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Abstract— The computation of the minimum sensitivity of
uncertain Linear Time Invariant (LTI) systems is presented in
the paper. The system interconnection is given by a generic
Linear Fractional Transformation (LFT) of a nominal model
and an uncertain block, where the input-output behavior of the
latter is described by Integral Quadratic Constraints (IQC).
The extension of the Minimum Gain Lemma is presented
for such interconnections, resulting in a convex optimization
problem subject to Linear Matrix Inequality (LMI) constraints.
With the aim of the Generalized-KYP (GKYP) lemma the
minimum gain/sensitivity is computed over a certain finite
frequency range. Connection with the already existing literature
is highlighted, providing an insight on the obtained results.
A numerical example is given to illustrate and validate the
proposed methodology.

I. INTRODUCTION

The H∞ norm is a well-known measure for the maximum
sensitivity of dynamical systems [1]; it is defined as the
peak value of the largest singular value over the whole
frequency range. It can be efficiently computed by using con-
vex optimization subject to Linear Matrix Inequality (LMI)
constraints, this is usually referred as the Bounded Real
Lemma in the literature [2]. The H∞ norm plays a key-role
in the theory of robust analysis and synthesis. One particular
aspect, that we are interested in, is its extension for uncertain
systems. Here, one of the most generic description is the
Linear Fractional (LFT) interconnection of a nominal plant
G and an uncertain block ∆. A solid theoretical foundation
exists for the analysis (and synthesis) of LFT interconnected
uncertain systems, however the developed methodologies
differ in the underlying assumptions imposed on the ∆
block. It has been shown that a wide range of dynamical
components can be described by using Integral Quadratic
Constraints (IQCs), where the possible combinations of input
and output signals are fulfilling an integral formula. Starting
from their early frequency domain interpretation [3] several
features have been revealed in the past years, including the
time-domain interpretation and dissipativity theory of IQCs
[4], [5].

On the other hand, the H− index characterizes the sys-
tem’s minimum sensitivity, i.e. it is defined as the infinum
of the lowest singular value of the system over the whole
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frequency range. Despite the fact that the H− index is not
a norm (since it fails to satisfy certain norm properties), it
has gained attention in the control community. It has been
first introduced in [6] with a convex formulation similar
to the Bounded Real Lemma. Alternatively, the Minimum
Gain Lemma was introduced in [7], extending the notion
of minimal sensitivity for unstable systems with non-zero
initial conditions. Furthermore, the Large-gain theorem has
been also proposed in [7], providing a stability criteria
based on the minimum sensitivities of the components in
the feedback loop. Computation of the minimum gain over a
finite frequency range was proposed in [8], [9] by using the
the Generalized Kalman-Yakubovic-Popov (GKYP) lemma.

Despite its theoretical foundations, the minimum sensitiv-
ity has not received nearly as much attention as the H∞
norm. It has been applied as a performance measure in Fault
Detection algorithms [10], [11], [12], and more recently in
the decoupling problems of dynamical systems [13], [14].
The remarkable (and counter-intuitive) findings of [7] are
contributing in the field of controller synthesis for unstable
plants. In addition, some remarks have also been made on
the robustness of the underlying problem in [7], however, no
systematic analysis tool has been provided.

Our aim is to cover this gap and offer a convex minimum
sensitivity analysis tool for LTI systems containing uncertain
elements. Our derivation is based on the formulation of
[7], along with the time-domain interpretation of the IQC
theory, as presented in [4] and [5]. The obtained results
are directly related to previously established theorems from
robust control and analysis.

Section II collects the necessary mathematical background.
The main contributions of the paper are the convex, IQC
based robust minimum sensitivity analysis methods presented
in Section III. A demonstrative example is presented in
Section IV, and the paper is concluded in Section V.

II. MATHEMATICAL PRELIMINARIES

The mathematical notations of the paper is fairly standard.
R and C denote the set of real and complex numbers,
respectively. RL∞ is the set of rational numbers with real
coefficients that are proper and have no poles on the imag-
inary axis. RH∞ is the subset of functions in RL∞ that
are analytic in the closed right half complex plane. Rm×n,
Cm×n, RLm×n∞ , RHm×n∞ denote the sets of m×n matrices
that are in R, C, RL∞ and RH∞, respectively.

