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Abstract:  11 

Goethite, one of the most thermodynamically stable iron oxides, has been extensively 12 

researched especially the structure (including surface structure), the adsorption capacity to 13 

anions, organic/organic acid (especially for the soil organic carbon) and cations in the natural 14 

environment and its potential application in environmental protection. For example, the 15 

adsorption of heavy metals by goethite can decrease the concentration of heavy metals in 16 

aqueous solution and immobilize; the adsorption to soil organic carbon can decrease the 17 

release of carbon and fix carbon. In this present overview, the possible physicochemical 18 

properties of the goethite surface contributing to the strong affinity of goethite to nutrients 19 

and contaminants in natural environment are reported. Moreover, these chemicals adsorbed 20 

by goethite were also summarized and the suggested adsorption mechanism for these 21 

adsorbates was elucidated, which will help us understand the role of goethite in natural 22 

environment and provide some information about goethite as an absorbent. In addition, the 23 

feasibility of goethite used as catalyst carrier and the precursor of NZVI was proposed for 24 

removal of environmental pollution.  25 
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1. Introduction 28 

Goethite (α-FeOOH) is a widespread soil mineral and a major component of many ores, 29 

sediments and soils and it is one of the most thermodynamically stable iron oxide (Cornell 30 

and Schwertmann, 2003). Goethite can be found in both humid and semiarid regions and also 31 

appears as the weathering product of various iron-containing rocks (Kemp, 1985). The 32 

orthorhombic structure of goethite has been confirmed as hexagonally close-packed array of 33 

O2- and OH- anions with Fe3+ in the center of the octahedral (Cornell and Schwertmann, 34 

2003). The two octahedrons compose double chains of octahedra formed by edge sharing, 35 

running parallel to the [001] direction. Fig. 1 shows these chains are linked to adjacent double 36 

chains by corner-sharing with one chain and the OH groups are linked to another O atom in a 37 

chain diagonally opposite.  38 

 39 

 40 

 41 

 42 

 43 
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Fig. 1. (010) plane of goethite (top) polyhedral framework and (bottom) ball and stick model 44 

(Blue line represents unit cell and the dash line denotes the hydrogen bonding). 45 

Generally, goethite can be found in pedosphere, hydrosphere and biosphere, resulting 46 

from rock weathering. In terms of goethite, it can derive from olivine or pyrite due to 47 

complicated processes including physical, chemical and biological. As is written in the book 48 

(Schwertmann and Cornell, 2000), the general formation process can be described as 49 

followed. 50 

442242 SiO2H+FeOOH-4=O6H+O+SiO2Fe α  51 

42222 SO8H+FeOOH- 4=O10H+15O+4FeS α  52 

The newly formed goethite has a low solubility and it is the most stable iron oxyhydroxide in 53 

nature. Generally, goethite formed from weathering is often poorly crystalline and rich in 54 

defects and impurities, which makes goethite has much good surface activity. Moreover, 55 

goethite displays nanometer sized particles in width and several microns in length for both 56 

naturally formed and the laboratory synthesized analog. Such sizes make goethite with a high 57 

specific surface area, varying from 10-132 m2·g-1 (Atkinson et al., 1967; Strauss et al., 1997) 58 

depending on the transforming environment and the synthetic conditions. Therefore, the wide 59 

spread in nature and special physicochemical properties attracted many attentions on the 60 

study of the structure, surface physiochemical properties and adsorption capacity of goethite. 61 

As for the structure of goethite, the existence of bulk groups have been investigated widely 62 

using various techniques such as IR and TG/DTG (Russell et al., 1974; Schwertmann, 1984). 63 

In addition to this bulk groups, goethite still has a complicated surface structure especially the 64 

distribution of adsorbed water/hydroxyl group. In recent years, several reports about the fine 65 

surface structure can be found using crystal truncation rod (CTR) or model means. Ghose et 66 

al. reported that the proposed interface stoichiometry is (H2O)-(H2O)-OH2-OH-Fe-O-O-Fe-R, 67 

which indicates the existence of two layers of absorbed water and two types of terminal 68 

hydroxyls, a hydroxo group and a aquo group (Ghose et al., 2010). The report of Boily (Boily, 69 

2012) confirmed that interfacial water molecules adopted highly surface-specific 70 

configurations on (010), (100), (110), and (021) planes of goethite. Besides, water molecules 71 

generally had weaker hydrogen bonding strengths, as well as smaller self-diffusion 72 

coefficients, than their bulk liquid counterparts. Relevant reports on the surface functional 73 

groups (Fe-O, Fe-OH, Fe-O-Fe) calculated using density functional theory (DFT) or other 74 
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models can be found in the literature (Boily et al., 2001; Villalobos et al., 2003; Rustad and 75 

Boily, 2010). All these physicochemical properties imply goethite has a great potential as an 76 

adsorbent or catalyst due to its large surface area and special surface active sites.  77 

The widespread occurrence and special physicochemical properties determine the 78 

significant role of goethite in nature and in the man-made environment. In the past several 79 

decades, goethite has been documented playing a crucial role in regulating the mobility and 80 

transformation of species in various parts of the ecosystem and their transport between these 81 

parts. It involves the uptake of plant nutrients from soil, the transportation of pesticides and 82 

other contaminants from soil to the aquatic system, and the purification of carbon-, sulfur- 83 

and nitrogen-containing gases (Russell et al., 1975; Kaneko and Inouye, 1981; Ishiwaka and 84 

