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Abstract

The paper proposes a control design methodology for active flutter suppression for the aeroservoelastic (ASE)
aircraft of the European project FLEXOP. The aim of the controller is to robustly stabilize the aeroelastic
modes. The control design is based on a control oriented linear parameter-varying (LPV) model, which is
derived via ”bottom-up” modeling approach and includes the parametric uncertainties of the flutter modes.
The tensor product (TP) type LPV model is generated via TP model transformation. The symmetric and
asymmetric flutter modes are decoupled, which allows independent control design for each. LPV observer
based state feedback control structure is applied with constrains on the maximal control value to avoid input
saturation. The scheduling parameters of the TP type LPV models are split into measured and uncertain
parameters for robust control design. Convex hull manipulation based optimization and model complexity
effects are investigated. The resulting controller is validated via the high-fidelity ASE model of the FLEXOP
aircraft.

1 Introduction

Future aircraft designs increasingly focus on fuel consumption reduction. This can be achieved by reducing
the weight and structure of the aircraft and by increasing its wingspan. Such aircraft have more flexible
structures and increased aeroservoelastic (ASE) effects. This manifests in aeroelastic flutter, which is the
interaction between the structural dynamics and aerodynamics producing unstable oscillations [12]. Control
based active flutter suppression is investigated in several recent research projects. These are the Performance
Adaptive Aeroelastic Wing (PAAW) project in the USA [18] and the Flutter Free FLight Envelope eXpansion
for ecOnomical Performance improvement (FLEXOP) and Flight Phase Adaptive Aero-Servo-Elastic Aircraft
Design Methods (FLiPASED) projects in the EU [10, 11], which are the subject of this paper. A demonstrator
Unmanned Areal Vehicle (UAV) is developed in FLEXOP (Section 3.1) and is shown in Figure 1. The flutter

Figure 1: FLEXOP demonstrator aircraft.
suppression controller can be synthesized using an appropriate control oriented model [33, 16, 23]. The ASE
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model of an aircraft is the integration of aerodynamics, structural dynamics and flight dynamics subsystems
[13, 17], (Section 3.2). The details of the ASE model development of the FLEXOP demonstrator are given in
[39, 17]. The aerodynamics model is based on the vortex lattice method (VLM) and doublet lattice method
(DLM). The structural dynamics model is obtained from a Nastran based finite element (FE) model. The
integration of the subsystems relies on the mean axis reference frame [22]. The resulting model consists of 12
rigid body states, 100 states of the structural dynamics and 1040 aerodynamic lag states in addition to the
actuator dynamics states. This ASE model of the FLEXOP aircraft is considered as the nominal, high-fidelity
model. Control design for such a high dimensional, nonlinear model is challenging. The linear parameter-
varying (LPV) framework [24] (Section 2) can be applied instead of the nonlinear model. There are two
possible ways to obtain low order LPV models: LPV model order reduction [35, 15] and ”bottom-up” modeling
[31, 17], which is applied in the paper (Section 3.3). The key idea is the following. The subsystems have simpler
structure than the nonlinear ASE model. Therefore, the structural dynamics and aerodynamics models can be
reduced by tractable reduction techniques. These reduced order subsystems form a low order nonlinear ASE
model upon which the control oriented LPV model can be obtained. The structural dynamics has uncertain
parameters that affect the flutter modes. These uncertainties are included in the uncertain control oriented
model (Section 3.4).

Three main LPV system representations exist. These are the ”grid-based” [38], the linear fractional transfor-
mation (LFT) [19] and polytopic [1] LPV systems. The paper focuses on polytopic LPV systems, specifically
Tensor Product (TP) polytopic models obtained via TP model transformation [6]. TP model transformation
is a numerical tool based on the higher-order singular value decomposition (HOSVD) [9] and it can generate
various types of convex polytopic forms [40, 2] for convex hull manipulation based optimization [28, 26]. In
addition, the higher-order singular values give a possibility for trade-off between the accuracy and complexity
of the resulting model. TP model applications are given in [7, 8, 5, 3, 4].

