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Abstract Urban land use information is essential for a variety of urban-related applications 10 

such as urban planning and regional administration. The extraction of urban land use from 11 

very fine spatial resolution (VFSR) remotely sensed imagery has, therefore, drawn much 12 

attention in the remote sensing community. Nevertheless, classifying urban land use from 13 

VFSR images remains a challenging task, due to the extreme difficulties in differentiating 14 

complex spatial patterns to derive high-level semantic labels. Deep convolutional neural 15 

networks (CNNs) offer great potential to extract high-level spatial features, thanks to its 16 

hierarchical nature with multiple levels of abstraction. However, blurred object boundaries 17 

and geometric distortion, as well as huge computational redundancy, severely restrict the 18 

potential application of CNN for the classification of urban land use. In this paper, a novel 19 

object-based convolutional neural network (OCNN) is proposed for urban land use 20 

classification using VFSR images. Rather than pixel-wise convolutional processes, the 21 

OCNN relies on segmented objects as its functional units, and CNN networks are used to 22 

analyse and label objects such as to partition within-object and between-object variation. 23 

Two CNN networks with different model structures and window sizes are developed to 24 

predict linearly shaped objects (e.g. Highway, Canal) and general (other non-linearly shaped) 25 

objects. Then a rule-based decision fusion is performed to integrate the class-specific 26 

classification results. The effectiveness of the proposed OCNN method was tested on aerial 27 

photography of two large urban scenes in Southampton and Manchester in Great Britain. The 28 

OCNN combined with large and small window sizes achieved excellent classification 29 

accuracy and computational efficiency, consistently outperforming its sub-modules, as well 30 

as other benchmark comparators, including the pixel-wise CNN, contextual-based MRF and 31 

object-based OBIA-SVM methods. The proposed method provides the first object-based 32 

CNN framework to effectively and efficiently address the complicated problem of urban land 33 

use classification from VFSR images. 34 
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 37 

1. Introduction 38 

Urban land use information, reflecting socio-economic functions or activities, is essential for 39 

urban planning and management. It also provides a key input to urban and transportation 40 

models, and is essential to understanding the complex interactions between human activities 41 

and environmental change (Patino and Duque, 2013). With the rapid development of modern 42 

remote sensing technologies, a huge amount of very fine spatial resolution (VFSR) remotely 43 

sensed imagery is now commercially available, opening new opportunities to extract urban 44 

land use information at a very detailed level (Pesaresi et al., 2013). However, urban land 45 

features captured by these VFSR images are highly complex and heterogeneous, comprising 46 

the juxtaposition of a mixture of anthropogenic urban and semi-natural surfaces. Often, the 47 

same urban land use types (e.g. residential areas) are characterized by distinctive physical 48 

properties or land cover materials (e.g. composed of different roof tiles), and different land use 49 

categories may exhibit the same or similar reflectance spectra and textures (e.g. asphalt roads 50 

and parking lots) (Pan et al., 2013). Meanwhile, information on urban land use within VFSR 51 

imagery is presented implicitly as patterns or high-level semantic functions, in which some 52 

identical low-level ground features or object classes are frequently shared amongst different 53 

land use categories. This complexity and diversity of spatial and structural patterns in urban 54 

areas makes its classification into land use classes a challenging task (Hu et al., 2015). 55 

Therefore, it is important to develop robust and accurate urban land use classification 56 

techniques by effectively representing the spatial patterns or structures lying in VFSR remotely 57 

sensed data. 58 

Over the past few decades, tremendous effort has been made in developing automatic urban 59 

land use classification methods. These methods can be categorized broadly into four classes 60 

based on the spatial unit of representation (i.e. pixels, moving windows, objects and scenes) 61 

(Liu et al., 2016). The pixel-level approaches that rely purely upon spectral characteristics are 62 

able to classify land cover, but are insufficient to distinguish land uses that are typically 63 

composed of multiple land covers, and such problems are particularly significant in urban 64 

settings (Zhao et al., 2016). Spatial information, that is, texture (Herold et al., 2003; Myint, 65 

2001) or context (Wu et al., 2009), was incorporated to analyse urban land use patterns through 66 

moving kernel windows (Niemeyer et al., 2014).  However, it could be argued that both pixel-67 
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based and moving window-based methods require to predefine arbitrary image structures, 68 

whereas actual objects and regions might be irregularly shaped in the real world (Herold et al., 69 

2003). Therefore, object-based image analysis (OBIA) that is built upon automatically 70 

segmented objects from remotely sensed imagery is preferable (Blaschke, 2010), and has been 71 

considered as the dominant paradigm over the last decade (Blaschke et al., 2014). Those image 72 

objects, as the base units of OBIA, offer two kinds of information with a spatial partition, 73 

specifically; within-object information (e.g. spectral, texture, shape) and between-object 74 

information (e.g. connectivity, contiguity, distances, and direction amongst adjacent objects). 75 

