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Abstract: Localization is a key part of an autonomous system, such as a self-driving car. The main
sensor for the task is the GNSS, however its limitations can be eliminated only by integrating
other methods, for example wheel odometry, which requires a well-calibrated model. This paper
proposes a novel wheel odometry model and its calibration. The parameters of the nonlinear
dynamic system are estimated with Gauss–Newton regression. Due to only automotive-grade
sensors are applied to reach a cost-effective system, the measurement uncertainty highly corrupts the
estimation accuracy. The problem is handled with a unique Kalman-filter addition to the iterative
loop. The experimental results illustrate that without the proposed improvements, in particular
the dynamic wheel assumption and integrated filtering, the model cannot be calibrated precisely.
With the well-calibrated odometry, the localization accuracy improves significantly and the system
can be used as a cost-effective motion estimation sensor in autonomous functions.

Keywords: positioning; wheel odometry; calibration; sensor fusion; Gauss–Newton regression;
Kalman-filtering

1. Introduction

Autonomous robots, including self-driving vehicles, operate in the see-think-act
cycle [1]. In general, the algorithms have four main layers: environment perception,
state estimation, decision making and trajectory planning, and motion control. The first
two are critical because their errors can result in misbehavior regardless of if the last two
layers are well-developed. The state estimation is responsible for the determination of
necessary quantities, e.g., accelerations, yaw rate, or the pose (position and orientation)
of the vehicle. For the process, three contradictory requirement concerns: high accuracy,
robustness for different conditions and the application of cost-effective sensors. The main
localization system for outdoor ground autonomous vehicles is the Global Navigation
Satellite System (GNSS) sensor, however, the accuracy and sampling rate of the the cost-
effective automotive grade type are not enough for autonomous driving functions [2].
Hence, other methods have to be integrated into the estimation as well. This paper focuses
on the modeling and calibration of the wheel odometry model with dynamic assumptions
applied to self-driving cars for the localization tasks.

Odometry is the use of data from motion sensors to estimate change in pose over
time. Several methods exist, such as inertial, visual, laser or wheel odometry, and any
of the methods can be applied in a multisensor fusion algorithm, e.g., visual-inertial
odometry. A detailed survey about the advantages and disadvantages of the methods can
be found in ref. [3], here only a short summary is presented. The disadvantage of the Light
Detection and Ranging (LiDAR) based visual odometry is the requirement of expensive
sensor. The inertial odometry relies on the Inertial Measurement Unit (IMU), where the bias
and noise of the accelerometers and gyroscopes are significant, and may results in faulty
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localization [4]. The mono camera-based visual odometry estimates the motion only up to
a scale, and the lack of features and non-overlapping images are also a problem [5]. These
disadvantages are compensated in the visual-inertial odometry, a state-of-the-art method
called ROVIO can be found in ref. [6]. However, in the case of a car it requires improvement
as it is mentioned in ref. [7], where the ROVIO is supplemented by a wheel encoder-based
method to make the estimation reliable. The problem is the error-prone IMU measurements
in the self-driving application, where strong and frequent accelerations are lacked, thus
the signal-to-noise-ration is low. A similar problem occurs in the well-known GNSS/IMU
fusion algorithm, where the method should estimate the pose of the vehicle and the IMU
biases in parallel. The estimation is poor, when the GNSS signal is weak, and becomes
highly erroneous in GNSS outages. In ref. [4], the problem is solved by integrating the
wheel motion, which clearly improves the results.

The wheel odometry relies on the measurements of the wheel encoder sensors,
which are equipped on the vehicles due to the necessity of the Anti-Lock Braking System
(ABS), thus the method is the most cost-effective localization technique. The previous
papers ([4,7]) demonstrate that this type of odometry can improve other methods. More-
over, there are special cases where the wheel odometry should be the main localization
algorithm, such as driving in weak lighting conditions or in environments without clear
features, low-speed maneuvering, and in parking scenarios [8]. The wheel slipping can
result in uncertain behavior, but in normal driving and weather conditions this effect is
negligible and also detection algorithms exist, see [9]. The errors in the road surface, such as
bumps, ruts, and potholes can corrupt the estimation as well, but these are only temporary
faults and can be detected by functions [10]. The main disadvantage of the encoder-based
method is the effect of parameter uncertainty because a precise model is required to the
pose estimation. The geometry parameters of the model, such as wheel circumference or
track width can be calibrated during installation, however it concern only for the actual tire
and its condition. Due to wear, different loads or tire change the re-calibration is needful.
Furthermore, non-static behavior, such as dynamic circumference change in the bends can
not be calibrated at the static installation, thus these effects should be learned from data
while driving.

Finally, a precisely calibrated wheel odometry model would have further advantages
than the mentioned localization problems, e.g., accurate bias and noise estimation for
GNSS and IMU sensors or plausibility check for other quantities. It is clear that the
fusion of different localization method needful in an autonomous vehicle [11], but it is
also important that the individual methods perform at its own maximum performance.
Therefore, the wheel odometry model has a clear and significant role in the autonomous
driving technology, however, a precise and well-calibrated model is difficult to obtain.

1.1. Related Works of Wheel-Encoder Based Odometry

The estimates with respect to a dynamic system have two possible aims. One is when
the states are estimated or filtered (tracking), and the other is when the goal is to estimate
the system parameters (calibration). However, there are methods that deal with the joint
problem of tracking and calibration. It can be performed with several methods, such as a
Switching Kalman-filter, which extends the filtering behavior of the filter with a switching
approach represented by system parameters which are also estimated, see [12]. For the joint
estimation problem the Monte Carlo methods can be applied also [13], such as the particle
filter [14], or the SMC which is a sequential parameter and state estimation technique,
see [15]. Nevertheless, the main focus in this paper is on the calibration of the wheel-
odometry model, thus in the following the parameter estimation techniques are discussed
in detail.

This paper deals with real-sized vehicles, however the works in the mobile robot
field are summarized first because the wheel encoder-based odometry is a widely applied
method in these applications. One of the earliest paper which deals with the odometry and
its errors is a map-making example in [16]. The field of the applicable odometry models
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for mobile robots is a well-explored area, an odometry and error model of a differential
drive robot can be found in ref. [17], in ref. [18] the model also make assumptions on wheel
longitudinal slips, and a model for wheeled mobile robots which incorporating linear
acceleration is examined in ref. [19].

The calibration problem of the applied odometry models appears parallel with the
usage of the wheel encoder-based techniques [20]. The first methods operates with pre-
programmed paths and requires human interactions [17,21]. The odometry error can be
handled in two different ways. One is when the error is compensated with additive compo-
nents, for example in the input of the model [22]. In ref. [23] the method examined in detail
focusing on distance dependence of the drift, which turned out to be quadratic, because
the angular velocity error is integrated twice. Other additive component can be a varying
covariance matrix of the model [24]. This is a fully general approach with the advantage
of the capability to adapt rapidly to every type of error source, i.e., unmodeled dynamics,
disturbances or noise in the input of the odometry model. However, measurements of a
drift-less sensor are required and it is difficult to determine how could the raw odometry
perform alone.

The other way to handle the odometry error is based on the assumption that the drift
is a consequence of parameter uncertainty. The parameter estimation can be performed
parallel with the state filtering, where the unknown quantities are handled as state variables.
Most often, the Augmented Kalman-filter is used [25]. In the filter, the wheel odometry is
fused with other sensor measurements, i.e., gyroscope [26], Differential Global Positioning
System (DGPS) [27], camera [25] or laser range finder [28]. The parameters are calibrated
online in a simple and automatic way in every time step, which is the main advantage
of the method, but several limitations exist. Without further examination of the actual
inputs of the odometry model, observability issues may appear [29], and it is difficult
to guarantee the convergence to the optimal parameter values [30], and the effect of the
measurement noise is significant due to the possible change of the parameter values in
every time step [31].