The main goal of the paper is to propose a TP model based robust control design methodology for active
flutter suppression of the FLEXOP aircraft. First, a ”bottom-up” model is derived. Second, an uncertain
control oriented TP type polytopic model is obtained. Third, the TP model of the FLEXOP aircraft is not an
exact representation, therefore balancing between the accuracy and complexity of the TP model is addressed.
Fourth, convex hull manipulation based control optimization is investigated. An important benefit of the
presented control design is the separation of scheduling and uncertain parameters. Such approach is difficult to
apply for grid-based LPV systems. The proposed control structure for the flutter suppression is LPV observer
and state feedback design with constraints on the control signal to avoid actuator saturation (Section 4). The
controller is validated by frequency domain analysis (Section 4.3) and by time domain simulations with the
uncertain high-fidelity, nonlinear model (Section 4.4), followed by the conclusions (Section 5). It is crucial
to emphasize that while this paper focuses on flutter suppression control design, the presented control design
methodology can be used for a wide class of control applications.

2 LPV Modeling and Control

The following section presents the main concepts of LPV modeling and control design [9, 32, 38, 6].

2.1 Grid-based and polytopic LPV models

An LPV system is described by the state space model [38, 24]

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)
(1)

with the continuous matrix functions A : P → Rnx×nx , B : P → Rnx×nu , C : P → Rny×nx , D : P → Rny×nu ,
the state x : R→ Rnx , output y : R→ Rny input u : R→ Rnu , and a time-varying scheduling signal ρ : R→ P,
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where P is a compact subset of RN . The system matrix S(ρ(t)) is

S(ρ(t)) =

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

]
. (2)

In grid-based LPV representation [38], the system is described as a collection of LTI models (Ak, Bk, Ck,
Dk) = (A(ρk) , B(ρk) , C(ρk) , D(ρk)) obtained from evaluating the LPV model at a finite number of parameter
values {ρk}

ngrid
1 = Pgrid ⊂ P. In polytopic representation [1]

S(ρ(t)) =

R∑
r=1

wr(ρ(t))Sr. (3)

S(ρ(t)) is defined as the parameter varying combinations of LTI vertex system matrices Sr ∈ R(nx+nu)×(nx+ny)

and weighting functions wr(ρ(t)). Explicit dependence on time t is suppressed in trivial cases in the remainder
of the paper.

2.2 TP type polytopic models

The backbone of TP models is the HOSVD [9, 6], the SVD for N -th-order tensors with the notation X
N

�
n=1

Un.
The core tensor X contains linear time-invariant (LTI) matrices. The TP type polytopic HOSVD-based canon-
ical model of (3) takes the following structure [25]:

S(ρ(t)) =

I1∑
i1=1

· · ·
IN∑

iN=1

N∏
n=1

wn,in(ρn(t))Si1,...,iN . (4)

The TP type polytopic form consists of the LTI vertex systems S ∈ R(nx+nu)×(nx+ny) and the uni-variate
weighting functions wn(ρn(t)). The compact tensor notation of (4) is

S(ρ(t)) = S
N

�
n=1

wn (ρn(t)). (5)

The row vectors wn (ρn(t)) are constructed from the univariate weighting functions wn,in(ρn(t)), in = 1 . . . IN ,
the core tensor S ∈ RI×...×IN×(nx+nu)×(nx+ny) from the LTI vertex matrices Si1,...,iN and ρn is the n-th
element of vector ρ.

Definition 1 (Finite element TP type polytopic model) The LPV model (1) can be defined as a poly-
topic model using a TP model structure as[

ẋ(t)
y(t)

]
= S

N

�
n=1

wn(ρn(t))

[
x(t)
u(t)

]
. (6)

The N+2-dimensional core tensor S ∈ RI1×···×IN×(nx+nu)×(nx+ny) contains the LTI system matrices Si1,...,iN ∈
R(nx+nu)×(nx+ny).