Many studies applied OBIA for urban land use classification using within-object information 76 

with a set of low-level features (such as spectra, texture, shape) of the ground features (e.g. 77 

Blaschke, 2010; Blaschke et al., 2014; Hu and Wang, 2013). These OBIA approaches, however, 78 

might overlook semantic functions or spatial configurations due to the inability to use low-79 

level features in semantic feature representation. In this context, researchers have attempted to 80 

incorporate between-object information by aggregating objects using spatial contextual 81 

descriptive indicators on well-defined land use units, such as cadastral fields or street blocks. 82 

Those descriptive indicators were commonly derived by means of spatial metrics to quantify 83 

their morphological properties (Yoshida and Omae, 2005) or graph-based methods that model 84 

the spatial relationships (Barr and Barnsley, 1997; Walde et al., 2014). However, the ancillary 85 

geographic data for specifying the land use units might not be available for some regions, and 86 

the spatial contexts are often hard to describe and characterize as a set of “rules”, even though 87 

the complex structures or patterns might be recognizable and distinguishable by human experts 88 

(Oliva-Santos et al., 2014). Thus, advanced data-driven approaches are highly desirable to learn 89 

land use semantics automatically through high-level feature representations. 90 

Recently, deep learning has become the new hot topic in machine learning and pattern 91 

recognition, where the most representative and discriminative features are learnt end-to-end, 92 

hierarchically (Chen et al., 2016a). This breakthrough was triggered by a revival of interest in 93 

the use of multi-layer neural networks to model higher-level feature representations without 94 

human-designed features or rules. Convolutional neural networks (CNNs), as a well-95 

established and popular deep learning method, has produced state-of-the-art results for multiple 96 

domains, such as visual recognition (Krizhevsky et al., 2012), image retrieval (Yang et al., 97 

2015) and scene annotation (Othman et al., 2016). Owing to its superiority in higher-level 98 

feature representation and scene understanding, the CNN has demonstrated great potential in 99 

many remote sensing tasks such as vehicle detection (Chen et al., 2014; Dong et al., 2015), 100 
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road network extraction (Cheng et al., 2017), remotely sensed scene classification (Othman et 101 

al., 2016; Sargent et al., 2017), and semantic segmentation (Zhao et al., 2017b). Interested 102 

readers are referred to a comprehensive review of deep learning in remote sensing (Zhu et al., 103 

2017).  104 

Land use information extraction from remotely sensed data using CNN models has been 105 

undertaken in the form of land-use scene classification, which aims to assign a semantic label 106 

(e.g. tennis court, parking lot, etc.) to an image according to its content (Chen et al., 2016b; 107 

Nogueira et al., 2017). There are broadly two strategies to exploit the CNN models for scene-108 

level land use classification, namely; i) pre-trained or fine-tuned CNN, and ii) fully-trained 109 

CNN from scratch. The first strategy relies on pre-trained CNN networks transferred from an 110 

auxiliary domain with natural images, which has been demonstrated empirically to be useful 111 

for land-use scene classification (Hu et al., 2015; Nogueira et al., 2017). However, it requires 112 

three input channels derived from natural images with RGB only, whereas the multispectral 113 

remotely sensed imagery often involves the near infrared band, and such a distinction restricts 114 

the utility of pre-trained CNN networks. Alternatively, the (ii) fully-trained CNN strategy gives 115 

full control over the network architecture and parameters, which brings greater flexibility and 116 

expandability (Chen et al., 2016). Previous researchers have explored the feasibility of the 117 

fully-trained strategy in building CNN models for scene level land-use classification. For 118 

example, Luus et al. (2015) proposed a multi-view CNN with multi-scale input strategies to 119 

address the issue of land use scene classification and its scale-dependent characteristics. 120 

Othman et al. (2016) used convolutional features and a sparse auto-encoder for scene-level 121 

land-use image classification, which further demonstrated the superiority of CNNs in feature 122 

learning and representation. Xia et al., (2017) even constructed a large-scale aerial scene 123 

classification dataset (AID) for performance evaluation among various CNN models and 124 

architectures developed by both strategies. However, the goal of these land use scene 125 

classifications is essentially image categorization, where a small patch extracted from the 126 

original remote sensing image is labelled into a semantic category, such as ‘airport’, ‘residential’ 127 

or ‘commercial’ (Maggiori et al., 2017). Land-use scene classification, therefore, does not meet 128 

the actual requirement of remotely sensed land use image classification, which requires all 129 

pixels in an entire image to be identified and labelled into land use categories (i.e., producing 130 

a thematic map). 131 

With the intrinsic advantages of hierarchical feature representation, the patch-based CNN 132 

models provide great potential to extract higher-level land use semantic information. However, 133 
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this patch-wise procedure introduces artefacts on the border of the classified patches and often 134 

produces blurred boundaries between ground surface objects (Zhang et al., 2018a, 2018b), thus, 135 

introducing uncertainty in the classification. In addition, to obtain a full resolution 136 

classification map, pixel-wise densely overlapped patches were used at the model inference 137 

phase, which inevitably led to extremely redundant computation.  As an alternative, Fully 138 

