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Abstract 

The Japanese dense array of Global Positioning System recorded ionospheric disturbances as 
changes in Total Electron Content ~12 minutes after the September 1 2004 eruption of the 
Asama Volcano, Central Japan. The disturbance had a period of one and a quarter minutes and 
propagated as fast as ~1.1 km/s, suggesting its origin as the acoustic wave generated by the 
explosion. By comparing the disturbance amplitudes with those by a surface mine blast with a 
known energy, the overall Asama explosion energy is inferred to be about 2 x 1014 J. 

 
1. Introduction 

Ionospheric Total Electron Content (TEC) can be easily measured as the phase differences of the L 
band carrier waves in two frequencies from Global Positioning System (GPS) satellites. Ionospheric 
disturbances measured as TEC variations have been contributing to studies of solar-terrestrial physics, e.g. 
Traveling Ionospheric Disturbances (TID) [e.g. Tsugawa et al., 2004], TEC disturbances by solar eclipse 
[Afraimovich et al., 2002] and by solar flares [Zhang and Xiao, 2005].  

Calais and Minster [1995] paved the way to use GPS-TEC as a sensor to study the solid earth. Targets 
of such studies over the last decade include the disturbances associated with atmospheric acoustic waves 
excited by coseismic crustal uplifts [Heki and Ping, 2005] and passage of Rayleigh surface waves [Ducic 
et al., 2003], and atmospheric internal gravity waves excited by tsunamis [Artru et al., 2005]. Here I 
present a new application of GPS-TEC, i.e. estimation of the explosion energy of a volcanic eruption. 
This new technique would complement past methods based on observations of mass deficits, near-field 
measurements of airwaves, etc, and may contribute to mitigate volcanic hazards.  
 
2. Data analysis 
  The Asama Volcano, Central Japan (Fig.1), started eruptive activity at 11:02 UT on September 1, 2004, 
with a vulcanian explosion associated with strong airwaves [Nakada et al., 2005].  The Japanese dense 
GPS array GEONET (GPS Earth Observation Network), composed of ~1000 continuous GPS tracking 
stations, record L1 (~1.5 GHz) and L2 (~1.2 GHz) carrier phases every 30 seconds.  Ionospheric delays 
are frequency dependent, and phase differences between the two carriers convey information on the TEC 
values along the line-of-sight and their changes in space and time. To detect TEC changes caused by the 
eruption, the lines need to penetrate the ionosphere (maximum electron density as high as ~300 km) near 
the volcano. This condition was met at the time of eruption by observing the satellite 15 from GPS 
stations in the Kansai District. 

Fig. 1 shows five sets of TEC time series, composed of five GPS points penetrating ionosphere within 
200 km in horizontal distances from the volcano in different azimuths. Clear N-shaped disturbance 
signals are seen 11-13 minutes after the eruption in the south- and southwestward azimuths. Faint signals 
are recognized in the western ionosphere, but no disturbance signals can be seen toward the northeast and 
east. Such asymmetry partly comes from the directivity caused by the geomagnetism [Heki and Ping, 
2005], and partly from difference in the angle between the line-of-sight and the wavefront. These are the 
first detection of the ionospheric disturbances with GPS, although Doppler sounding technique has 



detected disturbances of volcanic origin, e.g. the 1980 explosion of Mount St. Helens [Roberts et al., 
1982] and the 1991 Pinatubo eruption [Igarashi et al., 1994]. 

First, I try to adjust a simple function 

,                            (1) 
made of a set of positive and negative pulses, to the observed disturbances (Fig.2). The function has 
maximum and minimum at t=−σ and t=σ, respectively. The two parameters a and σ, representing the 
amplitude and period respectively, were tuned to minimize the root-mean-squares (rms) of differences 
between the synthesized and the observed disturbances. The values a=0.0070 and σ=19 resulted in good 
fits to the majority of time series, which correspond to ~0.16 TECU (1TECU = 1016 electrons/m2) as the 
peak-to-peak amplitude (i.e. f(−σ)−f(σ)), and 76 seconds (about 1 and 1/4 minutes) as the approximate 
period (i.e. 4 × σ), respectively (Fig.2 bottom center). Disturbance arrival times were determined for 
individual time series by moving the source function with a time step of 2.5 seconds and finding the time 
lags that minimize the rms of the differences. 
 

