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Abstract 

In this paper, the train scheduling problem is modelled as a Blocking Parallel-Machine Job-

Shop-Scheduling (BPMJSS) problem.  In the model, trains, single-track sections and multiple-track 

sections respectively are synonymous with jobs, single machines and parallel machines; and an 

operation is regarded as the movement/traversal of a train across a section.  Due to the lack of 

buffer space, the real-life case should consider blocking or hold-while-wait constraints, which 

means that a track section cannot release and must hold the train until next section on the routing 

becomes available.  Based on literature review and our analysis, it is very hard to find a feasible 

complete schedule directly for BPMJSS problems.  Firstly, a parallel-machine job-shop-scheduling 

(PMJSS) problem is solved by an improved Shifting Bottleneck Procedure (SBP) algorithm without 

considering blocking conditions.  Inspired by the proposed SBP algorithm,  Feasibility Satisfaction 

Procedure (FSP) algorithm is developed to solve and analyse the BPMJSS problem, by an 

alternative graph model that is an extension of the classical disjunctive graph models.  The proposed 

algorithms have been implemented and validated using real-world data from Queensland Rail.  

Sensitivity analysis has been applied by considering train length, upgrading track sections and 

increasing train speed.  The outcomes show that the proposed methodology would be a very useful 

tool for the real-life train scheduling problems.   

 

Keywords: blocking; parallel machine; job shop scheduling; train scheduling  
                             

 

 

 

1. Introduction  

 

The railway constitutes an important mode of transportation for both freight and passengers in 

many countries.  The railway industry is a capital intensive industry with large investment in 

equipment and employees.  In addition, operating a railway is a very complex decision-making 

process due to the need to schedule several hundred trains over thousands of kilometres distances.  

However, even a small percentage of improvement in the efficiency of the overall operation may 

bring significant financial return.  

Furthermore, Australia is the world’s largest coal exporting country.  Many large coal mining 

operations in Queensland mainly rely on rail network to transport coal from various mines to coal 

terminals at ports for shipment.  Over the last few years, due to the fast growing demand, the coal 

rail network is becoming one of the worst bottlenecks in rail industry.  In this context, the railway 

industry in Australia demands more new features in the planning and scheduling process and is 

keen to implement better modelling and solution techniques.  

                                                           

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Therefore, the current situation provides great incentives for pursuing better optimisation and 

control strategies for the operation of the rail transportation system.  By generating better rail 

schedules, it is possible to increase the utilisation rate of the rail network and reduce the 

transportation cost.  
 

 

2. Previous Research 

 

This paper aims to achieve a significant efficiency improvement in rail network on the basis of 

the development of modelling approaches, algorithms analysis, and solution techniques.  Some 

previous research in this field is summarised below.  

Higgins, Ferreira, and Kozan [1] modelled a single line train operations when the priority of each 

train in a conflict depends on an estimate of remaining crossing and overtaking delay.  This priority 

is used in a branch-and-bound algorithm to allow the resolution of conflicts quickly.  Considering 

that investment decision on upgrading the number and location of sidings have a significant impact 

on both rail reliability and rail profitability, they put forward a model to determine the optimal 

position of a set of sidings on a single track rail corridor.  The sidings are positioned to minimise 

the total delay and train operating costs of a given cyclic train schedule, with the allowance of non-

constant train velocities and non-uniform departure times.  Abdekhodaee et al. [2] investigated the 

integration of scheduling a rail network with some of operations in a coal terminal system with 

limited capacity, because the rail network and terminal systems are tightly-coupled and experience a 

high service demand for the expensive infrastructure which makes efficient operations essential.  

They discussed the merits and disadvantages of devising such integration and the emphasis on 

promoting coordination between the operational functions of these two systems.  Kozan and Burdett 

[3] proposed approaches to the determination of railway capacity and the significance of some 

factors on capacity.  An accurate model is developed to calculated railway capacity considering 

previously unaddressed aspects for capacity determination.  Capacity and pricing are two key issues 

for organizations involved with open track access regimes.  A train access charging methodology is 

therefore developed and incorporated into the railway capacity determination model.  Burdett and 

Kozan [4] developed capacity analysis techniques and methodologies for estimating the absolute 

traffic carrying ability for railway system under a wide range of defined operational conditions, 

which include the proportional mix of trains, the directions, the length of trains, the planned dwell 

times of trains, the presence of crossing loops, and intermediate signals in corridors. 

Recently, the public railway sector in many parts of the world has increased the awareness of the 

need for quality service that must be offered to its customers.  In this context, Ingolotti et al. [5] 

developed a software system, named as Decision Support System (DSS), for plotting and solving 

the single-track railway scheduling problem (STRSP) efficiently.  The STRSP problem is 

formulated as a constraint satisfaction problem (CSP), which is solved by using different stages to 

translate problems into mathematical models by means of mixed integer programming tools.  The 

DSS allows the users (Railway companies) to interactively specify the parameters of the STRSP 

problem and guarantees that the constraints are satisfied and the optimised timetables are obtained.  

