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Identification of MIMO non-linear systems using a forward-regression
orthogonal estimator

S. A. BILLINGSt, S. CHENt and M. J. KORENBERGl

An orthogonal least squares estimator, which was originally derived for single-input
single-output systems, is extended to multi-input multi-output non-linear systems.
The estimator can provide information about the structure, or which terms to
include in the model, and final parameter estimates in a very simple and efficient
manner. Multivariable non-linear model validity tests are also discussed and the
results of applying the orthogonal estimator to both simulated and real data are
included.

1. Introduction
Model structure determination is often vital for the identification of multivariable

non-linear systems because simply increasing the orders and the non-linear degree of
the model to achieve the desired accuracy willalmost certainly result in an excessively
complex model and numerical ill-conditioning. A very complex model is not only
computationally expensive but also has limited practical value.

For many real single-input single-output (SISO) systems it has been shown that
provided the significant terms in the model can be detected, models with about 10
terms are usually sufficient to capture the dynamics of highly non-linear processes
(Billings 1986, Billings and Fadzil 1985, Billings et al. 1988 b, Billings et al. 1988 a).
Several model structure selection methods have been derived for SISO non-linear
systems (e.g.Billingsand Voon 1986 b, Leontaritis and Billings 1987, Korenberg et al.
1988, Billings et al. 1988 c). Most of these methods can be extended to multi-input
multi-output (MIMO) systems.

The orthogonal least squares estimator given by Korenberg et al. (1988) and
Billings et al. (1988 c) has proved to be very efficient in determining the significant
terms and providing final unbiased parameter estimates. The orthogonal property of
the estimator results in a particularly simple estimation procedure. In the present
study this orthogonal estimator is applied to the MIMO non-linear identification
problem. An estimated model will in general be accepted only after model validity
tests have confirmed that the fit is adequate, and simple correlation tests (Billingsand
Voon 1986 a) developed for validating SISO non-linear models and a chi-square
statistical test (Bohlin 1978) are extended to multivariable non-linear model
validation.

The work is organized as follows. Section 2 describes a MIMO non-linear system
representation which will be used as the basis for the identification. Section 3 reviews
the orthogonal least squares estimator and its forward-regression version. The
application of the forward-regression orthogonal estimator to MIMO non-linear
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2158 S. A. Billings et al.

models is given in § 4 and multivariable non-linear model validation methods are
discussed in § 5. A simulation study is presented in § 6.

1. System representation
Under some mild assumptions a discrete-time multivariable non-linear stochastic

control system with m outputs and r inputs can bedescribed by the model (Leontaritis
and Billings 19a5)

y(t) = f(y(t - 1)•..., y(t - n,). u(t - I)•... , u(t - nul, e(t - 1) •.., e(t - n.» + e(t) (1)

where

l

YI(l)] lUI (l)] lei (t)]
y(t) = : • u(t) = : ,e(t) = :

Y",( t) u,( t) e",(t)

(2)

are the system output, input, and noise respectively; ny, nu and n. are the maximum
lags in the output, input, and noise; {e(t)} is assumed to be a white sequence; andf( .)
is some vector-valued non-linear function. The representation in (1) is referred to as a
multistructural input-output innovation model by Leontaritis and Billings (1985) and,
for the SISO case, it is known as the NARMAX (Nonlinear AutoRegressive Moving
Average with eXogenous inputs) model. Here the name NARMAX will be used to
include both the SISO and MIMO cases.

Model (1) wiU be used as the basis for identification of MIMO non-linear systems
in the present study. Expressing (1) in its component form gives, for the ith row

YI(t) = h(y,(t - O , YI(t - ny)• .... Y",(t - 1), ... , Y",(t - n,). ul (t - 1), ,

ul (t - nul , u,(t -I)•...• u,(t - "u). el (t - 1)•... , el (t - n.), ,

e",(t - 1) ... , e",(t - n.» + el(t), i = 1..... m (3)

To increase the flexibility in the model structure selection the maximum lags for each
output, input. and noise may be assigned to different values so that

YI(t) =h(Yl (t - 1), , YI (t - n~,), , Y",(t - 1), ... , y",(t - n~.J, "I (I - I).... ,

ul(t - n~.), u,(t - I), u,(t - n:..), el (t - 1), ... , el (t - "~,)' :.. ,

e",(t - 1). "', e",(t - n~...»+ el(t). i = 1, .... m (4)