 
Figure 1. Time series of TEC (Sat.15) for GPS stations (squares) with the ground projections of the ionosphere 

(height is assumed to be 300 km) piercing points (triangles) in different azimuths from the volcano (open star). 
There are clear disturbances in southern and southwestern stations about 10 minutes after the eruption (11:02, 
vertical gray lines).  They are less conspicuous in the western stations and absent in northeastern and eastern 
stations. Numbers in the time series are the station IDs in four digits. TEC time series closer to the volcano are 
displayed in upper positions. Time series of the three GPS stations shown by squares with bold frames (0062, 0066, 
and 0363) are compared with synthesized ones in Fig. 3. 



 
To infer the apparent velocity of the propagating disturbances, I plot the arrival times as a function of 

distances (measured along the Earth’s surface between the volcano and the ground projection of the 
ionosphere penetration point) from the volcano (Fig. 2 bottom left/right). The apparent velocities were 
1.08 ± 0.05 and 1.12 ± 0.10 km/sec, similar to the sound velocity at the ionospheric height [Fitzgerald, 
1997; Calais et al., 1998]. The onset of the propagation lags behind the explosion by ~10 minutes, which 
corresponds to the time required for the sound wave to travel upward from ground to ionosphere. The 
atmospheric sound wave would have been excited by the explosion, propagated upward reaching 
ionosphere, and have disturbed electron density distribution there.  

The period of the present case is within the window of the atmospheric filter [Georges, 1968]. It is 
interesting to note that it is significantly shorter than the typical period of coseismic ionospheric 
disturbances ~4.5 minutes, one of the resonance periods between the atmosphere and the ground [Tahira, 
1995]. To identify the physical processes governing the period is an interesting future issue. 

 

 
Figure 2. Arrival times of the disturbances are determined by searching for the time lag giving minimal differences 

between the source function (dark gray curves, see equation 1 of the text) and the observed TEC (open circles with 
the sampling interval of 30 seconds), for GPS points observing the southwestern (top left) and southern (top right) 
skies (Fig.1). Linear regressions are performed for the estimated arrival times (bottom left and right), and the 
apparent velocities of the disturbance propagation of ~1.1 km/s were estimated.  Observed TEC values from the 
ten time series are compared with the source function after adjusting the time lags (bottom center). 

 
3. Explosion energy 

In the present study, ionospheric disturbances caused by the Asama eruption in the southern ionosphere, 
was 0.16 TECU in peak-to-peak amplitude. Calais et al. [1998], using GPS, observed ionospheric 
disturbances of 0.03 TECU (also in the southern azimuth) after a 1.5 Kt (ANFO explosives, similar in 
power to trinitrotoluene, TNT) surface mine blast at a coal mine in Wyoming, USA. By comparing these 
two cases, we could roughly infer the energy of the Asama explosion.  

At first, the differences in conditions of the two cases need to be clarified. One of the important factors 
is the background TEC when the explosions occurred; the wave energy would depend on TEC changes 



relative to the background values. Daily vertical TEC change curves obtained by analyzing GEONET 
data are available on line by Akinori Saito, Kyoto University, at 
www-step.kugi.kyoto-u.ac.jp/~saitoua/GPS_TEC. The background TEC was ~10 TECU for the Asama 
case. That for the US mine blast case is not directly available, but would be similar to the TEC of a point 
in Japan on the same day, at the same solar time, and latitude. It was ~20 TECU, about twice as large as 
the Asama case.  