The other and more common way to handle the parameter estimation is as a regression
problem. The disadvantage is that the wheel odometry model is nonlinear which results in
a non-convex optimization problem, which is much more difficult to solve. The odometry
model is separated into two parts and the estimation is executed in two linear fitting
steps in [32], but this increases the effect of noise and easily results in biased parameter
estimation. The method is improved with a maximum likelihood estimation in ref. [31],
and also upgraded in ref. [33] with the addition of an iterative loop. In [34] the general
nonlinear least square problem is handled with the Gauss–Newton approximation and
the observability of the calibration parameters is also taken into account. The nonlinear
estimation problem is handled with a linearized system dynamics and integrated prediction
error minimization in ref. [18].

All of the previously mentioned works deal with mobile robots with differential
drive. The wheel-encoder based odometry appeared in the automotive industry as part
of the parking assist system for the localization task [35]. The applicable models for car-
like vehicle localization is examined in several papers. In ref. [36] a comparison of the
rear and front axle models for parking is presented, and it is also shown that the front
suspension system should be taken into account in the localization model, because of
the effect of nonlinearities is significant in real-sized passenger cars compared to small
robots. A detailed comparison of the different steering geometries with the scope of
positioning error can be found in ref. [37], and the four-wheel-steering odometry model
with a linearized state space is presented in ref. [38]. Other works deal with non-systematic
odometry errors, such as wheel slipping for small exploratory rover [39], and in the case of
parking on slippery terrain [9].

In the field of car-like vehicles, much less papers were presented for the calibration
problem. A basic parameter estimation algorithm can be found in ref. [40], where the
outdoor mobile robot is driven on straight and circular trajectories, and the path is measured
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with a high-precision positioning system. ref. [41] uses a radio-controlled (RC) small-scaled
car and investigates the resulted in paths with uncalibrated wheel diameter and track
width on a pre-programmed closed oval route. In ref. [42] the same robot and path are
applied, but the experimental orientation error is utilized at the end of the path instead of
the position error to eliminate the small-angle approximation. The four-wheel-steering of
small RC cars is calibrated with a sequential method in ref. [38] operating with straight
driving with various parallel steering.

Only a few works deal with the wheel encoder-based odometry calibration for real-
sized vehicles. In ref. [43] the previously mentioned Augmented Kalman-filter is applied
to estimate the parameters of the rear track from an onboard GNSS sensor. The whole
system is cost-effective, but it was mentioned that there are several limitations. The same
parameters are identified in ref. [44] based on extremely expensive sensors, such as a
real-time kinematic GNSS and fiber-optic gyroscopes. In ref. [45] the odometry model
is improved with a neural network, which is trained to determine the displacement and
rotation of the car from the wheel rotation inputs. A similar idea is presented in ref. [46],
where the error between the measurements and the output of the odomery model with
nominal parameters is estimated with a Gaussian process, which uses up the result of the
nominal odometry model as an input. The disadvantage of these networks and processes
is the requirement of a huge data set to build a general model, and also it is difficult to
validate the resulting function.

1.2. Contributions and Organization of the Paper

As we can see, there are plenty of works on the topic of small mobile robots with
differential drive, and car-like steering and drive. However, these models neglect several
effects that have a high impact on the localization of real-size vehicles in contrast with the
small robots. For example, the wheel slip has less impact, in normal driving conditions,
because of the heavy weight, but the influence of sideslip is much higher due to the greater
forces [47]. Furthermore, in small robots, the wheel is often made from plastic or does
not contain inner liner, thus the circumference is assumed to be constant. In ref. [45],
it is shown that the constant assumption is not proper, and also in our previous work
it is presented that the effect of dynamic change of the circumference in bends has high
impact [48]. The main contribution of this paper is a novel wheel odometry model, in which
the sideslip and dynamic wheel model are included. To the best of our knowledge, this is
the first published paper where these effects are taken into account in wheel encoder-based
localization and odometry model calibration. The model and two motivation example can
be found in Section 2.1.

The continuous estimation of sideslip is difficult with cost-effective sensors, and maybe
this is why it is neglected generally. Therefore, our next contribution in Section 3 is a
continuous sideslip estimation algorithm, which operates with automotive grade type
onboard sensors, such as GNSS, IMU, and wheel and steering encoder. The method is not
real-time, nevertheless it is sufficient for the odometry model calibration.

Section 4 a calibration method, which is the last contribution of the paper. The al-
gorithm operates in a general case: it does not require any pre-programmed path, it is
automatic, and it only signals of onboard automotive-grade type sensors are used while the
vehicle travels. The unique addition of the technique to the well-known least square-based
estimation is a Kalman-filter, with which the negative effects of the noisy measurements
can be decreased thereby increasing the accuracy of the calibration.

Our test vehicle and the applied measurement introduced in Section 5. The validity of
the proposed model and calibration approach are demonstrated in Section 6 through a real
experiment, and the calibrated odometry model as a motion estimation sensor is examined
also. Finally, the paper is concluded in Section 7.
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2. Vehicle Model and Motivation Examples
2.1. Novel Wheel Odometry Model with Dynamic Assumptions

The dead-reckoning navigation is based on a model, where state vector xk contains
the longitudinal and lateral vehicle positions px,k, py,k of the reference point P, which is
the center of gravity in our model, and the heading angle ψk, as it is illustrated in Figure 1.
The inputs of the model are the measured number of wheel rotation revolutions per second
ni, and the βk−1 which is the sideslip of the vehicle.

Figure 1. Two-wheel odometry model.

The pose change of the vehicle is based on the longitudinal vk−1 and angular ωk−1
velocities and calculated as

∆px,k = vk−1 · cos(ψk−1 +
ωk−1

2
+ βk−1), (1)

∆py,k = vk−1 · sin(ψk−1 +
ωk−1

2
+ βk−1), (2)

∆ψk = ωk−1. (3)

The velocities are computed utilizing the rear wheel rotations in case of a two-wheel
model-based odometry. Experimental tests demonstrated that in normal driving and
weather conditions the wheel slip can be negligible, consequently, the velocities are calcu-
lated as follows

vk = (nRL,k · cRL,k + nRR,k · cRR,k)/2, (4)

ωk = (nRR,k · cRR,k − nRL,k · cRL,k)/tR, (5)

where ci,k = 2πri,k is the actual wheel circumference, tR is the rear track. ri,k is the actual
rolling radius. The slight change of the wheel radius due the effect of vertical dynamic
is generally neglected, because the odometry based localization is widely used in low
speed circumstances i.e., automated parking. However, the sensor measurements used
for calibration are collected from normal city and suburb driving, where the dynamic
is certainly higher. Therefore, the slight change due to the vertical load transfer should
be considered. Accordingly, the current wheel circumferences used in our model are
defined as

cRL,k = ce,RL + D · ay,k, (6)

cRR,k = ce,RR − D · ay,k = ce,RL + cd − D · ay,k, (7)

where the ce,i is the effective wheel circumference, cd is the difference between the effective
values, ay,k is the lateral acceleration and D is a parameter that takes into account the effect
of vertical dynamics and will be described as load transfer coefficient.

2.2. System Model for the Calibration

The presented odometry model results in a nonlinear state-space representation,
such as

xk = f (xk−1, uk−1, θ). (8)
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The state vector xk contains the pose values, the input vector uk−1 is formulated by the
wheel rotations, the sideslip, and the lateral acceleration, and due to every state is measured,
in the observation equation the output yk is equal with the state xk,

xk = [px,k, py,k, ψk]
T , uk−1 = [nRL,k−1, nRR,k−1, ay,k−1, βk−1]

T , yk = xk. (9)

The vehicle model parameters are arranged in the parameter vector θ,

θ = [ce,RL, cd, tR, D], (10)

and the velocities are calculated with these in the following way,

vk = ce,RL
nRL,k + nRR,k

2
+ cd

nRR,k

2
+ D

(nRL,k − nRR,k) · ay,k−1

2
, (11)

ωk = ce,RL
nRR,k − nRL,k

tR
+ cd

nRR,k

tR
+ D
−(nRL,k + nRR,k) · ay,k−1

tR
. (12)

The state transition equations are based on these velocities through the presented two-wheel
odometry model, such as px,k

py,k
ψk


︸ ︷︷ ︸

xk

=

 px,k−1 + vk−1 · cos(ψk−1 +
ωk−1

2 + βk−1)
py,k−1 + vk−1 · sin(ψk−1 +

ωk−1
2 + βk−1)

ψk−1 + ωk−1


︸ ︷︷ ︸

f

. (13)

For the calibration, the signals of GNSS, IMU and compass sensors are utilized and the
reference measurements will be denoted as ỹk = x̃k. Thus, the calibration task is the
following inference problem

{ỹk, uk} → θ̂ = [ce,RL, cd, tR, D] where yk = xk = f (xk−1, uk−1, θ), k = k0...K. (14)

2.3. Demonstration of the Necessity of Model Calibration

The effect of the uncalibrated odometry model can be illustrated easily on a 230 m
long measurement segment with our Nissan Leaf test vehicle in suburb driving. The signals
of the GNSS and IMU sensors are fused to reach reference position and orientation values.
The signals of the example can be found in Figure 2 and 3.