Epstein et al. [6] developed a mathematical programming model to determine the optimal 

dispatching times for complex rail networks in densely populated metropolitan areas, in which some 

portions of the rail network may consist of single-track line while other locations may consist of 

double-track or triple-track lines.  The model is solved by a branch-and-bound algorithm with the 

help of transferring trackage to general network graph and applying propagation rules.  They also 

demonstrated the efficiency of the proposed branch-and-bound algorithm by comparing it to 

CPLEX, a commercially available integer program solver, on an actual rail network in Los Angeles.  

Linder and Zimmermann [7] considered minimising the operational cost of train schedules which 

depend on choosing different train types of diverse speed and cost.  A mixed integer programming 

model was proposed for modelling this train scheduling problem.  Although it seems to be 



 3 

impossible to directly solve the model of practical sizes within a reasonable amount of time, 

suitable decomposition can be applied to achieve good performance.  In the first part of the 

decomposition, only the train type related constraints stay active.  In the second part, the remaining 

constraints are satisfied using relaxation technique.  This decomposition idea provides a cornerstone 

for an algorithm integrating cutting plane and branch-and-bound to optimise the railway networks 

in Germany and the Netherlands.  Zhou and Zhong [8] dealt with a double-track train scheduling 

problem with multiple objectives.  Focusing on a high-speed passenger rail line in an existing 

network, the problem is to minimise both, 1) the expected waiting times for high-speed trains 

(efficiency criterion); and 2) the total travel times of high-speed and medium-speed trains 

(effectiveness criterion).  By applying two practical priority rules to model acceleration and 

deceleration times, the problem is formulated as a multi-mode flow-shop scheduling problem.  A 

branch-and-bound algorithm with effective dominance rule is developed for the bicriteria 

scheduling problem, and a beam search algorithm with utility evaluation rules is used to construct 

non-dominated solutions.  The authors illustrated the methodology and evaluated the performances 

of the proposed algorithm by a case study based on Beijing-Shanghai high-speed railway in China.  

Even though recent progress in branch-and-bound (one typical exact algorithm) has lead to exact 

solution for some combinatorial optimisation problems, most real-world problems are either 

computationally intractable by their NP-hard nature or sufficiently large so as to preclude the use of 

exact algorithm.  In such cases, many researchers have dealt with train scheduling problems by 

heuristic algorithms.  In recent years, the following papers in the literature have addressed this issue.  

Higgins, Kozan, and Ferreira [9] initiated applying metaheuristic techniques to solve the single-

track railway scheduling problem with respect to the number of conflicts.  The heuristics applied 

include a local search heuristic with an improved neighbourhood structure, genetic algorithms, tabu 

search, and two hybrid algorithms. Higgins and Kozan [10] presented a model to quantify the 

expected positive delay for individual passenger trains and track links in an urban rail network. The 

model specifically addressed direct delay, knock-on delays, and delays at scheduled connections.  

An iterative refinement algorithm was proposed to find the feasible solution.  Model validation was 

carried out using a real-life suburban train network consisting of 157 trains.  Oliveira and Smith [11] 

modelled the single-track railway scheduling problem as a special case of the job-shop scheduling 

problem.  It was achieved by considering the train trips as jobs, which are scheduled on track 

sections regarded as machines.  A train trip may have many tasks (job operations) that consist of 

traversing from one point to another on a track.  The objective of this model is to minimise the total 

delay.  As the situation of two trains occupying the same section of the track at the same may occur, 

the conflicts are resolved by applying the shortest processing time (SPT) rule to reschedule the tasks 

on all track sections on which a conflict is found.  Chew et al. [12] developed a computerised train-

operator scheduling system based on an optimisation approach, which has been implemented at 

Singapore Mass Rapid Transit (SMRT).  The optimization approach involves a bipartite matching 

algorithm for the generation of night duties and a tabu search algorithm for the generation of day 

duties.  The system can automate the train-operator scheduling process at SMRT, produce 

favourable schedules in comparison with the manual process, and handle the multiple objectives 

inherent in the crew scheduling system.  Pacciarelli and Pranzo [13] presented the idea of applying 

tabu search algorithm to a multiple-track railway scheduling problem by means of the alternative 

graph, which is an extension of the classical disjunctive graph.  
 

 

3. Blocking Parallel-Machine Job-Shop-Scheduling (BPMJSS) 

 

The railway network, as depicted in Figure 1, consists of a set of single-track sections and a set 

of multiple-track sections referred to as Crossing Loops (sidings).   



 4 

A B
1 C

B
2

D
1

D
2

E F G
1

G
2

H

I

K

J
1

J
2Single-Track

Section (A)

Double-Track

Section (B
1
, B

2
)

D
3

Triple-Track Section

(D
1
, D

2
, D

3
)

 
Fig. 1. The Railway Network 

The railway network concerned in this research is such that only one train can occupy a single-

track section at a time, whereas more than one train can be at a crossing loop (i.e. multiple-track 

section) at a time as its capacity limit is regarded.  Crossing loops are places where trains can stop 

or slow down in order to let another cross it, or where trains can stop to load or unload cargoes, 

alight passengers, and manoeuvre crew.  Usually, a traversing track section (like A or B1) is 

necessarily delimited by at least two signals: one at the beginning and another at the end of section, 

which will control when a train either can or cannot traverse on that section.  This control is to 

avoid two trains running on the same traversing track section at a time.  Due to the lack of buffer or 

storage space, the real-world case should consider blocking or hold-while-wait constraints, which 

means that a track section cannot release and must hold the train until next section on the routing 

becomes available.  As a consequence, the train scheduling problem should consider the blocking 

conditions in process.  