Furthermore y ∈ L2 if ||y||22 =
∫∞

0
|y(t)|2dt < ∞, and

y ∈ L2e if ||y||22 =
∫∞

0
|yT (t)|2dt < ∞, T ∈ R+ and

yT (t) = y(t) for 0 ≤ t ≤ T and yT (t) = 0 for t ≥ T .
M ≺ 0 and M � 0 denotes the negative (positive)

definiteness of the matrix M , respectively. Sm denotes the



set of a symmetric m×m matrices. Symmetric matrix terms
in inequalities are denoted by ?.

A. Minimum and Maximum Sensitivities

Consider a continuous time Linear Time Invariant (LTI)
system G, with state space representation:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where: x ∈ Rnx is the state vector, u ∈ Rnu is the input
vector and y ∈ Rny is the output vector of the system, while
the constant system matrices (A,B,C,D) are of appropriate
dimensions.

The maximum sensitivity of a stable system is character-
ized by a positive scalar γ such that

||y(t)||22
||u(t)||22

≤ γ. (2)

For LTI systems the peak sensitivity is the H∞ norm and
defined as

||G||[0,∞)
∞ := sup

ω∈[0,∞)

σ̄
[
G
]
, (3)

where σ̄ denotes the maximum singular value. TheH∞ norm
can be computed through various numerical techniques, from
which we only refer to the Bounded Real Lemma (BRL)
which is a convex optimization subject to Linear Matrix
Inequality (LMI) constraints [2].

In a similar way, the minimum sensitivity of a system can
be characterized by a positive scalar β such that

||y(t)||22
||u(t)||22

≥ β. (4)

Again, in the LTI case, this minimum sensitivity is called
the H− index and defined as:

||G||[0,∞)
− := inf

ω∈[0,∞) ¯
σ
[
G
]
, (5)

with
¯
σ denoting the minimal singular value. Note that, at

the presence of transmission zeros the G(s) system has zero
output despite that the transfer function matrix itself is not
zero. This shows that the H− index is not a norm, as it
fails to satisfy certain norm properties [10]. There are also
different algorithms for the computation of the H− index,
which are presented next.

B. H− index over infinite frequency range

For stable LTI systems, the following optimization prob-
lem was presented in [6] for the computation of the minimum
sensitivity:

Lemma 2.1: Let β > 0 be a constant scalar, and denote
the system given in (1) by G. Then ||G||[0,∞)

− > β, if and
only if there exists a symmetric matrix P such that[

PA+ATP + CTC PB + CTD
(PB + CTD)T DTD − β2I

]
� 0. (6)

Proof: The proof can be found in [6].
Note that (6) has a similar structure as the BRL, without
the additional restriction on the definiteness of the matrix
variable P .

The authors in [7] proposed an alternative, yet similar
definition for the minimum gain of a system, defined as
follows:

Definition 2.2: A causal system G : L2e → L2e, has
minimum gain 0 ≤ β ≤ ∞ if there exists ν, depending
only on the initial conditions, such that

||Gu||2T − β||u||2T ≥ ν, ∀u ∈ L2e, ∀T ∈ R+. (7)
For LTI systems, an LMI-based computation has also been
derived in [7], which is referred as the ’Minimum Gain
Lemma’:

Lemma 2.3: The LTI system given in (1) has minimum
gain 0 ≤ β ≤ ∞ if there exists P = PT � 0 such that[

PA+ATP − CTC PB − CTD
(PB − CTD)T β2I −DTD

]
� 0. (8)

Proof: The detailed proof can be found in [7] and hence
omitted here.

Nevertheless, a few remarks have to be given regarding
the Minimum Gain Lemma. First, (6) is restricted to stable
plants, while the definition and the computation of the
minimum gain extends to unstable systems as well. Second,
the resulting LMI constraints are structurally similar and
connected. In order to show this, we borrow the argument
presented in [15]. In particular, [15] is using an auxiliary
description for unstable (sub)systems, which is defined by
G̃ = (−A,−B,C,D). The time-domain interpretation of
the auxiliary system is given by reversing the time variable
t. For this t = τ is introduced and the signals are rewritten:
x̃(τ) = x(−t). For the computation of the unstable Gramians
in [15], it is then showed that they are the solution of
a minimal energy problem for the corresponding auxiliary
system. What is interesting for our case is that the H− index
for an unstable system can be computed by using the same
arguments and the auxiliary description. Namely: following
the same train of thoughts (6) yields to (8) for unstable
systems.

