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Abstract: This paper proposes a design method for the coordination of velocity profiles of
autonomous vehicles in non-signalized intersection scenarios. The coordination is motivated by
the avoidance of vehicle collision and the minimization of their energy loss resulted by stop and go
maneuvers in the intersection. Therefore, the coordinated design is formed as an optimal control
problem, which is solved through two optimization tasks. A quadratic optimization task with
online solution is formed, which provides guarantees on the avoidance of the collision. Moreover,
a reinforcement-learning-based optimization task with offline solution is formed, which is able
to improve the economy performances of the autonomous vehicles. The optimization tasks are
interconnected, i.e. the quadratic optimization with the vehicle model is used as an environment
during the training process. The effectiveness of the proposed coordinated control through
simulation examples with three number of autonomous vehicles is illustrated.
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1. INTRODUCTION AND MOTIVATION

The coordinated design for the motions autonomous vehi-
cles in intersections is a recent hot topic of the vehicle con-
trol problems due to their high number of challenges, e.g.
sensing, communication and optimal coordination prob-
lems. This paper focuses on the coordinated design of the
velocity profile of the vehicles, i.e. on their longitudinal
control. It poses several control problems, as follows.

• The objective can contain multiple criteria, the most
important are the minimization of the traveling time,
the energy consumption and the maximization of
the comfort performances. The variables of the op-
timization task are the control inputs of the vehi-
cles, e.g. longitudinal acceleration command or trac-
tion/braking forces.

• The dynamics of each vehicles provides constraint in
the optimization problem.

• Furthermore, the safe motion of the vehicles, i.e. col-
lision avoidance must be guaranteed, which leads to
constraints for the vehicles with intercrossing route.
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Innovation and Technology NRDI Office within the framework of
the Autonomous Systems National Laboratory Program.
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János Bolyai Research Scholarship of the Hungarian Academy of
Sciences and the ÚNKP-20-5 New National Excellence Program of
the Ministry for Innovation and Technology from the source of the
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• The velocity of the vehicles must be kept in a pre-
defined range, considering the speed limits of the
vehicles.

• The control input of the vehicles must also be limited
due to the physical limits of the driveline, braking
system and tyre-road contact.

The solution of the optimization problem above have
several challenges. Achieving a global optimal solution
requires the computation of the control inputs along the
entire intersection scenario. Due to the uncertainties in
dynamics of the vehicles and the time delays in the control
intervention the computation of the control inputs during
the vehicle motion must be continuously performed. A
solution is to apply Model Predictive Control methods
with optimization on finite rolling horizon Kim and Kumar
[2014], Riegger et al. [2016], Bichiou and Rakha [2019],
Hult et al. [2019]. Although it can provide appropriate
results, the increase of vehicle numbers can make the
real-time computation difficult. A possible solution on the
problem of increasing computation effort is the approxi-
mate the optimal solution with neural networks, see e.g.
Németh et al. [2018].

Another approach for the solution of the vehicle motion
problem is to use learning-based control solutions, espe-
cially reinforcement learning-based methods Isele et al.
[2018], Wu et al. [2020], Chen et al. [2020], Zhou et al.
[2020]. The advantage of it is that some of these methods
are model-free, which can provide solution on the problem
of constraint formulation. Moreover, the training of the
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[2018], Wu et al. [2020], Chen et al. [2020], Zhou et al.
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control agent through high number of episodes is carried
out, which can lead to improved performances. In spite of
the promising achievements, the resulted neural-network-
based agents cannot provide guarantee on the collision
avoidance of the vehicles.