(a) Velocities. (b) Path.

Figure 2. Velocity and acceleration signals of the motivation example.
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(a) Path. (b) Wheel rotation.

Figure 3. Path and wheel rotation signals of the motivation example.

The presented odometry model is initialized at the start point with the measurements,
and integrated using the wheel rotation measurements. The sideslip and dynamic wheel
model is not utilized at this time. The two-wheel model is tested with various settings,
which can be found in Table 1. The model settings are compared based on the mean
position (Errp) and orientation (Errψ) errors calculated from the reference ones. In Case 1,
the nominal values are used that available in the vehicle data sheet. The nominal circum-
ferences (ce,i,nom = 2 m) are the geometry circumference of the wheel without load, and the
rear left and right are assumed to be equal. Thus, these values are highly uncertain and
result in an enormous 19 m mean position and 12◦ mean orientation error.

Table 1. Parameters and errors of the motivation example cases I.

ce,RL[m] cd[m] tR[m] D[s2] Errp[m] Errψ[◦]

Case 1 2 0 1.6 0 19.14 12.37

Case 2 1.95 0 1.6 0 14.78 9.79

Case 3 2 0.001 1.6 0 14.73 9.55

Case 4 2 0.002 1.6 0 10.33 6.73

Case 5 2 0 1.535 0 14.68 10.01

Case 6 1.95 0.002 1.535 0 2.31 1.99

In Cases 2, 3, 4 and 5 the model is tested with parameters close to the true values
one by one. As we can see, every parameter has a high influence and the resulted in error
decreases are in the same range. However, Cases 3 and 4 illustrate that the circumference
difference is the most significant, despite its extremely low 2 mm value. This is explained
by the equation the angular velocity is determined in Equation (5). The difference of the
rear wheel velocities are calculated and this value is scaled by the rear track width. Due to
the wheel rotations are almost the same in normal driving, (for example Figure 3b shows
in the presented measurement segment that in the middle of the bend, when the angular
velocity has maximum, the relative difference of the wheel rotations is only 10%), the little
difference of the circumferences has high impact. Therefore, we apply an effective and a
difference value for wheel parameters instead of separate wheel circumferences. Finally,



Sensors 2021, 21, 337 8 of 29

at the Case 6, when every parameter is set close to its true value, the position is 8× and the
orientation error is 6× lower, consequently the odometry model has to be calibrated.

2.4. Impact of Dynamic Wheel Circumference and Sideslip

In this section, the impact of the proposed dynamic wheel model and the sideslip
to the model calibration is illustrated on the same measurement segment. The estimated
sideslip signal can be found in Figure 4, the applied algorithm will be presented in Section 3.

Figure 4. Sideslip signal of the motivation example.

The odometry model is calibrated and tested in the four possible cases (Case 7–10,
Table 2) based on the usage of the dynamic wheel model and sideslip values. The calibra-
tion method in this example was a genetic algorithm-based optimization, in which the
convergence to the optimum can be guaranteed, even in complex non-convex optimization
problems, if the computation time is not important. The core problem of the odometry
calibration is well illustrated at Case 7, which is similar to the previous one, where the
dynamic wheel model and the sideslip is not utilized. However, while in Case 6 the pa-
rameters are set close to the true values, in this case, the optimizer provides the setting
that results in the lowest error. As we can see, on the presented measurement segment the
optimal values differ from the true values of the parameters, but the estimated values are
correct because the errors are lower than in Case 6.

Table 2. Parameters and errors of the motivation example cases II.

ce,RL[m] cd[mm] tR[m] D[mm · (s2/m)] Errp[m] Errψ[◦]

Case 7: βk = 0 1.9603 1.3800 1.6396 0 2.08 0.51

Case 8: βk 6= 0 1.9540 1.3360 1.6386 0 1.27 0.43

Case 9: βk = 0 1.9564 2.4752 1.5223 0.9476 1.99 0.52

Case 10: βk 6= 0 1.9506 2.1173 1.5363 0.6635 1.21 0.42

The reason can be traced back to several effects. The measurement noises, especially
in the initial state of the segment, or the disturbance in the wheel rotation signals, because
of the slight wheel slipping, can influence the location of the optimum. These are not
modeling problems but filtering issues. However, the deterministic unmodeled effects,
such as the sideslip and the dynamic change of the wheel circumference in bends, can
result in infeasible parameter identification as well. Furthermore, in Cases 8 and 9 one of
the mentioned dynamic effects is taken into account, the calibrated model results in better
localization, but the estimated parameters still differ from the true values. However, when
every dynamic assumption is included into the odometry model in Case 10, the estimated
optimal parameters are close to its true values. It can be validated also with the fact that
the position and orientation error is the lowest with the parameter setting of the last case.
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In summary, the deterministic effects, such as sideslip and dynamic wheel circumfer-
ence change, are essential for the proper calibration of the odometry models. Neglecting
these not only increases the fitting error, but also causes biased parameter estimation
regardless of correct convergence. Furthermore, even though the value of D is low, do not
forget that it is multiplied by the lateral acceleration. The effect of the product in the final
case, for example at 3 m/s2, is 4 mm in circumference difference, which is also low relative
to the circumference of the wheel. However, the difference of the effective circumferences
also in the millimeter range, and in the previous section we have seen that its impact is
significant. The actual wheel circumferences of Cases 7–10 can be found in Figure 5, and it
illustrates that the dynamic part can even result in a change in which wheel is larger at
the moment.

Figure 5. Wheel circumferences of the motivation example.

3. Sideslip Estimation for the Odometry Calibration

Motion estimation for ground vehicles generally based on IMU, gyroscope, wheel
encoder, and GNSS sensors. The estimation of quantities e.g., longitudinal velocity, yaw
rate are well-researched topics. Though, the proper estimation of some important signals,
such as the vehicle sideslip angle remains a challenge. The sideslip is the angle between
the lateral (vy) and longitudinal (vx) velocity of the vehicle. The GNSS sensor measures the
longitudinal component, and also it can be estimated with the IMU and wheel encoders.
However, measuring the lateral component is difficult or highly expensive, but it can be
estimated with the following equation

v̇y = ay − vx ·ωz, (15)

where ay is the lateral acceleration and ωz is the yaw rate. The sideslip is based on its
integrated value, such as

β = atan
(
vy/vx

)
. (16)

The problem is that the value of v̇y is low, therefore the effect of sensor errors of the
IMU and gyroscope is significant. Any bias or colored noise can results in drift in the lateral
velocity, and in the sideslip as well. The problem is more crucial, if continuous value of the
sideslip signal is required e.g., in the case of odometry model calibration.

Nevertheless, if we can find the places when the sideslip or in parallel the lateral
velocity should be zero, the integration will not diverge. Our proposed method assumes
that the effect of sideslip is significant in the odometry process only when the vehicle is
cornering, thus the task is to determine the start and endpoint of the bends. With these
locations, the estimation can be reset to avoid the drift. For the calculation of these possible
zero-crossing places, the curvature of the vehicle path is used up.
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3.1. Zero-Crossing Based on the Path Curvature

Finding the start and endpoint of the bends is similar to the determination when the
vehicle is moving straight. The easiest way to find the straights is to determine a curvature
limit, below which the given section of the path is assumed to be straight. The curvature
can be calculated with Equation (17), where the curve is parametrized with the px,k and
py,k position values and assumed to be twice differentiable [49].