According to the above analysis, this train scheduling problem can be modelled as a Blocking 

Parallel-Machine Job-Shop Scheduling (BPMJSS) problem.  This is achieved by considering the 

train trips as jobs, which will be scheduled on single-track sections that are regarded as single 

machines, and on multiple-track sections that are referred to as parallel machines.  

The mathematical programming formulation for BPMJSS is proposed as follows: 

 

Notations 

n  number of jobs (trains). 

m  number of machines (sections). 

iJ  job i  ( 1,2,i n ). 

kM  machine k ( 1,2, ,k m ). 

kh  number of units of machine k ; default 

is single machine 1kh  . 

lu  the l
th

 unit  of machine k ( 1, , kl h ). 

o  index of sequence position of 

operation in one job ( 1,2, ,o m ). 

ilks  starting time of  job i  on the l
th

 unit  

of machine k .  

ilkp  processing time of  job i  on the l
th

 unit 

of machine k . 

iolkr  = 1, if the o
th

 operation of job i  

requires the lth unit of machine k ;   

= 0, otherwise.  

ilkx  = 1, if job i  is assigned to the l
th

 unit 

of machine k ;   

 = 0, otherwise.  

ijlky  = 1, if both jobs i  and j  are assigned 

to the lth unit of machine k and job i  

precedes job j  (not necessarily 

immediately); 

 = 0, otherwise.  

ijolkw  = 1, if the o
th

 operation of job i  

requires the l
th

 unit of machine k ;  and 

Job j  is scheduled on this same unit 

as its successor;  

 = 0, otherwise.  

maxC  maximum completion time or 

makespan. 

L  a very large positive number. 

 

The Model 

Minimise  
maxC           (1) 

The objective function is to minimise the makespan.  
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Subject to: 

, 1, ,

1 1 1 1

( )
k kh hm m

iolk ilk ilk i o l k ilk

l k l k

r s p r s

   

     1,2, , 1, .o m i           (2) 

Equation (2) restricts the starting time of (o+1)
th

 operation of  job i  to be no earlier than its finish 

time of the o
th

 operation of  job i .  

( 1) , , , .ilk jlk jlk ijlks s p L y i j l k               (3) 

Equation (3) restricts that both jobs i  and j are processed on the l
th

 unit of machine k  and job i  

precedes job j  (not necessarily immediately). 

( 1) , , , .jlk ilk ilk jilks s p L y i j l k               (4) 

Equation (4) restricts that that both jobs  i  and j are processed on the l
th

 unit of machine k  and job 

j  precedes job i  (not necessarily immediately). 

1 , , , .ijlk jilky y i j l k            (5) 

Equation (5) restricts that conditions that job j  precedes job i  or job i  precedes job j  at the l
th

 

unit of machine k  are exclusive.  

1 1

1
kh m

ilk

l k

x
 

  and  1ilk jlk ijlk jilkx x y y     , , , .i j l k      (6) 

Equation (6) restricts that each unit can process at most one job at a time.  

max

1 1

( )
kh m

imlk ilk ilk

l k

r s p C
 

    .i         (7) 

Equation (7) restricts that the completion time of the m
th

 (i.e. last) operation of each job is no earlier 

than makespan.  

, 0ilk ilks p   , , .i l k           (8)  

Equation (8) satisfies non-negativity condition.  

, 1, ,

1 1 1 1 1

k kh hn m m

jolk jlk ijolk i o l k ilk

j l k l k

r s w r s

    

  , ;  1,2, , 1; .i j o m i        (9) 

Equation (9) defines the blocking conditions and satisfies that the starting time of the successor on 

the same machine should be greater and equal to the starting time of the successor of the same job, 

for each operation.  

 

 

4. Alternative Graph for BPMJSS 

 

From the point of view of the modelling techniques, most research works in scheduling are based 

on the disjunctive graph formulation of Roy and Sussman [14].  The disjunctive graph model has 

been extensively studied in order to develop efficient solution algorithms for solving many 

scheduling problems.  However, a strong limitation that still remains in this classical disjunctive 

graph is that it disregards the capacity of intermediate buffers between machines.  In fact, in many 

real-life situations especially for train scheduling, the inter-machine buffer capacity has to be taken 

into account.  To incorporate this restriction, the disjunctive graph formulation can be adapted to a 

more general graph model called alternative graph from Masics and Pacciarelli [15].  