Inouye, 1983; Baltrusaitis et al., 2007; Simonetti et al., 2007). In addition, goethite has been 85 

demonstrated to be a natural catalyst for catalytic oxidation of organic compounds in soil or 86 

wastewater (Lin and Gurol, 1996; Lu, 2000). 87 

 88 

Under this research background, we have summarized the structure and promising 89 

values of goethite in the environment, as adsorbent for nutrients and as an adsorbent or/and 90 

catalyst for contaminants especially for organic substances and cations. As an important 91 

constituent of soil and sediments, it is essential to have a comprehensive understanding for its 92 

structure, especially for the surface functional groups, the physicochemical properties and its 93 

potential applications. As an abundant and cheap natural material with a large specific surface 94 

area and high surface reactivity, it is important and worthwhile to understand its potential 95 

applications in environmental protection. Nowadays, environmental pollutions are displaying 96 

a development of multi-dimension namely from ground surface to subsurface and air with the 97 

rapid economic development. Therefore, this present work reviews the research of goethite as 98 

an adsorbent or/and catalyst and reveals the implied significance to the environment. 99 

Meanwhile, the further possible applications as a precursor of multi-porous iron oxides or 100 

nZVI, which can be used in environment protection, are also suggested. 101 

 102 

2. Surface properties of goethite 103 

As is well known, goethite is isostructural with diaspore (α-AlOOH). However, it is the 104 

surface structure not the bulk structure that makes this kind of iron oxyhydroxide sensitive to 105 

the environment. From 1930s to now, several significant reports on the study of the structure 106 
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of goethite can be found using a range of different methods (Goldsztaub, 1932; Sampson, 107 

1969; Gast et al., 1974; Busca et al., 1978; Rochester and Topham, 1979b; Schwertmann, 108 

1984; Boily et al., 2001; Villalobos et al., 2003; Ghose et al., 2010; Rustad and Boily, 2010; 109 

Han et al., 2011; Boily, 2012) . Goldsztaub solved the crystal structure of goethite in 1932 110 

and then Sampson reported the lattice parameters of a natural single crystal and synthetic 111 

goethite in 1969 (Goldsztaub, 1932; Sampson, 1969). Russell et al. investigated the types of 112 

goethite surface hydroxyl groups by characterizing goethite and phosphated goethite (Russell 113 

et al., 1974), which proves goethite has three types of surface hydroxyl groups as is shown in 114 

Fig. 1. More details about the surface hydroxyl groups were presented in the literature 115 

(Rochester and Topham, 1979b). DFT has been used for calculations of the vibrational 116 

frequencies of OH groups of an idealized goethite (110) surface (Rustad and Boily, 2010). 117 

Later, surface adsorbed water even the number of its layers was investigated. Robert et al. 118 

studied the interaction of water with goethite compared with other amorphous ferric oxides 119 

(Gast et al., 1974) . The results indicated that the last traces of physically adsorbed water 120 

were removed from the amorphous ferric oxides by outgassing at 25 oC, however, still 121 

retained approximately a monolayer of physically adsorbed water on goethite under the same 122 

conditions. This monolayer of water on goethite was proposed presumably hydrogen-bonded 123 

at least in part with the structural hydroxyls. Ghose et al. reported that the proposed interface 124 

stoichiometry is (H2O)-(H2O)-OH2-OH-Fe-O-O-Fe-R, which indicated the existence of two 125 

layers of absorbed water and two types of terminal hydroxyls, a hydroxy group and an aquo 126 

group (Ghose et al., 2010). The bulk groups and the complicated surface functional groups 127 

results in the potential of strong affinity and high reactivity. The surface hydroxyl groups of 128 

goethite can promote more ·OH generation in the presence of ozone than that of β-FeOOH, γ-129 

FeOOH and γ-AlOOH (Zhang et al., 2008). Furthermore, Liu et al. (Liu et al., 2013) 130 

postulated that not only the specific surface areas, but also the numbers of hydroxyl groups 131 

(namely effective adsorption sites) on goethite influences the adsorption capacity of goethite 132 

to phosphate.  133 

 134 

3. Adsorbent 135 

As an adsorbent, surface site density is an important factor determining the adsorption 136 

capacity of material. Villalobos et al. (Villalobos et al., 2003)  investigated the surface site 137 

density of goethite by adsorption of proton and carbonate, indicating an inverse relationship 138 

between sorption capacity for protons and carbonate ions and specific surface area of goethite 139 
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for three synthetic goethite preparations. An explanation for this is the variability of the 140 

surface site density. Extra speculation was presumed depending on the different preparation 141 

methods which lead to different predominant faces for goethite. In addition, goethite usually 142 

presents large specific surface area as is mentioned above. All the confirmed information on 143 

the properties of goethite displays it possesses underlying predomination on physical, 144 

chemical and even biological reaction. 145 

3.1 For anions  146 

Table 1 lists the researched anions and relevant references in part, although it is 147 

confirmed there are more than 100 papers can be found on the research of inorganic anion 148 

adsorption on goethite. It mainly involves the effect of goethite on their transport, 149 

transformation and bioavailability. Furthermore, the effect of pH, ionic strength, exotic ions 150 

and temperature were also investigated. In these researches, some of the reported research 151 

mentioned the application of goethite for the treatment of environmental pollutants. The 152 

extent of goethite adsorption and the in-depth study of adsorption mechanisms substantially 153 

improved the understanding of the role of goethite in the environment. 154 

 155 

According to the reported results and adsorption theory, the main adsorption 156 

mechanisms contain both non-specific adsorption and specific adsorption (ligand exchange). 157 

Hingston et al. illuminated both adsorption mechanisms in detail (Hingston et al., 1972). In 158 

aqueous suspension, the terminal iron atoms on the surface will complete their coordination 159 

shells with OH- and water molecular. When the ions in solution do not have specific affinity 160 

for the iron atoms of the surface, the surface will adsorb H+ and OH-. In contrast, specific 161 

adsorption means replacement of hydroxyl groups by the adsorbing ligand. Specific 162 

adsorption frequently occurs for anions, in which phosphate and arsenate were most widely 163 

researched. At the earliest, Atkinson et al. proposed that phosphate replaces type A hydroxyl 164 

group and forms bridges between adjacent Fe3+ (Atkinson et al., 1972). Afterward, many 165 

reports can be found on the adsorption model of phosphate on the surface of goethite using 166 

various methods (Tejedor-Tejedor and Anderson, 1990; Torrent et al., 1990; Torrent et al., 167 

