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Learning to Detect Aircraft for Long Range,
Vision-Based Sense and Avoid Systems

Jasmin James, Jason J. Ford, and Timothy L. Molloy

Abstract—The commercial use of unmanned aerial vehicles
(UAVs) would be enhanced by an ability to sense and avoid
potential mid-air collision threats. In this paper we propose a new
approach to aircraft detection for long range, vision-based sense
and avoid. We first train a deep convolutional neural network to
learn aircraft visual features using flight data of mid-air, head-on
near collision course encounters between two fixed-wing aircraft.
We then propose an approach that fuses these learnt aircraft
features with hand-crafted features that are used by the current
state of the art. Finally, we evaluate the performance of our
proposed approach on real flight data captured from a UAV
where it achieves a mean detection range of 2527m and a mean
detection range improvement of 299m (or 13.4%) compared to
the current state of the art with no additional false alarms.

Index Terms—Aerial Systems: Perception and Autonomy,
Computer Vision for Automation, Deep Learning in Robotics
and Automation

I. INTRODUCTION

THE emerging global market for commercial unmanned
aerial vehicle (UAV) services is anticipated to reach

$21.47 billion by 2021 with the potential for UAVs to be used
in many important sectors including infrastructure, agricul-
ture, transport, security, entertainment and media, insurance,
telecommunication and mining [1]. There have been signifi-
cant efforts to safely integrate routine UAV operations into the
national airspace so that they do not compromise the existing
safety levels [2]. One of the most significant risks that UAVs
face, and pose, is mid-air collision.

The national airspace is heavily regulated with strict rules
and safety layers designed to mitigate the risk of mid-air
collisions. The first few safety layers involve operational
procedures, air traffic management, and cooperative colli-
sion avoidance systems (for aircraft that make their presence
known). The final safety layer is for potential mid-air collisions
that are not successfully managed by the other layers. For
manned aircraft, this final safety layer corresponds to human
pilots using their eyes and judgment to see and avoid potential
mid-air collision threats.

Sense and avoid (SAA) refers to the implied regulatory
requirement that UAVs be capable of sensing and avoiding
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Fig. 1: An illustration of an aircraft at a long range where it
visually appears as a small number locally dim pixels.

potential non-cooperative mid-air collision threats with a pro-
ficiency matching or exceeding that of human pilots. Human
pilots that are alerted to the presence of potential collision
threats are reported to be able to detect them with an 86%
success rate at a median range of 2593m [3]. The development
of systems capable of matching (and exceeding) the reported
performance of human pilots and meeting the implied SAA
regulatory requirement is one of the key technical challenges
hindering the routine, standard and flexible operation of UAVs
in the national airspace [2].

Machine vision has recently been identified as a promising
technology for detecting potential collision threats as vision
sensors have size, weight, power and cost advantages over
other sensing approaches such as radar for small to medium
sized UAVs [4]. To ensure sufficient time to perform avoidance
manoeuvers, it is desirable to detect aircraft at ranges where
they appear in the raw images from vision sensors as a small
number of slow-moving locally dim pixels that contrast poorly
with the background (as shown in Figure 1). The signal to
noise ratios (SNRs) of raw images containing distant aircraft
are therefore very low, and only increase significantly when the
aircraft are in close proximity (e.g., SNRs or local detectability
values of less than -3dB or 0.5 for ranges greater than 2000m
are reported in [5]). In order to detect aircraft at long ranges
with very low SNRs, in this paper we propose a new approach
to vision-based aircraft detection which uses deep learning to
exploit learnt aircraft features.

The key contributions of this paper are:
i) The proposal of a new aircraft detection system which
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fuses learnt and hand-crafted visual features to boost the
SNR of long range aircraft for vision-based SAA.

ii) An experimental evaluation of our proposed system,
which demonstrates improvement in detection ranges and
false alarm rates relative to the current state of the art.

iii) A comparison of our proposed fused system against
several other candidate feature detectors which have pre-
viously been used in sense and avoid.

More broadly, the problem of vision-based aircraft detection
at long range may be viewed as an instance of dim target
detection. The approach and results of this paper provide
one of the first compelling applications of fusing learnt and
handcrafted features in a dim target detection pipeline. Finally,
we note that whilst we will focus on the “sense” aspect of
SAA in this paper, specifically vision-based aircraft detection,
a variety of automated collision avoidance strategies suitable
for use with our approach and other vision-based aircraft
detection approaches have previously been proposed to address
the “avoid” aspect of SAA (see [4], [6] and references therein).