κk =
ṗx,k p̈y,k − p̈x,k ṗy,k

( ṗ2
x,k + ṗ2

y,k)
3/2

, (17)

ṗi,k =
−0.5pi,k−∆k + 0.5pi,k+∆k

∆t
p̈i,k =

0.25pi,k−2∆k − 0.5pi,k + 0.25pi,k+2∆k

∆t
(18)

The derivatives are calculated with the central finite difference method (18). Since the
numerical derivation highlights the impact of noise, not the consecutive GNSS position
values are applied in the calculation to smooth the curvature signal. Furthermore, we
examined higher-order differentiation, but Figure 6 illustrates that the 2nd-order method
with ∆k step size of 3 results in the proper estimation. Finally, a velocity limit is also
applied, because when the velocity is lower than 1 m/s, the curvature estimation becomes
unreliable due to the noisy position measurements.

Figure 6. Part of the estimated curvature signal.

For the determination of the mentioned limit for straight the histogram of the absolute
curvature values is formulated which can be found in Figure 7a. It shows that 40% of
the path points are between 0 and 0.002, therefore the limit is determined as 0.002. It is
very informative and means that when the vehicle is moving on a circular path with a
higher than 500 m radius is assumed to be straight moving. Figure 8 shows a part of the
measurement and illustrates that with the estimated curvature and determined limits the
bends clearly appear. The path of the part is also presented in Figure 7b for comparison.

Next, the crossings of the curvature signal at the top (0.002) and bottom (−0.002)
limits, and also when the vehicle starts or stops are determined. Using up these crossings
the lateral velocity integration is executed between top-up and top-down, bottom-down
and bottom-up, and also between the corresponding start and stop crossings.

3.2. The Estimated Sideslip

The lateral velocity estimation is performed between the crossings presented before.
The advantage of the method is that the velocity integration restarts every time when the
curvature signal crosses out the straight limits, thus the effect of previous biases in the
derivative of the lateral velocity signal is eliminated. The estimated sideslip of the same
part as the previous figures can be found in Figure 9. The signal without any reset in the
lateral velocity calculation is also presented (the integration starts at the beginning of the
measurement part).
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(a) Curvature histogram. (b) Path.

Figure 7. Path and its curvature histogram.

Figure 8. Curvature signal with limit crossings.

Figure 9. Estimated sideslip signals.

The mean difference between the signals is only 1.90◦, however it corresponds to
50–60% in relative terms when the sideslip is significant (proposed signal is higher than 1◦).
Moreover, the deviation can be huge in sharp bends as we can see in Figure 10, for example
between 1760–1770 s.

The reason is in the calculation of the sideslip, because the same error in the lateral
velocity may result in a huge deviation in the sideslip based on the current value of the
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longitudinal velocity component. Figure 11 shows the lateral velocities between 1762–1772 s,
in which the proposed method detects two bends based on the limit crossings. Therefore,
the lateral velocity (and in parallel the sideslip) is estimated throughout, and its conse-
quence is that the difference between the velocity signals is constant. The difference value
is 0.34 m/s, and it results in 2.42◦ sideslip error at the beginning, while 9.54◦ at the center
of the bend, and also about 2.12◦ at the end.

These values show that the proposed resetting method in the lateral velocity esti-
mation has much higher significance than a shift of the lateral velocity with its actual
and relative low bias along the vertical axis. Furthermore, the presented algorithm may
be further developed due to the faulty limit crossings in the curvature signal, when the
vehicle is traveling roughly straight, see for example between 1704–1714 s in Figure 8.
However, the estimated sideslip shows that the signal is not diverging in these short time
intervals. Moreover, it would be difficult to separate the fail peaks due to the noisy position
measurements for example, and the possible deterministic cases for example a lane change
or similar movements when a short increase appears in the curvature signal. Nevertheless,
these short effects do not significantly affect the calibration process of the odometry model
or the localization with it.

Figure 10. Deviation of the methods.

Figure 11. Lateral velocity signals.

4. Formulation of the Calibration Algorithm

In Section 2.3, the high impact of the model calibration has been presented.
Several possible ideas have been presented in the introduction. The key factor is the
assumptions that determine the circumstances of the calibration. For example, if a method
operates with pre-programmed paths, the excitation of the system can be determined man-
ually. Information on the excitation can be included in the parameter estimation method
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and consequently, the unobservability problem may not appear. Furthermore, the applied
sensors also influence the methods, for example using expensive sensors such as DGPS or
LiDAR the effect of measurement noise is much less significant.

In the development of the calibration algorithm, the universal requirements of the au-
tomotive industry are taken into consideration, with which our proposed method handles
the most general case. Only cost-effective automotive-grade type sensors are utilized for
the parameter estimation, such as GNSS and IMU. Since the algorithm is automatic, it is
unnecessary for the vehicle to follow pre-programmed paths, but signals measured during
the general motion of the vehicle are used for calibration. Finally, self-calibration may be
expected from an autonomous vehicle that operates lifelong, therefore our method does
not require any human interventions.

It was mentioned in the introduction that the odometry model calibration can be
performed in two different ways. One is when the estimated parameters are handled as a
state variable, and the other is to form a regression problem. The proposed method is one
of the second type because, due to the cost-effective sensors, the noise of the measurements
is significant, which can be mitigated only by optimization over a longer measurement
period. The disadvantage of the regression-based calibration is that the odometry model
is nonlinear which results in a non-convex optimization. The calibration of the wheel
odometry model as a nonlinear least square regression problem is the following,

θ̂opt = arg min
θ

1
N

k0+N−1

∑
k=k0

(ỹk − yk(θ))
2, (19)

where ỹk contains the measurements, and the yk(θ) predictor is the output of the odometry
model (8). Since the objective function can not be formed as a linear function of parameter
vector θ, the basic least square method cannot be applied. This type of optimization
problem is difficult to solve in general [50].

This can be well illustrated also by the approaches in the field of odometry calibration,
since all of the methods apply some simplifications to handle the difficulties of solving the
general nonlinear regression problem. A separation into two linear in [32], and into a linear
and nonlinear regression in [31] are presented. In these cases, the orientation equation is
optimized first, and its result is utilized in the position equations. This technique was im-
plemented also, but the parameter estimation was highly biased. The problem is that in the
first step only the orientation measurements are applied, whose noise is significant because
the correct determination of the absolute orientation is difficult outdoor. This results in bias
which is propagated to the estimation of the remaining components inducing an unfeasible
identification task. Therefore, these methods require excellent orientation estimations,
which is complicated to guarantee with cost-effective sensors outdoors. The method is
improved with an iterative loop in [33] to increase the convergence to the true parameter
values, however it is an indoor application for mobile robots. Another simplification of
the regression problem can be found in [18], where the nonlinear estimation problem is
handled with linearized system dynamics and integrated prediction error minimization.
The disadvantage of the linearization is that the calculated Jacobian with respect to the
parameters is only valid close to the actual predicted trajectory. However, this may be
highly inaccurate especially at the beginning of the optimization due to the imprecise initial
guess of the parameter values.

4.1. Gauss–Newton Based Nonlinear Least Square Method for Calibration

To solve the nonlinear least square (LS) problem, numerical search is required. The two
universal approaches are the Newton–Raphson and Gauss–Newton (GN) methods.
Both techniques handle the nonlinearity with the first-order Taylor approximation. In the
first, the optimization criterion is specifically to set the derivative of the VN objective func-
tion to zero, thus the Taylor’s series of this is formed. The parameters are concentrated in
the angular velocity Equation (5) in a special situation such that the sum of the resulting
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components divided by the tR track width is the yaw rate. The consequence of this is that
several local optimums exist in the parameter field of the optimization task (19). The as-
sumption is examined in detail in our previous paper [51], where the interaction of the
track width and wheel circumferences are illustrated. Because of this non-convex case,
the Newton–Raphson technique is not preferred.

