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Abstract  

The molecular conformation and mobility of the intercalated surfactant molecules, 

cetyltrimethylammonium bromide (CTMAB), have been studied using Fourier transform IR spectroscopy 

(FTIR) and high-resolution single-pulse 13C magic-angle-spinning nuclear-magnetic-resonance (13C SP 

MAS NMR) spectroscopy. Conformation and mobility of alkyl chains was found to be a function of the 

surfactant concentration. The splitting of the methylene scissoring mode at 1473-1463 cm-1 and the 

rocking mode at 730-720 cm-1 in FTIR is considered to be diagnostic of the packing density increase of the 

intercalated surfactants within the clay gallery. Compare with the 13C SP MAS NMR spectrum of CTMAB 

in the bulk state, 1~ 3 ppm upfield chemical shifts for end-methyl (δC16) and methylene (δC15, δC2-14) of 

the intercalated surfactant molecules in the hybrids indicate the more free conformational situation. For 

these hybrids, the conformational freedom decrease with the increase of surfactant concentration. In 

addition, ~2 ppm downfield shift for the C1 carbon atom in the hybrids with higher surfactant content 

suggests a special local environment. This study demonstrates the different mobility of carbon atoms in the 

intercalated alkyl chain. 
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1. Introduction 

In the past twenty years, much interest has been focused on the behavior and properties of the 
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surfactant/clay hybrids. These hybrids are synthesized through intercalating surfactant molecules into the 

phyllosilicate interlayers. Among these phyllosilicates, montmorillonite has been extensively investigated 

as host due to its excellent properties such as cationic exchangeability, swelling behavior, sorption 

properties, and large surface area. Montmorillonite has a kind of “sandwiched” structure and the clay layer 

was negatively charged, which is counterbalanced by exchangeable cations in the galleries between layers. 

The surfactant cations intercalated into interlayer though exchange reaction formed the “ultrathin film” or 

“organic phase” within the gallery. The behavior and properties of the hybrids strongly depend on the 

structure and molecular environment of the intercalated surfactant cations [1]. 

The most widely used technique to characterize the surfactant/clay hybrids is X-ray diffraction (XRD), 

which gives the basal d spacing of the hybrids. However, XRD does not provide the detailed information 

about the local conformation and phase state of the intercalated surfactants. This information is critical for 

understanding the effectiveness of the surface treatment and the role in the formation of organoclays based 

nanocomposites [2]. The detailed information about the interlayer structure and phase state of 

alkylammonium in silicate interlayer was firstly obtained by using FTIR [3]. Their results revealed that the 

frequency shift of the CH2 stretching and scissoring vibrations was a function of interlayer packing density, 

chain length, and temperature. In addition, a wide range of molecular environments varying from solidlike 

to liquidlike was found for the first time. Recently, the conformation of alkylammonium confined in clay 

interlayer space was extensively studied by techniques of differential scanning calorimetry [1], Raman [4] 

and NMR [5, 6]. These results suggest that the conformation ordering of the intercalated surfactants 

strongly depends on the loading amount of amine and their orientation. The ordered (all-trans) 

conformation would be predominant when amine chains radiate away from the clay surface with the 

increase of amine concentration [7-9]. More recently, molecular modeling provided some critical 

information about the structure of organic clay and interaction of surfactant-clay and surfactant-surfactant 

[10], which was not elucidated by previous experimental results.  

MAS NMR has been proved to be a powerful technique to probe the local environments of atoms in 

materials. However, previous reports paid the most attention on backbone of alkyl chain (C2-14) to 

elucidate the conformation of the intercalated surfactants [7,8,11] because of their strong and distinct 

resonance peak, and no attention was paid on the end-group, C1, C15 and C16, which are critical to the 

conformation and mobility of the intercalated surfactants.  

In this study, 13C SP/MAS NMR study, combining with FTIR, is performed on all carbon atoms in the 
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alkyl chain, to probe their local environment and mobility. Our present study provides some new insights 

about the conformation and dynamic properties of the intercalated alkylammonium ions and their 

conformation and phase state of organic surfactant in montmorillonite interlayer. It is of high importance 

to understanding the microstructure of surfactant/clay hybrids. 