In the alternative graph, we distinguish two types of operations, namely ideal and blocking.  An 

ideal operation remains on a machine from its starting time to its completion time, and then at once 

leaves this machine which becomes immediately available for processing other operations.  On the 

contrary, a blocking operation may remain on a machine even after its completion time, thus 

blocking it.  
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Figures 2 and 3 illustrate how a disjunctive graph transforms to the alternative graph for a three-

job (or three-train) four-machine (or four-section) blocking flow-shop scheduling instance. 

1 2 3 4

5 6 7 8

9 10 11 12

0 13

 
Fig.2. The disjunctive graph without considering 

blocking constraints 

 

1 2 3 4

5 6 7 8

9 10 11 12

0 13

 
Fig.3. Transformation of  the disjunctive graph to the 

alternative graph for considering blocking constraints 

In the alternative graph in Figure 3, for each pair of operations to be executed on the same 

machine, there is a pair of alternative arcs replacing the pair of disjunctive arcs.  For example, in the 

disjunctive graph in Figure 2 for operations 
1o  and 

5o  processed on the same machine, there is the 

pair of disjunctive arcs 
1 5 5 1(( ),( ))o o o o  .  In the alterative graph for considering the blocking 

conditions, the pair of disjunctive arcs
1 5 5 1(( ),( ))o o o o   is replaced by the pair of alterative 

arcs [1] 5 [5] 1(( ), ( ))SJ SJo o o o  =
2 5 6 1(( ),( ))o o o o  , where operation 

[ ]SJ io  immediately follows 

io  in the same job and will be executed on a different machine.  Note that a job, having completed 

processing on the last machine, leaves the system at once.  Hence, the last machine is always 

available and operations 
4o , 

8o and 
12o are not blocking.  

 

 

5. Feasibility Analysis 

 

A disjunctive graph for a 2-job 2-machine job shop problem without blocking constraints is 

drawn in Figure 4 to explain feasibility analysis in detail.  

1

3

2

4

0 5

 
Fig. 4. The disjunctive graph for a 2-job 2-machine job 

shop without blocking constraints 
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Fig. 5. The alternative graph for a 2-job 2-machine job 

shop with blocking constraints 

In this example, each job consists of two operations, i.e. 
1 1 2{ , }J o o , 

2 3 4{ , }J o o .  Job 
1J visits 

machine 
1M then machine 

2M ; Job 
2J  visits 

2M  then 
1M . In addition, we have 

1 (1) (3)M M M   and 
2 (2) (4)M M M  , i.e. operations 

1o  and 
3o  are processed on the same 

machine 
1M ; operations 

2o  and 
4o  are processed on the same machine 

2M .  If considering the 

blocking constraints, the two pairs of disjunctive arcs 
1 3 3 1(( ),( ))o o o o   and 

2 4 4 2(( ),( ))o o o o   are respectively replaced by the two pairs of alternative arcs 

2 3 3 1(( ),( ))o o o o   and
2 4 3 2(( ),( ))o o o o  .  Thus, the corresponding alternative graph is 

shown in Figure 5.   

For this 2-job 2-machine job shop problem with blocking conditions, we can enumerate all of 

four (feasible or infeasible) schedules by choosing at most one arc from each pair of alternative arcs 

(only two pairs for this example, 
2 3 3 1(( ),( ))o o o o  and 

2 4 3 2(( ),( ))o o o o   ), illustrated in 

Figures 6-9.  For simplicity, the processing time for each operation is the same as one time unit. 
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1) If the alternative arcs are chosen as 
3 1( )o o  and 

2 4( )o o , the schedule is infeasible because 

it is cyclic (i.e. 
1 2 4 3 1o o o o o    ), illustrated in Figure 6.  In this case, the Gantt chart 

cannot be drawn because the schedule is cyclic or infeasible.  

1

3

2

4

0 5

 
Fig. 6. One infeasible schedule of a blocking 2-job 2-machine job shop  

        with selected alternative arcs 
3 1( )o o  and 

2 4( )o o  

2) If the choosing alternative arcs are 
3 1( )o o  and 

3 2( )o o , the schedule with its 

corresponding Gantt chart are presented in Figure 7.  
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M
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M
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Fig. 7.  One feasible schedule of a blocking 2-job 2-machine job shop  

             with selected alternative arcs 
3 1( )o o  and 

3 2( )o o  

3) If the choosing alternative arcs are 
2 3( )o o  and 

2 4( )o o , the schedule is shown in Figure 8.  

1

3

2

4

0 5

Machine

Time1

2 4

3

M
2

M
1

 
Fig. 8.  One feasible schedule of a blocking 2-job 2-machine job shop  

             with selected alternative arcs 
2 3( )o o  and 

2 4( )o o  

4) If the choosing alternative arcs are 
2 3( )o o  and 

3 2( )o o , whether the schedule is feasible 

depends on the particular context, described in Figure 9 and analysed in the following.   

1

3

2

4

0 5

Machine

Time1

24

3

If swap is
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Swap Time

M
2

M
1

 
Fig. 9.  One (feasible or infeasible) schedule of a blocking 2-job 2-machine job shop with selected 

            alternative arcs 
2 3( )o o  and 

3 2( )o o ; note that the schedule is infeasible if swap is 

not allowed and the Gantt Chart can be drawn only for swap-allowed blocking case. 