The non-linear form ofh( .) is generally unknown. In order to use the model (4) for
identification, a means of parametrization is required and a polynomial expansion of
h( .) is a convenient but by no means the only choice. Expanding h( .) as a
polynomial of degree LI gives the representation

where

",
YI(t) = L 8i j x jj(t) + ei(t), i = 1, ... , m

j<;l

Lj

nl = L nlj' "/0 =1
j=O

nU- 1[t ("~. + n~.) + t n~. + j-l]
t*l t=l

njj= • , j=I, ... ,Li
J

(5)

(6)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:4

8 
14

 S
ep

te
m

be
r 2

00
7 

Identification of M1M0 non-linear systems 2159

and the x'J(t) are monomials of degrees 0 to Li • each consisting of delayed outputs.
inputs and/or noises (degree 0 corresponding to a constant term). Regrouping terms
in (5) yields

y,(t) = fl(YI (t - 1)•...• YI (t - ~t)' ...• Y",(t -.1)•...• Ym(t - n~J'"1 (t -1) ...•, . ,,, ,"1 (t - n;..)•...• ".(t - 1)•...• ".(t - nil.) +fj (Yl (t - 1)•...• Yl (t - n,,), ... ,

Y",(t - 1)...., y..(t - n~J, "s (t -1), ... , "I (t - n~,), ... , u,(t - 1) ... ,
, I

".(t - n;..), e1(t - 1), ... , el (t - n",), ... , em(t - 1) ... ,

e",(t - n~.J) + ej(t), i = 1, ... , m (7)

where fjP( • ) includes all terms O'Jxij(t) which do not contain noise elements. The
remainder of the terms are included in fj"( • ). Consequently fl( . ) will be referred to
as the itb process model and Ji"( . ) as the ith noise model.

A full model of (5) can easily involve an excessive number of terms as indicated by
(6). For example. let m = r = 2, all maximum lags be 2, and polynomial degrees
L 1 =L 2 = 2, then the number of parameters is 182. Um = r = 10.all maximum lags are
12 and polynomial degrees are 4, the number of parameters will be in excess of the
capacity of a 4-byte integer in computer store. Direct estimation based on the full
model (5) will therefore result in an excessively complex model, and such an
identification problem is almost certainly ill-conditioned. The determination of the
structure or which terms to include in the model from the large number of candidate
terms is therefore essential in MIMO non-linear identification. In reality each
subsystem in (5) may involve only 10-20 significant terms. In the SISO case, an
orthogonal least squares estimator (Korenberg et al. 1988. Billings et al. 1988 c) has
been developed which can select significant terms very efficiently. This estimator can
easily be extended to MIMO systems.

3. A forward-regression orthogonal estimator
This section reviews the orthogonal least squares estimator (Korenberg et al.

1988) and its forward-regression version (Billings et al. 1988 c). Consider the linear
regression function

M

z(t) = L p,(t)8, + ,(t), t = 1, ... , N
'''' 1

(8)

where z(t) is the dependent variable or the term to regress upon, the p,(t) are
regressors or predictors. ,(t) is some modelling error. and 0, are unknown parameters
to be estimated. Equation (8) can be written as

Z=P0+E

with

(9)

and

pT(t) = (PI (r), ... , PM(t»

Assumptions for the regression equation (9) are now stated.

(11)
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2160 S. A. Billings et al.

Assumption 1
,(t) is a zero mean white sequence and is uncorrelated with Pi(t), i =1, ... , M.

Assumption 2

All stochastic processes involved are ergodic.

Assumption 3
pTP is positive definite.

Assumption 1 is to ensure unbiased estimates. Assumption 2 is reasonable and is
introduced so that ensemble averages may be replaced by time averages over one
realization. pTp is at least positive semidefinite. If pTp is singular or ill-conditioned
there are many numerical methods to deal with it and Assumption 3 can be relaxed.
For the time being, however, let us assume that Assumption 3 is satisfied.

