 54
Total length of motorways 58
Total road length 279

TaBLE 20: Hand-of-traffic composition of training road data.

Total length of roads with right-hand traffic (recorded 203

within Austria, Germany, and Hungary) (km)
Total length of roads with left-hand traffic (recorded 01
within the UK)

Total road length 279

values were stored in and were read from the preprocessed
compound sequence. The TS and lane detections were
considered for further processing, only if their reliability
values were over a fixed threshold. So, if the detections were
unreliable—e.g., due to some unfavourable weather and light
conditions or due to the fading colours on TSs or due to dim
lane markers—for a longer period or for a longer patch of
road; then, the RTD was suspended and the road type was set
to unknown.

The outputs of the mentioned detector modules in-
cluded, among others, the number of detected lanes, the
geometrical characterisation, and the types of detected lane
markings, the types of detected TSs, and the distance to TSs
measured from the ego car.

In order to ensure that the testing of the RTD software
prototype was carried out in a consistent, replicable, and fair
manner, furthermore to make up for the lack of longer coherent
compound sequences and at the same time utilize the short ones
that were available, several chains of such compound sequences

were compiled. These chains were then of more practical
lengths: ranging from few minutes to about half an hour.

Table 21 summarizes the road objects and features
appearing in the video sequences inherent within a par-
ticular chain. The video sequences listed in the table were
recorded in the UK, so they show left-hand traffic. This fact
can be verified via viewing characteristic snapshots from
these videos, which are presented as shown in Figure 9. This
particular chain of compound sequences was used in testing
the RTD software prototype.

The chains compiled from component sequences feature
patches of road of the considered road types, as well as a
good selection and variety of road-type changes. The latter
trait of the chains ensures that not only the RTD capability
but also the road-type change detection capability of the
software prototype was put to the test.

It should be noted that, during the manual editing/com-
pilation of each chain, special care was taken to render the
component sequences in such a manner and order that there are
no harsh differences—in weather, daytime, hand-of-traffic,
number of lanes, etc.—between adjacent component sequences.
As a consequence, each of the chains used in our experiments
covers and shows a more or less realistic and consistent road
journey. The compiled chains feature roads in Germany,
Austria, Hungary, and the UK. A few of the chains focus on
roads near Budapest, Hungary; Figures 4 and 5 show road
locations from such a chain.

3. Results and Discussion

The RTD software prototype was tested on a number of
compiled chains. In numerous cases, its operation and the
generated outputs were closely followed and monitored by
a member of the testing team. As part of the testing
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TaBLE 21: Brief description of the component sequences that make up a particular compiled chain. All its component sequences had been
recorded in at daytime on UK roads. The following abbreviations are used: COU=country road, BUA =built-up area, and
MWY =motorway.

Seq.  Weather

.. Road type(s) Road objects encountered Number of lanes Number of TSs Extraneous TSs Duration (s)

no.  conditions

1 Cloudy, wet COU, MWY  TSs, roundabout, MWY-entry 1, then 3 7 3 126
2 Cloudy MWY, COU TSs, flyovers, MWY-exit 3 1 123
3 Cloudy, wet COouU TSs, roundabout 1 13 3 349
4 Clear COU, BUA TSs, roundabout 1 15 0 300
5 Clear BUA TSs, curving streets 1 0 0 56
6 Clear BUA Not applicable 1 0 0 20
7 Clear BUA Traffic lights 1 0 0 19
8 Clear BUA Roundabout 1 0 1 20
9 Cloudy BUA, COU TSs 1 14 1 248
10 Clear MWY TSs, flyovers, and MWYs merging 3 16 3 338
Total 71 12 1599

FiGure 9: Continued.
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FIGURE 9: Characteristic snapshots from the video sequences inherent within the component sequences of the chain summarized in Table 21.
The figures are numbered with the sequence numbers given therein.
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F1GuRre 10: Diagrams of the RTD software prototype’s recognition precision with respect to time (a) and the path length (b), respectively, for
the chain described in Table 21. The duration of this chain is about 27 minutes; the total path length covered by the ego vehicle is about

28 km.

procedure, precisions were calculated by comparing the
ground-truth road types to the road types detected by the
prototype. The precisions were calculated over time, as well
as over the distance covered by the ego car. In the time-
based calculations, the precisions were computed on a
frame-by-frame basis, while for the path-length-based
calculations, frames were sampled in an equidistant
manner over the path.

In the RTD publications cited in Section 1, the RTD
precisions of 80% or higher were mentioned. Some more
recent papers could achieve road-type precision over 90%.
Most of these results, however, were not derived through real
time or real-time capable solutions.

Furthermore, telling that a precision of 80% is good and
of 95% is excellent is not that clear cut, it is important to
understand the concrete application targeted, or phrased in
another way, how and for what purpose the results are used.
Is the task at hand safety critical? Does it involve paying costs
like fines? The same precision achieved can be acceptable or
not, depending on the given context and circumstances of
the very concrete application of RTD.

The two precisions for the UK chain described in Table 21
are presented diagrammatically in the two subfigures of Fig-
ure 10. The graphs show how the precision values changed with
time and with path length, respectively. These graphs are
presented in the top and the bottom subfigure, respectively. In
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TaBLE 22: The achieved recognition precision of the RTD software
prototype for different chains of compound sequences.

Chains of compound sequences Time based Distance based

showing (%) (%)
Roads in Austria, Germany, and 779 78.9
Hungary

Roads in the UK 89.4 88.9
Roads near Budapest (Hungary) 84.9 85.0

the figures, the coloured vertical lines indicate the changes in the
ground truth road type. The light green background indicates
that the RTD was correct in the given moment or at the given
road location, while the orange background indicates incorrect
RTD in that moment or at that road location. Table 22 provides
the precisions achieved for the test chains.

4. Conclusions

The software prototype implementing the RTD method
described herein was tested thoroughly. It performed ade-
quately in detecting the road types both in case of the
European (continental) roads and of the UK roads. The
categorizing method used herein brought satisfying results
and seems to be applicable in this context.

The future work to enhance the RTD software prototype
presented herein includes taking more input signals into account
(e.g., road/lane curvature, presence of crossroads, and number of
lanes), using the types and along-the-route locations of other
TCDs (e.g., traffic lights and pedestrian crossings) in the clas-
sification, combining/fusing the various input values, and
considering and testing mathematically more well-founded
classification and change detection methods that have already
performed well in similar applications. The review by Lim and
Braunl [24] has goaded us to consider and suggest a further
research direction within RTD, namely, RTD directly from
video stream using CNNs and/or recurrent neural networks
(RNNs). Having analysed the road detection results referred to
and summarized in the review, this research direction could bear
fruit in the near future.

The statistical data used for the training of the de-
tector were collected in parallel with the development of
the method; therefore, the number of the samples was
moderate and should hence be considerably increased.
Furthermore, there is regional and country-wise vari-
ability of the road features (e.g., with respect to TS
density, average lane-width, and TS designs). In order to
handle this sort of variability, an international data
collection on a large scale should be carried out so that the
developers active in the road detection and RTD field
could fully understand the international and interre-
gional differences in road conditions and road features
and their effect on the classification process and
precision.

We intend to collect further empirical data from other
European countries and also from countries outside Europe to
make the software prototype robust to radically different road
environments. Then, with such international road data col-
lected, for handling relatively small (e.g., regional) differences in
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the functional forms and in topographical environments, al-
gorithms with learning capabilities could be deployed to adapt
thresholds used in our present work.
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