Convolutional Networks (FCN) and its extensions have been introduced into remotely sensed 139 

sematic segmentation to address the pixel-level classification problem (e.g. Liu et al., 2017; 140 

Paisitkriangkrai et al., 2016; Volpi and Tuia, 2017). These FCN-based methods are, however, 141 

mostly developed to solve low-level semantic (i.e. land cover) classification tasks, due to the 142 

insufficient spatial information in the inference phase and the lack of contextual information at 143 

up-sampling layers (Liu et al., 2017). In short, we argue that the existing CNN models, 144 

including both patch-based and pixel-level approaches, are not well designed in terms of 145 

accuracy and/or computational efficiency to cope with the complicated problem of urban land 146 

use classification using VFSR remotely sensed imagery.  147 

In this paper, we propose an innovative object-based CNN (OCNN) method to address the 148 

complex urban land-use classification task using VFSR imagery. Specifically, object-based 149 

segmentation was initially employed to characterize the urban landscape into functional units, 150 

which consist of two geometrically different objects, namely linearly shaped objects (e.g. 151 

Highway, Railway, Canal) and other (non-linearly shaped) general objects. Two CNNs with 152 

different model structures and window sizes were applied to analyse and label these two kinds 153 

of objects, and a rule-based decision fusion was undertaken to integrate the models for urban 154 

land use classification. The innovations of this research can be summarised as 1) to develop 155 

and exploit the role of CNNs under the framework of OBIA, where both within-object 156 

information and between-object information is used jointly to fully characterise objects and 157 

their spatial context. 2) to design the CNN networks and position them appropriately with 158 

respect to object size and geometry, and integrate the models in a class-specific manner to 159 

obtain an effective and efficient urban land use classification output (i.e., a thematic map). The 160 

effectiveness and the computational efficiency of the proposed method were tested on two 161 

complex urban scenes in Great Britain. 162 

The remainder of this paper is organized as follows: Section 2 introduces the general workflow 163 

and the key components of the proposed methods. Section 3 describes the study area and data 164 

sources. The results are presented in section 4, followed by a discussion in section 5. The 165 

conclusions are drawn in the last section. 166 
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 167 

2. Method 168 

2.1 Convolutional Neural Networks (CNN)  169 

A Convolutional Neural Network (CNN) is a multi-layer feed-forward neural network that is 170 

designed specifically to process large scale images or sensory data in the form of multiple 171 

arrays by considering local and global stationary properties (LeCun et al., 2015). The main 172 

building block of a CNN is typically composed of multiple layers interconnected to each other 173 

through a set of learnable weights and biases (Romero et al., 2016). Each of the layers is fed 174 

by small patches of the image that scan across the entire image to capture different 175 

characteristics of features at local and global scales. Those image patches are generalized 176 

through alternative convolutional and pooling/subsampling layers within the CNN framework, 177 

until the high-level features are obtained on which a fully connected classification is performed 178 

(Schmidhuber, 2015). Additionally, several feature maps may exist in each convolutional layer 179 

and the weights of the convolutional nodes in the same map are shared. This setting enables 180 

the network to learn different features while keeping the number of parameters tractable. 181 

Moreover, a nonlinear activation (e.g. sigmoid, hyperbolic tangent, rectified linear units) 182 

function is taken outside the convolutional layer to strengthen the non-linearity (Strigl et al., 183 

2010). Specifically, the major operations performed in the CNN can be summarized as: 184 

                                                         ))(( 1 lll

p

l bWOpoolO                                           (1) 185 

Where the 1lO  denotes the input feature map to the lth layer, the lW  and the lb  represent the 186 

weights and biases of the layer, respectively, that convolve the input feature map through linear 187 

convolution*, and the )(  indicates the non-linearity function outside the convolutional layer. 188 

These are often followed by a max-pooling operation with p×p window size (poolp) to 189 

aggregate the statistics of the features within specific regions, which forms the output feature 190 

map lO  at the lth layer (Romero et al., 2016).  191 

2.2 Object-based CNN (OCNN) 192 

An object-based CNN (OCNN) is proposed for the urban land use classification using VFSR 193 

remotely sensed imagery. The OCNN is trained as the standard CNN models with labelled 194 

image patches, whereas the model prediction is to label each segmented object derived from 195 

image segmentation. The segmented objects are generally composed of two distinctive objects 196 

in geometry, including linearly shaped objects (LS-objects) (e.g. Highway, Railway and Canal) 197 
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and other (non-linearly shaped) general objects (G-objects). To accurately predict the land use 198 

membership association of a G-object, a large spatial context (i.e. a large image patch) is 199 

required when using the CNN model. Such a large image patch, however, often may lead to a 200 

large uncertainty in the prediction of LS-objects due to narrow linear features being ignored 201 

throughout the convolutional process. Thus, a large input window CNN (LIW-CNN) and a 202 

range of small input window CNNs (SIW-CNN) were thereafter trained to predict the G-object 203 

and the LS-object, respectively, where the appropriate convolutional positions of both models 204 

were derived from a novel object convolutional position analysis (OCPA). The final 205 

classification results were determined by the decision fusion of the LIW-CNN and the SIW-206 