Definition 2 (Convex TP type polytopic model) The TP type polytopic model (6) is convex if the weight-
ing functions wn(ρn(t)) satisfy the following criteria:

∀n, ρn(t) :
In∑
i=1

wn,i(ρn(t)) = 1

∀n, i, ρn(t) : wn,i(ρn(t)) ∈ [0, 1]

(7)
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The convex representation of the given LPV system is not unique and the specific representation significantly
influences the resulting control performance [27, 28]. The following convex hulls are investigated in the paper:
CNO (Close to Normal) is a tight convex hull, IRNO (Inverted and Relaxed Normal) is a large convex hull and
SNNN (Sum Normalized Non-Negative) that only satisfies the convexity criteria [6]. Convex TP type models
can be obtained from the LPV model of (1) via TP model transformation [6]. Assume that the HOSVD of
the LPV system of (1) is given and the n-mode rank of S(ρ) is Rn (1 ≤ n ≤ nρ) [6]. The approximate TP
type model Ŝ(ρ) is obtained by discarding small singular values σ

(n)
I′
n+1, σ

(n)
I′
n+2, . . . σ

(n)
Rn

of tensor S for a given
I ′n < Rn. The upper bound of the approximation error is then

1

γTP
= ‖S(ρ)− Ŝ(ρ)‖2 ≤

R1∑
i1=I′

1+1

(
σ
(1)
i1

)2

+ · · ·+
Rnρ∑

inρ=I′
nρ+1

(
σ
(nρ)
inρ

)2

. (8)

2.3 Control design with TP models

The proposed TP model based control design is done via observer based state feedback, where the observer
needs to satisfy the convergence x(t) − x̂(t) → 0 as t → ∞, [6, 32]. Both the state feedback controller and
the observer are LPV systems that are scheduled by the parameter vector ρ and the control structure is given
as [

ˆ̇x(t)
ŷ(t)

]
= S(ρ(t))

[
x̂(t)
u(t)

]
+

[
K(ρ(t))

0

]
(y(t)− ŷ(t)) ,

u(t) = −F (ρ(t))x̂(t).

(9)

Using the TP type polytopic representation the control design elements, the LPV model S(ρ(t)), the controller
F (ρ(t)) and the observer gain K(ρ(t)) have the following form:

S(ρ(t)) = S
N
�

n=1
wn (ρn(t)) ,

F (ρ(t)) = F
N

�
n=1

wn (ρn(t)) ,

K(ρ(t)) = K
N

�
n=1

wn (ρn(t)) .

(10)

Such control structure, where the state feedback and observer gains take the same polytopic structure as the
LPV model, is known as the parallel distributed compensation (PDC) [32].

2.3.1 LMI based control design

The aim of the control synthesis is to find the state feedback gains Fi1, i2, ..., iN in core tensor F and observer
gains Ki1, i2, ..., iN in core tensor K. Such control synthesis problem can be efficiently solved by LMI techniques.
In case of polytopic LPV models the LMIs can be applied directly for the vertex systems Si1, i2, ..., iN of S and
the corresponding state feedback and observer gains can be obtained.

Theorem 1 Globally asymptotically stable control synthesis: Consider the TP type polytopic model
state feedback controller in the form of (9). The control structure is globally and asymptotically stable if matrices
X = XT > 0 and Mr (r = 1, . . . and R denotes the number of LTI vertex systems of (5) satisfy the following
inequalities

XAT
r −MT

r BT
r +ArX −BrMr < 0,

XAT
r −MT

s BT
r +AsX −BrMs +XAT

s

−MT
r BT

s +AsX −BsMr < 0
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for r < s ≤ R, except the pairs (r, s), such that ∀ρ(t) : wr(ρ(t))ws(ρ(t)) = 0, and where Mr = FrX. The state
feedback gains can be obtained as Fr = MrX

−1.