Because pTp is symmetric positive definite it can be decomposed into

where A is an upper triangular matrix with unity diagonal elements

(12)

A=

lX23 (l2A1

-.
·······I····(lAl-IM

(13)

and 0 is a diagonal matrix with positive diagonal elements. Now

Z= P(A- 1A)9+5

or

Z=Wg+5

where

W= PA- 1
}

g=A0

The matrix

(14)

(15)

(16)

(17)

is an orthogonal matrix because

WTW = (PA-1 )T(PA-1) = 0 = Diag [JI w~(t), ... ,.tl w~(t) ] (18)
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Identification of M IMOnon-linear systems

Auxiliary regressors wj(t) can be obtained recursively from

W= P-W(A-I)

that is

WI (t) = PI (t)

The upper triangular matrix A satisfies

A= 0-lwrp
therefore

N

L w/(t)Pt(t)
ait ='''' IN • k =2, .:.• M and i < k

L wl(t)
1"'1

The auxiliary parameter vector

satisfies
9 =o-IWl"Z- O-IWTE

so that the estimated 9 is given by

g= O-IWTZ

or
N

L w/(t)z(t)
... t c= J
g/= N • i=I..... M

I wf(t),e1

The estimates of the original parameters can be computed from

G=g-(A-I)G

that is

~=~ }
O/=gj- t lX/tOt. i=M-l•...• 1

t b / + I

The whole procedure can be summarized as follows.

N

L WI (t)z{t)
• 1= 1g I =----"N"........--

L wNt)
1= I

2t61

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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Step k.

S. A. Billings et al.

N

L W/(t)P1(t)
k 2, M '''1 k= ...• : tlQ = N • i = 1. .... - 1, «u = 1

L wNt),= 1

i-I

w1(t) = P.(t) - L lli1 w/(t). and
/= 1

(b) Compute 0/ backward using (28).

The relationship between this orthogonal least squares estimator and other least
squares algorithms has been discussed by Chen et al. (1989). Here some properties
of the orthogonal estimator are given.

Property 1
The auxiliary regressors are orthogonal, that is,

N

L w/(t)Wj(t) = O. i:F j
'" 1

This is obvious from (18).

(29)

Property 2

The estimate (';) is equivalent to that obtained by solving the normal equation
directly

(PTP)& = pTZ (30)

That is. the estimate ~ is unbiased and the covariance of the estimate is given by

cov [0] =(1~(PTP) -1 (31)

where
(1~ = E[{2(t)] (32)

This is expected since the orthogonal algorithm is just another way of solving the
normal equation. In fact.

E[0] =E[A-1~n = E[A -1 0-IWTZ] = E[A-1 0-lWTWg] + E[A- 10-IWTS]

= 0 + E[A -1 o-twTS]

Using Assumption 1 it can be shown that E[A-10 -1 WTS] = 0, therefore,
E[G] = 9. Also

cov [0] =cov [A-tO] =A- t COV [O]A-T

but
cov [0] = E[(O - g)(O - g)T] = E[O-tWT:s::s:TWO-l]

= 0-lWT(1~IWO-l =U~O-1

and
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Identification of MIMO non-linear systems

Property 3
The proportion of the dependent variable variance explained by WI(t) is

N

~ L w{(t)
t= 1

Proof

ZTZ = gTwTWg + s:TS + gTWTs: + s:TWg

Assumptions 1 and 2 ensure WTs: = 0, and hence

N M[ N ] N
t~l Z2(t) = 1~1 stt~l w1{t) + J, e2

(t)

or

2163

(33)

IN 2 M[21 N 2] 2- L Z (r) = L gl - L wtCt) + u(
N.c, 1=1 N t = 1

Therefore the contribution to the dependent variable variance by the auxiliary
regressor WI(t) is

1 N
gf- L wt(t)

N,=,
o

Property 3 can be used as a criterion for model structure selection. Define the error
reduction ratio due to the ith term as

N

it L w{(t)
[err]1 = _~~;...:.1__

L Z2(t)
1= ,

(34)

and. give a threshold value p. Starting from k = 1, if [err], < p, w1(t) is deleted- and
consequently Pl( t). Notice that for k > I removing Wl(t) does not influence the existing
WI(t), i <: k. Rename PH I(r), ... , PM(t) as Pl(t), ... , PM-l (t) and continue the procedure
until all insignificant terms have been. removed. Any numericalill-conditioningcan be

N

avoided' by simply deleting w1(t) if L wUt) is less than a predetermined threshold.,'" ,
N

Notice that L w;(t) = 0 means that Pl(t) is a linear combination of PI (t)to Pl-l(t)-
'"= 1

see (20)' and (22)-and pTP is singular. It is thus seen that Assumption 3 was only
included for the benefit of the derivation andis not really required. This is another
advantage' compared· with a direct solution of the normal equation.

There is however one problem. The value of [err]; may depend upon the order in'
which. the term pj(t) enters the equation. As a result, simply orthogonalizing the Pie t)
into the orthogonal'equation in the order in which they happened to be written down
in (8) may produce the wrong information regarding their significance using the
criterion (34). This, difficulty can, however, be overcome by a forward-regression
procedure proposed' by Billings et at: (1988 c).
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2164 S. A. Billing~ et al.