1992; Geelhoed et al., 1997b; Strauss et al., 1997; Nowack and Stone, 1999a; Li and 168 

Stanforth, 2000; Ler and Stanforth, 2003; Lin et al., 2004; Chitrakar et al., 2006). Adsorption 169 

of phosphate on goethite mainly involves a ligand exchange mechanism which is similar to 170 

the adsorption of arsenate. Tejedor-Tejedor et al. studied the mechanism of phosphate 171 

adsorption on goethite using in-situ CIR-FTIR, which provided evidence for the formation of 172 
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three different type of complexes, protonated and nonprotonated bridging bidentate as well as 173 

a nonprotonated monodentate, between orthophosphate ions and surface Fe3+ of α-FeOOH 174 

particles in aqueous suspensions (Tejedor-Tejedor and Anderson, 1990). Hiemstra et al 175 

modeled phosphate adsorption on goethite with the CD-MUSIC using comparable 176 

experimental data, concluding the existence of monodentate species at very low surface 177 

loading. In fact, many researchers presented different ligand models considerably dependent 178 

on the surface coverage and solution pH. Generally, the bidentate surface complex is the most 179 

abundant for the adsorption of phosphate on goethite. Recently, the other mechanism of 180 

surface precipitation was reported by Josasson et al. (Jonasson et al., 1988), Li et al. (Li and 181 

Stanforth, 2000), and Ler et al. (Ler and Stanforth, 2003). Li et al. (Li and Stanforth, 2000) 182 

also investigated the distinction between the adsorption and surface precipitation of 183 

phosphate on goethite, which supposing the onset of surface precipitation occurs well before 184 

monolayer coverage, particularly at high pH values. Later, Ler et al. (Ler and Stanforth, 2003) 185 

confirmed the existence of surface precipitation of phosphate on goethite by monitoring the 186 

variation of ζ-potential of the phosphated goethite. The adsorption capacity of goethite to 187 

phosphate reached 10 mg-P/g-goethite (Chitrakar et al., 2006). In general, it is slow for the 188 

diffusion of phosphate adsorption between domains and for desorption of phosphate from 189 

goethite (Torrent et al., 1990; Strauss et al., 1997). The slow and even irreversible desorption 190 

for phosphate are attributed to slow rediffusion out of micropores, to the formation of inert, 191 

binuclear surface complexes, and to the affinity making goethite crystals into aggregates 192 

(Atkinson et al., 1972; Anderson et al., 1985). 193 

 194 

The adsorption of chromate and arsenate/arsenite is also widely investigated due to their 195 

toxicity to humans (Abdel-Samad and Watson, 1997; Fendorf et al., 1997; Manning et al., 196 

1998; Gao and Mucci, 2001; Rietra et al., 2001a; Gräfe et al., 2004; Lakshmipathiraj et al., 197 

2006; Luengo et al., 2007; Zhang et al., 2007; Grafe et al., 2008; Amstaetter et al., 2009; 198 

Dimirkou et al., 2009; Catalano et al., 2011; Das et al., 2011; Guo et al., 2013a; Wang et al., 199 

2013). The chromium XPS signal indicated that initially a small amount of chromium adsorbs 200 

in the Cr3+ oxidation state via a redox reaction, but that the large majority of chromium 201 

remains in the Cr6+ oxidation state (Abdel-Samad and Watson, 1997). As for the adsorption 202 

model, Fendorf et al. (Fendorf et al., 1997) gave a detailed account that chromate or arsenate 203 

retention on goethite is due to a monodentate complex at very low coverage, both the 204 

monodentate and bidentate complexes at intermediate coverage, and predominantly the 205 
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bidentate complexes at very high coverage. It indicates that the adsorption model for both 206 

chromate and arsenate is strongly dependent on the surface coverage. In case of the effect of 207 

pH, it is different for arsenate and arsenite. Arsenite adsorption increases with increasing pH, 208 

as compared to low pH which improves the adsorption of arsenate. Lakshmipathiraj et al. 209 

(Lakshmipathiraj et al., 2006) reported the adsorption amount of goethite to arsenate 210 

decreased from 4.7 to 1.1 mg·g-1 as the pH increased from 5 to 8. Additionally, competitive 211 

adsorption on goethite also has been the subject of much research because the competitive 212 

adsorption results at least to some extent, affects the bioavailability of nutrients and 213 

immobilization of toxic chemicals, such as the competitive adsorption between phosphate and 214 

sulfate/arsenate (Geelhoed et al., 1997b; Gao and Mucci, 2003).  215 

 216 

The adsorption of goethite for other anions was also studied including silicate, chloride, 217 

fluoride and sulphate, and others, which reveals the universality of goethite adsorption. The 218 

adsorption capacity and strong affinity of goethite to these adsorbates confirmed the 219 

significance of goethite at least on their transport in environments.  220 

 221 

 222 

Table 1. List for inorganic anion adsorption on goethite 223 

Inorganic anions References 

Silicate  (Hingston et al., 1967) 

Selenite /Selenate  (Hingston et al., 1968; Manceau and Charlet, 1994; 

Saeki and Matsumoto, 1998; Rietra et al., 2001a; 

Das et al., 2013) 

Phosphate  (Atkinson et al., 1972; Parfitt et al., 1975; Sigg and 

Stumm, 1981; Geelhoed et al., 1997a; Geelhoed et 

al., 1997b; Strauss et al., 1997; Venema et al., 

1997; Geelhoed et al., 1998; Barrow, 1999; 

Nowack and Stone, 1999b; Li and Stanforth, 2000; 

Gao and Mucci, 2001; Dideriksen and Stipp, 2003; 

Gao and Mucci, 2003; Ler and Stanforth, 2003; 