Theorem 2 Constraint on the control value: Assume that the upper bound of the initial condition is
known and it is given by ‖x(0)‖ ≤ φ. The constraint ‖u(t)‖2 ≤ µ is enforced at all times t > 0 if the LMIs

φ2I ≤ X,

[
X Mr

T

Mr µ2I

]
≥ 0

hold where P = X−1 and Mr = FrX.

The proofs of theorems 1-2 are based on the quadratic Lyapunov function of the form V (x(t)) = x(t)TPx(t)
where P = X−1. The proofs are given in [32]. The observer gains can be obtained solving the dual problem of
the state feedback design, which approach will be followed in the remainder of the paper.

2.4 Robust control design

In a special class of the LPV system (3) the elements of parameter vector ρ are not measurable variables but
represent variation of the system due to parametric uncertainties. The LMIs of Theorem 1 simplify to

XAT
r −MTBT

r +ArX −BrM < 0,

XAT
r −MTBT

r +AsX

−BrM +XAT
s −MTBT

s +AsX −BsM < 0

for r < s ≤ R, except the pairs (r, s), such that ∀ρ(t) : wr(ρ(t))ws(ρ(t)) = 0, and where M = FX. The
constant state feedback gain is derived as F = MX−1. The proof can be derived using a quadratic Lyapunov
function as shown in [14].

In a more general case when the parameter vector ρ can contain measurable elements in addition to the
parameters that correspond to the uncertainty using constant controller gains leads to conservative results.
The conservative nature of the control design can be avoided by a control structure in which the feedback and
observer gains depend only on a subset of ρ. Let us group elements of the parameter vector ρ as follows

ρ(t) =
[
ρmeas(t) δuc(t)

]T (11)

where ρmeas contains the measurable elements and δuc contains the elements that correspond to the polytopic
uncertainty. The dimension of ρmeas and δuc is Nρmeas

and Nδuc
, respectively. The robust control structure

can then be written as [
ˆ̇x(t)
ŷ(t)

]
= S(ρ(t))

[
x̂(t)
u(t)

]
+

[
K(ρmeas(t))

0

]
(y(t)− ŷ(t)),

u(t) = −F (ρmeas(t))x̂(t).

(12)

The TP type polytopic form of the state feedback gains and the observer gains in this case can be written as

F (ρ(t)) = F
Nρmeas

�
n=1

wn (ρn(t)) ,

K(ρ(t)) = K
Nρmeas

�
n=1

wn (ρn(t)) .

(13)

Core tensors F and K contain the state feedback gains Fi1, i2, ..., iNρmeas
and observer gains Ki1, i2, ..., iNρmeas

.
The state feedback gains can be obtained via the following theorems.
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Theorem 3 Globally asymptotically stable robust control synthesis: Consider the TP type polytopic
model state feedback controller in the form of (12). The control structure is globally and asymptotically stable
for the polytopic uncertain LPV model if matrices X = XT > 0 and Mj satisfy the following inequalities

XAT
r −MT

j BT
r +ArX −BrMj < 0,

XAT
r −MT

k BT
r +AsX −BrMk

+XAT
s −MT

j BT
s +AsX −BsMj < 0

for r < s ≤ R, except the pairs (r, s), such that ∀ρ(t) : wr(ρ(t))ws(ρ(t)) = 0, for j < k ≤ Rmeas, except the
pairs (j, k), such that ∀ρ(t) : wj(ρ(t))wk(ρ(t)) = 0, and where Mj = FjX. The state feedback gains can be
obtained as Fj = MjX

−1.

Theorem 4 Robust constraint on the control value: Assume that the upper bound of the initial condition
is known and it is given by ‖x(0)‖ ≤ φ. The constraint ‖u(t)‖2 ≤ µ is enforced at all times t > 0 if the LMIs

φ2I ≤ X,

[
X Mj

T

Mj µ2I

]
≥ 0

hold where P = X−1 and Mj = FjX.

The proofs of Theorems 3-4 use the Lyapunov function V (x(t)) = x(t)TPx(t) with P = X−1 and are given in
[14].