The rest of this paper is structured as follows. In Section II
we discuss the related work in vision-based aircraft detection.
In Section III we describe our approach for learning aircraft
features and present our proposed vision-based aircraft detec-
tion system. In Section IV we experimentally investigate the
performance of our proposed system. In Section V we discuss
our proposed system and its limitations. Finally, we provide
some conclusions in Section VI.

II. RELATED WORK

Numerous approaches to vision-based aircraft detection
have been presented in the literature and have exploited
advances in the more general field of dim target detection [7]–
[10]. The most effective approaches for long range, fixed-wing,
vision-based aircraft detection with low false alarms utilise
a multi-stage detection pipeline [5], [11]–[14]. Additionally,
with advances in hardware over the last decade, there have
been several investigations into the use of machine learning
[15]–[19] and deep learning [20], [21]. We highlight that
the performance of different vision-based aircraft detection
systems is characterised by detection rates, detection ranges
and false alarms.

A. Dim Target Detection

The problem of dim target detection arises in many appli-
cations including space surveillance systems, object tracking
systems and many more [9]. Due to their small size and
operation in cluttered and complex environments (land, sea,
air etc.), it is common for targets to have a low SNR [9].
Most existing methods of dim target detection (in IR and other
sensing modalities) appear to have been based on multistage
detection pipelines with handcrafted features [7]–[10]. In this
paper we exploit this multistage pipeline, as is common for
vision based aircraft detection, however in contrast to hand
crafted features we explore using learnt features.

Fig. 2: Key stages of the vision-based aircraft detection
pipeline.

B. Multi-Stage Detection Pipeline

There are several variations of multi-stage detection
pipelines presented in the literature. As shown in Figure 2,
the key stages include image pre-processing, temporal filtering
and detection logic [5], [11]–[14].

The goal of the image pre-processing stage is to suppress
background clutter and highlight small pixel sized aircraft.
Some popular approaches that are proposed in the literature
to accomplish this include morphology [5], [11], [12], [14],
image frame differencing [12], [13], and machine learning
[15].

Due to the low SNR of small pixel sized aircraft, the tempo-
ral filtering stage is required to emphasize and extract features
that possess aircraft-like dynamics. In [11] a Viterbi-based
filtering approach is proposed. The authors report detection
ranges of around 6km, however they do not report the false
alarm rate. An extended Kalman filter is proposed in [12]; a
“valid track” of the aircraft (where the aircraft is consistently
detected) is declared at an average detection range of 1747m
with an average of 4 false alarms over their tested image
sequences. In [5] hidden Markov model (HMM) filtering is
used for detection and the authors report detection ranges of
at least 1540m with no false alarms.

The detection logic stage aims to utilise the information
available from the image pre-processing and temporal filtering
stages in order to declare whether an aircraft is present or not.
An exponentially weighted moving average test statistic based
on the HMM output is used in [5], [13]. As an improvement,
[14] proposes a new test statistic which is related to the
probability that an aircraft is present in the image. The authors
report detection ranges of 2227m with no false alarms.

This multi-stage pipeline of [14] which uses morphological
processing, HMM filtering and the aircraft probability test
statistic is the current state of the art.

C. Machine Learning

There are several approaches to vision-based aircraft detec-
tion that use machine learning. In [15] an approach based on
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the Viola and Jones framework is proposed, where a trained
AdaBoost cascade using Haar features is used. The authors re-
port a successful detection in around 80% of the tested images
with aircraft present. In [16] an approach using spatio-temporal
image cubes for classification is proposed with regression-
based motion stabilization of local image patches and an
Adaboost cascade. The authors report an average precision of
75% on their UAV dataset and 79% on their aircraft dataset.
In [17] an AdaBoost-based approach is also proposed however
the authors are interested in detecting rotorcraft at close range.