In this paper the design of the motion profile for au-
tonomous vehicles in non-signalized intersections is pro-
posed in a novel way. The optimization problem of the ve-
hicle motion is separated, depending on the performances.
First, it is proposed a quadratic optimization problem,
whose role is to guarantee the collision avoidance and the
limitation of the velocities of the vehicles. The constraint
of collision avoidance is formed through a linear approxi-
mation of the quadratic constraint, which leads to high ef-
ficiency in the reduction of the computation requirements.
The quadratic optimization in every time step during the
motion of the vehicles is solved. Second, the advantages of
reinforcement learning in the improvement of the economy
performances, e.g. minimization of the control input are
exploited. In the training process the previously formed
quadratic optimization task is applied as a part of the
environment for learning. Similarly, during the operation
of the control system the trained neural network and the
quadratic optimization task operate together.

Thus, the contributions of the paper is as follows. The
control design problem for autonomous vehicles in inter-
sections is formed in a novel way through the separation
of the problem. It leads to reduced complexity of the
control problem in real-time computation. Moreover, it is
created an environment model for reinforcement learning,
with which guarantees on the collision avoidance can be
provided. Although the proposed method is proposed for n
number of vehicles, its effectiveness is illustrated through
an example with three vehicles, see Figure 1. In the exam-
ple V ehicle 1-V ehicle 2 and V ehicle 1-V ehicle 3 are in
conflicts, which means that their collision must be avoided.

Fig. 1. Example on intersection scenario

The paper is organized as follows. In Section 2 the model
formulation for handling intersection scenarios is proposed.
The application of reinforcement learning for the improve-
ment of economy performances is presented in Section 3. In
Section 4 the effectiveness of the proposed method through
simulation examples is illustrated. Finally, the conclusions
and the future challenges are provided in Section 5.

2. FORMULATION OF VEHICLE MODELS FOR THE
MOTION IN INTERSECTIONS

The goal of this section is to formulate the collision-free
motion of the vehicles in intersection scenarios. It is based
on the simple longitudinal kinematic model of the vehicles:

vi(k + 1) = vi(k) + Tai(k), (1a)

si(k + 1) = si(k) + Tvi(k) +
T 2

2
ai(k), (1b)

where i index represents the number of the vehicle, n
is the number of vehicles, vi is longitudinal velocity, si
is longitudinal displacement. ai represents longitudinal
acceleration of the vehicle, which is handled as a control
input command and T is time step of the discrete motion
model. The longitudinal displacement is related to the
center point of the intersection and thus, it is defined
as si = 0 for all i in the center point. The longitudinal
displacement of the approaching vehicle has negative value
and the displacement of the vehicle moving away has
positive value. The control input of the system is separated
into two elements, such as

ai(k) = aK,i(k) + ∆i(k), (2)

where aK,i is the control input command of the robust
controller for the ith vehicle and ∆i(k) is the additional
input from the supervisor in the model.

The goal of the supervisor in the collision-free motion
model is to select ∆i(k) for all vehicles. The aim of the
selection is to minimize the difference between ai(k) and
aL,i(k) to preserve the performance level of the learning-
based controller. Nevertheless, it is constrained as follows.
Since the routes of some of the vehicles may be crossed, a
constraint for avoiding collision is formed. The actuation
ai(k) must provide motion for vehicle i, with which the safe
distance ssafe between vehicle i and the further vehicles
can be guaranteed. Moreover, the velocity must be inside
of a bounded range. The upper bound is determined by the
speed limit vmax and the lower bound is represented by the
stopping of the vehicle. Thus, it is necessary to select ∆i

for all vehicles to keep velocities inside of the range.

The selection process of ∆i for all vehicles is formed as an
optimization problem as follows:

min
∆1(k)...∆n(k)

n∑
i=1

(
ai(k)− aL,i(k)

)2
(3a)

subject to

(si(k + 1)− sj(k + 1))2 ≥ ssafe, ∀i, j ∈ n, (3b)

0 ≤ vi(k + 1) ≤ vmax, ∀i ∈ n, (3c)

∆i ∈ ∆i, ∀i ∈ n, (3d)

where i, j represent the pair of vehicles, whose motion
can be in conflict, i.e. their routes are intercrossed. ∆i

represents the domain of the optimization variable. In
the optimization problem the kinematics of the vehicle
motion (1) is considered through the formulation of the
constraints, the separation of the control input (2) is
involved in the objective function.