C. H− index over a finite frequency range

The computation of the minimum sensitivity can be carried
out also over a finite frequency range [

¯
ω, ω̄] by the aid of the

Generalized Kalman-Yakubovic-Popov lemma, as discussed
in [8]. This is summarized in the following lemma:

Lemma 2.4: Consider the LTI system in (1). Let Θ =[
−I 0
0 β2I

]
∈ R(nx+ny)×(nx+ny) and

¯
ω, ω̄ denote the mini-

mum and maximum frequencies respectively in the interested
frequency range, with ω̃ = ¯

ω+ω̄
2 . Then ||G||[¯ω,ω̄]

− > β if and
only if there exists Hermitian P and Q, with Q � 0 satisfying[

A B
I 0

]T
Ξ

[
A B
I 0

]
+

[
C D
0 I

]T
Θ

[
C D
0 I

]
≺ 0, (9)

where Ξ =

[
−Q P + j ω̃2Q

P − j ω̃2Q −
¯
ωω̄Q

]
.

Proof: The proof is available in [8], [9].
Remark 2.5: [16] shows that in Theorem 3., that Lemma

2.4 holds for all solutions of (1) with u ∈ L2 such that∫ ∞
0

(
−ẋẋT + iω̃xẋT − iω̃ẋxT −

¯
ωω̄xxT

)
dt ≥ 0. (10)
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Fig. 1: LFT description of an uncertain system

This means that the system (1) possesses a β minimum
gain for input signals with spectral contents in the targeted[
¯
ω ω̄

]
frequency range.

Remark 2.6: In [9] the authors also present the LMI
formulation of the maximum sensitivity (the H∞ norm), by

setting Θ =

[
I 0
0 −γ2I

]
.

Remark 2.7: Note also that, by Q = 0, (9) yields the LMI
condition of (6) for the whole frequency range (which was
shown to be equivalent to (8)).

III. ROBUST MINIMUM GAIN

Having introduced the definition and various computa-
tional aspects of the minimum gain, now we extend these
results for uncertain dynamical systems. For this purpose,
our starting point will be a generic LFT interconnection of
a nominal LTI plant G and the perturbation block ∆, as
illustrated in Figure 1. The interconnection is denoted by
Fu(G,∆) and can be computed by using the upper LFT of
the two blocks.

Using this setting, our aim is to compute the minimum
gain of Fu(G,∆), from the input u to the output y, i.e.:,

||G||∆− = inf||Fu(G,∆)||. (11)

A crucial point in the analysis and synthesis of uncertain dy-
namics is the available knowledge regarding the perturbation
block ∆. Generally, the exact description of ∆ is unknown,
but some assumptions can be given. Then (11) has to be
evaluated over all the possible uncertainties satisfying the
assumptions.

Among the different uncertainty handling methodologies,
the Integral Quadratic Constraint (IQC) based framework
received the most attention due to the fact that numer-
ous dynamical components (e.g. norm-bounded or polytopic
uncertainty, time delay, saturation, various types of non-
linearities, etc.) can be covered by this formalism. The basic
idea in the IQC framework is that the input and output signals
of the uncertainty satisfy an integral formula. We follow the
terminology of [5], but the interested reader is referred to
[3], [4] for a more detailed presentation and discussion about
IQCs.

The signals v ∈ Lnv
2 , w ∈ Lnw

2 in the interconnection
depicted in Figure 2 are satisfying the IQC defined by Π if∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≤ 0 (12)

in the frequency domain, where v̂ and ŵ are the Fourier
transforms of v, and w respectively. A time-domain alter-
native is constructed by calculating a (Ψ, M) factorization
of Π, where M ∈ Snz and Ψ ∈ RHnz×(nv+nw)

∞ is a stable

∆

Ψ

vw

z

Fig. 2: Graphical interpretation of an IQC

invertible linear system with the following frequency domain
realization:

Ψ(jω) := CΨ(jωI−AΨ)−1
[
BΨv BΨw

]
+
[
DΨv DΨw

]
.

(13)
The state-space representation of Ψ is:

ẋΨ = AΨxΨ(t) +BΨvv(t) +BΨww(t),

z(t) = CΨxΨ(t) +DΨvv(t) +DΨww(t).
(14)

This (Ψ, M) factorization allows to express (12) in the
time domain as ∫ ∞

0

z(t)TMz(t)dt ≥ 0. (15)

This factozization is called a soft IQC factorization.
If Π ∈ RL∞ can be factorized as Π = Ψ̃MΨ where

{̃
·
}

denotes the para-Hermitian conjugate, then (Ψ,M) is a hard
factorization of Π and∫ T

0

z(t)TMz(t)dt ≥ 0. (16)

Throughout the paper we use hard factorization. Hard and
soft IQC factorizations are discussed in [3], and [4] in more
details. Furthermore if ∆ satisfies an IQC constraint given
by its hard factorization (Ψ, M), then it will be denoted by
∆ ∈ IQC (Ψ, M).