 

2. Materials and methods 

 

2.1 Materials 

Montmorillonite (HM) was obtained from Hebei province, China. The sample was purified by 

sedimentation and the <2 μm fraction was collected and dried at 90 °C. The sample was ground to 200 

mesh and sealed in a glass tube for use. The cation exchange capacity (CEC) was 57.9 meq/100g. Its 

structural formula is [Na0.05Ca0.18][Al1.58Fe0.03Mg0.49][Si3.77Al0.23]O10(OH)2 · nH2O.The surfactant used in 

this study is cetyltrimethylammonium bromide (CTMAB) with a purity of 99%. Na2CO3, C.P.. 

 

2.2 Preparation of CTMAB-montmorillonites 

 

Before the synthesis of surfactant/montmorillonite, the montmorillonite was made into sodium 

montmorillonite (Na-Mont). The preparation of Na-Mont was carried out by the following procedure: 10g 

amount of a mixture of montmorillonite and Na2CO3 in the ratio 94: 6 was added to 100 ml of deionized 

water and stirred at 80 °C for 3 h. Na-Mont was collected by centrifugation and washed with deionized 

water until the pH of the solution was 7. The Na-Mont was dried at 90°C, ground to 200 mesh and kept in 

a sealed bottle. 

The syntheses of CTMAB–montmorillonite hybrids were performed by the following procedure: 2.5 g 

amount of Na-Mont was first dispersed in about 300 ml of deionized water and then a desired amount of 

CTMAB was slowly added. The concentration of CTMAB varied from 0.2 to 5.0 of the CEC of 

montmorillonite. The reaction mixtures were stirred for 10 h at 80 °C. All products were washed free of 

bromide anions, dried at 90 °C and ground in an agate mortar to pass through a 200 mesh sieve. The 

CTMAB–montmorillonite hybrid prepared at a concentration of 0.2 CEC was denoted HM0.2CEC and the 

others were denoted in the same way. 

 



 5

2.3 Characterization methods 

 

IR spectra were recorded as KBr pellets in the spectral range 4000-300cm-1 on a Perkin-Elmer1725X 

FT-IR spectrometer in air at room temperature. 13C MAS NMR experiment was carried out with a Varian 

Infinity-Plus 400 NMR spectrometer with a 7.5 mm ZrO2 rotator at room temperature. Spectra were 

collected using a single-pulse (SP) excitation Blochdecay method with a 4.5 ms (90º) 13C pulse and a 

repetition delay of 70 s. Rotors were spun in air at 4.5 kHz. The 13C chemical shifts were referenced to 

tetramethylsilane at 0ppm. 

 

3. Results and discussion 

 

In our previous work [6,12], we used X-ray diffraction and 13C MAS NMR spectroscopy to investigate 

the arrangement model and conformation of the intercalated surfactant molecules within montmorillonite 

interlayer with different surfactant loading level. The XRD patterns indicate that the thickness of organic 

phase (gallery heights) changed from 0.52 to 3.07nm with the increase of surfactant packing density. The 

arrangement of the intercalated surfactants in the interlayer will vary from lateral-monolayer, to 

lateral-bilayer, then to paraffin-type monolayer and finally to paraffin-type bilayer. The small energy 

difference between the trans and the gauche conformers of the alkyl chains allows a great degree of 

conformational freedom for the alkyl chain tail of the surfactant, restricted only by the gallery dimensions. 

13C MAS NMR spectra display two main 13C NMR resonance peaks at ca. 30 and 33 ppm, corresponding 

to disordered and ordered conformers, respectively. Furthermore, the 13C MAS NMR demonstrates the 

coexistence of ordered and disordered conformers in the hybrids and the quantity of trans conformer of 

surfactant molecules increases with the increase of surfactant loading level. According to the literature [13], 

the interlayer organic phases were consist of domains of all trans chains and domains of disordered chains 

and have a liquid-like population of trans and gauche conformations. Therefore, it is reasonable to assume 

that there were several different organic phase states in the interlayer. Vibrational spectroscopies provide a 

powerful and quantitative local probe of the structure and dynamics in the alkylammonium chains [14], 

this will be help of us a molecular level understanding the microcosmic environment in the confined 

organic phase. 
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3.1 FTIR Spectroscopic Studies 

 

The FTIR spectra of CTMAB and surfactant-intercalated montmorillonites are shown in Figures 1 and 2. 