The objective of (3) is reformulated through (2):
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number of vehicles, its effectiveness is illustrated through
an example with three vehicles, see Figure 1. In the exam-
ple V ehicle 1-V ehicle 2 and V ehicle 1-V ehicle 3 are in
conflicts, which means that their collision must be avoided.

Fig. 1. Example on intersection scenario

The paper is organized as follows. In Section 2 the model
formulation for handling intersection scenarios is proposed.
The application of reinforcement learning for the improve-
ment of economy performances is presented in Section 3. In
Section 4 the effectiveness of the proposed method through
simulation examples is illustrated. Finally, the conclusions
and the future challenges are provided in Section 5.

2. FORMULATION OF VEHICLE MODELS FOR THE
MOTION IN INTERSECTIONS

The goal of this section is to formulate the collision-free
motion of the vehicles in intersection scenarios. It is based
on the simple longitudinal kinematic model of the vehicles:

vi(k + 1) = vi(k) + Tai(k), (1a)

si(k + 1) = si(k) + Tvi(k) +
T 2

2
ai(k), (1b)

where i index represents the number of the vehicle, n
is the number of vehicles, vi is longitudinal velocity, si
is longitudinal displacement. ai represents longitudinal
acceleration of the vehicle, which is handled as a control
input command and T is time step of the discrete motion
model. The longitudinal displacement is related to the
center point of the intersection and thus, it is defined
as si = 0 for all i in the center point. The longitudinal
displacement of the approaching vehicle has negative value
and the displacement of the vehicle moving away has
positive value. The control input of the system is separated
into two elements, such as

ai(k) = aK,i(k) + ∆i(k), (2)

where aK,i is the control input command of the robust
controller for the ith vehicle and ∆i(k) is the additional
input from the supervisor in the model.

The goal of the supervisor in the collision-free motion
model is to select ∆i(k) for all vehicles. The aim of the
selection is to minimize the difference between ai(k) and
aL,i(k) to preserve the performance level of the learning-
based controller. Nevertheless, it is constrained as follows.
Since the routes of some of the vehicles may be crossed, a
constraint for avoiding collision is formed. The actuation
ai(k) must provide motion for vehicle i, with which the safe
distance ssafe between vehicle i and the further vehicles
can be guaranteed. Moreover, the velocity must be inside
of a bounded range. The upper bound is determined by the
speed limit vmax and the lower bound is represented by the
stopping of the vehicle. Thus, it is necessary to select ∆i

for all vehicles to keep velocities inside of the range.

The selection process of ∆i for all vehicles is formed as an
optimization problem as follows:

min
∆1(k)...∆n(k)

n∑
i=1

(
ai(k)− aL,i(k)

)2
(3a)

subject to

(si(k + 1)− sj(k + 1))2 ≥ ssafe, ∀i, j ∈ n, (3b)

0 ≤ vi(k + 1) ≤ vmax, ∀i ∈ n, (3c)

∆i ∈ ∆i, ∀i ∈ n, (3d)

where i, j represent the pair of vehicles, whose motion
can be in conflict, i.e. their routes are intercrossed. ∆i

represents the domain of the optimization variable. In
the optimization problem the kinematics of the vehicle
motion (1) is considered through the formulation of the
constraints, the separation of the control input (2) is
involved in the objective function.

The objective of (3) is reformulated through (2):
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n∑
i=1

(
ai(k)− aL,i(k)

)2
= ∆(k)T I∆(k) + 2fT∆(k), (4)

where ∆(k) = [∆1(k) . . .∆n(k)]
T
, I is an n× n identity

matrix and f vector is formed as f = [aK,1 − al,1 . . . aK,n − al,n].