A. Robust Minimum Gain over the entire frequency domain

We are now in the position to derive analysis conditions for
the robust minimum gain over the entire frequency domain.
The discussion closely follows the results presented in [5]
corresponding to the worst-case gain calculation. The system
interconnection used for the analysis is shown in Figure 3,
with the extended dynamics written in state-space:

ẋ = Ax+Bww +Buu,

z = Czx+Dzww +Dzuu,

y = Cyx+Dyww +Dyuu,

(17)

where the x =
[
xTG xTΨ

]T
state vector is composed of the

states of the G system and the Ψ filter. The signal w is
treated as an external signal and (16) is used for replacing
the w = ∆(z) relationship.

Then, the following lemma provides the computation of
the robust minimum gain over the entire frequency domain.

Theorem 3.1: Assume that Fu(G,∆) is well posed for all
∆ ∈ IQC(Ψ,M), and the interconnection is stable. Then the
minimum gain is finite and larger than β, if there exists a
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P = PT and λ > 0 such thatPA+ATP PBw PBu
BTwP 0 0
BTu P 0 β2I

+ λ

 CTzDT
zw

DT
zu

M [
?
]

−

 CTyDT
yw

DT
yu

 [?] ≺ 0.

(18)

is satisfied.

Proof: We start by repeating the definition of the
minimum gain from Definition 2.2, where it is given as

||Gu||2T − β||u||2T ≥ ν, ∀u ∈ L2e, ∀T ∈ R+. (19)

Rewriting the lefthand side gives

||y||22T − β2||u||22T =

∫ T

0

(
|y|2 − β2|u|2

)
dt. (20)

The integral term in (20) can be trivially extended with the
storage function and the IQC condition as:

∫ T

0

(
|y|2 − β2|u|2 +

d

dt
(xTPx)− d

dt
(xTPx) +

+ λzTMz − λzTMz
)
dt.

(21)

After introducing the following notations by using the state
space representation in (17):

Γ1 =

PA+ATP PBw PBu
BTwP 0 0
BTu P 0 0

 , Γ2 =

 CTzDT
zw

DT
zu

M [
?
]
,

Γ3 =

 CTyDT
yw

DT
yu

 [?] , Γ4 =

0 0 0
0 0 0
0 0 β2I

 ,
(22)

and re-arranging the terms we get:∫ T

0

xw
u

T (−Γ1 − λΓ2 + Γ3 − Γ4)

xw
u

 dt+
+

∫ T

0

xw
u

T (Γ1 + λΓ2)

xw
u

 dt.
(23)

If one enforces the first term to be positive (i.e.
[−Γ1 − λΓ2 + Γ3 − Γ4] � 0), then by neglecting the first
integral a lower approximation of the ||y||22T−β2||u||22T term

in (20) is obtained, i.e.:

||Gu||22T − β2||u||22T ≥
∫ T

0

xw
u

T (Γ1 + λΓ2)

xw
u

 dt,
(24)

where the integral’s value is:∫ T

0

xw
u

T (Γ1 + λΓ2)

xw
u

 dt =

= −xT (0)Px(0)− λzT (0)Mz(0).

(25)

Note that the latter is finite, therefore the system possesses
a finite minimum gain. At the same time, the technical
condition on the positive definiteness of −Γ1−λΓ2+Γ3−Γ4

can be easily verified as the LMI condition in (18).

Remark 3.2: The worst case induced L2 gain, ||G||∆∞ >
γ can be calculated by replacing β2I by −γ2I , and changing
the sign of the last term (corresponding to yT y) to + in (18).
For more details we refer to [5]. Note that [17] showed that
this LMI condition can be satisfied by an indefinit P = PT

as well.
Remark 3.3: As [5] shows, the presented method allows

the treatment of several uncertainties in the analysis problem.
In this case ∆ has a block diagonal structure with ∆ =
diag{∆1, ...,∆N}, where each block satisfies a correspond-
ing IQC constraint (Ψk,Mk). These Ψk filters are connected
to the vk and wk signals corresponding to ∆k and generate
the zk virtual outputs. The second term in (18) then has to
be modified to

N∑
k=1

λk

 CTzk
DT
zwk

DT
zuk

Mk

[
?
]
, (26)

with λk ≥ 0. The conservativeness of the analysis test can
be reduced by using several IQCs for the same uncertainty
block in a similar fashion.