CNN.  As illustrated by Figure 1, the general workflow of the proposed OCNN consists of five 207 

major steps, including (A) image segmentation, (B) OCPA, (C) LIW-CNN and SIW-CNN 208 

model training, (D) LIW-CNN and SIW-CNN model inference, and (E) Decision fusion of 209 

LIW-CNN and SIW-CNN. Each of these steps is elaborated in the following section.  210 

 211 

Figure 1 Flowchart of the proposed object-based CNN (OCNN) method with five major steps: (A) image 212 

segmentation, (B) object convolutional position analysis (OCPA), (C) LIW-CNN and SIW-CNN model 213 

training, (D) LIW-CNN and SIW-CNN model inference, and (E) fusion decision of LIW-CNN and SIW-CNN. 214 

2.2.1 Image segmentation 215 

The proposed method starts with an initial image segmentation to achieve an object-based 216 

image representation. Mean-shift segmentation (Comaniciu and Meer, 2002), as a 217 

nonparametric clustering approach, was used to partition the image into objects with 218 

homogeneous spectral and spatial information. Four multispectral bands (Red, Green, Blue, 219 

and Near Infrared) together with a digital surface model (DSM), useful for differentiating urban 220 

objects with height information (Niemeyer et al., 2014), were incorporated as multiple input 221 

data sources for the image segmentation (Figure 1(A)). A slight over-segmentation rather than 222 

under-segmentation was produced to highlight the importance of spectral similarity, and all the 223 

image objects were transformed into GIS vector polygons with distinctive geometric shapes. 224 
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2.2.2 Object convolutional position analysis (OCPA) 225 

The object convolutional position analysis (OCPA) is employed based on the moment 226 

bounding (MB) box of each object to identify the position of LIW-CNN and those of SIW-227 

CNNs.  The MB box, proposed by Zhang and Atkinson, (2016), refers to the minimum 228 

bounding rectangle built upon the moment orientation (the orientation of the major axis) of a 229 

polygon (i.e. an object), derived from planar characteristics defined by mechanics (Zhang and 230 

Atkinson, 2016; Zhang et al., 2006). The MB box theory is briefly described hereafter.  231 

Suppose that (x, y) is a point within a planar polygon (S) (Figure 2), whose centroid is ),( yxC . 232 

The moment of inertia about the x-axis ( xxI  ) and y-axis ( yyI ), and the product of inertia ( xyI ) 233 

are expressed by Equations 2, 3 and 4, respectively.  234 

  dAyI xx

2                                                          (2) 235 

  dAxI yy

2                                                          (3) 236 

  xydAI xy
                                                         (4) 237 

Note, dA(= dydx  ) refers to the differential area of point (x, y) (Timoshenko and Gere 1972).  238 

 239 

Figure 2 A patch (S) with centroid C ( yx, ), dA is the differential area of point (x, y), Oxy is the geographic 240 

coordinate system. 241 

As illustrated by Figure 3, two orthogonal axes (MN and PQ), the major and minor axes, pass 242 

through the centroid (C), with the minimum and maximum moment of inertia about the major 243 

and minor axes, respectively. The moment orientation 
MB (i.e. the orientation of the major 244 

axis) is calculated by Equations 5 and 6 (Timoshenko and Gere, 1972).  245 
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The moment bounding (MB) box (the rectangle in red shown in Figure 3) that minimally 248 

encloses the polygon, S, is then constructed by taking 
MB as the orientation of the long side 249 

of the box, and EF is the perpendicular bisector of the MB box with respect to its long side. 250 

The discrete forms of Equations 2-6 suitable for patch computation, are further deduced by 251 

associating the value of a line integral to that of a double integral using Green’s theorem (see 252 

Zhang et al. (2006) for theoretical details). 253 

 254 

Figure 3 Moment bounding (MB) box and the CNN convolutional positions of a polygon S. 255 

The CNN convolutional positions are determined by the minor axis (PQ) and the bisector of 256 

the MB box (EF) to approximate the central region of the polygon (S). For the LIW-CNN, the 257 

central point (the red point U) of the line segment (AB) intersected by PQ and polygon S is 258 

assigned as the convolutional position. As for the SIW-CNN, a distance parameter (d) (a user 259 

defined constant) is used to determine the number of SIW-CNN sampled along the polygon. 260 

Given the length of a MB box as l, the number (n) of SIW-CNNs is derived as:  261 

 
d

dl
n


                                                                (7) 262 

The convolutional positions of the SIW-CNN are assigned to the intersection between the 263 

centre of the bisector (EF) as well as its parallel lines and the polygon S. The points (G1, G2, …, 264 