Gimsing et al., 2004; Lin et al., 2004; Wang and 

Xing, 2004; Antelo et al., 2005; Chitrakar et al., 
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2006; Nowack and Stone, 2006; Cheng et al., 

2007; Luengo et al., 2007; Rahnemaie et al., 2007; 

Kim et al., 2011) 

Fluoride  (Hingston et al., 1972; Sigg and Stumm, 1981; 

Hiemstra and Van Riemsdijk, 2000) 

Chloride  (Hingston et al., 1972) 

Sulphate  (Hingston et al., 1972; Sigg and Stumm, 1981; 

Geelhoed et al., 1997a; Geelhoed et al., 1997b; 

Peak et al., 1999; Rietra et al., 1999; Rietra et al., 

2001a; Juang and Wu, 2002; Beattie et al., 2008) 

Silicate  (Sigg and Stumm, 1981; Kersten and Vlasova, 

2009) 

Arsenate/Arsenite/Arsenic (Grossl and Sparks, 1995; Fendorf et al., 1997; 

Matis et al., 1997; Manning et al., 1998; Gao and 

Mucci, 2001; Liu et al., 2001; Waltham and Eick, 

2002; Gao and Mucci, 2003; Gräfe et al., 2004; 

Antelo et al., 2005; Gräfe and Sparks, 2005; Dixit 

and Hering, 2006; Lakshmipathiraj et al., 2006; 

Giménez et al., 2007; Luengo et al., 2007; Sahai et 

al., 2007; Stachowicz et al., 2007; Grafe et al., 

2008; Luxton et al., 2008; Stachowicz et al., 2008; 

Asta et al., 2009; Dimirkou et al., 2009; Hartzog et 

al., 2009; Catalano et al., 2011; Mamindy-Pajany 

et al., 2011; Wang et al., 2013) 

Chromate (Abdel-Samad and Watson, 1997; Fendorf et al., 

1997) 

Carbonate  (Hiemstra et al., 2004; Rahnemaie et al., 2007) 

 224 

3.2 For organic compounds and organic acids 225 

 226 

Table 2 displays the list of goethite adsorption of organic compound and organic acid. 227 

The adsorption/desorption behavior of water-soluble organics on goethite has been 228 

researched for several decades due to its significance on the transport and transformation of 229 
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organic compounds in soil and groundwater as well as the use of surfactants in the flotation 230 

of minerals (Tejedor-Tejedor et al., 1992). Therefore, this overview summarizes the 231 

adsorption behavior of fulvic acid, humic acid and glycophosphate, etc. on goethite. 232 

Generally, adsorption of organic on goethite is usually dominated by electrostatic effects, 233 

although ligand exchange and hydrogen bonding may also be involved (Cornell and 234 

Schwertmann, 2003).  235 

 236 

Totally, organic compound adsorption on goethite usually depends on the solution pH, 237 

chemical composition of organic matter, ionic strength, composition of cation in solution. As 238 

for pH, solution pH<PZC will benefit the increase of adsorption capacity, and vice versa. 239 

Example is the decrease of the adsorption of lactate, tartrate and citrate with increasing pH 240 

(Cornell and Schindler, 1980). Moreover, low pH favors the inner-sphere surface complex at 241 

least for oxalate and malonate (Persson and Axe, 2005). Fu et al. (Fu and Quan, 2006) found 242 

the inner-sphere surface complex of fulvic on goethite which is consistent with the previously 243 

reported (Filius et al., 2000) which revealed a inner-sphere in low pH in contrast a out-sphere 244 

in high pH. In contrast, acetate, benzoate, and cyclohexanecarboxylate got a out-sphere 245 

surface complex as can be seen in the report (Norén and Persson, 2007). To the best of our 246 

knowledge, the adsorption model for organic also has a little difference, which has been 247 

widely researched using diffuse reflectance infrared Fourier transform, attenuated total 248 

reflectance Fourier transform infrared, X-ray photoelectron spectroscopy, atomic force 249 

microscopy, Extended X-Ray Adsorption Fine Structure, etc. Barja et al. (Barja and dos 250 

Santos Afonso, 2004) reported two predominating complexes where the phosphonate group 251 

in glyphosate or aminomethylphosphonic acid (a product of biodegradation of glyphosate ) 252 

bonds monodentately or bridges bidentately to the surface of iron oxide in an inner sphere 253 

mode, while the carboxylate and amino group are noncoordinated to the surface.  As for the 254 

adsorption model, different authors had different results for the same organic. Using citrate as 255 

an example, Cornell et al. (Cornell and Schindler, 1980) supported a tridenate complex 256 

according to the results of IR; however, Filius et al. (Filius et al., 1997) supported a bidentate 257 

complex based on their modeling work. Besides, organic acids, such as humic acid, still can 258 

improve the adsorption capacity of goethite for other organic compounds. Lglesias and 259 

coauthors (Iglesias et al., 2010) found the adsorption amount of paraquat dramatically 260 

increased from 0.03 to 0.24 μmol·(m2)-1 as goethite was replaced by humic-coated goethite 261 

which was confirmed by Briganate et al. (Brigante et al., 2010) and later proposed the 262 
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adsorption mechanism. The same authors made another similar conclusion that humic-coated 263 

goethite favored the adsorption of MCPA ((4-chloro-2-methylphenoxy)-acetic acid, a kind of 264 

acid pesticide) at all concentrations of this pesticide. In addition, fulvic acid increased the 265 

adsorption of cadmium on goethite at low pH(<7) and decreased that at high pH(>7), and 266 

improved the adsorption of mercury within the whole pH interval (Bäckström et al., 2003). 267 

This adsorption, especially for natural organic matter (NOM), has another important 268 

significance in affecting the global carbon balance by protecting NOM from enzymatic 269 

oxidation to CO2 in soil and sediments. Goethite not only influences the transport of these 270 

organic/organic acid listed in the table below, but also passively affects their transformation 271 

by surface complexation.   272 

 273 

274 
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Table 2. List for organic compound and organic acid adsorption on goethite 275 