Instead of forward deleting terms, disregard the orders that the p,(t) enter (8) and
forward add terms as follows.

In the first step, all the p,(t), i = 1, ... , M are considered as possible candidates for
WI (r). For i =1, ... , M. calculate

Find the maximum of [err]VI, say. [err]VJ = max {[err]VI.I ~i~M}. Then the first
term wl(t) =WVI(t), (Pj(t)) is selected with gl =gVJ and [err]1 =[err]VJ.

In the second step. all the p,(t), i = I, ...• M. i ¢ j are considered as possible
candidates for W2(t). For i = 1, ...• M, i ¢ i. calculate

N N

L w~l(t)z(t) (~1)2 L (w~I(tW

g~l = lcNI • [err]~l =__~~,...=.;;..I _

L (W~I(t))2 L Z2(t)
1=1 ' 1';1

where

Find the maximum of [err]~l. say. [err]~) =max {[err]~l, 1~ i ~ M, i ¢ j}. Then the
second term W1(t) = w~l(t) =p,,(t) - ~l1WI (r), (p,,(t» is selected with C%11 = oc\t!,
K2 = K~) and [err]2 = [err]~l.

The procedure is terminated at the M.th step either when
M

1 - r [err], < a desired tolerance. M. < M (35)
1= I

M.
or when M. = M. Notice that the remainder 1 - L [err], is the proportion of the

t> 1

unexplained dependent variable variance and 100(1 - ~ [err],) expresses this as a
1= I

percentage. From the selected orthogonal equation

, (36)

it is straightforward to calculate the corresponding M. parameters 0,. Ill-conditioning
N

can easily be avoided. If L (w~l(t))2 is less than a predetermined threshold PI(t) will
1= I

not be considered as a candidate for Wt(t). Notice that the [err], in (35) are not
necessarily in descending order and it is possible that [err], < [err]j' i <j.

Finally it should be emphasized that the forward-regression orthogonal procedure
maximizes the increment to explained variance, not explained variance itself, and in
general is a suboptimal method in the sense of maximizing explained variance.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:4

8 
14

 S
ep

te
m

be
r 2

00
7 

Identification of M I MO non-linear systems 2165

4. Applications to identification of non-linear systems
This section considers the application of the forward-regression orthogonal

estimator to the identification of MIMO non-linear systems which can be represented
by the NARMAX model (7). Some possible ways of simplifying the identification
procedure are also discussed.

4.1. Application to NARX model

A special case of the general MIMO NARMAX model (7) is

y,(t) = fl(y, (I..,... 1), ...• YI (t - n;,)• ..., y",(t - 1), ... , Y",(t - n;.,,}, U 1 [r - 1) ... ,

u,(I-n~,), ... ,ur(t-l), ... ,ur(t-n~.»+e,(t), i= l, ... ,m (37)

This non-linear model will be referred to as the NARX (Nonlinear AutoRegressive
with eXogenous inputs) model.

Each submodel in (37) is linear-in-the-parameters and is in the form of the
regression function (8). Application ofthe forward-regression orthogonal estimator to
this model is therefore straightforward. The identification of any subsystem is
decoupled from the others, and for i = 1 to m. the estimator can easily be applied to
determine the ith submodel structure and parameter values.

4.2. Application to NARM AX model

For the general NARMAX model (7), delayed noise terms e(t - j) are included in
the model and these have to be estimated using the prediction errors or residuals
e(1 - j). The orthogonal property of the estimator ensures that the selection of the·
process and noise model parameters can be decoupled. Significant terms in each row
of the process model are selected initially. Which terms are included in these process
models will not be affected by whatever noise models are produced later because ofthe
orthogonal property. Initial residuals are then computed. based on the process models
and the structure or which terms to include in the noise models can then be selected. A
revised residual sequence is calculated and improved noise models are determined. A
few iterations· are often enough to determine final noise models. The detailed
procedure is as follows.