The constraint for collision avoidance (3b) is formed to
achieve keeping ssafe between the vehicles. The distance
is measured in the sense of the longitudinal displacement
of the vehicles on their route. Geometrically, the quadratic
constraints (3b) represent that the trajectories of each
related vehicles must be out of a circle. The radius of the
circle is defined by ssafe, see Figure 2(a).

si

sj

ssafe

[si(k); sj(k)]

avoidable
region

Fig. 2. Geometrical illustration of the quadratic con-
straints

Although the circle determined the avoidable region of the
state-space, formally, it results in a quadratic constraint in
(3). Nevertheless, the optimization problem must be solved
in each k time step during the motion of the vehicles,
and thus, the use of quadratic constraints can make dif-
ficulties for achieving a real-time solution. Consequently,
it recommended to find an alternative formulation, e.g.
the approximation of the quadratic constraints with linear
constraints. First, the tangent lines to the circle from

sj

si

[si(k); sj(k)]

[sT1,i(k); sT1,j(k)]

[sT2,i(k); sT2,j(k)]

avoidable
region

sj

Fig. 3. Illustration of constraint approximation

the actual state [si(k) sj(k)]
T
are assigned. The avoidable

half-plane is determined by the region between the tangent
lines, i.e. the trajectories must be out of it, see Figure
3. Second, two linear inequality constraints are specified,
which represent that the trajectory of the state must be
out of the avoidable half-plane, such as[

sT1,i(k)
sT1,j(k)

]T [
si(k)
sj(k)

]
≤

[
sT1,i(k)
sT1,j(k)

]T [
si(k + 1)
sj(k + 1)

]
, (5a)

[
sT2,i(k)
sT2,j(k)

]T [
si(k)
sj(k)

]
≥

[
sT2,i(k)
sT2,j(k)

]T [
si(k + 1)
sj(k + 1)

]
, (5b)

where [sT1,i(k) sT1,j(k)], [sT2,i(k) sT2,j(k)] are the tan-
gent points on the circle in time step k.

Longitudinal displacement values at k + 1 in (5) are
transformed to express the linear constraints in term of
∆. The transformation is based on the motion equation
(1) and the relation of actuation separation (2), such as

si(k + 1) = si(k) + Tvi(k) +
T 2

2
aK,i(k) +

T 2

2
∆i(k),

(6a)

or

sj(k + 1) = sj(k) + Tvj(k) +
T 2

2
aK,j(k) +

T 2

2
∆j(k),

(6b)

which can be substituted into (5). It leads to the linear
constraints

[
sT1,i(k)
sT1,j(k)

]T


−Tvi(k)−

T 2

2
aK,i(k)

−Tvj(k)−
T 2

2
aK,j(k)


 ≤

T 2

2

[
sT1,i(k)
sT1,j(k)

]T [
∆i(k)
∆j(k)

]
, (7a)

or

[
sT2,i(k)
sT2,j(k)

]T


−Tvi(k)−

T 2

2
aK,i(k)

−Tvj(k)−
T 2

2
aK,j(k)


 ≥

T 2

2

[
sT2,i(k)
sT2,j(k)

]T [
∆i(k)
∆j(k)

]
. (7b)

Figure 3 illustrates that the reachable set for the state

[si(k + 1) sj(k + 1)]
T

is non-convex, which means that
(7) formulates disjunctive inequalities. However, each con-
straints in (7) lead to convex reachable sets, which means
that the optimization problem can be separated, as it is
proposed below.

Another constraint in the optimization (3) is on the
velocity of the vehicles, see (3c). In case of this constraint
vi(k + 1) is expressed in term of ∆ using the motion
equation (1) and the relation of actuation separation (2).
The linear inequality constraints are formed as

0 ≤ vi(k) + TaK,i(k) + T∆i(k), ∀i ∈ n, (8a)

vmax ≥ vi(k) + TaK,i(k) + T∆i(k), ∀i ∈ n. (8b)

which leads to

[
−1
1

]
∆i(k) ≤




vi(k)

T
+ aK,i(k)

vmax − vi(k)

T
− aK,i(k)