3 Uncertain Control Oriented Model of the FLEXOP Aircraft

The present section presents the main properties of the FLEXOP aircraft and the key ideas behind developing
the uncertain control oriented model.

3.1 FLEXOP demonstrator aircraft

The FLEXOP aircraft has an aspect ratio of 20 and a wingspan of 7 m with a V-tail empennage [21]. The
symmetric aeroelastic mode becomes unstable at 52 m/s airspeed and 50.2 rad/s frequency. The asymmetric
flutter mode goes unstable at 55 m/s and 45.8 rad/s. Each wing has 4 control surfaces and custom made direct-
drive actuators ensure sufficient bandwidth for active flutter suppression. In addition to the GPS and air data
probe, the aircraft has inertial measurement units (IMUs) in the wings and at the center of gravity, see Figure
2.

Figure 2: Control surfaces (top) and sensors (bottom).
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3.2 High fidelity, uncertain nonlinear model

The ASE model of the FLEXOP aircraft is obtained by the subsystem approach, see Figure 3. The nominal,
nonlinear ASE model of the FLEXOP aircraft consists of 12 rigid body states, 1040 aerodynamic lag states
and 100 flexible mode states in addition to the states corresponding to the actuator dynamics, [39, 17]. The
aerodynamic coefficients are assumed to be accurate and structural dynamics model to have parametric uncer-
tainties with a significant effect on the flutter modes. Specifically, the first six modes have ±1% uncertainty in
the natural frequency and ±10% in their damping.

Structural
dynamics

Rigid dynamics

Aerodynamics

𝐺𝑎𝑐𝑡

𝐹modal

⎡⎢⎢⎢⎣
𝜂
𝜂̇
𝜂̈

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝛿𝑎
̇𝛿𝑎
𝛿𝑎

⎤⎥⎥⎥⎦

Measured
outputs (𝑦)

Control
input (𝑢)

𝐹rigid

𝑥rigid

𝐹external

Figure 3: ASE subsystem interconnection.

3.3 Bottom-up modeling

Bottom-up modeling approach is pursued in order to obtain an ASE model of the FLEXOP aircraft that is of
sufficiently low order for control design. The key idea is to reduce the subsystems first and then integrate them
to form the ASE model [31, 17]. It is crucial to define the frequency range of interest in which high accuracy of
the low order model is expected. The flutter frequencies are at 50.2 and 45.8 rad/s and adding a margin, the
frequency range of interest is defined up to 100 rad/s. The ν-gap metric δν(·, ·) between the high fidelity and
low order models is used as the main measure of accuracy. It can take values between 0 and 1, 0 meaning that
the two systems are identical [36]. The ν-gap metric is an LTI technique. Therefore, grid-based LPV models
of the high-fidelity and reduced order ASE models are required. These LPV models are generated by trimming
and linearizing the nonlinear models for straight and level flight at 26 points of the airspeed in the interval
[40, 65] m/s. The ν-gap metric is computed at each grid point and fixed frequencies for the L4, R4 ailerons
and the vertical acceleration (az) sensors at the c.g. and at the 12 IMUs.

The structural dynamics model of the aircraft is

Mη̈(t) + Cη̇(t) +Kη(t) = Fmodal(t) (14)

where η is the modal state, Fmodal is the force acting on the structure in modal coordinates, M, C and K
are the modal mass, damping and stiffness matrices respectively. In order to keep the ν-gap between the high
fidelity and the low order model low the first six structural modes and modes 19, 20, 21 are retained, the rest
of the states are truncated.