In contrast to Newton–Raphson, the GN method approximates the yk(θ) predictor in
the following way:

yk(θ) ≈ yk(θi−1) +
∂yk(θ)

∂θ

∣∣∣∣
θi−1

(θ − θi−1). (20)

Introducing the following new variables

z̃k(θi−1) := ỹk − yk(θi−1), ϑ := θ − θi−1, φk(θi−1) :=
∂yk(θ)

∂θ

∣∣∣∣
θi−1

, (21)

a locally linearized LS problem can be formed such as,

VN(ϑ) =
1
N

k0+N−1

∑
k=k0

(z̃k(θi−1)− zk(θi−1))
2 =

1
N

k0+N−1

∑
k=k0

(z̃k(θi−1)− ϑTφk(θi−1))
2. (22)

In the locally linear LS problem, the z̃k(θi−1) “measurement” applied for the parameter
estimation is the difference of the original physical measurement (ỹk) and the output
of the model with the actual parameters (yk(θi−1)). The regressor φk(θi−1) contains the
Taylor-approximation of the predictor, and the estimated ϑ parameter is the variation of
the original θ parameter vector. The local behavior illustrates that every component is a
function of (θi−1), which is the previous value of the original parameter vector. This also
means that the parameter estimation can be performed only in an iterative loop (i is the
iteration number), and (θ0) initial guess for the parameters is necessary. The advantage
of this method is that the optimal estimated ϑ parameter is resulted in by the basic LS
solution, such as

ϑ̂opt = arg min
ϑ

VN(ϑ) = (Φ(θi−1)
TΦ(θi−1))

−1Φ(θi−1)
T Z̃(θi−1), (23)

where Φ and Z̃ matrices constructed from φk(θi−1) and z̃k(θi−1) respectively. Rewriting
the equation with the original quantities and the ϑ̂opt = θ̂i − θ̂i−1 LS solution, the iterative
parameter estimation with GN method can be expressed, such as

θ̂i = θ̂i−1 + (Φ(θi−1)
TΦ(θi−1))

−1Φ(θi−1)
T(Ỹ−Y(θi−1)), (24)

where Ỹ and Y(θi−1) matrices constructed from ỹk and yk(θi−1) respectively, and the
algorithm starts with θ̂0 initial parameter given by the user.

4.2. Odometry Calibration with Gauss–Newton Method and Integrated Kalman-Filtering

The odometry model calibration with the general GN method suffers from three main
problems. The first is any unmodeled effect can result in biased parameter estimation
due to the calibration is formed as a numerical minimization problem. The second is that
the optimization problem is non-convex with several local minima, thus the convergence
to the global optimum is always questionable and also depends on the initial guess of
the parameter vector. Finally the third connects to the uncertainty of the measurements
utilized for the parameter estimation. It is contributed by the probability learning theory
that noisy measurements result in noisy parameter estimation. However, because the ŷk(θ)
predictor in this regression problem is a dynamic system model (the odometry model) the
measurement uncertainty has a high impact. At the beginning of the section, some possible
handlings of the problems are mentioned in the presented works [18,31–33] in the field
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of mobile robots. Due to the improper orientation measurements in the outdoors and the
complexity of our odometry model other improvement is necessary.

One of the advantages of the physical modeling of the wheel odometry is initial
parameter values can be determined easily. For initial wheel circumference and track
width, the datasheet values can be utilized and for circumference difference and load
transfer coefficient, zero may be correct. From the modeling perspective, the impact
of the lateral dynamics has been presented and consequently included in the model.
The only remaining effects can be the wheel slips and the longitudinal dynamics. However,
these have low significance to the odometry model under normal driving and weather
conditions, only resulting in a slight bias that can appear in the calibration. The inaccurate
pose measurements used for the estimation are the core problem, which needs to be
handled. The effect of the uncertainty of the pose measurements can be mitigated by
optimizing over a longer horizon. The main problem is the actual inaccuracy at the start
point of the regression-based optimization. In general regression problems, when the
estimated function is static, this type of problem does not occur. However, forming the
objective function of a dynamic system (22), the yk(θi−1) predictor needs an initial state at
the k0 start point. This component appears in the last (Ỹ−Y(θi−1)) part of the estimation
Equation (24).

Substituting the wheel odometry model into the optimization equations, the problem
can be illustrated clearly. Due to the fact that every state variable is measured directly with
GNSS and compass sensors, the output is equal with the states as yk = xk. Thus, the matrix
in the mentioned last part is structured as follows,

Z̃ = Ỹ−Y(θi−1) =

 x̃k0 − xk0(θi−1)
x̃k0+1 − xk0+1(θi−1)

...

 =

 x̃k0 − f (xk0−1, uk0−1, θi−1)
x̃k0+1 − f (xk0, uk0, θi−1)

...

 (25)

where f (xk−1, uk−1, θi) is the wheel odometry model (8). For the construction of the mini-
mization problem the only way is to initialize the odometry model in the first component
of the matrix with the previous measurement value, such as

f (xk0−1, uk0−1, θi−1) = f (x̃k0−1, uk0−1, θi−1). (26)

However, if the measurement x̃k0−1 = [px,k0−1, py,k0−1, ψx,k0−1]
T is incorrect, even the

perfectly calibrated model will diverge from the further measurements. Thus, the imprecise
pose measurements result in bias parameter estimation. Although the uncertainty of the
measurements applied for the parameter estimation is rather a filtering problem, it also has
to be handled in the parameter estimation to reach a properly calibrated model.

In summary, the possible wheel slip or longitudinal dynamics, and the uncertain pose
measurements(utilized as initial state) corrupt the xk(θ) predictor (which is the odometry
function) in the parameter estimation. Reducing these negative effects the proposed method
modifies the predictor in a unique way. The odometry model (8) can be separated into two
parts, such as

xk(θi−1) = f (xk−1, uk−1, θi) =

 px,k−1
py,k−1

ψk−1


︸ ︷︷ ︸

xk−1

+

 vk−1 · cos(ψk−1 + ωk−1/2 + βk−1)

vk−1 · sin(ψk−1 + ωk−1/2 + βk−1)

ωk−1


︸ ︷︷ ︸

fdisp(ψk−1,uk−1,θi−1)

, (27)

where the first is the previous pose, and fdisp(ψk−1, uk−1, θi−1) is the displacement between
the time steps. Since the initial state noise and the possible unmodeled dynamics corrupt
the predictor, the xk−1 component is replaced with x̂k−1 which is a filtered value. Thus,
the avoidance of the divergence in the predictor results in biased parameter estimation.

Consequently, the proposed unique addition to the GN parameter estimation algo-
rithm is an inner Kalman-filtering whose filtered states are included in the generation of
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the LS problem. Due to the nonlinear model, the method of Extended Kalman-filter is
applied. This type of filter has two steps, the first is the prediction based on the odometry
model with the previous parameters, and wheel rotations as inputs, such as

x̂−k = f (x̂k−1, uk−1, θk−1), Σ−k = FkΣk−1FT
k + P, (28)

where Σk is the covariance of the states and it is also propagated. The covariance calculation
requires the Jacobian of the applied function which is computed using the previous filtered
states as

Fk =
∂ f (xk, uk, θk−1)

∂x

∣∣∣∣
xk=x̂k−1,uk=ûk−1

. (29)

The filter is controlled by the Gk Kalman-gain which ensures the optimal estimation and
minimal covariance. The calculation is the following

Gk = Σ−k (Σ
−
k + M)−1, (30)

in which the P process and M measurement covariance matrices which are tuning variables.
The second step is the innovation, in which the pose measurements are utilized to improve
the prediction, such as

x̂k = x̂−k + Gk(x̃k − x̂−k ) Σk = (I − Gk)Σ
−
k . (31)

This filtered state is included into the predictor (27), such as

xk(θi−1) = xk−1 + fdisp(ψk−1, uk−1, θi−1) = x̂k−1 + fdisp(ψ̂k−1, uk−1, θi−1), (32)

which is used to construct the local LS problem in the following way,

Z̃ = Ỹ−Y(θi−1) =


x̃k0 − xk0(θi−1)

x̃k0+1 − xk0+1(θi−1)

x̃k0+2 − xk0+2(θi−1)

...