G5) in Figure 3 illustrate the convolutional positions of SIW-CNN for the case of n = 5.  265 

2.2.3 LIW-CNN and SIW-CNN model training 266 

Both the LIW-CNN and SIW-CNN models are trained using image patches with labels as input 267 

feature maps. The parameters and model structures of these two models are empirically tuned 268 

as demonstrated in the Experimental Results and Analysis sections. Those trained CNN models 269 

are used for model inference in the next stage. 270 
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2.2.4 LIW-CNN and SIW-CNN model inference 271 

After the above steps, the trained LIW-CNN and SIW-CNN models, and the convolutional 272 

position of LIW-CNN and those of SIW-CNN for each object are available. For a specific 273 

object, its land use category can be predicted by the LIW-CNN at the derived convolutional 274 

position within the VFSR imagery; at the same time, the predictions on the land use 275 

membership associations of the object can also be obtained by employing SIW-CNN models 276 

at the corresponding convolutional positions. Thus each object is predicted by both LIW-CNN 277 

and SIW-CNN models. 278 

2.2.5 Fusion decision of LIW-CNN and SIW-CNN 279 

Given an object, the two LIW-CNN and SIW-CNN model predictions might be inconsistent 280 

between each other, and the distinction might also occur within those of the SIW-CNN models. 281 

Therefore, a simple majority voting strategy is applied to achieve the final decision of the SIW-282 

CNN model. A fusion decision between the LIW-CNN and the SIW-CNN is then conducted 283 

to give priority to the SIW-CNN model for LS-objects, such as roads, railways etc.; otherwise, 284 

the prediction of the LIW-CNN is chosen as the final result.  285 

2.3 Accuracy assessment  286 

Both pixel-based and object-based methods were adopted to comprehensively test the 287 

classification performance using the testing sample set through five-fold cross validation. The 288 

pixel-based approach was assessed based on the overall accuracy and Kappa coefficient as well 289 

as per-class mapping accuracy computed from a confusion matrix. The object-based 290 

assessment was based on geometry (Clinton et al., 2010; Li et al., 2015; Radoux and Bogaert, 291 

2017). Specifically, suppose that a classified object Mi overlaps a set of reference objects Oij, 292 

where j = 1, 2, ⋯ r, r refers to the total number of reference objects overlapped by Mi. For each 293 

pair of objects (Mi, Oij), a weight parameter deduced by the ratio between the area of a reference 294 

object (area (Oij)) and the total area of reference objects 

r

j ijO
1

)(area was introduced to 295 

calculate over-classification OC(Mi) and under-classification UC(Mi) error indices as: 296 

                       
1

1
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The total classification error (TCE) of Mi is designed to integrate the over-classification and 299 

under-classification error as: 300 

                                       
2 2( ) ( )

( )
2

i i
i

OC M UC M
TCE M


                                                  (10) 301 

All three indices (i.e. OC, UC, and TCE) represent the average of all the classified objects for 302 

each land use category in the classification map to formulate the final validation results. 303 

3. Experimental Results and Analysis 304 

3.1 Study area and data sources 305 

In this research, two UK cities, Southampton (S1) and Manchester (S2), lying on the Southern 306 

coast and in North West England, respectively, were chosen as our case study sites (Figure 4). 307 

Both of the study areas are highly heterogeneous and distinctive from each other in land use 308 

characteristics, and are thereby suitable for testing the generalization capability of the proposed 309 

land use classification algorithm.  310 

Aerial photos of S1 and S2 were captured using Vexcel UltraCam Xp digital aerial cameras on 311 

22/07/2012 and 20/04/2016, respectively. The images have four multispectral bands (Red, 312 

Green, Blue and Near Infrared) with a spatial resolution of 50 cm. The study sites were subset 313 

into the city centres and their surrounding regions with spatial extents of 5802×4850 pixels for 314 

S1 and 5875×4500 pixels for S2, respectively.  Land use categories of the study areas were 315 

defined according to the official land use classification system provided by the UK government 316 

Department for Communities and Local Government (DCLG). Detailed descriptions of each 317 

land use class and its corresponding sub-classes in S1 and S2 are listed in Tables 1 and 2, 318 

respectively. 10 dominant land use classes were identified within S1, including high-density 319 

residential, commercial, industrial, medium-density residential, highway, railway, park and 320 

recreational area, parking lot, redeveloped area, and harbour and sea water. In S2, nine land 321 

use categories were found, including residential, commercial, industrial, highway, railway, 322 

park and recreational area, parking lot, redeveloped area, and canal.  323 
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 324 

Figure 4 The two study areas of urban scenes: S1 (Southampton) and S2 (Manchester). 325 

 326 

Table 1. The land use classes in S1 (Southampton) and the corresponding sub-class components. 327 

Land Use Class Train Test Sub-class Components 

High-density residential 1026 684 Residential houses, terraces, a small coverage of green space 

Medium-density residential 984 656 Residential flats with a large green space and parking lots 