Step 1. For i = 1 to m, use the forward-regression orthogonal estimator to select terms
in the process model P( . ). The selection is terminated when

npl

1 - L: [err], < pp /
j= 1

(38)

where np j is the number of significant terms selected for fl( • ) and pp / is the
tolerance for the ith row of the process model. The ith orthogonal process

npl

model is L: w/j(t)g/j'
j eo 1

Step 2. Set k = 0 and calculate the initial residuals

np '

elk)(t) = y/(t) - L: wl~)(t)il~), i = 1, ... , m
j= 1

(39)

Step 3. Set k =, k + 1. For i = 1 to m, use the forward-regression orthogonal estimator
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2166 S. A. Billings et al.

to select terms in the noise model fj( -). The selection is terminated when
n.. +~l

1 - L [err]) < P"l
)= 1

(40)

where n~~) is the number of significant terms selected for ft( .) at the kth
iteration and Pnl < Ppi'

Step 4. For i =1 to m,calculate each submodel parameter DIJ), j = 1, ... , npl + n~~) and
compute 6~t)(t) recursively using

(41)

Step 5. Test for convergence. If the convergence criterion is satisfied, stop. Otherwise
go to Step 3.

Notice the difference in the computation of £(O)(t) and £(I:)(t) for k:» O. If the latter
were computed using

(42)

then because some of the wl~)(t) were calculated based on the old residuals, the fresh
information obtained at the kth iteration would be wasted. Step 4 is obviously a better
way to compute e(t)(t), for k > O. A possible convergence criterion would be

(43)

Numerous tests have shown that less than 10 iterations, typically 3-4 iterations, are
sufficient for the algorithm to converge. In practice repeating Steps 3 and 4, 4-5 times
is usually adequate. At each iteration, the selection of each noise model term is
performed from all the original candidate terms for the noise model. Notice that no
matter how many subsystems or how many terms are included in the model set the
estimation remains very simple and consists of re-entering a routine of computing «}2,
wil)(t). iii) and [errJil) for each possible term. This is a considerable advantage of this
method and ensures that the coding of the algorithm is very straightforward and
upwardly extendable.

4.3. Some simplifying procedures

Experience has shown that non-linear terms are often the combinations of linear
terms in non-linear models. The forward-regression orthogonal estimator may
therefore be used to identify the best linear model first, and then to extend the model
set to include all non-linear combinations of these linear terms. Such a model set will
be significantly smaller than a full non-linear model set and hence the saving in
computational time will be substantial. There is, however, no guarantee that the non­
linear model identified in this way will be as good as that selected from the full model
set.

Alternatively, the noise model structure may be updated only once. Because 6(0")(t)

is not generally white the model determined in such a simplified way may be slightly
biased. A better way would be to select smaller P.i at the first iteration to force more
noise terms into the model than are actually needed, and then to use these terms as the
noise model set selecting the noise models from within this set. .
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1dentification of M 1M 0 non·linear systems 2167

As shown in § 4.1. identifying NARX models is much simpler. Given a non-linear
system with unknown structure. the best NArtx model can be estimated and noise
models can be added only when the model validity tests indicate that the NARX is
inadequate.

~ ~odel ~aUdahoD

If the model set does not include all the significant terms of the true system. the
final m.odel selected from this set will not be a good representation of the system
because some significant terms wilJ be missing (rom the model Model validation
should indicate when such a deficient situation occurs.

LetJ( .) be an estimated model of the system f( • ) and let the residuals E:(t) be
computed from

e(t) = y(t) - J(y(t - I)..... y(t - n,), u(t - I) ..... u(t - nil)' t(t ~ 1), .... t{t ~ ne» (44)

If the model structure and parameter values are correct e(t) willbe unpredictable from
(uncorrelated with) all linear and non-linear combinations of past inputs and outputs.
For SISO non-linear systems, this can be tested by means of the (oUowing correlation
functions {Billings and Voon 1986 a. Billings and Chen 1988) undet some mild
assumptions:

C1>.. (r] 1'#0

C1>...(t) "11'

C1>r<atj(r) t~O (45)

C1>11"1 ( 1') "11'

C1>".,.. (r) "It'

where u2 '(t) = u2 ( t) - u2(t) and the bar indicates time averaging. If these correlation
functions fall within the (95 %) confidence interval ± 1·96N- 1

/
2• the model is

regatded as adequate. Notice that the linear covariance tests (J)..(1') and Glu ( r) are
certainly not sufficient. These correlation tests can be extended to validate MIMO
non-linear models

eIl&/IJ(r) r # 0

eIl",IJ(r) "It

eIlI'I&jllk)(r) r ~ 0

C1>1"'"J)'lk(t) "It

llJIII'''Jn1k&iI(r) "It

i == I, ...• m and j = i• ... , m

i= 1,.... r and j= 1..... m

i = 1, ...• m, j == i, .. ,.171 and k = 1 r

i=I•...• r, j=i•...• r and k=I .m

i=I.... ,r. j=(, ..,r. k=l, .... m and

l=k, .... m

(46)

Alternatively, the Chi-square statistical test introduced by Bohlin (1978) and
adopted to the non-linear case by Leontaritis and Billings (1987) can be used to
validate MIMO non-linear models. The problem of validating an estimated model is
formulated as one of testing the null hypothesis Ho: that the input-soutput data were
generated by the model. The procedure involves three steps. The first one is to find a
statistic '1 which is a function of the available data and whose distribution is known if
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2168 S. A. Billings et al.