 =


x̃k0 − x̃k0−1 + fdisp(ψ̃k0−1, uk0−1, θi−1)

x̃k0+1 − x̂k0 + fdisp(ψ̂k0, uk0, θi−1)

x̃k0+2 − x̂k0+1 + fdisp(ψ̂k0+1, uk0+1, θi−1)

...


3N×1

. (33)

The advantage of the Kalman-filter (KF) addition is that the corruption of the xk(θ)
predictor by the mentioned uncertain effects can be reduced which improves the accuracy
of the parameter estimation. In a theoretical manner, this addition can be interpreted as
a trade-off between the well-known prediction (when the output is based only on the
previous inputs) and simulation (when the previous outputs also applied for the actual
output calculation) usage of the predictor model, which considerations have a central role
in the identification theory [52]. The last addition to the method is a W weight matrix
which is used to compensate for the different magnitudes of the position and orientation
equation noise. The equation of the GN-KF iterative parameter estimation is the following:

θ̂i = θ̂i−1 + (Φ(θi−1)
TWΦ(θi−1))

−1Φ(θi−1)
TW(Ỹ−Y(θi−1)). (34)

The whole process is illustrated in Figure 12, and the method will be indicated by GN-KF
in the following.

The method is an iterative algorithm, thus a stopping condition needs to be defined.
A possible choice can be to monitor the ∆VN change of the sum of residuals and determine
a lower limit below which the estimation is stopped. In our method, the limit is computed
using the VN,0 initial sum of residuals, and a ν rate parameter. Furthermore, the maximum
number of iterations also limited. If sufficient computing capacity is available, the ν
parameter may be set to zero.
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Figure 12. Process of the Gauss–Newton (GN)-Kalman-filter (KF) iterative parameter estimation method.

4.3. The Calibration Architecture

It has also been mentioned that our proposed calibration method is automatic, and op-
erates with signals measured during normal traveling of the vehicle on any path. For the
most general behavior, no constraints are applied, such as to estimate the parameters only
between two standstill or given path segments. However, in the forming of the objec-
tive function for the LS problem (22), the number of measurement points is N from a k0
given start index. Thus, a horizon length in which the model is being calibrated should
be determined.

The calculation of the optimal N is based on two opposing effects that relate to the
uncertainty of the measurements used for the estimation. In general, it is evident that
the impact of measurement noise is decreasing with the involving multiple data points
into an LS regression problem. In our case, this may not be able to succeed due to the
dynamic behavior of the predictor. In the previous section, the impact of the imprecise
initial state is examined in detail which is why the Kalman-filtering has been integrated
into the estimation loop. Although this handles the problem by reducing the divergence,
the uncertainty is not eliminated completely, and its negative impact is increasing if the
estimation horizon is longer. Therefore, the proper value of N is determined with empirical
tests, the resulted in value is N = 1350 which corresponds to a path length of 300 m and
33.75 s in time. The calibration architecture is a moving window procedure, where the
parameter estimation is performed in every 10 s on the actual subtrace. The estimated
model parameters are stored and after a given number of estimations, the average is
calculated which results in the calibrated model.

4.4. Tuning of the Weight in the Gauss–Newton Method

The well-known LS problem formulation is only a special case of the Generalized
LS technique, in which the assumption on the error term has the same variance in each
observation is taken. The presented parameter estimation Formula (34) is another special
case of the Generalized LS method because the variance of the observed values are assumed
to be unequal, but without correlations among them. This means that the off-diagonal
elements of W are zero. Furthermore, the σxk variance vectors of the x̃k measurements,
which resulting from measurement inaccuracies of GNSS and compass sensors, are as-
sumed be be constant, σx̃k

= σx̃. Therefore, only the components of the state variance
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vector σx̃ = [σp̃x , σp̃y , σψ̃] should be determined. Thus, the W weight matrix is formulated,
such as

W =



1/σp̃x 0 0 0 0 0 . . .
0 1/σp̃y 0 0 0 0 . . .
0 0 1/σψ̃ 0 0 0 . . .
0 0 0 1/σp̃x 0 0 . . .
0 0 0 0 1/σp̃y 0 . . .
0 0 0 0 0 1/σψ̃ . . .
...

...
...

...
...

...
. . .


3N×3N

. (35)

However, in the regression problem the reciprocal of the vector components are incor-
porated. Furthermore, only the ration among them matters in the calibration process.
In summary, in the GN based regression σp̃x = σp̃y = 1 are applied, and the only remaining
tuning parameter is the σψ̃. Because of the easier illustration, wψ̃ = 1/σψ̃ is tuned and
named as the weight of the orientation equation.

In our calibration example, the W weight matrix has two objectives. The first is
evident to guarantee the convergence to the optimum. The second, which is more complex,
is to improve the generalization capability of the method. This attribute arises due to
the calibration is performed separately on subtraces. If wψ̃ is set too low, the orientation
equation will not have any importance in the model calibration. This is the consequence of
the numerical optimization because the LS method minimizes the VN sum of residuals (22),
and the orientation is measured in rad, while the positions are in m which numerical
values are significantly higher in case of car measurements. Therefore, low wψ̃ results
in a locally optimal calibration which minimizes mainly the position error on the actual
subtrace. However, the resulted in setting may perform inaccurately on other subtraces,
which reflects on the poor generalization capability.

This effect is illustrated in the following example, in which the model calibration
on a given subtraces is presented. Four different wψ̃ values are examined from 50 to 400.
The position and orientation errors with the calibrated models can be found in Figure 13
and the estimated parameters and mean error values in Table 3. The method can converge
from the uncertain initial setting (shown in Figure 14b as nominal), because with the
estimated parameters the errors are quite low. Estimation with wψ̃ < 50 is also tested,
but the errors were significantly higher. Therefore, the calibration can be guaranteed with
wψ̃ > 50 setting.

(a) Position error. (b). Orientation error.
Figure 13. Errors with various wψ̃ settings in the estimation horizon.
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In the last two columns of the table, the effect of the wψ̃ weight is shown. As it is
expected, with the increasing of the weight the orientation error decreases, but in parallel
the position error increases. Thus, it is difficult to determine the optimal value of wψ̃.
However, it has been also mentioned that this tuning parameter also responsible for the
generalization capability. It is critical because some of the estimated parameters with
various wψ̃ settings significantly differ, although the errors with the various calibrated
models are in the same relatively low range. The most decided difference can be observed
in the change of the tR and D parameter. The track width increases significantly and in
parallel, the load transfer coefficient decreases while the orientation error decreases only
slightly. It means that the two parameters compensate each other in a unique way, however,
this effect highly depends on the actual measurement segment.

The assumption can be validated if the calibrated model is tested on further mea-
surements. For the best illustration the same measurement, on which the calibration is
performed, is used but the test is executed on a longer horizon. The position errors in
an 85 s long segment are shown in Figure 14a, which illustrates well the effect of the
generalization capability. The models perform in a similar manner until 60 s when a sharp
bend follows as it can be seen in Figure 14b. After that point, the four calibrated models
with various wψ̃ values differ significantly from each other. Only the models with higher
orientation weight can not diverge from the reference measurements, thus these have
appropriate generalization capability.

Table 3. Parameters and errors with various wψ̃ settings.

ce,RL [m] cd [mm] tR [m] D [mm · (s2/m)] Err,pos [m] Err,ori [
◦]

wψ̃ = 50 1.9484 2.3130 1.4523 2.5843 0.3472 0.3268

wψ̃ = 100 1.9502 2.3065 1.5001 1.3290 0.4253 0.2474

wψ̃ = 200 1.9506 2.2448 1.5353 0.8547 0.4715 0.2080

wψ̃ = 400 1.9508 2.3011 1.5751 0.4940 0.6165 0.1593

nominal 2.0000 0.0000 1.6000 0.0000 7.0424 4.6946

(a) Position error. (b) Paths.
Figure 14. Position signals with various wψ̃ settings in a longer horizon.