Another important factor is the incidence angle of the line-of-sight vector into the acoustic wavefront. 
In Figure 3, I show three examples, observing the northeastern (0062), southeastern (0066), and 
southwestern (0363) ionosphere (locations of the GPS receivers and sub-ionospheric points given in 
Fig.1). The upper panel shows the geometry of the wavefront and the line-of-sight. The amplitudes of the 
TEC disturbances are the largest for 0363, and the smallest for 0062. This difference comes from the 
incidence angle, i.e. a shallower angle causes a larger signal, because the positive and negative parts 
cancel less each other. Similar calculations for the US mine blast case resulted in fairly deep incidence 
angles (consistent with Fig.7b of Calais et al. [1998]). Numerical calculation showed that the TEC signal 
generated by the same source function was ~1/2 of our case of 0066. 

 

 
 
Figure 3. Relative electron density (light gray) and velocity of acoustic wave (dark gray) are plotted as functions of 

height [Calais et al., 1998] (top left). Ray tracing of acoustic waves for zenith angles 0-20 degrees is done 
assuming this velocity profile (top right). Equal-time contours are shown for 5, 10, 15, and 20 minutes after the 
eruption with broken curves. Gray scales shown along the ray paths indicate the position of the source function at 
11.23 minutes after the eruption (~11:14 UT, broken line in the bottom panel).  Gray curves are the line-of-sights 
connecting the satellites 15 and three GPS stations 0062, 0066, and 0363 (their positions shown in Fig. 1). They are 
straight in 3-dimensional space, but have apparent curvatures here because we took the distance from Asama as the 
horizontal axis. The observed (dark gray, residuals of the polynomial fit) and synthesized (light gray, based on the 
ray tracing) TEC time series of the three points for satellites 15 are given in the bottom panel. The observed arrival 
times, waveforms, and relative amplitudes are consistent with the synthesized curves for 0066 and 0363.  Absence 
of signals in 0062 would be due to the directivity of ionospheric disturbances [Heki and Ping, 2005]. 

 



The geomagnetic inclination is deeper in the mine blast case than the Asama case by ~20 degrees. 
However, difference in the directivities between the two cases, inferred from the same calculation that 
Heki and Ping [2005] performed to draw their Fig. 6b, was not serious. After all, the two factors, the 
background TEC (twice as large), and the incidence angle (one half), influence the amplitude oppositely 
and would largely cancel each other. The apparent difference in the observed disturbance amplitudes 
hence mainly reflects the energy difference. Since wave energy scales with the square of the amplitude, 
the total explosion energy of the Asama eruption would be ~4 x 104 t TNT, or 2 x 1014 Joule. This is ~1/2 
of the energy reported for the 1938 eruption [Minakami, 1942]. 

 
4. Discussion 

Apart from the empirical approach described in the previous section, Johnson [2003] estimated the air 
wave energy of a volcanic eruption Eacoustic with a purely physical approach, i.e.  

 

,                        (2) 

 
where ρatmos and catmos are the density and the sound velocity, respectively, r is the distance from the 
volcano, and ΔP is the pressure perturbation. Here I assume that the observed ionospheric disturbance is a 
part of the spherical wave propagated from the volcano. Assuming 300 km (F layer height) for r, 5 x 10-11 
kg/m3 for ρatmos, 1.1 km/sec for catmos, we obtain 1.2 x 107 Joule for Eacoustic. There the pressure 
perturbation ΔP is calculated as the product of the ambient pressure P at 300 km height, and the TEC 
perturbation relative to the background (i.e. ΔP = P x ΔTEC/TEC). This energy value is only a small 
portion of the overall eruptive energy inferred in the previous section, but it is close to the median of the 
twelve examples for various eruptions given in Johnson [2003]. 

The explosion energy inferred here is a crude estimate, and is subject to various factors not sufficiently 
addressed in the present study. From field experiments, Goto et al. [2001] found that the scaled depth of 
the explosion controls the energy partition to the airwave. Unknown difference in this parameter between 
the Asama and the mine blast cases may have resulted in significant under- or overestimate of the energy. 
Other sources of error may include space-time variability of sound velocity structure, and zonal and 
meridional wind at ionospheric heights. Clarifications of these factors would make GPS-TEC a more 
reliable approach to estimate volcanic explosion energies. 
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