Ho is true. The second step is to define a domain D,. such that

Prob {" ¢ D,.IHo } =cr (47)

where cr is called the significant level of the test. The third step is to reject H 0 if" ¢ D".
The required statistic can be constructed as follows (Bohlin 1978). Define

Let S be a square root of the covariance matrix of the residuals, that is,

STS = E[e(t)eT(t) Ix']

The normalized residuals are given by

P(t) = S-Te(t)

Introduce a matrix-valued function of Xl as

n(t) =n(xl
)

(49)

(50)

(51)

where n(t) has dimension s x m. It is assumed that .Q(t) satisfies the law of large
numbers for the time average

and the central limit theorem holds for

1 N
Jl = N JI n(t)P(t)

(52)

(53)

Then the random vector I.l is asymptotically normal with zero mean and covariance
equal to rrr N- 1 if Ho is true (Bohlin 1978). The normalized random vector

Jt=N- 1/ 2 r -TJl (54)

is thus asymptotically normal with zero mean and unit covariance if H0 is true. The
random variable

17 :;: JtTJt (55)

is therefore asymptotically chi-square distributed with s degrees of freedom under the
null hypothesis, and can be used as the desired statistic. For a specified level of
significance cr, the domain D" where the null hypothesis is accepted can be chosen as

(56)

where X;(cr) is the value of the chi-square variable with s degrees of freedom and given
risk IX.

Model validation using the above chi-square statistical test consists of the
following steps: specifying a risk level cr, choosing the matrix function n(t), computing
the value of 17 and testing whether" ED,.. It is apparent that for different matrix
functions n(t) the tests all have the same risk cr ofrejecting a model when it is actually
valid. However, they do not have the same probability of rejecting a model when it is '
not valid. The optimal n(t) can be designed such that the-test has asymptotic local
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Identification of M IMOnon-linear systems 2169

maximum power (Bohlin 1978). Such an optimal n(t) requires, however, knowledge of
the derivatives of e(t) with respect to the parameters and is very expensive to compute
for the M1MO non-linear model (7). A simple and convenient choice for n(t) is

where

n(t) = (57)

(58)

and coj(t). i == 1•...• m are monomials of x'. The disadvantage ofthis test is that several
different types of roT(t) must be tried before any confidence that the model has been
properly validated can be established. Whilst the correlation tests of (45) overcome
this difficulty and work well for S1SO systems the power of the tests appears to be
diminished when applied in the multi variable case and this requires further study.

6. Simulation study

Example 1

This is a two-input two-output data set collected from a 50 MW turbo-alternator
operating in parallel with an interconnected system having a capacity of approxi­
mately 5000 MW (Jenkins and Watts 1969; Appendix Al1.3). The input III (r) was the
in-phase current deviation and U2(t) was the out-of-phase current deviation. The
output YI (t) was the voltage deviation and Y2(t) was the frequency deviation. The data
set is iUustrated in Fig. 1.

A linear model (L 1 =L 2 = 1) with n~J = n:.J = 20, n~J =O. i = 1.2 and j = 1.2 was
used initially to fit the data. The full model set consisted of 162 terms. The first 20
points of the data were used as the initial values and therefore only 80 points of the
data were actualJy used in the identification. The forward-regression orthogonal
estimator selected a model with 15 terms shown in Table 1. An idea of the efficiency of
the algorithm can be judged by noting that it took less than 30 s on a Sun 3/50
workstation to produce the model given in Table 1. The response of the model is
plotted in Fig. 2 where the one-step ahead prediction is defined as

Y(t) =J(y(t - 1)..... y(t - n,,),u(t - 1), .... u(t - nil)' e(t - I), ...• e(t - ne )) (59)

the (deterministic) model predicted output is given by

y.,(t) == J(Yd(t - 1), ... , y.,(t - n.l')' u(t - 1), ... , u(t - nil)' 0, ... , 0) (60)

and the deterministic prediction error

(61)