The aerodynamic lag terms take the state-space form

ẋaero(t) =
2VTAS(t)

c̄
Alagxaero(t) +Blag

ẋrigid(t)
η̇(t)

δ̇cs(t)


yaero(t) = Clagxaero(t)

(15)

where VTAS is the true airspeed, xrigid is the rigid body state, δcs is the control surface deflection and c̄ is the
reference chord. An LTI balancing transformation matrix Tb is computed for Alag, Blag and Clag. The balanced
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states with the smallest Hankel singular values are residualized. Retaining two lag states results in a low order
model with acceptable accuracy. The bottom-up model therefore has 56 states. The ν-gap values and the pole
migrations are given in Figure 4. The high fidelity model predicts flutter at 52 and 55 m/s at frequencies of
50.2 and 45.8 rad/s respectively while the low order model at 52 and 56.5 m/s at 50 and 46 rad/s respectively.
Additional validation of the accuracy of the bottom-up model is given in [17].
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Figure 4: ν-gap values (top) and pole migration (bottom).

3.4 Control oriented uncertain TP models

Uncertain models can be developed by introducing uncertain parameters into the structural dynamics model.
These uncertainties, denoted by δK and δC , appear in the mass matrix K and in the damping matrix C of (14).
The grid-based uncertain LPV model is obtained over a 3 dimensional grid. The grid consists of 26 equidistant
points of the airspeed between 40 m/s and 65 m/s, 5 points of the natural frequency in the structural dynamics
between ±1% of the nominal value, and 5 points of the damping in the structural dynamics between ±10% of
the nominal value. The scheduling parameter ρ is defined as

ρ(t) =
[
ρVTAS

(t) δK(t) δC(t)
]T (16)

where ρVTAS
is a measured parameter and δK and δC are unmeasured. The nominal and uncertain flutter modes

of the control oriented LPV model are shown in Figure 5. The control oriented, uncertain TP model of the
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Figure 5: Flutter modes: nominal (blue), uncertain (red).
FLEXOP aircraft is obtained via TP model transformation. This control oriented model will serve as the basis
for the flutter suppression control design. The first 5 singular values after TP model transformation in each
dimension are the following 

2265597.18
65011.403
20.882
0.02596
0.0002635

 ,


2266526.615
3766.924

7.728e− 05
1.114e− 07
3.386e− 09

 ,


2266529.745

9.142
2.989e− 09
4.464e− 11
1.221e− 11

 .

The singular values related to the uncertainties have 2 dominant values in both dimensions. In case of the
airspeed, it is possible to obtain a model with higher accuracy (HA) SHA with 4× 2× 2 = 16 vertex systems
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by retaining the first four singular values. The model with lower complexity (LC) SLC with 3 × 2 × 2 = 12
vertex systems is obtained by retaining only the first three singular values.

SHA(ρ) =

4∑
i1=1

2∑
i2=1

2∑
i3=1

3∏
n=1

wn,in(ρn)Si1,...,i3 = SHA

3

�
n=1

wn(ρn)

SLC(ρ) =

3∑
i1=1

2∑
i2=1

2∑
i3=1

3∏
n=1

wn,in(ρn)Si1,...,i3 = SLC

3

�
n=1

wn(ρn)

. (17)

TP model transformation based control design allows convex hull manipulation based control optimization.
Therefore, CNO, IRNO and SNNN convex TP models are obtained for SHA and SLC . As a result, a set of
models with different complexity and convex hulls are available for the control design. The weighting functions
can be seen in Figures 6-7.

4 Flutter suppression control

4.1 Control design structure

The symmetrical and asymmetrical modes of the FLEXOP aircraft are decoupled, which enables independent
control design for each flutter mode. The state feedback and observer gains depend only on ρmeas = ρVTAS

as:

Fsym(ρ(t)) = Fsym

Nρmeas

�
n=1

wn (ρVTASn
(t)) ,

Ksym(ρ(t)) = Ksym

Nρmeas

�
n=1

wn (ρVTASn
(t)) ,

Fasym(ρ(t)) = Fasym

Nρmeas

�
n=1

wn (ρVTASn
(t)) ,

Kasym(ρ(t)) = Kasym

Nρmeas

�
n=1

wn (ρVTASn
(t)) .