 , ∀i ∈ n. (9)

The last constraint in the optimization problem (3) is the
limitation of the resulted optimization variable, see (3d).
The value of ∆i is limited by the bounds of ai(k), such as
amin,i, amax,i, which represent full braking and throttle.
Since ai(k) is also influenced by aK,i(k), the constraints
on ∆i(k) are formed as

amin,i − aK,i(k) ≤ ∆i(k), ∀i ∈ n, (10a)

amax,i − aK,i(k) ≥ ∆i(k), ∀i ∈ n, (10b)

which leads to the constraint[
−1
1

]
∆i(k) ≤

[
aK,i(k)− amin,i

amax,i − aK,i(k)

]
, ∀i ∈ n. (11)

The optimization task (3) using (4), (7), (9) and (11) is
reformulated as

min
∆(k)

∆(k)T In×n∆(k) + 2fT∆(k) (12a)

subject to

[
−1
1

]
∆i(k) ≤




vi(k)

T
+ aK,i(k)

vmax − vi(k)

T
− aK,i(k)


 , ∀i ∈ n,

(12b)

and[
−1
1

]
∆i(k) ≤

[
aK,i(k)− amin,i

amax,i − aK,i(k)

]
, ∀i ∈ n, (12c)

and

[
sT1,i(k)
sT1,j(k)

]T


−Tvi(k)−

T 2

2
aK,i(k)

−Tvj(k)−
T 2

2
aK,j(k)


 ≤

T 2

2

[
sT1,i(k)
sT1,j(k)

]T [
∆i(k)
∆j(k)

]
, ∀i, j ∈ n, (12d)

or

[
sT2,i(k)
sT2,j(k)

]T


−Tvi(k)−

T 2

2
aK,i(k)

−Tvj(k)−
T 2

2
aK,j(k)


 ≥

T 2

2

[
sT2,i(k)
sT2,j(k)

]T [
∆i(k)
∆j(k)

]
, ∀i, j ∈ n. (12e)

The quadratic optimization in (12) contains disjunctive
inequalities. It means that the optimization task for the so-
lution can be reformulated to a mixed-integer optimization
problem Belotti et al. [2011]. Nevertheless, in the given
optimization problem alternative solution method can be
found, because the distinct quadratic scenarios are related
to each convex constraints. For example, two intercrossing
vehicles results in two quadratic optimization tasks with
the same objective function, but with different constraints.
In case of the presented scenario in Figure 1 four quadratic
optimization tasks are resulted with the same objective
function, but with different constraints. Since the objective
functions have the same formula in each optimization
tasks, the results of the optimization can be evaluated
through the comparison of their objectives. Therefore in
practice, the optimization problem (12) through the solu-
tion of various quadratic optimization tasks in each steps
is found. The solution is resulted by ∆(k), which leads to
the minimum value of the objective, considering all of the
optimization tasks.

3. DESIGN OF MOTION PROFILE USING
REINFORCEMENT LEARNING

In this section the consideration of the economy aspects,
such as the minimization of the longitudinal acceleration
command in the design of the vehicle motion are presented.
It is achieved through a reinforcement learning-based pro-
cess, whose goal is to train neural-network-based agents,
with which the predefined performance requirements are
maintained.

The model for the learning process contains the optimiza-
tion task (12). The model guarantees the avoidance of the
collision in the intersection for every aL,i(k) signals. Thus,
during the training process of the agent in every episodes
the safety performances are guaranteed and similarly, the
economy performance is improved. The output of the mo-
tion model is reward r(k), which is composed by ai(k) and
vi(k) as follows

r(k) = −Q1

n∑
i=1

a2i (k) +Q2

n∑
i=1

vi(k), (13)

where Q1 and Q2 positive values are design parameters,
which scale the importance of each terms in r(k). The
reward contains the control inputs in the vehicles ai(k),
which represent the economy performance of the vehicles.
If the reward contains only ai(k), it can result in unaccept-
able slow motion for the vehicles, because ai(k) = 0 is the
best choice tor the maximization of the reward. Thus, in
the reward the velocity of the vehicles is also incorporated.
The observation for the agent contains the positions of
the vehicles si(k) and their velocities vi(k). The goal of
the reinforcement learning process is to maximize reward
(13) during episodes. In this paper the training process
through deep deterministic policy gradient (DDPG) is
carried out, which is a model-free, online, off-policy re-
inforcement learning method Lillicrap et al. [2016].