In such a situation in Figure 9, we need to distinguish two cases of blocking: swap-allowed 

blocking and no-swap blocking.  From the alternative graph, by selecting 
2 3( )o o  and 

3 2( )o o , 
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we obtain an cycle 
2 3 2( )o o o   or ( (2) (3) (2))M M M  .  In such a situation, all jobs in the 

cycle must move simultaneously to the next machine in a cycle.  This blocking situation is called 

“deadlock”.  To be feasible, a “swap” manipulation is needed whenever there is a cycle of two or 

more jobs, each one waiting for a machine which is blocked by another job in the cycle.  It is 

intuitive that, depending on the particular context, a swap may be allowed or not.  The swap is 

allowed when the jobs can move independently of each other.  On the contrary, the swap is not 

allowed when the jobs can move strictly after that the subsequent resource becomes available.  The 

deadlock situation is similar to a conflict when one outbound train and one inbound train are 

crossing in the single-track section.  For safety, the deadlock situation is strictly prohibited in the 

train scheduling problems, namely, the train schedule should be deadlock-free.  As the swap is not 

allowed for blocking trains, the deadlock-freeness conditions may be guaranteed only when the 

resources are available in multiple units (i.e. parallel machines or multiple-track sections).  More 

specially, the deadlock and deadlock-freeness situations are respectively illustrated in Figure 10.  

Deadlock Deadlock-freeness

Train 1 Train 1

Train 1

Train 1Train 2

Train 2

 
Fig. 10.  Illustration of deadlock and deadlock-freeness situations in train scheduling 

 

 

6. Solution Techniques for BPMJSS 

 

It is well known that the idea of shifting bottleneck procedure (SBP) is initiative as a solution to 

the classical JSS problem [16].  This is due to the analysis that a processing order of operations (i.e. 

job sequence) on one machine is equivalent to an acyclic selection of disjunctive arcs that contains 

exactly either of each pair of disjunctive arcs on this machine.  Consequently, the machines can be 

considered one by one, and the results are applied to both rank the machines and select a good 

sequence on the highest rank machine (i.e. bottleneck machine).   

First, without considering blocking conditions, a parallel-machine job-shop-scheduling (PMJSS) 

problem is solved by an improved SBP with four improvements, summarised as below.  

 the topological-sequence algorithm [17-20] is applied to solve the partial graph model and 

then decompose PMJSS into a set of single-machine-scheduling (SMS) and (or) parallel-

machine-scheduling (PMS) subproblems;  

 a modified Carlier algorithm [21] based on our proposed theorems is developed for 

polynomially solving the SMS subproblems;   

 an extended algorithm based on Jackson rules [22] is implemented to polynomially solve the 

PMS subproblems;  

 Tabu Search and Simulated Annealing metaheuristics are combined to improve the partial 

sequence in the step of re-sequencing and re-optimisation iterations of SBP. This hybrid 

algorithm is also used to further optimise the complete sequence.  

Inspired by SBP algorithm for PMJSS, in order to consider blocking conditions, we then propose 

an innovative algorithm for BPMJSS.  This algorithm is called Feasibility Satisfaction Procedure 

(FSP) which can schedule trains consecutively one at a time.  The architecture of the proposed FSP 

algorithm for BPMJSS is described as below. 

 Apply developed SBP algorithm to solve the PMJSS model.  

 Check whether the obtained schedule by SBP is feasible, i.e. satisfying all the blocking constraints.  



 9 

 If feasible, add the new train and update the input data; apply SBP algorithm again to obtain new 

schedule and check feasibility again. 

 If infeasible, load the feasible graph model generated at previous (or initial) step; apply Insertion 

Algorithm (see below) to insert the operations of the added train respectively to each single-track 

section and multiple-track sections and satisfy the blocking constraints; then check whether this new 

graph model is feasible.  

 Apply “Feasibility Satisfaction Procedure” iterations till the feasible complete graph model is 

obtained.  

In Feasibility Satisfaction Procedure, we design an insertion algorithm which can effectively 

insert a new train into the given graph to generate a new graph satisfying the blocking conditions 

consecutively.  In insertion algorithm, it is very important to construct an efficient data structure 

that can conveniently track all the necessary information for analysing blocking conditions, 

including the direction of trains, sectional running times of each train, the earliest available time of 

single-track and/or multiple-track sections, the ready time, the starting time, the completion time, 

the blocking time, the departure time of inserted train’s operation, and etc.  More specially, given a 

partial feasible schedule ku  at iteration k  of Feasibility Satisfaction Procedure (FSP) and one train 

1kT 
to be added, the basic steps of insertion algorithm is described as follows.  

Step 1: Let s  denote one track section and operation
1
,

k
T s

O


 denote the traversal of train 1kT   on s .  

Step 2: If s is single-track section, then go to Step 3; else if s is multiple-track section, then go to Step 4.  