B. Robust minimum gain over finite frequency range

So far we have been assuming that the interconnected
system is proper and possesses a direct feed-through term
from u to y. However, it is possible to calculate the minimum
gain for systems where this condition is not fulfilled by the
aid of the Generalized Kalman-Yakubovic-Popov (GKYP)
lemma [8], [9]. In this case the minimum sensitivity is
computed over a selected frequency range of interest. The
following lemma extends the previous results for systems
without direct feed-through:

Theorem 3.4: Assume that Fu(G,∆) is well posed for all
∆ ∈ IQC(Ψ,M). Let

¯
ω, ω̄ denote the minimum and max-

imum frequencies respectively in the interested frequency
range, with ω̃ = ¯

ω+ω̄
2 . Then ||Fu(G,∆)||∆− > β if there

exists a Hermitian P , Q and real λ > 0 such that Q � 0 and



A Bw Bu
0 0 0
I 0 0

T Ξ
[
?
]

+

0 0 0
0 0 0
0 0 β2I

+ λ

 CTzDT
zw

DT
zu

M [
?
]

−

 CTyDT
yw

DT
yu

 [?] ≺ 0,

(27)

where Ξ =

 Φ11Q 0 P + Φ12Q
0 0 0

P + Φ21Q 0 Φ22Q

, with Φ =[
−1 jω̃
−jω̃ −

¯
ωω̄

]
.

Proof: In the proof we work in a truncated signal space,
where for all T ∈ R+ the signal yT (t) = y(t) for 0 ≤ t ≤ T
and yT (t) = 0 for t ≥ T . Multiplying the inequality in (27)
by
[
xT wT uT

]
from the left and by

[
xT wT uT

]T
from the right gives

d

dt
(xTPx) + β2uTu+ λzTMz − yT y+

+ Φ11ẋ
TQẋ+ Φ12ẋ

TQx+ Φ21x
TQẋ+ Φ22x

TQx < 0.
(28)

This can be integrated along the state trajectory from t = 0
to t = T :

− x(0)TPx(0) + β2

∫ T

0

u(t)Tu(t)dt+

+ λ

∫ T

0

z(t)TMz(t)dt−
∫ T

0

yT (t)y(t)dt+

+

∫ T

0

(
Φ11ẋ

TQẋ+ Φ12ẋ
TQx+ Φ21x

TQẋ
)
dt+

+

∫ T

0

(
Φ22x

TQx
)
dt < 0.

(29)

It follows from the IQC condition (16) that

− x(0)TPx(0)− λz(0)TMz(0)+

β2

∫ T

0

u(t)Tu(t)dt−
∫ T

0

yT (t)y(t)dt+

+ tr
[
Q
∫ T

0

(
Φ11ẋ

T ẋ+ Φ12ẋ
Tx
)
dt
]

+

+ tr
[
Q
∫ T

0

(
Φ21x

T ẋ+ Φ22x
Tx
)
dt
]
< 0.

(30)

Note that due to the truncated signal space xT (t) = 0 ∀t >
T , and so the xT (T )Px(T ) term can be omitted. Since Q �
0 and because we suppose that, the u input signals satisfy
condition (10), the tr[·] term is nonnegative, and we have

− x(0)TPx(0)− λzT (0)Mz(0) <

<

∫ T

0

yT (t)y(t)dt− β2

∫ T

0

u(t)Tu(t)dt
(31)

what completes the proof.

IV. NUMERICAL EXAMPLE

Longitudinal control law design for fixed-wing airplanes
involves a normal acceleration feedback loop, as it is shown
in [18]. Optimizing the aircraft handling qualities requires
precise knowledge of achievable transfer capabilities in this
loop, even if the available knowledge of the system compo-
nents is uncertain to some degree. In this example we apply
the previous results on an elevator to az normal acceleration
transfer function, corresponding to a fixed-wing aircraft. The
model is taken from [19], and it describes the Aerosonde
UAV in a trimmed straight and level flight at 33 m/s. The
corresponding state space model is given by

G =


−0.68 0.07 −0.46 −9.81 −0.14
−0.55 −2.98 33 −0.14 10.13
p1 p2 −0.66 0 −31.78
0 0 1 0 0

−0.55 −2.98 0 0 10.13

 ,
(32)

with xT =
[
u w q θ

]T
corresponding to the longitudi-

nal and vertical speeds in the body frame, the pitch rate and
the pitch angle respectively.