In the example of Figure 1 the outputs of the agent are
aL,1(k), aL,2(k), aL,3(k) and the observations contains the
signals s1(k), s2(k), s3(k), v1(k), v2(k), v3(k). The initial
values of the vehicles (si(0), vi(0)) for the intersection
scenarios in each episodes are generated randomly: si(0)
can vary between −10 . . . − 20 m and vi(0) is between
0 . . . 50 km/h. The actor network has 6 neurons in the
input layer, 3 fully connected layers with 48 neurons
and ReLu functions in each layers and 3 neurons with
hyperbolic tangent functions in the output layer. The critic
network has the same structure, but it also contains the
actions as an input. The sampling time in each episodes is
selected to T = 0.05s and 500 episodes are carried out. The
terms in the reward function are considered with the same
design parameters, such as Q1 = Q2 = 0.1. The achieved
value of the reward at the end of the training process is
above 400. The result of the training process is an agent,
whose outputs are aL,i(k). In the control process of the
autonomous vehicles the agents works together with the
control strategy (12).

4. SIMULATION RESULTS

In this section the effectiveness of the proposed method
through simulation examples is illustrated. The example
is the same as it has been presented in Figure 1, which
contains three vehicles.

The results of two scenarios are presented. The initial
positions of the vehicles are the same in both scenarios,
such as s1(0) = −12m, s2(0) = −5m, s3(0) = −18m.
The safety distance is selected to ssafe = 8m, the input
constraints are amin,i = −4m/s2 and amax,i = 3m/s2 for
all vehicles. Samplig time is selected to T = 0.05s. In
the first scenario the initial velocities of the vehicles are
v1(0) = 5m/s, v2(0) = 4m/s, v3(0) = 4m/s, which is
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The optimization task (3) using (4), (7), (9) and (11) is
reformulated as

min
∆(k)

∆(k)T In×n∆(k) + 2fT∆(k) (12a)

subject to

[
−1
1

]
∆i(k) ≤




vi(k)

T
+ aK,i(k)

vmax − vi(k)

T
− aK,i(k)


 , ∀i ∈ n,

(12b)

and[
−1
1

]
∆i(k) ≤

[
aK,i(k)− amin,i

amax,i − aK,i(k)

]
, ∀i ∈ n, (12c)

and

[
sT1,i(k)
sT1,j(k)

]T


−Tvi(k)−

T 2

2
aK,i(k)

−Tvj(k)−
T 2

2
aK,j(k)


 ≤

T 2

2

[
sT1,i(k)
sT1,j(k)

]T [
∆i(k)
∆j(k)

]
, ∀i, j ∈ n, (12d)

or

[
sT2,i(k)
sT2,j(k)

]T


−Tvi(k)−

T 2

2
aK,i(k)

−Tvj(k)−
T 2

2
aK,j(k)


 ≥

T 2

2

[
sT2,i(k)
sT2,j(k)

]T [
∆i(k)
∆j(k)

]
, ∀i, j ∈ n. (12e)

The quadratic optimization in (12) contains disjunctive
inequalities. It means that the optimization task for the so-
lution can be reformulated to a mixed-integer optimization
problem Belotti et al. [2011]. Nevertheless, in the given
optimization problem alternative solution method can be
found, because the distinct quadratic scenarios are related
to each convex constraints. For example, two intercrossing
vehicles results in two quadratic optimization tasks with
the same objective function, but with different constraints.
In case of the presented scenario in Figure 1 four quadratic
optimization tasks are resulted with the same objective
function, but with different constraints. Since the objective
functions have the same formula in each optimization
tasks, the results of the optimization can be evaluated
through the comparison of their objectives. Therefore in
practice, the optimization problem (12) through the solu-
tion of various quadratic optimization tasks in each steps
is found. The solution is resulted by ∆(k), which leads to
the minimum value of the objective, considering all of the
optimization tasks.