Organic/organic acid References 

Acetate (Sigg and Stumm, 1981; Norén and 

Persson, 2007) 

Benzoic/benzoate (Tejedor-Tejedor et al., 1992; Norén and 

Persson, 2007) 

Phenolic (Tejedor-Tejedor et al., 1992) 

Citrate  (Geelhoed et al., 1998; Barrow, 1999; 

Lindegren et al., 2009) 

Methylphosphonic Acid (Barja et al., 1999) 

Malonate  (Filius et al., 1999; Persson and Axe, 

2005; Axe et al., 2006) 

Phosphonate (Nowack and Stone, 1999a; Mustafa et 

al., 2006) 

Benzenecarboxylate/benzencarboxylic (Boily et al., 2000; Lindegren and 

Persson, 2010) 

Fulvic acid (Filius et al., 2000; Weng et al., 2005; Fu 

and Quan, 2006; Weng et al., 2006b) 

Humic acid (Saito et al., 2003; Weng et al., 2006a; 

Kang and Xing, 2008) 

Anthracene (Angove et al., 2002) 

Glyphosate  (Dideriksen and Stipp, 2003; Sheals et 

al., 2003; Barja and dos Santos Afonso, 

2004; Gimsing et al., 2004; Jonsson et al., 

2008) 

Aminomethylphosphonic Acid (Barja and dos Santos Afonso, 2004) 

Oxalate  (Persson and Axe, 2005; Axe et al., 2006) 

Mellitic acid  (Angove et al., 2006) 

Bisphenol A (BPA) (Shareef et al., 2006) 

17α-ethynylestradiol (EE2) (Shareef et al., 2006) 

Estrone (E1) (Shareef et al., 2006) 

Molybdate (Xu et al., 2006a, b) 

Tetrathiomolybdate (Xu et al., 2006a) 
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1-hydroxy-2-naphthoic acid (Hanna and Carteret, 2007) 

Silicic acid (Hiemstra et al., 2007) 

Fipronil (Miranda Masutti and Mermut, 2007) 

Ciprofloxacin (Trivedi and Vasudevan, 2007; 

Carrasquillo et al., 2008) 

p-Arsanilic Acid (Depalma et al., 2008) 

Polycyclic aromatic hydrocarbon (Tunega et al., 2009) 

Paraquat (Brigante et al., 2010) 

2-Ketogluconate (Journey et al., 2010) 

Glucose  (Olsson et al., 2011) 

Methylene Blue (Nassar and Ringsred, 2012) 

Catechol (Yang et al., 2012) 

Tylosin  (Guo et al., 2013b) 

Sulfamethazine  (Guo et al., 2013b) 

 276 

3.3 For cations 277 

 278 

Table lists the cations adsorption on goethite. On the whole, the possibility of adsorption 279 

on goethite to these mentioned metal ions have been documented and the strength of some of 280 

them on goethite decreases in the order: Cu>Pb>Zn>Cd>Co>Ni>Mn (Grimme, 1968; Gerth 281 

and Brümmer, 1983). Cation adsorption may be suppressed as the ionic strength increases 282 

and generally this is considered as an out-sphere adsorption (R-O-M, M presents the cations, 283 

R denotes the bulk), although it may be also the result of ion pairing in solution. Moreover, 284 

the affinity of cations for goethite is strongly dependent on the temperature of the system and 285 

on the time allowed for adsorption (Bruemmer et al., 1988). It was proposed that the process 286 

involved rapid adsorption on the external surface surfaces of crystals followed by slow 287 

diffusion into the internal sites, possibly along the domain boundaries, with finally, 288 

adsorption on internal sites (Cornell and Schwertmann, 2003). Hu et al. (Hu et al., 2010) 289 

investigated the effect of adsorption temperature, pH and ionic strength on the adsorption of 290 

radionickel on goethite. The results showed that the adsorption of Ni2+ was strongly 291 

dependent on the pH, ionic strength and temperature, indicating high temperature and high 292 

pH, low ionic strength favored the increase of Ni2+ adsorption. Still, the adsorption of Ni2+ 293 

was dominated by out-sphere surface complex at low pH in contrast to the inner-sphere at 294 
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high pH. Desorption is unavoidable after desorption, which depends on the types of metal and 295 

surface complexes formed. For example, Pb2+ can desorb completely from goethite whereas 296 

Cu, Zn, Cd, Ni and Co displayed hysteresis and Al as well as Np showed a extremely slow 297 

desorption (Padmanabham, 1983a, b; Lövgren et al., 1990; Tinnacher et al., 2011). The slow 298 

desorption should be ascribed to the inner-sphere surface complex and high affinity between 299 

metal and goethite. Besides, ternary adsorption, usually formed in the presence of anions and 300 

organic acids, also devotes a lot for the slow desorption of adsorbed metal ions. Fulvic acid 301 

can improve the adsorption of mercury and cadmium, citric acid and tartaric acid (at low 302 

concentration<1.0 mM) increased the adsorption of Cd2+ onto goethite (Huang et al., 2010). 303 

Fulvic acid and phosphate enhanced the adsorption of Th4+ was also confirmed (Yan et al., 304 

2011). Perelomov et al. revealed the final Cu2+ adsorbed/Pb2+ adsorbed molar ratio was 1.58 305 

in the absence of oxalic acid but greater than 2 in the presence of the organic ligand. 306 

Furthermore, most of previous investigations have suggested that humic substance promoted 307 

the adsorption of metal ions at low pH, such as the report of Ali et al. (Ali and Dzombak, 308 

1996). The increase of adsorption was attributed to the adsorption of anions/organic acid on 309 

the mineral surface followed by the interaction of heavy metal ions with modified surface and 310 

generally formed ternary adsorption. Therefore, goethite is playing an important role in the 311 

water/particles system on the adsorption/desorption of metal ions, which is also affected in 312 

the presence/absence of natural organic matter, such as humic acid and fulvic acid. 313 