In [18], [19] a multi-stage detection pipeline is proposed
which used a support vector machine (SVM) to exploit aircraft
visual features. The first stage utilises morphological filtering
to highlight potential aircraft in the image. In the next stage,
shape descriptors and an SVM based classifier are used to
reduce false positives. The final stage involves tracking the
remaining potential aircraft over time in order to eliminate
remaining false alarms. In this approach an average detection
rate of 98% of the tested images with aircraft present out to
8km is achieved with a false alarm rate of 1 every 50 frames.

Despite their potential, prior machine learning approaches
have under achieved in detection ranges, false alarm rates or
both compared to the state of the art multi-stage detection
pipeline of [14].

D. Deep Learning

More recently some deep learning approaches have been
explored in the vision-based aircraft detection application. In
[20] a deep convolutional neural network (CNN) and a deep
belief network are trained to detect larger aircraft in satellite
imagery. In [21] the authors propose a deep CNN which is
able to detect aircraft in complex backgrounds. The authors
achieved a 83% detection rate on the tested images with
aircraft present. These deep learning approaches for vision-
based aircraft detection have not yet been utilised in a multi-
stage detection pipeline.

In this paper we propose using deep learning in a multi-
stage detection pipeline to increase detection ranges whilst
maintaining low false alarms. We aim to implement a new
image pre-processing stage that incorporates learnt aircraft
features building on the state of the art multi-stage pipeline
of [14].

III. APPROACH

In this section we present a variant of the SegNet archi-
tecture [22] for semantic pixel-wise segmentation applied to
vision-based aircraft detection. We first describe our training
data and labeling approach. We then outline our network
architecture and training regime and describe our testing
methodology. Finally, we present our proposed vision-based
aircraft detection system which involves fusing our learnt
aircraft features with morphological processing.

A. Training Data and Labeling

For vision-based, long range sense and avoid we aim to
detect low SNR, long range aircraft and therefore require a

Fig. 3: A example of the background variation in different
cases used in the training data. The left image is blue sky and
the right image is cloudy sky.

Fig. 4: An illustration of the network architecture for the
SegNet variation used. The input to the system is a greyscale
image, there are two encoders and two decoders which are fed
into a softmax layer for pixel-wise classification.

very specific dataset for training. We used the aircraft data
presented in [5] which consisted of 12 head-on and tail chase
encounters between a Cessna 172 (camera aircraft) and a
Cessna 182 (target aircraft) captured with a 5mm lens. We
note that while the system examined in [5] only used 7
cases, we were able to use the additional 5 cases where the
stabilisation was poor as stabilised data is not necessary for
training purposes. The data encompassed a range of different
cloud conditions from blue sky environments to very textured
clouds as seen in Figure 3. In total we used 15874 images of
target aircraft data. In addition to this we used 2925 images
of ground clutter with no aircraft present. We note that all our
images were greyscale.

For all images, each pixel was classified as either aircraft or
non-aircraft. The images were manually labeled by a human
and pixels were classified as an aircraft if they were visually
distinguishable from the background pixels. This labeling was
subject to human error. We decided on an input image size of
100 × 100 × 1 and randomly cropped around the aircraft so
that the aircraft was present in various locations in the images.

B. Network Architecture and Training

Our network is a variation of the SegNet architecture
proposed in [22] for pixel-wise segmentation. The architecture
consists of an encoder network, a corresponding decoder
network and a pixel-wise classification layer. The architecture
is fully convolutional (i.e., it has no fully connected layers)
which allows us to efficiently train on our dataset of cropped
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TABLE I: The training options for our network.

Momentum 0.9

Initial Learn Rate 0.001

L2 Regularisation 0.0005

Max Epochs 500

100 × 100 × 1 images whilst testing on datasets with larger
images.

We found that the SegNet proposed in [22] over-fit to
our training dataset, so we modified the network to have 2
encoders as seen in Figure 4. Each encoder layer performs 64
3× 3× 1 convolutions with stride [1 1]. These are then batch
normalised and an element-wise rectified-linear non-linearity
(ReLu) is applied. The corresponding decoder upsamples its
input feature maps using the memorized max pooling indices,
see [22] for more details. The output of the final decoder is fed
to a softmax layer which classifies each pixel independently
into 2 classes: aircraft and non-aircraft. For an input image Y ,
the output of our network is a binary image S(Y ) with the
ith pixel value given by

S(Y )i =

{
1 if aircraft
0 if non-aircraft.