3. DESIGN OF MOTION PROFILE USING
REINFORCEMENT LEARNING

In this section the consideration of the economy aspects,
such as the minimization of the longitudinal acceleration
command in the design of the vehicle motion are presented.
It is achieved through a reinforcement learning-based pro-
cess, whose goal is to train neural-network-based agents,
with which the predefined performance requirements are
maintained.

The model for the learning process contains the optimiza-
tion task (12). The model guarantees the avoidance of the
collision in the intersection for every aL,i(k) signals. Thus,
during the training process of the agent in every episodes
the safety performances are guaranteed and similarly, the
economy performance is improved. The output of the mo-
tion model is reward r(k), which is composed by ai(k) and
vi(k) as follows

r(k) = −Q1

n∑
i=1

a2i (k) +Q2

n∑
i=1

vi(k), (13)

where Q1 and Q2 positive values are design parameters,
which scale the importance of each terms in r(k). The
reward contains the control inputs in the vehicles ai(k),
which represent the economy performance of the vehicles.
If the reward contains only ai(k), it can result in unaccept-
able slow motion for the vehicles, because ai(k) = 0 is the
best choice tor the maximization of the reward. Thus, in
the reward the velocity of the vehicles is also incorporated.
The observation for the agent contains the positions of
the vehicles si(k) and their velocities vi(k). The goal of
the reinforcement learning process is to maximize reward
(13) during episodes. In this paper the training process
through deep deterministic policy gradient (DDPG) is
carried out, which is a model-free, online, off-policy re-
inforcement learning method Lillicrap et al. [2016].

In the example of Figure 1 the outputs of the agent are
aL,1(k), aL,2(k), aL,3(k) and the observations contains the
signals s1(k), s2(k), s3(k), v1(k), v2(k), v3(k). The initial
values of the vehicles (si(0), vi(0)) for the intersection
scenarios in each episodes are generated randomly: si(0)
can vary between −10 . . . − 20 m and vi(0) is between
0 . . . 50 km/h. The actor network has 6 neurons in the
input layer, 3 fully connected layers with 48 neurons
and ReLu functions in each layers and 3 neurons with
hyperbolic tangent functions in the output layer. The critic
network has the same structure, but it also contains the
actions as an input. The sampling time in each episodes is
selected to T = 0.05s and 500 episodes are carried out. The
terms in the reward function are considered with the same
design parameters, such as Q1 = Q2 = 0.1. The achieved
value of the reward at the end of the training process is
above 400. The result of the training process is an agent,
whose outputs are aL,i(k). In the control process of the
autonomous vehicles the agents works together with the
control strategy (12).

4. SIMULATION RESULTS

In this section the effectiveness of the proposed method
through simulation examples is illustrated. The example
is the same as it has been presented in Figure 1, which
contains three vehicles.

The results of two scenarios are presented. The initial
positions of the vehicles are the same in both scenarios,
such as s1(0) = −12m, s2(0) = −5m, s3(0) = −18m.
The safety distance is selected to ssafe = 8m, the input
constraints are amin,i = −4m/s2 and amax,i = 3m/s2 for
all vehicles. Samplig time is selected to T = 0.05s. In
the first scenario the initial velocities of the vehicles are
v1(0) = 5m/s, v2(0) = 4m/s, v3(0) = 4m/s, which is
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modified to v1(0) = 5m/s, v2(0) = 4m/s, v3(0) = 6m/s in
the second scenario.