However, this is one example and the optimal value for wψ̃ can be determined only
by several empirical tests. The whole calibration algorithm was tested with wψ̃ between



Sensors 2021, 21, 337 20 of 29

100–400, and the optimal setting was achieved by 200. Thus, the components in the W
matrix are

1
σp̃x

=
1

σp̃y

= 1
1

σψ̃

= wψ̃ = 200. (36)

4.5. Tuning of the Covariances in the Kalman-Filtering

In general, the covariances of the Kalman-filter should be adjusted to the sensor
measurement uncertainty. However, the main reason for the Kalman-filter integration
to the GN parameter estimation loop is to compensate for the divergence resulting from
the uncertainty of the state (x̃k0−1) with which the calibration problem is initialized at the
beginning of the estimation window. It has been mentioned also that the integration of the
KF is realizable as a manageable trade-off between the use of the raw prediction and the
simulation structure in the xk(θ) predictor, such as

simulation structure : xk(θi−1) = xk−1 + fdisp(ψk−1, uk−1, θi−1), (37)

prediction structure : xk(θi−1) = x̃k−1 + fdisp(ψk−1, uk−1, θi−1), (38)

and our proposed structure, where the fused values from the presented Kalman-filter (31)
are utilized

proposed structure : xk(θi−1) = x̂k−1 + fdisp(ψk−1, uk−1, θi−1). (39)

Therefore, in our special case with the tuning of the process P and measurement M
covariance matrices in the KF, the ratio between the two structures can be controlled.

The consideration that not the specific values but the ratio of these are important can
be applied also in this case. Thus, the M matrix is defined as constant and the P is such as

M =

 1 0 0
0 1 0
0 0 0.1

 P =

 0.01 0 0
0 0.01 0
0 0 0.0001

/Pn,

because between two time steps the output of the odometry model can change only in
the cm range due to the low Ts = 0.025 s sampling time. With this setting, the orientation
signals, relative to the reference for better illustration, in the first iteration of the estimation
in the previously presented subtrace are presented with various Pn value in Figure 15.

Figure 15. Orientation with various covariances.
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The predictor with the mentioned prediction and simulation structures are also shown
in the first iteration. With the raw prediction structure, the signal is close to the reference,
which means that the VN sum of residuals (22) to be minimized is very low, thus the
optimization gets stuck at the beginning of the estimation. While with the simulation
structure the signal is relatively high, consequently the norm is high and the convergence
is difficult. However, tuning the Pn value the xk(θ) predictor balances between the two
structure approaches. The determination of the optimal Pn is based on experimental tests,
and a varying method is proposed due to the supposition that the model becomes better
and better in the iterations of the GN-KF method. Thus, the value is equal to Pn = 1/1.5i,
where i is the iteration number in the parameter estimation algorithm (34).

5. Measurement Data for the Calibration
5.1. Test Vehicle, Measurement and Subtrace Selection

The test vehicle was a Nissan Leaf electric compact car that is equipped with automotive-
grade GNSS, compass, and IMU sensors. From the vehicle CAN bus the wheel encoder
signals were also saved. The sampling was is 40 Hz.

The test track was a 23.64 km long route in suburb and city driving with full traffic,
the path can be found in Figure 16. In the design of the measurement route, the main
point of view was the diversity to test the robustness of the proposed odometry model.
Therefore, the track contained several sharp, and large curved bends, two roundabouts,
and lots of crossroads. Following these elements the velocity signals ( Figure 17) were
also varied, the longitudinal maximum was 18.72 m/s, the mean was 9.16 m/s while the
angular velocity was between −0.8 rad/s and 0.8 rad/s. The estimated sideslip with the
method presented in Section 3 can be found in Figure 18. The signal in the turning cases
with low speed could reach higher values, such as 10–20◦, but when the velocity was
significant the sideslip remained lower than 3◦.

Figure 16. Path of the used measurements.

(a) Longitudinal velocity (b) Angular velocity
Figure 17. Velocities of the used measurement.
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Figure 18. Estimated sideslip of the used measurements.

At the calibration architecture, it has been mentioned that the parameter estimation
was executed in a moving window procedure on N = 1350 measurement points in each
subtrace. The shift between the consecutive windows was 10 s resulting 255 different
subtraces. From these, the only ones where the angular velocity was higher than 0.15 rad/s
were selected for parameter estimation due to observability issues. Examining the proposed
odometry model, it can be seen that the effect of cd, tR and D parameters mainly appeared
in the angular velocity Equation (5). Therefore, the estimation of these parameters was
feasible only if the angular velocity was significant. With this constraint, the number of
selected subtraces was 183.

Due to the linearization in the GN method, initial guesses for the parameters were
necessary. For initial wheel circumference and track width, the datasheet values can be utilized
and for circumference difference and load transfer coefficient, zero may be correct. Thus,

θ̂0 = [ce,RL,nom, cd,nom, tR,nom, Dnom]
T = [2, 0, 1.6, 0]T (40)

5.2. Reference Pose Measurement

The measurements used for the estimation were reached from GNSS, compass, and IMU
sensor. The pose could be measured directly with the first two, although these signals were
assumed to be noisy but unbiased. In contrast, the pose computation from the acceleration
and angular velocity measurements with the IMU was generally biased but the noise was
lower. Consequently, these measurements were suited for sensor fusion. Thus, before the
parameter calibration, the GNSS/compass and IMU signals were fused with a Kalman-filter.
This filtering problem is well-explored, our implemented method similar to [53]. The fused
pose values were denoted with x̃k, and mentioned as measurements for the calibration,
or reference measurements.

6. Results of the Proposed Method
6.1. Illustration of the Iterative GN-KF Estimation Method

The estimation with the iterative GN-KF method is illustrated on the same subtrace
which is examined in the tuning sections. In those examinations, the mean position and
orientation errors are shown, however the optimization operates with the weighted norm
of the objective function (22), also known as the norm of the residuals. The evolution of
this can be found in Figure 19a, and also the pose errors in the iterations are shown in
Figure 19b. The stopping condition was set to ε = 0.003 which resulted in optimal estima-
tion after 21 iterations because in the next the norm increased slightly.
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(a) Norm of the residuals (b) Position and orientation errors in the iterations
Figure 19. Estimation errors.

The optimization started from the θ̂0 initial parameter guess. The parameters in
the iterations can be found in Figure 20. The effective circumference and circumference
difference smoothly converged to steady-state values. However, the evolution of the track
width and the load transfer coefficient was surprising. The signals did not converge in such
a way as the other ones but ran smoothly opposite to each other. The same phenomenon
has been mentioned already when the tuning of the orientation weight was examined.
This evolution of the parameters was not a problem, because the optimization should have
reached an optimum because the pose errors were extremely low. The mean position error
with the optimal calibration was 0.47 m which corresponded to only 0.18% relative error
in this 255 m long subtrace, and 15 times lower than the error with the nominal setting.
Probably the strange evolution is due to the unique interaction of the parameters, since all
three cd, tR, and D parameters affected the angular velocity.

(a) Effective circumference and difference. (b) Track and load coefficient.
Figure 20. Estimated parameters in the iterations.

6.2. Parameter Estimation Results

The GN-KF estimation algorithm was executed on every selected subtrace. Although
the Kalman-filtering was integrated into the estimation loop to mitigate the divergence
of the predictor, in several subtraces the estimated parameters were not valid. For ex-
ample, the track width at the optimum was more than 2 m or the value of D parameter
was negative. In these cases, the uncertainty of the measurements used as the initial
state at the beginning of the estimation window or the possible wheel slip not only cor-
rupted the parameter estimation but also made the calibration impracticable, regardless
of the applied method. This was the trade-off if only cost-effective sensors were applied.
However, the calibration parameters had clear physical content, therefore bounds could be
determined on which subtrace calibration results to include in the computation of the final
stable parameter values. The tR track width was bounded only with 1.1 m lower, and 2.1 m
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upper limits calculated from the datasheet value and 0.5 m tolerance range. With this
restriction, 144 subtrace results remained.

The estimated circumference parameter values of the selected subtraces can be found
in Figure 21. The effective values were within a 3 cm range while the circumference
differences are around 2 mm. Although this low value was only 0.1% of the effective
circumference values, the motivation example in Section 2.3 illustrates its high impact in
the wheel odometry model, thus this result is important.