Figure 1 displays the C-H stretching vibration of the infrared spectrum (3300-2700 cm-1) of the 

CTMAB/Montmorillonite hybrids with different surfactant loading levels. The bands at ~2920 cm-1 and 

~2850 cm-1 correspond to CH2 asymmetric stretching mode (νas(CH2)) and symmetric stretching mode 

(νs(CH2)), respectively [8,15]. With the increase of the surfactant loading level and interlayer packing 

density, νas(CH2) shifts from 2926 to 2919 cm-1 and νs(CH2) shift from 2854 to 2850 cm-1 for the specimen 

from HM0.2CEC to HM5.0CEC (Table 1). The band shift from lower frequency to higher frequency 

means that the number of highly ordered (all-trans) conformers of alkyl chain decreases whereas guache 

conformers increases. This reflects that, with the increase of surfactant packing density, the “liquid-like” 

molecular environment of the intercalated surfactants change to solid-like environment [3].  

  Infrared spectra in the frequency region of 1480-1450 cm-1 and 740-710 cm-1 are shown in Figure 2(a, 

b). The methylene scissoring mode at 1480-1450 cm-1 and the rocking mode at 740-710 cm-1 are 

diagnostic of packing arrangements in alkyl chain assemblies [16, 17]. As shown in Figures 2 a and b, the 

FTIR spectra of HM0.2-1.0CEC display singlets at ca. 1470 and 720 cm-1, with a bandwidth of ca. 10cm-1. 

These broad singlets relate with either a liquidlike molecular environment and/or disordered hexagonal 

subcell packing, where the alkyl chain rotates freely around its long axis. However, these two singlets split 

into two peaks gradually with the increase of the intercalated surfactant packing density. This should be 

attributed to the interaction between contiguous CH2 groups of neighboring chains in an orthorhombic 

arrangement of alkyl chains [18], indicating the prominent change of the surfactant local environment. 

This is accordance with our previous XRD patterns [12]. Our XRD patterns demonstrated that the 

intercalated surfactants adopted a parallel arrangement in HM0.2-0.7CEC whereas a paraffin arrangement 

was adopted in HM1.0-5.0CEC. 

 

3.2 13C SP MAS NMR 

 

Detailed information regarding the structure and dynamics of surfactant molecules in the confined 

interlayer spaces of the hybrids has been obtained using 13C MAS NMR methods. The behavior of 

surfactant on the series sample of CTMAB-montmorillonites was compared with pure crystalline CTMAB 
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and surfactant solution. Figure 3 shows the solid single-pluse 13C MAS NMR spectra of crystalline 

CTMAB, CTMAB/montmorillonite hybrids and 13C NMR spectrum of CTMAB in solution. The liquid 

NMR spectrum of CTMAB was cited from literature [19], which was recorded in CDCl3 with a 0.1M 

concentration of CTMAB at 25 oC. The chemical shift δ (ppm) and their assignment are shown in Table 2. 

The numbering of the carbons, along with their assignments, is shown in Figure 3. The assignment is 

based on the previous report for crystalline CTMAB [20].  

For crystalline CTMAB, five carbon resonances, C16 (16.8 ppm), C15 (24.9 ppm), C2-14 (32.9 

ppm)(mixture of multi-peaks), C1 (64.5 ppm) and CN (55.1 ppm), were observed at the range of 0 and 80 

ppm.  

Normally, alkyl chains adopt all-trans conformation in the bulk state and gauche conformation in 

solution. For the 13C MAS NMR spectra of surfactant/montmorillonoite hybrids, the signals at 30-33 ppm, 

corresponding to the resonance of the methylene carbon atoms (C2-14) have been discussed in our previous 

article[6]. The ordering conformation of surfactant molecules within the gallery of montmorillonite 

strongly depends on their orientation and packing density. When alkyl chains oriented parallel to the 

silicate layers, the amount of all-trans conformer decreases with the increase of amine concentration. 