Commercial 972 648 Commercial services with complex buildings, and parking lots 

Industrial 986 657 Marine transportation, car factories 

Highway 1054 703 Asphalt road, lane, cars 

Railway 1008 672 Rail tracks, gravel, sometimes covered by trains 

Parking lot 982 655 Asphalt road, parking line, cars 

Park and recreational area 996 664 A large coverage of green space and vegetation, bare soil, lake 

Redeveloped area 1024 683 Bare soil, scattered vegetation, reconstructions 

Harbour and sea water 1048 698 Sea shore, ship, sea water 

 328 

Table 2. The land use classes in S2 (Manchester) and the corresponding sub-class components. 329 

Land Use Class Train Test Sub-class Components 

Residential 1009 673 Residential buildings, a small coverage of green space and vegetation 

Commercial 1028 685 Shopping centre, retail parks and commercial services with parking lots 

Industrial 1004 669 Digital services, science and technology, gas industry 

Highway 997 665 Asphalt road, lane, cars 

Railway 1024 683 Rail tracks, gravel, sometimes covered by trains 

Parking lot 1015 677 Asphalt road, parking line, cars 

Park and recreational area 993 662 A large coverage of green space and vegetation, bare soil, lake 

Redeveloped area 1032 688 Bare soil, scattered vegetation, reconstructions 

Canal 994 662 Canal water 

 330 
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 331 

Figure 5 Representative exemplars (image patches) of each land use category at the two study sites (S1 and S2).   332 

In addition to the above-mentioned aerial photographs, Digital Surface Models (DSM) of the 333 

study sites with 50 cm spatial resolution were incorporated into the process of image 334 

segmentation. Moreover, other data sources, including Google Maps, Microsoft Bing Maps, 335 

and the MasterMap Topographic Layer (a highly detailed vector map from Ordnance Survey) 336 

(Regnauld and Mackaness, 2006), were fully consulted and cross-referenced to gain a 337 

comprehensive appreciation of the land cover and land use within the study sites. 338 

Sample points were collected using a stratified random scheme from ground data provided by 339 

local surveyors and photogrammetrists, and split into 60% training samples and 40% testing 340 

samples for each class. The training sample size was guaranteed above an average of 1,000 per 341 

class, which is sufficient for CNN networks, as recommended by Chen et al., (2016a). In S1, a 342 

total of 10,080 training samples and 6,720 testing samples were obtained, and each category’s 343 

sample size together with its sub-class components are listed in Table 1. In S2, 9,096 training 344 

samples and 6,064 testing samples were acquired (see Table 2 for the detailed sample size per 345 

class and the corresponding sub-classes). Figure 5 demonstrates typical examples of the land 346 

use categories: note that they are highly heterogeneous and spectrally overlapping.  Field 347 

survey was conducted throughout the study areas in July 2016 to further check the validity and 348 

precision of the selected samples. 349 

3.2 Model structure and parameter settings 350 

The proposed method was implemented based on vector objects extracted by means of image 351 

segmentation. The objects were further classified through object-based CNN networks 352 

(OCNN). Detailed parameters and model structures optimised by S1 and directly generalised 353 

in S2 were clarified as follows. 354 
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3.2.1 Segmentation parameter settings 355 

The initial mean-shift segmentation algorithm was implemented using the Orfeo Toolbox 356 

open-source software. Two spatial and spectral bandwidth parameters, namely the spatial 357 

radius and the range (spectral) radius, were optimized as 15.5 and 20 through cross-validation 358 

coupled with a small amount of trial-and-error. In addition, the minimum region size (the scale 359 

parameter) was chosen as 80 to produce a small amount of over-segmentation and, thereby, 360 

mitigate salt and pepper effects simultaneously. 361 

3.2.2 LIW-CNN and SIW-CNN model structures and parameters 362 

Within the two study sites, the highway, railway in S1 and the highway, railway, and canal in 363 

S2 belong to linearly shaped objects (LS-objects) in consideration of the elongated geometric 364 

characteristics (e.g. Figure 6(B), (C)), while all the other objects belong to general objects (G-365 

objects) (e.g. Figure 6(A)). The LIW-CNN with a large input window (Figure 6(A)), and SIW-366 

CNNs with small input windows (Figure 6(B), (C)) that are suitable for the prediction of G-367 

objects and LS-objects, respectively, were designed here. Note, the other type of CNN models 368 

employed on each object, namely, the SIW-CNNs in Figure 6(A) and the LIW-CNN in both 369 

Figure 6(B) and 6(C) were not presented in the figure to gain a better visual effect. The model 370 

structures and parameters of LIW-CNN and SIW-CNN are illustrated by Figure 7(a) and 7(b) 371 

and are detailed hereafter.  372 

 373 

Figure 6 An illustration of object convolutional position analysis with the moment box (yellow rectangle), the 374 

convolutional centre point (green star), and the convolutional input window (green rectangle), as well as the 375 

highlighted image object (in cyan). All the other segmented objects are demonstrated as red polygons. (A) 376 

demonstrates the large input window for a general object, and (B), (C) illustrate the small input windows for 377 

linearly shaped objects (highway and railway, respectively, in these exemplars).   378 