(a) Effective circumference. (b) Circumference difference.
Figure 21. Estimated parameters 1.

Figure 22 shows that the estimated track and load transfer parameters varied signifi-
cantly in the subtraces, but it was expected. As we can see in the previous sections these
parameters uniquely compensated each other to reach optimum calibration on the actual
subtrace. Thus, the variation of these two parameters was not random. It can be illustrated
well if the load transfer coefficient is plotted as a function of the track, which is presented
in Figure 23.

(a) Track width. (b) Load transfer coefficient.
Figure 22. Estimated parameters 2.
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Figure 23. Estimated tR − D values.

Even though some outliers appeared, the relation between the two parameters was
obvious. Consequently, the large variety of the parameters was not an unfavorable and
completely noisy phenomenon.The value of the estimated load transfer coefficient was
only D = 0.7226 mm · s2/m, which for example with 3 m/s2 lateral acceleration resulted
in 4 mm actual difference between the wheel circumferences. However, in this wheel
odometry model, the angular velocity was calculated as the difference of the rear-wheel
velocities and these velocities were the product of the wheel rotation and circumference.
Consequently, the few millimeters difference could influence the localization significantly,
as it was presented in the motivation example in Section 2.3.

Moreover, the noisy estimation was not a problem, if there was enough value to
calculate a stable mean. The presented measurement required 23 km to obtain 144 valid
estimation points. These resulted in the optimal calibration setting, such as

ce,RL = ce,RL,opt = 1.9503 m

cd = cd,opt = 2.0510 mm

tR = tR,opt = 1.5428 m

D = Dopt = 0.7226 mm · s2/m

σce,RL,opt = 0.0064 m

σcd,opt = 0.4925 mm

σtR,opt = 0.1486 m

σDopt = 2.6326 mm · s2/m

In parallel with the mean, the standard deviations were also calculated. These are essential
when the calibrated odometry model is utilized in a fusion algorithm because the process
noise (for example the P in a Kalman-filtering) can be estimated easily using the parameter
uncertainties.

6.3. Validation and Test

The direct validation of the model calibration is difficult due to the true value of these
parameters are unknown. Indirectly the calibration performance can be validated by testing
the odometry model without any fusion on various subtraces and examine the localization
accuracy. The pose error was calculated from the reference measurements. The validation
of a model calibration is relevant only if the model is tested in different cases from the
ones on which the estimation is executed. However, from the 23 km long measurement
only that cases, where the angular velocity was significant, were applied. Furthermore,
a new subtrace generation was fulfilled. 400 m long subtraces were generated with 1 s
shift between the segments throughout the whole measurement without any subtrace
elimination. With this generation, the effect of segments resulting in peak positioning
errors was reduced.
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The average of the mean position errors with the calibrated odometry model was
4.04 m while the average orientation error was 1.58◦. In relative terms, the positioning
error was only 1%. If the estimated sideslip was not applied, the error increased but merely
to 1.1% which is an excellent result in 400 m long driving using only the wheel encoder
measurements and the lateral acceleration signal from the IMU.

The localization performance of the GN-KF calibration is compared with other cases
which can be found in Table 4. With the presented cases the whole calibration is executed
and the models with the estimated parameters are tested. The necessity of calibration is
shown by the fact that the nominal setting resulted in five times higher errors. The impact
of the integrated Kalman-filtering is also illustrated, because if the calibration was executed
without the KF, the estimated tR and D parameters significantly differed from the GN-KF
ones, and in parallel, the errors were 2 times higher. Finally, the calibration was performed
with the ordinary wheel odometry model as well without lateral dynamics (βk = 0) and
neglecting the proposed dynamic wheel model (D = 0). The results show that the wheel
circumference parameters could be estimated well, but the track estimation was biased.
Moreover, the tR parameter moved to the opposite direction from the nominal setting,
than in the case of the calibration with the proposed model. Consequently, the average
errors were also higher. Therefore, without our novel wheel odometry model or with the
neglect of the integrated KF from the loop, only biased track calibration could be performed
which decreased the localization performance.

Table 4. Estimated parameters and average test errors.

ce,RL [m] cd [mm] tR [m] D [mm · (s2/m)] Err,pos [m] Err,ori [
◦]

calibration

with GN-KF
1.9503 2.0510 1.5428 0.7226 4.0355 1.5836

nominal

setting
2.0000 - 1.6000 - 19.4930 0.8360

calibration

without KF
1.9494 2.0821 1.6941 –0.8965 7.8524 3.3390

calibration with

ordinary model
1.9479 2.1054 1.6292 - 6.1807 2.6498

The impact of the dynamic wheel assumption is also illustrated clearly with the
examination of the tR − D parameters in the three calibration cases. When the wheel was
modeled as dynamic the two tR − D combination determined a straight in the parameter
field. This line is almost the same as the linear fitting presented in Figure 23. Furthermore,
the ordinary model with static circumferences (only ce,RL, cd and tR are the parameters)
should be the case with D = 0 value. Because the ordinary model fits well to this line at the
D = 0 point, the ±D · ay relation should be a proper description of the effect of dynamic
load transfer.

It was mentioned in the introduction that the well-calibrated odometry would have
several advantages, such as fusion with other cost-effective sensors, or used to calculate
other sensor biases. Thus, the calibrated model with the proposed algorithm was tested
with different integration times and examined as a motion sensor. The values and the
average pose errors can be found in Table 5. The 1% relative position error related to the
path length was certainly true from 1 s up to 60 s integration time, which means that the
drift of the calibrated odometry was linear in the driven distance.
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Table 5. Average pose errors with different integration time.

Integration Time [s] 60 45 30 20 10 5 1

Average subtrace length [m] 550 412 275 183 92 46 9

Average position error Eerr,pos [m] 5.96 4.05 2.23 1.38 0.64 0.33 0.07

Average orientation error Eerr,ori [◦] 1.93 1.58 1.21 0.93 0.58 0.37 0.14

Calculating the gradient of this drift, the odometry model corresponded to an angular
velocity sensor with 0.0024 rad/s, and a speed sensor with 0.07 m/s unknown bias. It is
difficult to compare with an accelerometer due to that sensor had quadratic drift in distance,
but the 5.96 m error in a 60 s corresponded to 0.0066 m/s2 bias, the 2.23 m in 30 s to
0.0099 m/s2 while the 0.33 m in 5 s to 0.0528 m/s2, at 9 m/s average speed. The average
was 0.03 m/s2 unknown bias which with the 0.0024 rad/s angular velocity uncertainty
certainly exceeded the accuracy of an automotive-grade IMU. Therefore, the proposed
calibrated odometry can be a proper choice to fuse with absolute sensors, such as GNSS
and compass to result in an accurate, but still cost-effective localization system.

7. Conclusions

In this paper, a novel odometry model, with the integration of dynamic wheel model
and lateral dynamics, and a calibration architecture has been presented to improve the
localization performance of a self-driving car. In the design, the general requirements of
the automotive industry are taken into consideration, thus only cost-effective sensors are
used. A unique estimation algorithm of the applied sideslip is also developed in which the
key idea is a determination of the zero-crossings of the signal. Due to the nonlinear model
behavior, the iterative Gauss–Newton regression is applied for the calibration. The dynamic
model estimation requires state initialization, which uncertainty corrupts the calibration.
Our proposed method to mitigate this effect is a Kalman-filtering inside the optimization
loop. The main contribution is that the precise calibration of the wheel odometry model can
be executed only with the dynamic wheel assumption and the integrated filtering in the
estimation loop. The method is tested with real experiments, where only automotive-grade
onboard GNSS, IMU, and wheel encoder signals are utilized. The results show that with
the calibrated model the pose errors are five times lower. Therefore, the proposed odometry
model can be an accurate motion estimation sensor and still operates with signals from
cost-effective equipment.

The limitation of the method is that though the integrated filtering can reduce the
effect of initial state uncertainty, some estimated parameters have high variance. Thus,
the proper calibration can be reached only on a long measurement scenario. As a future
challenge, the variance should be decreased by the elimination of the initial state uncertainty.
Furthermore, the online version of the calibration will be developed.
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