The scenarios with different initial values result in different
control input and ordering in the intersection. The motions
of the vehicles for each scenarios are illustrated in Figure
4. In both scenarios V ehicle 2 reaches the intersection, but
the ordering of the further vehicles are not the same in the
two scenarios. In the first scenario V ehicle 1 is the second
(see Figure 4(b)), while in the second scenario V ehicle 3
is the second in the ordering (see Figure 4(d)).

(a) Initial positions (Scenario 1) (b) Conflict situation (Scen. 1)

(c) Initial positions (Scenario 2) (d) Conflict situation (Scen. 2)

Fig. 4. Illustration of the intersection scenarios (from the
viewpoint of the vehicle with last ordering)

The keeping of ssafe is illustrated in Figure 5 for each con-
straints and scenarios. Figure 5(a) shows that the trajecto-
ries of the vehicles are close to the border of the avoidable
region, but in case of the constraint on s1 and s3 increased
distance between the vehicles are achieved, see Figure 5(b).
But, in the second scenario both trajectories are close
to the borders, see Figure 5(c)-(d). These differences in
the scenarios can also be seen in Figure 4(b) and Figure
4(d). In Scenario 1 V ehicle 3 is far from V ehicle 1 in the
conflict situation (Figure 4(b)), while in Scenario 2 the
vehicles are close to each other (Figure 4(b)). Moreover,
the differences in the directions of the trajectories show the
different ordering of V ehicle 2 and V ehicle 3. In case of
Scenario 2 s3 is significantly increased, which means that
V ehicle 3 reached the intersection earlier as V ehicle 1.

The control input signals ai and the output of the agents
aL,i are shown in Figure 6. it can be seen that all
ai signal keep the input constraints, which underlines
the effectiveness of the robust longitudinal controller.
Moreover, it can be seen that ai and aL,i have the same
values in most of the simulations. The signals of aL,i are
generally overwritten at the beginning of the simulations.
For example, in Scenario 2 a3 is slightly increased and a2 is
reduced to generate braking, with which the avoidance of
the collision between V ehicle 2 and V ehicle 3 is achieved.
Since aL,i signals are overwritten rarely, the improved
economy performance of the learning agent is preserved.

5. CONCLUSIONS

The paper has proposed the design of a learning-based
control with guarantees for autonomous vehicles in inter-
section scenarios. The effectiveness of the method has been
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(d) s1 − s3 (Scenario 2)

Fig. 5. Illustration of the positions of the vehicles with the
avoidable regions

illustrated through simulation examples on three vehicles,
in which the avoidance of the collision has been carried

(a) Control inputs (Scenario 1)

(b) Agent outputs (Scenario 1)

(c) Control inputs (Scenario 2)

(d) Agent outputs (Scenario 2)

Fig. 6. Control inputs on the vehicles

out, and the economy performance of the vehicles has been
improved. The method has resulted a centralized controller
for the vehicles, with which their acceleration profiles have
been influenced.

The future challenge of the method is to reformulate
the reinforcement learning problem for decentralized con-
troller. In this concept each vehicles have their own agent,
which are the same, but they are independent from each
other in their operation. The learning problem is to use
the train the same agents parallel, using all of the rewards
in the training process. The achievement of the concept is
that the time requirement of the learning process can be
significantly reduced.
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(a) Control inputs (Scenario 1)

(b) Agent outputs (Scenario 1)

(c) Control inputs (Scenario 2)

(d) Agent outputs (Scenario 2)

Fig. 6. Control inputs on the vehicles

out, and the economy performance of the vehicles has been
improved. The method has resulted a centralized controller
for the vehicles, with which their acceleration profiles have
been influenced.

The future challenge of the method is to reformulate
the reinforcement learning problem for decentralized con-
troller. In this concept each vehicles have their own agent,
which are the same, but they are independent from each
other in their operation. The learning problem is to use
the train the same agents parallel, using all of the rewards
in the training process. The achievement of the concept is
that the time requirement of the learning process can be
significantly reduced.
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