 379 
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Figure 7 The model architectures and structures of the large input window CNN (LIW-CNN) with 128×128 380 

input window size and eight-layer depth and small input window CNN (SIW-CNN) with 48×48 input window 381 

size and six-layer depth. 382 

The model structure of the LIW-CNN was designed similar to the AlexNet (Krizhevsky et al., 383 

2012) with eight layers (Figure 7(a)) using a large input window size (128×128), but with small 384 

convolutional filters (3×3) for the majority of layers except for the first one (which was 5×5). 385 

The input window size was determined through cross-validation on a range of window sizes, 386 

including {48×48, 64×64, 80×80, 96×96, 112×112, 128×128, 144×144, 160×160} to 387 

sufficiently cover the contextual information of general objects relevant to land use semantics. 388 

The number of filters was tuned to 64 to extract deep convolutional features effectively at each 389 

level. The CNN network involved alternating convolutional (conv) and pooling layers (pool) 390 

as shown in Figure 7(a), where the maximum pooling within a 2×2 window was used to 391 

generalize the feature and keep the parameters tractable.  392 

The SIW-CNN (Figure 7(b)) with a small input window size (48×48) and six-layer depth is a 393 

simplified structure with similar parameters to the LIW-CNN network, except for the number 394 

of convolutional filters at each layer, which was reduced to 32 in order to avoid over-fitting the 395 

model. The input window size was cross-validated on linear objects with a range of small 396 

window sizes, including {24×24, 32×32, 40×40, 48×48, 56×56, 64×64, 72×72}, and 48×48 397 

was found to be optimal to capture the contextual information about land use for linear objects. 398 

All the other parameters for both CNN networks were optimized empirically based on standard 399 

computer vision. For example, the number of neurons for the fully connected layers was set as 400 

24, and the output labels were predicted through softmax estimation with the same number of 401 

land use categories. The learning rate and the epoch were set as 0.01 and 600 to learn the deep 402 

features through backpropagation. 403 

3.2.3 OCNN parameter settings 404 

In the proposed OCNN method, the LIW-CNN and the SIW-CNN networks were integrated to 405 

predict the land use classes of general objects and linearly shaped objects at the model inference 406 

phase. Based on object convolutional position analysis (OCPA), the LIW-CNN with a 128×128 407 

input window (denoted as OCNN128) was employed only once per object, and the SIW-CNNs 408 

with a 48×48 input window (denoted as OCNN48*, the 48* here represents multiple image 409 

patches sized 48×48) were used at multiple positions to predict the land use label of an object 410 

through majority voting (see section 2.2.2 for theoretical details). The parallel distance 411 
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parameter d in OCPA that controls the convolutional locations and the number of small window 412 

size CNNs, was estimated by the length distribution of the moment box together with a trial-413 

and-error procedure in a wide search space (0.5 m – 20 m) with a step of 0.5 m. The d was 414 

optimized as 5 m for the objects with moment box length (l) larger than or equal to 20 m, and 415 

was estimated by l/4 for those objects with l less than 20 m (i.e. the minimum number of small 416 

window size CNNs was 3) to perform a statistical majority voting. The proposed method 417 

(OCNN128+48*) integrates both OCNN128 and OCNN48*, which is suitable for the prediction of 418 

urban land use semantics for any shaped objects.  419 

3.2.4 Other benchmark methods and their parameters 420 

To evaluate the classification performance of the proposed method, three existing benchmark 421 

methods (i.e. Markov Random Field (MRF), object-based image analysis with support vector 422 

machine (OBIA-SVM), and the pixel-wise CNN) that each incorporate spatial context were 423 

compared comprehensively, as follows:  424 

MRF: The Markov Random Field, a spatial contextual classifier, was used as a benchmark 425 

comparator. The MRF was constructed by the conditional probability formulated by a support 426 

vector machine (SVM) at pixel level, which was parameterized through grid search with a 5-427 

fold cross-validation. The spatial context was incorporated by a fixed size of neighbourhood 428 

window (7×7) and a parameter γ that controls the smoothness level, set as 0.7, to achieve an 429 

appropriate level of smoothness in the MRF. The simulated annealing optimization approach 430 

with a Gibbs sampler (Berthod et al., 1996) was employed in the MRF to maximize the 431 

posterior probability through iteration.  432 

OBIA-SVM: The multi-resolution segmentation was implemented initially to segment objects 433 

through the image. A range of features was further extracted from these objects, including 434 

spectral features (mean and standard deviation), texture (grey-level co-occurrence matrix) and 435 

geometry (e.g. perimeter-area ratio, shape index). In addition, the contextual pairwise similarity 436 

that measures the degree of similarity between an image object and its neighbouring objects 437 

was deduced to account for the spatial context. All these hand-coded features were fed into a 438 

parameterized SVM for object-based classification.  439 

Pixel-wise CNN: The standard pixel-wise CNN was trained to predict all pixels within the 440 

images using densely overlapping image patches. The most important parameters that influence 441 

directly the classification performance of the pixel-wise CNN are the input image patch size 442 

and the number of layers (depth). Following the discussion by Längkvist et al., (2016), the 443 
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input image size was chosen from {28×28, 32×32, 36×36, 40×40, 44×44, 48×48, 52×52 and 444 