Step 3: Assume that the train list of 
ku on s  is 

1 2
, , ,

( , , , )
k

T s T s T s
O O O , to find the best insertion point while to 

satisfy the blocking conditions, we consider the following three choices in order: 

 i) whether 
1
,

k
T s

O


 can be inserted before 
1
,T s

O ;  

ii) whether 
1 ,kT sO


 can be inserted in the middle between 
1 ,T sO and 

,kT sO as early as possible; and 

iii) otherwise, insert 
1
,

k
T s

O


 after 
,kT sO .   

Step 4: As s  is multiple-track section, assume the number of track units is 
sn and 

1 2
{ , , , }

ns
u u us s s s .  In 

addition, each unit is associated with the train’s direction (outbound or inbound), i.e. 

1 2
{ , , , } { } { }

ns
u u u inbound outbounds s s s s s   .  If the direction of train 1kT  is inbound, consider to 

insert 
1
,

k
T s

O


 on one unit of a multiple-track section 
iu

s ( { }
iu inbounds s ) having the earliest available 

time.  In this way, 
ius  is treated as a single-track section.  If the direction of train 1kT  is outbound, 

it is in the same fashion but with { }
iu outbounds s .   

Step 5: Go to Step 1 with considering the next adjacent section.  If all the operations of train 1kT   are 

inserted, thus ku  is updated to 1ku  and iteration 1k   of FSP is finished.  

Furthermore, with satisfying the constraints on blocking conditions and limited capacity of 

resources, the time-determination procedure for one operation (the movement/traversal of a train 

across a section) in the above Steps 3 and 4 is the core of the FSP algorithm.  The pseudocode of 

time-determination procedure with key formulae is presented in Appendix 1.  

 

7. Computational Experiment 

 

The following computational experiment of a real-world train scheduling case is used to compare 

and analyse the PMJSS and BPMJSS models.   

In this example, six outbound trains and four inbound trains are traversing on 10 single-track 

sections and 9 double-track sections.  For simplicity, in this train scheduling case, the sectional 

running times for different trains on the same section are identical and the additional running time 
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caused by train’s length is temporarily included in the sectional running time.  At first, without 

considering the blocking constrains, this case is modelled as a PMJSS problem and solved by the 

improved SBP algorithm.  The proposed methodology is coded by Visual C++ in MFC environment.  

All typical application-specific modules are treated as the following objects: data, formulae, 

algorithms, output, graphics and other behaviours.  Thus, the object-oriented programming tends to 

produce software that is more understandable and better organised.  For example, it provides a 

convenient way to quickly obtain the new feasible solutions for different type scheduling problems 

by changing the attributes in data input.  And the solutions can be conveniently shown and analysed 

in the graphic interface.   

Firstly, the obtained PMJSS result for this test problem is displayed by the Gantt chart shown in 

Figure 11, in which different trains are distinguished by the colour and the number. 

 

 
Fig. 11.  The Gantt chart for the PMJSS schedule obtained by SBP 

This PMJSS result is feasible if the storage capacity between successive machines is unlimited, 

i.e. without considering blocking conditions.  However, it becomes infeasible if this PMJSS 

schedule is implemented for train scheduling environment, for which the real-life case should 

consider hold-while-wait (or blocking) constraints and deadlock situations.  For illustrating 

infeasibility, this PMJSS schedule is depicted in the String chart, as shown in Figure 12, for 

describing the relationship between train’s position and time point. It is easy to indicate from the 

String chart that there are many train conflicts (overlaps) in double-track Sections 2-S7, 2-S9, 2-S11, 

2-S15, and 2-S17.  In a real-life train scheduling case, the situation that more than one train remain 

on a track section at the same time is very dangerous and definitely prohibited.  
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Fig. 12.  The String chart for the PMJSS schedule obtained by SBP, in which the blocking conditions are highlighted by 

cross brush 

Therefore, the train scheduling problem has to be modelled as a BPMJSS problem in alternative 

graph for considering the blocking conditions.  The proposed BPMJSS model can be solved by a 

new algorithm mentioned above, i.e. Feasibility Satisfaction Procedure (FSP).  The Gantt chart of 

the BPMJSS schedule obtained by FSP for this test case is drawn in Figure 13.  

 
Fig. 13.  The Gantt chart for the BPMJSS schedule obtained by FSP  

For the sake of analysing feasibility, the String chart for this BPMJSS schedule obtained by FSP 

is given in Figure 14.  As there is not any overlap of cross-brush box in Figure 14, we can say that 
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the blocking constraints are satisfied and this BPMJSS schedule may be feasible or applicable for 

real-world implementation.  

 
Fig. 14.  The String chart of the BPMJSS schedule obtained by FSP, in which the blocking conditions are highlighted 

by the cross brush 

 

8. Implementations  

 

In this section, some real-world implementations of the proposed methodology are discussed.  

 

i) Considering the train length 

First, in practice, the train length should be seriously considered because it has a great effect on 

the performance of operating a railway.  This is because, when a train is traversing from one section 

into the next section, the train has to occupy these two sections in a period (i.e. the occupying time 

caused by train length) till the whole body of the train completely leaves the section.  The analysis 

of effects caused by the train length is given in Figure 15.  