(1)

To train our network, we weighted the loss function to
balance the aircraft and non-aircraft classes. The weights were
initialised using the common ‘MSRA’ weight initialization
method [23]. The optimisation algorithm used for training was
stochastic gradient descent with momentum and the training
options are presented in Table I. Additionally, we used data
augmentation to provide more examples to the network, we
used random left/right reflection and random X/Y translation
of ±10 pixels.

C. Testing

We test on two different datasets that are described be-
low: a previously published Project ResQu dataset [14], [24]
(dissimilar to our training data), and a new unpublished
Project Smart Skies dataset (similar to our training data). This
allows us to evaluate the performance of our proposed system
across data captured with different aircraft, camera lens, and
weather conditions and potentially gives some insight into the
sensitivity of our proposed system.

1) ResQu dataset (Captured from a UAV): This dataset
consists of 1024 × 768 × 1 pixel image sequences captured
with a 5mm lens, collected during 15 mid-air head-on near
collision course encounters between two fixed-wing aircraft:
a ScanEagle UAV (camera aircraft) and a Cessna 172 (target
aircraft). The data was captured, processed and stabilised using
a GPS/INS attitude solution at 9Hz on a NVIDIA GeForce
9400M GPU with 16 graphical cores. See [24] for more
details of the flight experiments. We note that we maintain the
same numbering conventions as in [14], [24] for comparison
purposes.

We highlight that this is a different dataset to our training
data as: it was captured with a different lens (5mm lens with
a 2× extender on the training dataset and 5mm lens on this

TABLE II: The Smart Skies dataset collection times and
geometry

Label Collection Date (AEST) Geometry
S1 February 28 2012 (10:48:07) Head-on
S2 February 28 2012 (11:14:09) Head-on
S3 February 28 2012 (11:27:24) Head-on
S4 February 28 2012 (11:41:20) Head-on

-26.42 -26.4 -26.38 -26.36 -26.34 -26.32

151.37

151.38

151.39

151.4

151.41

151.42

151.43
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Fig. 5: The flight path of the camera and target aircraft for
case S1 of the Smart Skies dataset. The target aircraft is
detected at a range of 2588m. We note that there is an altitude
separation between the aircraft of approximately 150m (no
lateral maneuver was required).

testing dataset); had different flight paths (the training dataset
has head on encounters and tail chase encounters whilst this
testing dataset only has head on); and was captured in different
conditions (some cases in this testing dataset were captured in
the rain).

2) Smart Skies dataset: This dataset consists of 1024 ×
768 × 1 pixel image sequences captured with a 5mm lens
with a 2× extender collected during 4 mid-air head-on near
collision course encounters between two fixed-wing aircraft: a
Cessna 172 (camera aircraft) and a Cessna 182 (target aircraft).
The data was captured at 15Hz and stabilised using a GPS-INS
attitude solution. See [5] for more details of the data collection
equipment equipment.

This data was captured over the skies of Kingaroy in
Queensland in Australia (the approximate GPS location of the
testing site is 26◦22.4700 S, 151◦24.1000 E). The collection
times and geometry of the flight experiments are described
in Table II, and an example of the flight path for case S1 is
presented in Figure 5.

We highlight that this is a similar dataset to our training data.
It is captured with the same lens and on the same aircraft.

3) SegNet Computation and Performance: We implemented
our network in MATLAB using the function “segnetLayers”.
The implementation processed approximately 2 frames per
second on a PC running Ubuntu 14.04 with a 3.4GHz Intel
Core i7-6700 CPU and NVIDIA GeForce GTX 1070 GPU.
With a suitably chosen threshold value of 0.99, our network
was successfully able to extract aircraft features from the
image sequences with a low number of false positives.



JAMES et al.: LEARNING TO DETECT AIRCRAFT FOR LONG RANGE, VISION-BASED SENSE AND AVOID SYSTEMS 5

D. Proposed System: Fusion of SegNet with Morphology

When an aircraft first emerges in an image sequence it is
typically small in size and does not exhibit significant visual
features beyond a few pixels. Morphological processing is the
current state of the art at extracting small pixel-sized aircraft
[12], [14], however it also extracts a high number of false
positives (on the order of thousands per frame). Morpholog-
ical processing therefore typically offers very high recall but
very low precision. In contrast, our SegNet implementation
typically offers high precision but low recall for small pixel-
sized aircraft (i.e., SegNet reliably extracts larger sized aircraft
but intermittently misses small pixel-sized aircraft).