A detailed description of how various aerodynamic and
structural parameters affect the state space matrices is given
in Chapter 5. of [19]. A careful inspection of those equations
reveal that the Cmα longitudinal static stability derivative
affects the p1, p2 entries in A. Modeling a ±5% inaccu-
racy in Cmα, leads to the

[
p1 p2

]
=
[
0.01 −0.73

]
+[

0.0005 −0.0366
]
δ parametric uncertainty description, by

|δ| ≤ 1.
For describing the effects of unmodelled dynamics, an

input multiplicative uncertainty is appended to the system
as Gp(s) = G(s)(1 + ∆(s)Wm(s)), with |∆(s)| ≤ 1 and

Wm(s) =
s+ 0.7653

1.053s+ 2.551
. (33)

This allows for 30 percent uncertainty at low, and 95 percent
uncertainty at high frequency.

These lead to a blockdiagonal uncertainty structure in the
form of ∆ =

{
diag

{
δ, ∆

}
∈ Cnw×nv , δ ∈ R,∆ ∈ C

}
. The

next question is the appropriate filter selection for the various
type of uncertainties.

For the case when ∆ is a dynamic LTI uncertainty, with
||∆(s)||∞ < 1, [3] proposes an IQC multiplier in the form

Πd(jω) =

[
x(jω)I 0

0 −x(jω)I)

]
. (34)

A hard factorization of (34), was used for the analysis
problem, which is given as

Md =

[
1 0
0 −1

]
, Ψd(s) =

[ s+10.2
s+5.102 0

0 s+10.2
s+5.102

]
. (35)

For |δ| ≤ 1 parametric uncertainties [3] suggests a multi-
plier in the form

Πp(jω) =

[
X(jω) Y (jω)
Y (jω)∗ −X(jω)

]
, (36)

where X(jω) = X(jω)∗ ≥ 0 and Y (jω) = −Y (jω)∗
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Fig. 4: Robust sensitivity analysis example

are bounded and measurable matrix functions. A hard fac-
torization of Πp is provided by its J-spectral factorization,
described in the appendix B of [5]. By selecting Πp(jω) as

Πp(s) =

[ 51.02
s+51.02

s
s+0.04017

s
s−0.04017

−51.02
s+51.02

]
, (37)

it’s J-spectral factorization leads to

Mp =

[
1 0
0 −1

]
,

Ψp(s) =

[
0.70711(s+10.57)

s+5.102
0.70711(s+2.759)

(s+5.102)
−70711(s+2.759)

(s+5.102)
0.70711(s+10.57)

(s+5.102)

]
.

(38)

In the forthcoming sensitivity analysis (35) and (38) were
used for describing the model uncertainties.

The nominal G(s) system is shown in Figure 4, along
with a shaded area where the Gp(s) perturbed plant can take
its values. The upper bound of this area was found by the
wcgain, worst case gain computing MATLAB function. The
theoretical lower bound was found by the worst case gain of
the G−1

p (s) inverse system.
Lemma 2.4 is used to calculate the minimum and max-

imum sensitivities of the G(s) nominal system over finite
frequency ranges. Dotted lines show their calculated values
when the investigated frequency range was increased from
[0 10−3] to [0 102] rad/s in 100 steps.

Theorem 3.4 allows the calculation of ||G||∆− and
||G||∆∞ over a finite frequency range. The upper bound of
the frequency range was again increased from 10−3 to 102

rad/s in 100 steps.
Theorem 3.1 and Theorem 3.4 gives the same result for

the
[
0 ∞

]
frequency range. However if G(s) would be just

proper (with zero gain at high frequency), then only Theorem
3.4 could be applied over a finite frequency range to calculate
the minimum sensitivity.

V. CONCLUSION

The paper presented a convex, robust minimum sensitivity
analysis approach relying on Integral Quadratic Constraints.

It was shown that the method is a direct extension of
the Minimum Gain Lemma to systems containing uncertain
elements. By applying the GKYP lemma it was possible
to further generalize the results to analyze the minimum
sensitivity over a certain frequency range. A simple nu-
merical example was presented to show the potential of
the proposed approach. This example involved a simple
dynamic LTI uncertainty. However by selecting suitable
IQC multipliers other types of uncertainties or nonlinearities
might be incorporated into the analysis as well.
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