The symmetric model Ssym(ρ(t)) has input usym = (L4+R4)/2 and output ysym =
[
(az,L3 + az,R3)/2 (az,L6 + az,R6)/2

]T .
The states are the vertical velocity w, pitch rate q, the symmetric modal coordinates, the lag states and the
actuator states of the L4 and R4 control surfaces. The asymmetric model Sasym(ρ(t)) has inputs uasym =

(L4 −R4)/2 and outputs ysym =
[
(az,L3 − az,R3)/2 (az,L6 − az,R6)/2

]T . The states are the horizontal veloc-
ity v, roll rate p, yaw rate r, the asymmetric modal coordinates, the lag states and actuator states of the L4 and
R4 control surfaces. The observer based state feedback symmetric and asymmetric controllers can be connected
with the high-fidelity FLEXOP model as shown in Figure 8. The control design is based on Theorems 3 and
4. Constraint φ = ‖x(0)‖ = 2 of Theorem 4 is determined based on physical consideration and open loop
simulations. The controller with lowest feasible µ ensures low control signal u and is considered optimal.

4.2 Influence of convex hull manipulation and model complexity

The paper focuses on CNO and IRNO type models for convex hull manipulation based optimization since the
SNNN hull models do not yield feasible solutions. Interpolation between CNO and IRNO models is done as
proposed in [28]:

wnINT
(ρn) = (1− λ)wnCNO

(ρn) + λwnIRNO
(ρn) (18)

where λ ∈
[
0 1

]
. The interpolated core tensor SINT is obtained by pseudo TP model transformation [6]. A

set of six λ values are investigated for the lower complexity SLC TP model. The achieved lower bounds of µ
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Figure 6: Weighting functions of SLC .
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Figure 7: Weighting functions of SHA.LPV controller

[
(𝑎𝑧,𝐿3 + 𝑎𝑧,𝑅3)∕2
(𝑎𝑧,𝐿6 + 𝑎𝑧,𝑅6)∕2

]

[
(𝑎𝑧,𝐿3 − 𝑎𝑧,𝑅3)∕2
(𝑎𝑧,𝐿6 − 𝑎𝑧,𝑅6)∕2

]
𝑢sym + 𝑢asym

𝑢sym − 𝑢asym

sym. controller,
𝐹𝑠𝑦𝑚 (𝜌), 𝐾𝑠𝑦𝑚 (𝜌)

asym. controller,
𝐹𝑎𝑠𝑦𝑚 (𝜌), 𝐾𝑎𝑠𝑦𝑚 (𝜌)

aircraft
dynamics

𝑎𝑧,𝐿3 , 𝑎𝑧,𝑅3 , 𝑎𝑧,𝐿6 , 𝑎𝑧,𝑅6 𝐿4 , 𝑅4

Figure 8: Control loop structure.

are given in Table 1. µ = ∞ means that the LMIs of Theorem 3 are feasible, while the LMIs of Theorem 4 are
not. This means that a stabilizing controller is obtained for all models, but constraint on the control values
can only be enforced for lower λ values and the CNO type model leads to the best control performance. Note,
that in some cases in the literature larger convex hulls lead to better observer performance [26, 27, 28]. The
CNO type SAC model is used to investigate the trade-off between accuracy and complexity of the model. Due
to the increased complexity, the lower bound of µ increased compared to the CNO model of SLC , as shown in
Table 2. It can be concluded that the lower complexity, CNO type TP model of the FLEXOP aircraft leads
to the best control performance. Extensive evaluations show that 3 vertex based TP type aeroelastic models
have sufficiently high accuracy [29].

4.3 Frequency domain analysis

The resulting robust controller is connected to the high-fidelity, uncertain LPV model for the frequency domain
analysis. The pole migrations of the open and closed loop systems are shown in Figure 9 for airspeed up to
61 m/s up to which the closed loop is stable. Both flutter modes are pushed to the left half plane and the
remaining modes of the aircraft are not affected largely by the controller. The flutter-free envelope is therefore
extended by approximately 11%. The reason why the high fidelity model is stabilized up to 61 m/s instead of

λ 0 0.2 0.4 0.6 0.8 1
µFsym 32 36 48 391 ∞ ∞
µFasym 44 150 ∞ ∞ ∞ ∞
µKsym 2 2.3 2.5 2.8 2.96 2.9
µKasym 0.66 0.88 9.5 ∞ ∞ ∞

Table 1: Lower bounds of µ as a function of λ for SLC .
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λ µFsym µFasym µKsym µKasym

0 ∞ 63 3.3 0.75
Table 2: Lower bounds of µ for the CNO model SHA.