The correlation tests and chi-square tests all confirm that the model is adequate.
. Figures 3 and 4 show the correlation tests and some of the chi-sq uare tests used for the

model validation respectively. Since the model validity tests show that the linear
model is adequate the non-linear analysis was not pursued.
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Figure 1. Inputs and outputs of Example 1.
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Standard
Terms Estimates [err]/ deviations

y,(t-1) 0-22535E + 1 0-99965E+0 o-10500E+0
y,(t-2) -0-24313E + 1 0-12983E - 3 (}24128E + 0
Y, (I - 3) o-l4672E+ 1 0-11256E - 3 0-27117E + 0
y,{t-4) - 0-43287E + 0 0-12371E-4 0-15491E + 0
YI(I - 6) 0-83902E - I 0-18386E - 5 0-47686E - 1

YI{t -10) -0-13045E- I 0-21199E- 5 0-33860E - I
y\(1 - 20) 0-41910E - I 0-17841E - 5 (}2319SE - I
"2(1 - 2) -0-33549E - I 0-12604E - 5 0-13320E - I
"\(1-3) -0-56494E- I 0-56199E - 5 0-24734E - 1

Y2(1 - 1) 0-67664E+0 0-99994E +0 0-52896E -1
"\(t-8) 0-21513E+0 0-99848E- S 0-2169OE -1
"1(t-3) -0-25209E + 0 0-11360£-4 0-24057E - I
Y2(1-ll) 0-14139E + 0 0-15998E - 4 0-30151E - I
"2(t - 4) 0-34826E -1 0-21750E - 5 0-94300E - 2
constant 0-90807E+ 0 0-16729E- 5 0-35033E+ 0

Ppl = <)-(lOOO9} . . [ 0-41051E-3 -0-44232£-4J
covariance of residuals =

Pp 2 = 0-00002 -0-44232E - 4 0-50953E - 3

Table I, Estimated model of Example 1.

Standard
Subsystem Terms Estimates [err], deviations

"dl - f) 0-10172E+ 1 0-66343E+0 0-17078E - 1
Ydl - I) 0-50962E+0 0-26657E +0 0-16527E - I
"dt - I) 0-2292IE + 0 0-25808E -I 0-16528E - 1
"2(1 - 1) -0-1608IE-l 0-21991E - 3 0-16671E-1
Yl(t - 2) 0-16677E-I 0-11319E - 3 0-84644E -2
constant -0-79677E - 1 0-69261E - 3 0-28167E -1
Y2(1 - I) 0-15069E -1 (}29243E - 3 0-91441 E - 2
y\(t- 2) -0-10137E-l 0-20163E- 3 0-15993E-l
"2(t- 2) -(}73543E - 2 0-34263E - 5 0-18533E-l

e,(1 -1) 0-29245E +0 0-29661E- 2 0-60357E - I
ed'- 2) 0-18426E + 0 0-12234E - 2 0-59296E - 1
e2(1- 2) (}2200IE-1 0-45035£ -4 0-37683£ -1
e2(1- 1) -0-20432E - 1 0-37422E-4 0-37757E -1

2 Y2(t - 2) 0-93526E + 0 0-84592E + 0 0-85669E- 2
"2(1 - 1) (}10188E+l 0-10754E+0 0-25993E - I
"2(1 - 2) 0-46579£+0 0-23791E - I 0-26037E - 1

e2(t - I) 0-17536E +0 0-67034E - 3 0-57984E - 1
e,(1-2) 0-1I953E + 0 0-12337E - 3 0-91431E -1
e2(t - 2) 0-17879E -1 0-68212E - 5 0-58613E -1
e,(r-I) -0-17508E-l 0-26867E - 5 0-91353E - 1

Pp, =0-040 P., = Q-OIO} [ (}8091JE - 1 -0-38546E - 2Jcovariance of residuals =
PpJ =0-030 P.2 =0-009 -0-38546E - 2 0-20089E +0

Table 2. Linear model for Example 2.
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ftod~J ,r~4Ict.4 output of 71

~7~teft output 'I

100~.1[ '".:;:0..<::'.-------------------------------:,....

oDe-~tep abea4 predictIon of 72

100~.1[ ~-=--~-----~--~--~---------------<-----~

continued
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Figure 2. Model response of Example 1..
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<''li"I"" "10'''' <1
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_ 5 ................-===--

- 5===-=~=

Figure 3. Correlation tests of Example 1.