However, the amount of all-trans conformer increases with increase of amine concentration when amine 

chains radiate from the silicate layers. 

Besides the C2-14 resonance, we find that the resonance of C1, C15 and C16 also provide useful 

information about the ordering conformation and their local environment of the intercalated surfactants. In 

13C SP MAS NMR spectra (Figure 3), the signal of C1 locates at 64.5ppm for the crystalline CTMAB and 

at 66.9ppm for CTMAB in solution. However, the signal corresponding to C1 is indiscernible in the 

hybrids prepared at lower surfactant concentration whereas it is distinguished (66.2ppm) in 

HM2.0-5.0CEC. Its chemical shift is different from that of the crystalline CTMAB (64.5ppm), but similar 

to that of the CTMAB in solution (66.9 ppm), indicating that the local environment of the intercalated 

surfactants is similar to “liquid-like”. The resonances of other two carbon atoms, C15 and C16, shift 

downfield gradually with the increase of surfactant packing density, from 23.2 ppm to 24.5 ppm for C15 

and from 14.7 ppm to 15.7 ppm for C16 (see Table 2), respectively. Compared with the corresponding 

resonance peak of crystalline CTMAB, we can find that the chemical shifts of C15 and C16 become much 

closer to that of crystalline CTMAB with the increase of the packing density. The chemical shift variation 

of C15 (ΔδC15) between HM5.0CEC and crystalline CTMAB is 0.4 ppm while ΔδC16 is 1.1 ppm. This 
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reflects that, even in the sample HM5.0CEC with the most ordered conformation and highest surfactant 

loading level, the local molecular environment is different from that of the crystalline. Meanwhile, we can 

find that ΔδC16 is bigger than ΔδC15, indicating that there is much mobility for C16 than that for C15. This 

provides the supporting evidence for the proposal that the tail of alkyl chain is movable even in higher 

packing density of the intercalated surfactants [4]. This was consisted with the result of FTIR that there 

was a special phase state between solid and liquid in the interlayer even the highest concentration sample. 

But the mobility information about C1, C15 and C16 was absence in FTIR. Because of the little content of 

end-head carbon atoms in the totals carbon, and the FTIR provide an average estimate of asymmetric and 

symmetric of CH2 at range of 2920-2850cm-1, the special changes caused by C1, C15 and C16 cannot been 

distinguished from total information. 

The chemical shift of C2-14 from ~30 to ~33ppm is attributed to the change of gauche conformation to 

all-trans conformation [2, 20, 21]. However, there is little explanation about the chemical shift of C1, C15 

and C16. Comparison of chemical shift of C1 of crystalline CTMAB (δC1(crystalline)=64.5 ppm) with that of 

the hybrids with higher surfactant packing density (δC1=66.2ppm ) indicates that, contrary to the upfield 

shift for C15 and C16, the C1 adopts a downfield shift, indicating a “liquid-like” phase 

(δC1(solution)=66.9ppm). This may be attributed the following reasons. The angle between the axes of alky 

chain and head of alkylammonium cation (-N+-(CH3)3) is different from that for CTMAB in the bulk state. 

Previous studies have demonstrated that the arrangement of the intercalated surfactants strongly depends 

on the loading level of surfactants. In hybrids with higher surfactant packing density, the arrangement of 

paraffin model is formed by the head group anchoring on the silicate surface and the long alkyl chain 

radiate away from it. Two opposite interactions, attractive force to head of alkylammonium cation and 

repulsive force to alkyl chain from the silicate surface, and interaction between alkyl chains distort the 

surfactant molecule. This made the carbon atom C1, the “pivot” between the long alkyl chain and positive 

head (-N(CH3)3
+), located into a special molecular environment. The other possibility is that the local 

molecular environment of C1 is greatly affected by the loss of Br-, which is left in the solution during the 

ion exchange reaction. 