To exploit the complementary precision-recall properties of
morphological processing and our SegNet implementation, we
propose fusing our SegNet implementation with bottom-hat
(BH) morphological processing [5] by performing a pixel-wise
addition of our SegNet output S(Y ) and the BH processed
image BH(Y ). That is, the ith pixel of our proposed fused
output F (Y ) is given by

F (Y )i = BH(Y )i + bS(Y )i, (2)

where b = 3 is a boosting factor experimentally selected; we
term this SegNet+BH. When the aircraft is present in SegNet,
the magnitude of the fused SegNet+BH output will be greater
than the outputs of BH and SegNet. In a multi-stage detection
pipeline (see Figure 2), the temporal filter accumulates the
image pre-processing output. Due to the intermittent increases
in the magnitude of the fused SegNet+BH output, we propose
using this SegNet+BH fusion as a new image pre-processing
stage for use in a multi-stage detection pipeline.

IV. RESULTS

In this section we evaluate the performance of our proposed
fused SegNet+BH image pre-processing stage in a multi-
stage detection pipeline. We also evaluate the performance
of SegNet fused with several feature detectors previously
proposed for SAA [25] as well as an unfused SegNet system.

We note that detection range and false alarm performance
varies with the choice of the threshold parameters. For com-
parison purposes we will identify the lowest threshold for
each system that achieves zero false alarms (ZFAs) for our
testing data and compare the resulting ZFA detection ranges.
We highlight that these thresholds are calculated separately
for the two datasets. In practice, detection thresholds could
be adaptively selected on the basis of scene difficulty such as
proposed in [26].

We first do an extensive evaluation on our (larger) ResQu
testing dataset. We then evaluate the performance on our
(smaller) Smart Skies testing dataset.

A. Performance Study of Proposed System

We investigate the performance of our multi-stage pipeline
with our proposed fused SegNet+BH image pre-processing
stage. As seen in Figure 2, the input to our system is a
stabilised image. For our image pre-processing stage, we use
our proposed SegNet+BH. For the temporal filtering stage and
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Fig. 6: Illustrative examples of the test statistic (top) and the
SNR (bottom) when an aircraft is approaching. In Case 8 our
proposed fused SegNet+BH system detects at 2606m (frame
802) and the baseline BH system detects at a similar 2597m
(frame 803). In Case 11 our proposed fused SegNet+BH
system detects at 2849m (frame 950) while the baseline BH
system detects at 2253m (frame 1029).

detection logic we follow [14] and implement a HMM filter
to calculate the aircraft probability test statistic.

We compare its performance to a state of the art baseline
system developed in [14] that utilises a BH image pre-
processing stage. Note that both systems use the same tempo-
ral filtering stage and detection logic.

We investigate the detection ranges and the SNR at the
output of the image pre-processing stage for both systems. We
define this aircraft SNR as the maximum intensity (the pixel
with the highest value) within a 10 × 10 pixel grid around
the ground truth aircraft location divided by the maximum
intensity of the non-aircraft pixels in the output of the image
pre-processing stage (everywhere outside the 10 × 10 pixel
grid).

1) Illustrative example: Figure 6 presents an illustrative
example of the test statistic and the SNR at the output of
the image pre-processing stage as an aircraft is approaching
in two cases from our ResQu testing dataset: Case 8 and
Case 11. In Case 8 there is minimal improvement by our
proposed fused SegNet+BH system which detects at 2606m,
while the baseline BH system detects at a similar 2597m. We
note that there is only a small boost from the SNR in this
case and the detection occurs at similar SNR for both systems.
In Case 11 there is significant improvement by our proposed
fused SegNet+BH system which detects at 2849m, while the
baseline BH system detects later at 2253m.

There is an obvious boost in the SNR from the proposed
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Fig. 7: A comparison of the ZFA detection ranges of our fused
SegNet+BH system, and the baseline BH system. The mean
ZFA detection ranges and SEOM are 2527m and 75m for the
proposed fused SegNet+BH system and 2228m and 52m for
the baseline BH system.

fused system. We note that even though detection is occurring
at different ranges it still occurs at a similar SNR. Notably,
detection is occurring when the SNR is less that 1, highlighting
the importance of the temporal filtering stage.