Track sections

Time

1-S1

Sectional Running Time

including train length
Blocking Time

1-S3

2-S2

Train

 

Fig.15.(a) The analysis when the sectional running time 

includes train length 

Track sections

Time

1-S1

Sectional Running Time

excluding train length

Blocking Time

1-S3

2-S2

Train

Occupying time by train length

Train

Train

 

Fig.15.(b) The analysis when the sectional running time 

excludes train length 
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As observed from Figure 15(b), when the sectional running time excludes the occupying time 

caused by train length, the starting time and completion time of the operation on Section 2-S2 

become smaller in comparison.  The below new parameters are adopted to obtain the more realistic 

solutions when train length is seriously considered.  

 

i  occupying time of operation i, caused by the corresponding train length 

ip  new sectional running time of operation i  (
i i ip p   ) 

ic  new completion time of operation i when the sectional running time excludes train 

length  (
i i ic c   ) 

[ ]SJ i  the same-job successor of operation i 

[ ]SM i  the same-machine successor of operation i 

[ ]SJ ie  new starting time of operation [ ]SJ i  

ib  new blocking period of operation i  ( [ ]i SJ i ib e c    ) 

iD  new departure time  (
i i iD c b    ) 

iL  leave time at which the whole body of the train completely enters the next section  

(
i i iL D  ) 

[ ]SM ie  new starting time of operation [ ]SM i   ( [ ] [ ] [ [ ]]max( , , )SM i SJ i PJ SM i ie e L L ) 

 

To further verify the great effects caused by train length, this more realistic BPMJSS case when 

the occupying times (measured as 0.5 times units for all trains) caused by train length are excluded 

from the sectional running times for each train, is solved by the FSP algorithm with the above 

adjusted formulae.  The corresponding result is displayed in Figure 16.  It is observed that the 

makespan decrease from 135.78 in Figure 13 to 127.28 in Figure 16, although the train schedule in 

Figure 16 is kept the same as that in Figure 13.   

 
Fig.16. The Gantt chart for the new BPMJSS result when the sectional running time excludes train length, in which the 

occupying times are highlighted by the solid brush 



 14 

 

ii) Upgrading track sections  

In addition, the proposed methodology is very helpful for the decision making on upgrading the 

number and location of track sections.  As seen in Figure 13, for example, the single-track section 

1-S8 is called a bottleneck section because it has the minimum number of gaps (idle times) between 

trains.  If this bottleneck section (1-S8) and its adjunct double-track sections (2-S7 and 2-S9) are 

upgrading by respectively adding one more track.  In this case, the new makespan declines to 

108.03 in Figure 17 from 135.78 in Figure 13.  This is a huge improvement on efficiency of 

operating the overall railing system.  

 

 
Fig. 17.  The Gantt chart of the BPMJSS schedule obtained by FSP, in which Sections 1-S8, 2-S7, 2-S9 are upgrading 

by adding one more track 
 

iii) Increasing train speed of one tardy train on a critical section  

Moreover, the proposed methodology is suitable for dynamic scheduling.  For example, 

assuming that Train 4 in Figure 17 arrives late at the destination, there is an easy way to make Train 

4 arrive on time while the timetables of other trains are unchanged.  This method only needs to 

increase the speed of Train 4 on Section 1-S12 in such that the sectional running time is smaller 

than the interval time between Train 6 and Train 2 on this section.  Thus, the new result can be 

easily obtained by applying the FSP algorithm to the updated data.  As a result, the arrived time of 

Train 4 at destination is decreased from 106.51 in Figure 17 to 97.14 in Figure 18.  

From the Gantt chart, it seems to be essential to identify the so-called critical section in order to 

let tardy train arrive on time.  In this example, for Train 4 in Figure 17, one of critical sections is 
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Section 1-S12.  It is observed that one tardy train can arrive early only by increasing the train speed 

on a critical section, without adjusting the timetables of any other trains.   

 
Fig. 18.  The new BPMJSS result when the train speed of Train 4 increases on a critical section (1-S12) 

 

iv) Shorten sectional running times of all trains on a bottleneck section 

Furthermore, in many real-life situations, it is nearly impossible to upgrade the railway 

infrastructure especially in residential or tunnel areas due to extremely high cost.  In this case, 

without any investment in expanding railway facilities, it is still able to improve the railing 

capacities and efficiency by shortening sectional running times of all trains on the so-called 

bottleneck section on which it has the minimum number of gaps between trains.  This phenomenon 

can be validated by the below results.  

If the sectional running times of all trains on the bottleneck section (i.e. 1-S8 in Figure 13) are 

shorten to be approximately a half, it is observed from the new result shown in Figure 19 that the 

makespan drops to 110.10, compared to 135.78 in Figure 13.  In addition, it is noted in Figure 19 

that the bottleneck section is shifted from Section 1-S8 in Figure 13 to Section 1-S16.  
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Fig. 19.  The new BPMJSS result when the sectional running times of all trains on Section 1-S8 are shorten to be 

approximately a half; it is noted that the new bottleneck section is Section 1-S16 

 

Next, if the sectional running times of each train on the new bottleneck section (i.e. 1-S16 in 

Figure 19) become approximately a half, the makespan continuously falls to 96.56, as shown in 

Figure 20.  