 314 

Table 3. List for cation adsorption on goethite 315 

Cation  References 

Cd2+ (Forbes et al., 1976; Angove et al., 1999; Buerge-Weirich et 

al., 2002; Wang and Xing, 2002; Bäckström et al., 2003; 

Buerge-Weirich et al., 2003; Mustafa et al., 2004; Wang and 

Xing, 2004; Mustafa et al., 2006; Dimirkou et al., 2009; 

Swedlund et al., 2009) 

Co2+ (Forbes et al., 1976; Angove et al., 1999) 

Cu2+ (Forbes et al., 1976; Grossl and Sparks, 1995; Kooner et al., 

1995; Ali and Dzombak, 1996; Rodda et al., 1996; Robertson 

and Leckie, 1998; Buerge-Weirich et al., 2002; Juang and Wu, 

2002; Buerge-Weirich et al., 2003; Sheals et al., 2003; Lin et 

al., 2004; Huerta-Diaz, 2006; Jonsson et al., 2006; Grafe et al., 
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2008; Weng et al., 2008; Swedlund et al., 2009; Perelomov et 

al., 2011) 

Pb2+ (Forbes et al., 1976; Kooner et al., 1995; Abdel-Samad and 

Watson, 1998; Kraemer et al., 1999; Kovačević et al., 2000; 

Ostergren et al., 2000a; Ostergren et al., 2000b; Villalobos et 

al., 2001; Glover et al., 2002; Wu et al., 2003; Orsetti et al., 

2006; Garman et al., 2007; Swedlund et al., 2009; Perelomov 

et al., 2011) 

Zn2+ (Forbes et al., 1976; Kooner et al., 1995; Kosmulski et al., 

2003; Gräfe and Sparks, 2005; Xu et al., 2006c; Wang et al., 

2008; Perelomov et al., 2011) 

Ca2+ (Ali and Dzombak, 1996; Rietra et al., 2001b; Kosmulski et 

al., 2003; Weng et al., 2005; Weng et al., 2008) 

Cd2+ (Davis and Upadhyaya, 1996; Venema et al., 1996; Collins et 

al., 1999a; Glover et al., 2002; Granados-Correa et al., 2011) 

Cr6+ (Villalobos et al., 2001) 

Ni2+ (Buerge-Weirich et al., 2002; Buerge-Weirich et al., 2003; Xu 

et al., 2006c; Marcussen et al., 2009) 

Hg2+ (Collins et al., 1999b; Bäckström et al., 2003) 

Sr2+ (Sahai et al., 2000) 

U6+ (Giammar and Hering, 2001; Villalobos et al., 2001; Missana 

et al., 2003; Cheng et al., 2004; Cheng et al., 2007; Sherman et 

al., 2008; Guo et al., 2009; Yusan and Erenturk, 2011; Singh et 

al., 2012) 

V5+ (Peacock and Sherman, 2004) 

Sb3+/Sb5+ (Leuz et al., 2006; Watkins et al., 2006; Martínez‐Lladó et 

al., 2008) 

Ga3+ (Persson et al., 2006) 

Ge4+ (Pokrovsky et al., 2006) 

Se4+/Se6+ (Rovira et al., 2008) 

Np5+ (Tinnacher et al., 2011) 

Th4+ (Yan et al., 2011) 

Nd3+ (Armstrong and Wood, 2012) 
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 316 

3.4 For gases 317 

Goethite was seldom used as a gas adsorbent. On the other hand, various gases were 318 

often utilized as probe molecules and provide information about the surface properties, such 319 

as surface acid-base nature and surface adsorption sites. Russell et al. (Russell et al., 1975) 320 

reported the CO2 is strongly adsorbed as CO3
2- on moist goethite surface, but as both CO3

2- 321 

and HCO3
- on dry surfaces. The adsorbed carbonate played a role in redistributing surface 322 

charge and similar role was proposed to extent to other anions such as phosphate. Afterward, 323 

infrared spectra were recorded of pyridine, acetic acid, nitric acid and trimethylchlorosilane 324 

adsorbed on the surface of goethite, which confirmed the relationship between the adsorption 325 

characteristic and the surface Lewis acid sites of goethite (Rochester and Topham, 1979a). 326 

Furthermore, NO was demonstrated to be adsorbed more strongly than SO2 and CO2 and NO 327 

can displace previously adsorbed SO2 and CO2 from the surface of goethite (Ishiwaka and 328 

Inouye, 1983). The adsorption of SO2 and NO on the surface of the goethite increased the 329 

electrical conductivity which accelerated atmospheric corrosion of steel (Kaneko and Inouye, 330 

1981; Kaneko and Matsumoto, 1989; Baltrusaitis et al., 2007). The bright side is the potential 331 

application as a catalyst or catalyst carrier for selective catalytic reduction (SCR) to be 332 

determined in future, which is being investigated by our research group. Recently, Simonetti 333 

et al. investigated the electronic structure of S and H2S adsorbed on the goethite (110) surface 334 

by AESD-MO cluster calculations (Simonetti et al., 2006; Simonetti et al., 2007). The results 335 

showed that S-H(goethite) is the major interaction for S and H2S, indicating hydrogen bonding 336 

contributed the interaction between S and H2S and goethite. Although goethite has not been 337 

researched as adsorbent or catalyst for sulfide at present, it is presumed this will attract much 338 

attention on desulfurization and denitrification in industries due to goethite affinity to N-339 

containing and S-containing gases. The significance of goethite in the environment still 340 

embodies the immobilization of dissolved goethite to generated CO2. Yao et al. (Yao et al., 341 

2013) investigated the effect of goethite on the release of methane in the anaerobic 342 

biochemical system consisted of dissimilar iron-reducing bacteria and methane-producing 343 

bacteria. The results indicated that the maximum cumulative production of methane was 344 

brought forward by 60 to 78 d in the presence of goethite and CO2 was decreased by 30 to 345 