 

4. Conclusion   

 

Cetyltrimethylammonium bromide has been intercalated into the gallery of montmorillonite by 
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ion-exchange. The local environment of the intercalated CTMAB is different from those of CTMAB in 

bulk state and in solution. FTIR spectra demonstrate that CH2 stretching (3000-2800 cm-1), scissoring 

(1480-1450 cm-1) and rocking (740-710 cm-1) modes are diagnostic for the conformation of intercalated 

surfactants within the gallery. With the increase of stacking density, the singlets at 1480-1450 cm-1 

(scissoring mode) and at 740-710 cm-1 (rocking mode) split into doublets while the bands corresponding to 

CH2 asymmetric and symmetric stretching modes shift to ~2920 cm-1 and ~2850 cm-1, respectively. FTIR 

spectra demonstrate that the mobility of the intercalated surfactants even in higher surfactant packing 

density. 

Our 13C SP MAS NMR spectra provide detailed information about the local molecular environment and 

dynamic properties of the intercalated surfactants. Compared with that of crystalline CTMAB, the bigger 

variation of C16 chemical shift than that of C15 indicates the different mobility for the carbon atoms in the 

intercalated alkyl chain. This provides the supporting evidence for the proposal, concluded from FTIR, 

that the tail of alkyl chain is movable even in higher surfactant packing density. Contrary to the upfield 

shift for C15 and C16 with the increase of the surfactant packing density, C1 displays a downfield shift and 

its chemical shift is similar to that of CTMAB in solution, indicating a “liquid-like” phase. This reflects 

that there is no complete “solid-like” state for the intercalated surfactants. This study firstly demonstrates 

the different mobility of carbon atoms in the intercalated alkyl chain. It is of high importance to 

understanding the local molecular environment and dynamic properties of the surfactant modified clays.     
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Table 1   
Observed FTIR frequencies and their assignments of the CTMAB and CTMAB-Montmorillonite 

 
 

Wavenumber(cm-1) 
Sample 

νas(CH2) νs(CH2) 

HM0.2CEC 2926 2854 

HM0.5CEC 2922 2852 

HM0.7CEC 2921 2851 

HM1.0CEC 2920 2851 

HM1.2CEC 2919 2851 

HM1.5CEC 2919 2851 

HM1.7CEC 2919 2850 

HM1.9CEC 2919 2850 

HM2.0CEC 2919 2850 

HM2.2CEC 2919 2850 

HM3.0CEC 2919 2850 

HM5.0CEC 2919 2850 

CTMAB 2918 2850 
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Table 2 
13C δ (ppm) of surfactant in Bulk , Solution and CTMAB-Montmorillonite 
 

Chemical shift of different carbon atom δ(ppm) 
Sample 

CN C1 C2-14 C15 C16 

CTMAB (solution) 53.3 66.8 23.3~31.9* 22.7 14.1 

HM0.2CEC 55.1 - 33.0/30.2 23.2 14.7 

HM0.6CEC 55.1 - 33.3/30.6 23.6 14.7 

HM0.7CEC 55.1 - 33.7/30.1 23.0 14.6 

HM1.0CEC 55.1 - 33.1/30.5 23.5 15.0 

HM1.5CEC 55.1 - 33.0/30.6 23.4 15.0 

HM1.7CEC 55.1 - 33.0/30.5 23.5 14.7 

HM2.0CEC 55.1 - 33.3/30.9 24.2 15.4 

HM2.2CEC 55.1 66.2 33.2/31.1 24.3 15.5 

HM3.0CEC 55.1 66.2 33.3/31.3 24.6 15.6 

HM5.0CEC 55.1 66.2 33.3/31.3 24.5 15.7 

CTMAB (Solid) 55.1 64.5 32.9 24.9 16.8 
* multi peak 
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Fig. 1. FTIR spectra of CTMAB and CTMAB-Montmorillonite at region of 3300-2700cm-1 
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Fig. 2. FTIR spectra in the C-H stretching region of the CTMAB-Montmorillonite hybrids recorded at 
different surfactant loading level: (a) 1480-1450cm-1 range; (b) 740-710cm-1 range. 
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Fig. 3. 13C SP MAS NMR spectra of crystalline CTMAB and the CTMAB-Montmorillonite. The 

assignments along with the numbering of the carbon atoms are shown. The dotted lines are simply a guide 
for the eye. 