Example 2

This is a simulated two-input two-output system. The data was generated by

Yl (t) = o-SYI(t - I) + "'I (t - 2) + 0-1Y2(t - 1)1.11 (t - 1)+ o-Se1(t - I)

+ 0'2Yl (t - 2)e 1(t - 2) + e1(t)

Y2(t) =0'9Y2(t - 2) + U2(t - I) + 0-2Y2(t - l)u2(t - 2) + O'Se2(t - I)

+0-IY2(t-l)e1 (t - 2) +e2(t)

The system noise e(t) was a gaussian white sequence with mean zero and covariance

[
0-04 0-0 ]

COY [e(t)] =
0-0 0-04

u1 (t ) was a gaussian sequence with mean zero and variance 1-0, and "'2(t) was an
independent sequence ofuniform distribution with mean zero and variance 1'0; e(t)
and u(t) were independent. The inputs and outputs of the system are shown in Fig. S.

First a linear model with L, = 1, n~1 =n~J = n~J =2, i = I, 2 andj = 1,2 was used to
fit the data. The model determined by the forward-regression orthogonal estimator is
given in Table 2 where the number of iterations for updating the noise models was 4.
The response of this linear model which are shown in Fig. 6 clearly indicate that the
residuals are unacceptably large. Some of the chi-square tests are plotted in Fig. 7 and
they correctly reveal that the model is deficient.

Next the polynomial degrees L j , i = 1,2 were increased to 2. Notice that even for
such a low degree of non-linearity and the small maximum lags the full model set
contained 182 terms and direct estimation based on this full model would indeed
result in a very complicated model and possibly numerical ill-conditioning, This full
model set, however; contained all terms of the true system and the forward-regression
orthogonal estimator correctly selected the model structure as indicated in Table 3.
The response of this non-linear model and some of the chi-square tests are illustrated
in Figs 8 and 9 respectively.
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Standard
Terms Estimates [errl deviations

u1(t-2) G-99504E + 0 G-66343E+0 G-11604E - I
YI(t -I) G-50723E +0 G-266S7E+ 0 G-80900E - 2

Y2(t - l)u 1(t - I) G-99287E -I G-44573E -1 G-37140E - 2

el(t -I) G-S0587E + 0 G-42730E- 2 G-58465E -I
YI(t - 2)e1(t - 2) G-24534E +0 G-27833E - 2 G-36388E - I

Y2(t - 2) G-90314E+0 G-84592E +0 G-39662E- 2
U2(t - 1) G-99220E + 0 G-10754E + 0 G-12114E-I

Y2(t - l)u2(t - 2) G-19862E + 0 G-40604E-l G-40523E- 2

e2(t - I) Q-42562E +0 G-86239E - 3 G-57947E -I
Y2(1 - l)el (t - 2) G-82201E - 1 G-26118E - 3 G-20369E -I

Pot = (H)20} [IH8768E - Icovariance or residuals =
Poz = IHlOS &S6083E - 3

Table 3. Non-linear model for Example 2.

&S6083E - 3J
&4404IE-1
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(c) CilI(t)=II}(t-9), ~(t)=1I1(t-9)YI(t-9)

-.............. eSll confIdence Illllt

1.t[ 1

0.0
o

r.sr 1

0.0

eSll confidence .lllllt

1.U 1

0.0

............... iSS confIdence I h,lt

1.iE 1

0.0 o

Figure 4. Chi-square tests of Example 1.
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Figure 5. Inputs and outputs of Example 2.
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Figure 6, Linear model response of Example 2,
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Figure 7. Chi-square tests for linear model of Example 2.
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Figure 8. Non-linear model response of Example 2.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:4

8 
14

 S
ep

te
m

be
r 2

00
7 

2188 S. A. Billings et at.

f.2E 1

0.0 •

3.2E 1

••• o

3.2E 1

0•• •

3.U 1

•• 0

~ 8S1 confidence llhlt

~ 'S'! confidence llhlt

~ 851 cODfldeDce llhlt

..-..-.-..... 151 conflduce llllit

20 .lela,.

20 4e la ,.

20 delay

20 delay

Figure 9. Chi-square tests for non-linear model of Example 2.
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7. Conclusions
A forward-regression orthogonal estimator has been derived for the identification

of MIMO non-linear systems where model structure selection is often vital. It has
been shown that this estimator efficiently combines structure determination with
parameter estimation and, when coupled with model validity tests, is particularly
powerful in identifying parsimonious models for structure-unknown systems. The
application to both simulated and real data has been demonstrated.
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