67% compared with that without goethite.  346 

 347 

4. Catalysts 348 

http://dict.cn/desulfurization%20and%20denitrification
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Except for the adsorption of anions, organics and organic acid, cations and gases, 349 

goethite still decomposes or catalytic decomposition of some contaminants in the absence and 350 

presence of hydrogen peroxide and/or UV radiation. Recently, Han et al. first reported that 351 

aqueous goethite can generate singlet oxygen and hydroxyl radical under room light and 352 

aeration conditions investigated using spin-trapping electron paramagnetic resonance and 353 

H2O2 can improve the generation of both reactive species (Han et al., 2011). Table 4 lists the 354 

references on the application of goethite as a catalyst. The main mechanism for catalytic 355 

reactions involved the generation of hydroxyl radicals both directly or indirectly. Like the 356 

adsorption of goethite to organics, the catalysis behavior is also strongly dependent on the 357 

solution pH. As a catalyst, goethite was seldom researched before the 21th century. 358 

Hydroquinone can be converted into quinine in the presence of finely divided goethite in 359 

slightly acid solutions (Shindo and Huang, 1984). Cunningham et al. (Cunningham et al., 360 

1988) reported benzoate, oxalate, and succinate adsorbed goethite in slightly acid solution 361 

were degraded under in the presence of UV and revealed the reaction mechanism by 362 

detecting the products of Fe2+ and ·OH. In the recent decade, increasing attention was paid to 363 

this kind of natural phenomenon and potential environmental application related to goethite 364 

due to its special surface properties, such as large surface area and high surface hydroxyl 365 

content. Muruganandham et al. (Muruganandham and Wu, 2007) investigated the 366 

decomposition of dissolved ozone in the presence of granular goethite to reduce the residual 367 

ozone in treated water and the decomposition of ozone increased from 53.2 to 98% as the 368 

goethite loading increased from 2 to 30 g·L-1. The results indicated granular goethite is a 369 

promising catalyst for the decomposition of ozone in aqueous medium. Oxalate and salicylate 370 

have a competitive adsorption on goethite, however, the existence of oxalate improved the 371 

photodegradation of salicylate by reacting with goethite producing OH radicals (Krýsa et al., 372 

2011). BPA also can be degraded by goethite suspensions and acidic solutions accelerated the 373 

reaction, which implies goethite may play a crucial role in the abiotic attenuation of BPA in 374 

the natural environment (Lin et al., 2012). A direct evidence for the significance of goethite 375 

in environment is the photooxidation of arsenite to lowly toxic arsenate in the natural goethite 376 

suspension. In addition, improved oxidation will substantially occur in the presence of 377 

hydrogen peroxide and/or UV radiation in the presence of goethite. Lu et al. (Lu, 2000) 378 

reported the 2-chlorophenol can be decomposed with hydrogen peroxide catalyzed by 379 

goethite and the oxidation rate increased with the decrease of goethite particle size. He et al. 380 

(He et al., 2005) found that aromatic compounds could undergo rapid decomposition and 381 
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mineralization (even to 100% yield) in the presence of both a-FeOOH and H2O2 under UV 382 

irradiation, and the degradation rates of the organics were related to their sorption ability of 383 

the surface of a-FeOOH and were in the following order: salicylic acid≈m-hydroxylbenzoic 384 

acid > p-hydroxylbenzoic acid ≈ benzoic acid > p-biphthalic acid > phenol > benzenesulfonic 385 

acid. The results imply the role of goethite in the transportation and photochemical processes 386 

of NOM in the natural environment. Not only UV, but also ultrasonic irradiation can enhance 387 

the catalytic activity of goethite-H2O2 system. The decoloration of dye was strongly 388 

enhanced by ultrasonic irradiation on Fenton-like process, namely goethite-H2O2 system, 389 

based on the research of Muruganandham et al. (Muruganandham et al., 2006). The similar 390 

result can be found in the report (Wu et al., 2012) indicating goethite surfaces catalysed a 391 

Fenton-like reaction responsible for the decolorizing of azo dye Orange G. Furthermore, 392 

goethite still can catalyze ozonation. Zhang et al. (Zhang and Ma, 2008) reported that 393 

catalytic ozonation with goethite can substantially enhance nitrobenzene decomposition 394 

compared with ozonation alone. It is speculated this phenomenon is closely related to the 395 

decomposition of dissolved ozone in goethite suspension as is mentioned above.  396 

 397 

Table 4. List for the catalytic reaction 398 

Reactant References  

N-butyl chloride (Lin and Gurol, 1996) 

2-chlorophenol (Lu, 2000; Lu et al., 2002) 

2,6-dimethylphenol (Mazellier and Bolte, 2000) 

3,4-dihydroxybenzoic acid (Andreozzi et al., 2002a) 

1,2-benzenediol (catechol) (Andreozzi et al., 2002b) 

2-aminophenol  (Andreozzi et al., 2002b) 

2,3-dihydroxybenzoic acid (Andreozzi et al., 2002b) 

Disinfection Byproducts (Chun et al., 2005) 

Aromatic compounds (He et al., 2005) 

4-chloronitrobenzene (Chun et al., 2006) 

Trichloronitromethane (Chun et al., 2006) 

Direct Orange 39 (DO39) azo dye (Muruganandham et al., 2006) 

Polyethylene (Liu et al., 2009) 

C.I. Acid Orange 7 (Zhang et al., 2009) 
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Bisphenol A (Lin et al., 2012) 

Trimethyl Phosphate (Mäkie et al., 2012) 

Triethyl Phosphate (Mäkie et al., 2012) 

Azo dye Orange G (Wu et al., 2012) 

Oxalate  (Krýsa et al., 2011) 