2) ZFA detection ranges: We ran both algorithms on the
ResQu dataset and the ZFA detection ranges are presented in
Figure 7. The mean ZFA detection ranges and standard error
of mean (SEOM) are 2527m and 75m for the proposed fused
SegNet+BH system and 2228m and 52m for the baseline BH
system. Our proposed fused SegNet+BH system improves the
mean ZFA detection range by 299m (13.4%) relative to the
current state of the art. Additionally, the mean SNR of our
proposed fused SegNet+BH system is 1.4361, the SNR of
the BH system is 1.3276. On average, our proposed fused
SegNet+BH system has boosted the SNR by 0.1085 (8.2%).
Note that Case 3 is significantly worse for both algorithms. As
reported in [24] this case involved significant flight turbulence
and platform motion that was not inertially sensed accurately
(degrading the stabilisation of the image sequence).

3) System operating characteristic curves: To examine the
detection range and false alarm performance for our ResQu
testing dataset we composed system operating characteristic
(SOC) curves. A SOC curve is commonly used to evaluate
the performance of a vision-based aircraft detection system
[5], [13], [14], [18].

Figure 8 presents the mean detection range versus the mean
false alarms per hour for a range of different thresholds. The
maximum SEOM of the mean detection ranges is 83m for our
proposed fused SegNet+BH and system 71m for the baseline
BH system. Figure 8 illustrates longer detection ranges for our
proposed image pre-processing stage whilst maintaining lower
false alarm rates across all tested thresholds.

B. Fusion of SegNet with Feature Detectors

For comparison purposes we compare our proposed
SegNet+BH image pre-processing stage to the fusion of
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Fig. 8: The mean detection range and false alarm rate of our
proposed SegNet+BH system and the baseline BH system for
a range of different thresholds. The maximum SEOM is 83m
for all tested thresholds.

SegNet with several candidate features extraction techniques
previously used in SAA [25].

1) Candidate feature detectors and adjustable parameters:
We compare our proposed SegNet+BH with a pixel-wise
addition of SegNet with: features from accelerated segment
test (FAST) [27], Harris-Stephens (H-S) corner detector [28],
and Shi and Tomasi (S&T) corner detector [29].

We now briefly outline the adjustable parameters for each
of the candidate approaches. For FAST the minimum accepted
quality of the corners was set to 0.01 and the minimum inten-
sity difference between the corner and surrounding regions was
set to 0.01. For H-S and S&T the minimum accepted quality of
the corners was set to 0.01, and the Gaussian filter dimension
was set to 3. For implementation purposes, we rescaled the
outputs of FAST, H-S and S&T to integers between 0 and 5.

2) Fusion results and discussion: For each of the fusion
approaches we compare the ZFA detection range where the
system correctly declared a detection.

The ZFA detection ranges for the candidate fusion ap-
proaches are presented in Table III. Cases with missed de-
tections were marked as “X”. The fusion of SegNet+BH
is the best performing; it has no missed detections and the
best average detection range. The SEOM is similar for all
algorithms. It is perhaps unsurprising that SegNet+BH is the
best performing as the current state of the art [14] already
utilises a BH image pre-processing stage.

C. SegNet Without Fusion

We also investigated the performance of SegNet without
fusion in a multi-stage detection pipeline. The resulting ZFA
detection ranges are compared to our SegNet+BH system in
Figure 9. We highlight that, to ensure a fair comparison, we
have reselected the threshold for each system to obtain the
ZFA detection ranges.

For the ResQu dataset the mean ZFA detection range and
standard error for the 15 cases is 2299m and 74m respectively
(recall the mean ZFA detection ranges and SEOM are 2527m
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TABLE III: The detection ranges, mean and SEOM of the
candidate systems. Missed detections are marked with an X.
The SegNet+BH has the best mean detection range and no
missed detections.