65 m/s is that the low order control oriented model does not capture the flutter modes perfectly. The accuracy
can be improved by retaining more states in the model order reduction step. The fastest pole of the controller is
at approximately 80rad/s, making it possible to be implemented on a digital computer. The Bode magnitude
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Figure 9: Pole migration of the uncertain, high-fidelity model; open loop (blue), closed loop (red).
plot of the resulting controller from the accelerometer az,L3 to the left aileron L4 is shown in the left of Figure
10. The controller has peak gain around the flutter frequency which decreases at higher and lower frequencies,
thus the rigid body dynamics and the unmodeled high frequency dynamics are not excited by the controller.
The Bode magnitude of the open and closed loop systems from L4 to az,L3 is shown in the right of Figure 10
for airspeed up to 61 ms showing that the flutter suppression increases the damping of the flutter modes. This
figure also indicates that the designed controller acts mainly around the flutter frequency leaving the low and
high frequency regions unaltered.

4.4 Time domain analysis

For time domain analysis the controller is connected with the uncertain, high-fidelity nonlinear ASE model
of the FLEXOP aircraft as shown in Figure 8. The simulation starts with the aircraft trimmed for straight
and level flight above the flutter speeds at 55 m/s. The speed is increased by adding a ramp signal on the
throttle, see Figure 11. The control surfaces not involved in flutter suppression are kept at trim condition.
Wind gusts are simulated by 2.5◦ doublets applied on the ailerons and elevators, exciting both the asymmetric
and symmetric flutter modes. Sensor noise is added to the output signals. The computational time of the
digital computer running the controller is accounted by 1 ms time delay. The response of the FLEXOP model
with the natural frequency increased by 1% and the damping decreased by 10% are shown in Figure 11. Time
domain simulations indicate that the FLEXOP aircraft remains stable up to approximately 61-62 m/s airspeed.
The controller handled the time delay and sensor noise well, while the control commands are in the interval
of ±2◦, far from saturation. Note, that the effects of the time delay and sensor noise can also be explicitly
accounted for in the control synthesis. Such approach should potentially increase the control performance.

Flutter suppression control design was in focus of several recent papers. [34] proposed robust control approach
based on LTI model and synthesis. [30] provides an initial robust control for the FLEXOP aircraft, addressing
the uncertainties in terms of LMIs. Such approach leads to high computational load of the LMI optimization.
[37] proposed an LTI H∞ method for the FLEXOP aircraft flutter suppression. [20] uses H2 optimal blends
of the input and output signals for aeroelastic mode control, also based on LTI models. An interesting future
step can be to apply the input/output blending of [20] to the control structure presented in this paper.
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Figure 10: Bode magnitude plots.
5 Conclusion

The paper presents a robust LPV flutter suppression design solution for the FLEXOP demonstrator aircraft.
The uncertain low order model is developed by the ”bottom-up” modeling approach and the control oriented
LPV model is obtained via TP model transformation. The scheduling parameters are split into measured and
uncertain parameters. Convex hull manipulation based optimization showed that for the FLEXOP aircraft tight
convex hulls lead to the best performance and the lower complexity model results in better control performance.
The resulting controller is analyzed with the high-fidelity uncertain LPV model and it is validated by numerical
simulations using the high-fidelity, uncertain nonlinear model of the FLEXOP aircraft. The proposed control
design extends the flutter-fee envelope from 52 m/s to approximately 61 ms. The control signals remain far
from actuator saturation and the control performance is not degraded significantly due to computational time
delay and sensor noise.
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