 399 

5. Effect of Al substitution 400 

Goethite has a similar structure with diaspore and the 6-fold coordinated Fe has been 401 

demonstrated to be replaced usually by Al, Co, Mn, Cr, Ni, etc., among which the 402 

substitution of Al for Fe was well documented and was also demonstrated to occur in natural 403 

goethite (Norrish and Taylor, 1961; Mendelovici et al., 1979; Fitzpatrick and Schwertmann, 404 

1982; Cornell and Schwertmann, 2003). In addition, Al-substituted goethite can also be 405 

synthesized easily in the laboratory. The Al substitution for Fe significantly affects the 406 

physicochemical properties, which has been studied by many researchers using different 407 

modern techniques, such as XRD, TG/DTG/DTA, TEM, IR, SEM, Mössbauer spectra, etc. 408 

(Golden et al., 1979; Mendelovici et al., 1979; Fey and Dixon, 1981; Goodman and Lewis, 409 

1981; Fysh and Fredericks, 1983; Schulze, 1984; Schulze and Schwertmann, 1984; Schulze 410 

and Schwertmann, 1987; Schwertmann and Murad, 1990; Ruan and Gilkes, 1995; Scheinost 411 

et al., 1999; Ruan et al., 2002; Blanch et al., 2008; Morozov and Vasil’ev, 2010; Liu et al., 412 

2012b; Liu et al., 2012c). Ainsworth et al. (Ainsworth and Sumner, 1985; Ainsworth et al., 413 

1985) postulated that the occurrence of Al substitution for Fe in the structure of goethite may 414 

sterically hinder the sorption of phosphate on goethite, although the substitution increased the 415 

specific surface area and improved the isotopic exchange rates. However, in recent years, Al-416 

substituted-goethite also exhibited higher specific surface area and higher adsorption capacity 417 

for Cu, Zn and Cd ions compared to pure goethite (Spathariotis and Kallianou, 2007). The 418 

results were similar with the current report indicating the presence of structural Al in the 419 

goethite enhanced considerably the As uptake capacity and also decreased the mobilization of 420 

Fe and As adsorbed as the substitution amount increased. However, whether the increased 421 

specific surface area or the substitution of Al for Fe improved the adsorption capacity is still 422 

not confirmed since the substitution of Al generally favors the increase of surface area.  423 

 424 

6. Conclusions and summary 425 
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As is mentioned above, goethite has an isostructure with diaspore. However, it generally 426 

has a size in nanometers in width and several microns in length, which presumably results in 427 

the large specific surface area. Combining with the abundant surface hydroxyl groups, 428 

goethite is playing an important role in the transport and transformation of nutrients and 429 

contaminants containing anions, organic/organic acid (including soil organic carbon), cations 430 

and some gases. The adsorption of goethite to nutrients can decrease their loss; the adsorption 431 

to heavy metals can reduce their concentration in aqueous solution; the adsorption to soil 432 

organic carbon can reduce the release of carbon from soil, which at some degree can fix 433 

carbon. Although these gases were selected as probe molecule to characterize the surface 434 

properties of goethite, the results still displayed a selective adsorption of goethite to NO 435 

compared with SO2 and CO2. As for other nutrients and contaminants, goethite showed a 436 

good affinity by non-specific adsorption, specific adsorption (ligand exchange) and ternary 437 

adsorption. Non-specific adsorption, in general, occurs for the ions which have specific 438 

affinity for the metal atoms of the surface, e.g. NaNO3, and then was absorbed by 439 

electrostatic interaction. Specific adsorption frequently happened for organic/organic acid by 440 

surface complexation (inner-sphere complexation), such as phosphate and citrate, while 441 

ternary adsorption generally takes place for the mixture of organic/organic acid and cations 442 

where cations were adsorbed by the linkage of organic/organic acid. Basically, all the 443 

adsorption is strongly dependent on the solution pH. In addition, goethite surfaces showed 444 

preferential adsorption of P-containing and high molar mass organic solutes, but not of N-445 

containing compounds. The strength of surface affinity of goethite to metals generally 446 

decreases in the order: Cu>Pb>Zn>Cd>Co>Ni>Mn.  447 

 448 

According to the overview, goethite has a crucial significance in the natural environment. 449 

Based on the property, recently, natural goethite and synthetic goethite were also researched 450 

as catalyst carrier and precursor of nano zero valent iron (NZVI) for treatment of aqueous 451 

contaminants in our group. Liu et al. (Liu et al., 2012a) investigated the effect of carrier 452 

(natural goethite, synthetic goethite and palygorskite) on catalytic cracking of biomass tar, 453 

which indicated that goethite as a carrier had the best catalytic reactivity. Afterward, natural 454 

goethite was selected to prepare NZVI to remove nitrite and nitrate and compared with the 455 

ordinary iron powder, which also presented the natural goethite as a precursor had a good 456 

reactivity in decomposition of nitrite and nitrate (Liu et al., 2012d). This year, NZVI prepared 457 

by reducing natural goethite in hydrogen was considered to remove phosphate and p-458 
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nitrophenol (PNP). This kind of NZVI displayed good adsorption efficiency and reduction 459 

efficiency, respectively, and the former is in the process of under review and the latter is 460 

being completed. In addition, the role of goethite in accelerating the generation of methane 461 

and hindering the production of CO2 in anaerobic decomposition of organics was confirmed. 462 

Therefore, goethite is really playing a crucial role in the transport and transformation of 463 

anions, organic/organic acid, cations and gases in environments. Furthermore, the 464 

significance of goethite is presumably to be expanded based on the inherent properties, such 465 

as large specific surface area and abundant hydroxyl groups in the bulk as well as on the 466 

surfaces. Goethite as the precursor of nano-hematite, nano-magnetite and NZVI is being or 467 

going to be considered in the future. 468 

 469 

470 
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Fig. 1. (010) plane of goethite (top) polyhedral framework and (bottom) ball and stick 1020 
model 1021 
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