 
Fig. 20.  The new BPMJSS result when the sectional running times of all trains on two bottleneck sections (i.e. Section 

1-S8 and Section 1-S16) are shorten to be approximately a half at the same time 
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9. Conclusions 

 

In this paper, the train scheduling problem is modelled as a blocking parallel-machine job-shop-

scheduling (BPMJSS) problem.  Moreover, the BPMJSS problem is formulated and analysed in the 

alternative graph that is an extension of the classical disjunctive graph.  Based on our analysis and 

observation, it is not trivial to directly find a feasible complete BPMJSS schedule.  Inspired by 

Shifting Bottleneck Procedure for PMJSS, we propose a new constructive heuristic algorithm called 

Feasibility Satisfaction Procedure (FSP) to obtain the feasible BPMJSS schedule.  A real-world 

train scheduling case is studied and illustrated for comparing and analysing the PMJSS and 

BPMJSS models.  Some real-life applications including considering the train length, upgrading the 

track sections, increasing train speed of one tardy train on the critical section and shortening the 

sectional runtime times of all trains on bottleneck sections are discussed. 

The proposed methodology would be very promising because it can be applied as a fundamental 

tool for modelling and solving many real-world scheduling problems that should consider the 

capacity of resources (machines or track sections) and different inter-resource buffer conditions.  In 

addition, the BPMJSS model can be extended to be a No-Wait Blocking Parallel-Machine Job-Shop 

Scheduling (NWBPMJSS) problem for modelling complicated overtaking and crossing situations in 

train scheduling problems, in which freight (blocking) trains and passenger (no-wait or continuous) 

trains are considered simultaneously.  No-wait conditions arise when considering the passenger 

trains that should traverse continuously without any interruption and any unplanned dwelling, for 

which the customer has a prohibitively high cost of waiting in traversing.  Thus, passenger trains are 

treated as no-wait (continuous) trains.  In comparison, freight trains are allowed to enter the next 

section immediately if possible or to remain in a section until next section on the routing becomes 

available, which is thought of as a relaxation of no-wait condition that is stricter.  

Further research is needed in order to improve the solution quality of BPMJSS schedule.  

Different possibilities include developing sophisticated neighbourhood search guided by well-

known metaheuristics such as Tabu Search, or embedding the proposed FSP algorithm as a generic 

base heuristic into the framework of the look-ahead metaheuristics, similar to Rollout Algorithm [23] 

or Pilot Method [24].  
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Appendix 1 

 
Initialise the given information and data structure of one operation, including train (job) index, section 

(machine) index, number of section units (default as 1 for single-track section), train direction, 

operation index, and processing time (PTime).  

If the direction of this train is inbound, 

If the section is a single-track section, 

Set the index of the same-job predecessor: PJOper.  

Set the completion time of the same-job predecessor: CTime_PJOper.  

Set the earliest available time of the next section: ATime_NextMachine.  

Set the ready time of this operation: 

RTime = max(ATime_NextMachine−PTime, CTime_PJOper).  

Set the starting time of the first scheduled operation on this section: ETime_FOper.  
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 Set the interval time between RTime and ETime_FOper: ITime_F = ETime_FOper−RTime.  

 If ITime_F >= PTime, the starting time of this operation equals ready time: 

ETime = RTime.  

Else set the number of operations that have been scheduled on this section, nSOpers.  

For the first scheduled operation to the last second scheduled operation on this section,  

Set the departure time of the previous operation (e.g. the first scheduled operation) and the 

starting time of its successive operation (e.g. the second scheduled operation):  

DTime_PreOper, ETime_SucOpe. 

Set the interval time: 

ITime_M = min(ETime_SucOper−DTime_PreOper, ETime_SucOper−RTime).  

 If ITime_M >= PTime, the starting time of this operation is set as: 

  ETime = max(DTime_PreOper,  RTime); 

  break. 

If ETime is still not determined, set the departure time of the last scheduled operation on this 

machine: DTime_LOper; and the starting time of this operation is set as: 

  ETime = max(DTime_LOper,  RTime). 

Set the blocking time of the same-job predecessor: 

  BTime_PJOper = max(0, ETime− CTime_PJOper).  

Set the departure time of the same-job predecessor: 

  DTime_PJOper = CTime_PJOper + BTime_PJOper.  

If the section is a multiple-track section,  

Set the number of the multiple-track section units for traversing inbound trains: nInUnits.  

Among them, determine the unit index with its earliest available time: ThUnit and ATime.  

The starting time of this operation is set as:  

  ETime = max(CTime_PJOper,  ATime). 

If the direction of this train is outbound, most of the above formulae are used in the same fashion but in a 

reverse direction.  The unique difference is to determine the unit index with the earliest available time 

among the multiple-track section units for outbound trains. 
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