SegNet+
BH FAST H-S S&T

Case No. Range (m) Range (m) Range (m) Range (m)
1 2181 2029 1969 2021
2 2997 2820 2554 2804
3 1799 1808 1817 1817
4 2432 2324 2316 2333
5 2621 2512 2436 2478
6 2600 2437 2395 2437
7 2867 2679 2665 2672
8 2606 X X X
9 2707 2624 2616 2646
10 2435 X X X
11 2849 2712 2629 2705
12 2550 2560 2550 2560
13 2490 2516 2496 2503
14 2364 2204 2120 2170
15 2401 2375 2382 2388
Mean 2527 2431 2380 2426
SEOM 76 79 73 79
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Fig. 9: A comparison of the ZFA detection ranges of our fused
SegNet+BH system and an unfused SegNet system. Case 8
and 10 are missed detections for the unfused SegNet system.

and 75m for our proposed fused SegNet+BH system). There
were 2 missed detections in Case 8 and Case 10. In these
cases we observed that the aircraft pixels were not classified
by the unfused SegNet system until the aircraft was around
1500m away. In this situation there is insufficient frames for
the HMM filter to declare a detection alert.

D. Smart Skies Data Comparison

We now evaluate the performance of our proposed fused
system on our smaller Smart Skies dataset. As this dataset
is similar to our training data (same target aircraft and same
camera lens), we can potentially gain some insight into the
sensitivity of our proposed fused SegNet+BH system. We
ran our proposed fused SegNet+BH system, the baseline BH
system and an unfused SegNet system and the ZFA detection
ranges are presented in Figure 10. Our proposed fused system
is able to detect equal to or better than the baseline BH and the
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Fig. 10: A comparison of the ZFA detection ranges of our
proposed fused SegNet+BH, the baseline BH system and an
unfused SegNet system. Case 1 is a missed detections for the
baseline BH system.

unfused SegNet system on all cases. Interestingly, in Case 1,
our proposed fused system is still able to boost the detection
range even when there is a missed detection by the BH system.
In contrast, in Case 2, the unfused SegNet system does not
detect until 1885m and there is no boost in detection range
from our fused SegNet+BH system.

We note that, opposite to the ResQu dataset, the baseline
BH system has a missed detection and the unfused SegNet
system has no missed detections. We suspect this is due to the
Smart Skies being similar to our training data.

V. DISCUSSION

In this section we discuss our proposed fused SegNet+BH
system, its limitations and potential future work.

To detect long range aircraft we designed a complementary
system which fused our SegNet implementation with BH mor-
phological processing to propose a new image pre-processing
stage for use in a multi-stage detection pipeline. Our proposed
SegNet+BH system was able to improve detection range in
both our datasets despite being captured on different platforms,
with different lenses and in different conditions. On our ResQu
dataset, the mean detection ranges of our proposed system
(cf. Figure 8) are comparable to the medium range of 2593m
reported for alerted pilots with an 86% success rate [3].

We found that our SegNet output would detect an aircraft
with high precision but not until the aircraft had some dis-
cernible features (late in an image sequence when the aircraft
was closer). From the literature we knew that BH was able
to detect pixel-sized aircraft (early in an image sequence), but
with a very low precision. By choosing a pixel-wise addition
fusion we are able to exploit the high precision of our SegNet
output to intermittently increase the aircraft signal.

A key limitation of our proposed approach is the computa-
tional burden of the SegNet compared to a pure morphological
approach. Prior SAA systems with pure morphological image
pre-processing stages and implemented in Nvidia CUDA/C++
on GPUs performed at 15 frames per second [5] and 9 frames
per second [24]. Our MATLAB implementation runs at 2
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frames per second. We expect the computational performance
of our approach to improve with a specialised implementation.

A fundamental limitation in this application is the lack of
available data. Image sequences depicting aircraft on collision
course are very limited and expensive to capture due to the
risk of flying aircraft on converging paths [30]. Ideally we
would have more training and testing data (potentially color
data although our intuition is that color features may be less
important for detection of aircraft at a long range).

VI. CONCLUSION

In this paper we trained a deep CNN to learn aircraft fea-
tures using a variation of the SegNet architecture for semantic
pixelwise segmentation. We evaluated the performance of our
learnt features fused with BH morphological processing as
a new image pre-processing stage in a multi-stage detection
pipeline. Our proposed fused system offers an increase in
mean detection range of 299m (13.4%) to 2527m with no
additional false alarms and improves the SNR of the image
pre-processing stage by 0.1085 (8.2%) on the ResQu dataset
relative to the current state of the art [14]. We also compared
the performance to several other candidate feature extractors
as well as the performance of the SegNet without fusion.
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