56×56} to evaluate the influence of contextual area on classification performance. The optimal 445 

input image patch size for the pixel-wise CNN was found to be 48×48 to leverage the training 446 

sample size and the computational resources (e.g. GPU memory). The depth configuration of 447 

the CNN network plays a key role in classification accuracy because the quality of the learnt 448 

features is highly influenced by the level of abstraction and representation. As suggested by 449 

Chen et al., (2016a), the number of CNN layers was chosen as six to balance the network 450 

complexity and robustness. Other CNN parameters were tuned empirically through cross-451 

validation. For example, the filter size was set to 3×3 for the convolutional layer with a stride 452 

of 1, and the number of filters was set to 24 to extract multiple convolutional features at each 453 

level. The learning rate was set as 0.01 and the number of epochs was chosen as 600 to fully 454 

learn the features through backpropagation.  455 

3.3 Classification results and analysis  456 

The classification performance of the proposed OCNN128+48* method using the above-457 

mentioned parameters was investigated on both S1 (experiment 1) and S2 (experiment 2). The 458 

proposed method was compared with OCNN128 and OCNN48* as well as the benchmark MRF, 459 

OBIA-SVM and the pixel-wise CNN. Visual inspection and quantitative accuracy assessment, 460 

including pixel-based overall accuracy (OA), Kappa coefficient (κ) and the per-class mapping 461 

accuracy as well as object-based accuracy assessment, were adopted to evaluate the 462 

classification results hereafter. 463 

Experiment 1:  A desirable classification result was obtained in S1 by using the proposed 464 

OCNN128+48*. To provide a useful visualization, three subsets of S1 classified by different 465 

approaches were presented in Figure 8, with the correct or incorrect classification results 466 

marked in yellow or red circles, respectively. In general, the proposed method achieved the 467 

smoothest visual results with precise boundary information compared with other benchmark 468 

methods. Most importantly, the semantic contents of complex urban land uses (e.g. commercial, 469 

industrial etc.) were effectively characterized, and the linearly shaped features including 470 

highway and railway were identified with high geometric fidelity. As shown by Figure 8(a) 471 

and 8(c), the highway (a linear feature) was misclassified as a parking lot (red circles) by 472 

OCNN128, whereas the highway feature was accurately identified by the OCNN48* (yellow 473 

circles). However, OCNN48* was inferior to OCNN128 when identifying general objects, as 474 

demonstrated by Figure 8(b). Fortunately, these complementary behaviours of the two sub-475 
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modules were captured by the proposed OCNN128+48*, which was able to label the highway 476 

accurately (yellow circles in Figure 8(b)). The pixel-wise CNN demonstrated some capacity 477 

for extracting semantic functions for complex objects; for example, the commercial area in 478 

Figure 8(b) was correctly distinguished (yellow circle). However, classification errors along 479 

the edges or boundaries between objects were found. For example, the edges of the highway 480 

were misclassified as high-density residential as shown by Figure 8(a). For the OBIA-SVM, 481 

the simple land uses with less within-object variation (e.g. highway) were more accurately 482 

classified (yellow circle in Figure 8(a) and 8(c)), whereas, those highly complex land uses with 483 

great within-object variation (e.g. commercial, industrial etc.) were more likely to be 484 

misclassified (red circle in Figure 8(b)). In addition, the OBIA-SVM could also discover some 485 

sub-objects (e.g. balcony on the residential house) through the information context. The results 486 

of the MRF, in contrast to the other object-based approaches, were the least smooth even 487 

though local neighbourhood information was used. Nevertheless, there were still some benefits 488 

of the MRF: spectrally distinctive land uses, such as highway, park and recreational area, were 489 

classified with a relatively high accuracy. 490 

 491 

Figure 8 Three typical image subsets (a, b and c) in study site S1 with their classification results. Columns from 492 

left to right represent the original images (R G B bands only), and the MRF, OBIA-SVM, Pixel-wise CNN, 493 

OCNN48*, OCNN128, and the proposed OCNN128+48* results. The red and yellow circles denote incorrect and 494 

correct classification, respectively. 495 

 496 

The effectiveness of the OCNN128+48* was also demonstrated by quantitative classification 497 

accuracy assessment. As shown in Table 2, the OCNN128+48* achieved the largest overall 498 

accuracy of 89.52% with a Kappa coefficient (κ) of 0.88, consistently larger than its sub-499 

module OCNN128 (87.31% OA and κ of 0.86) and the OCNN48* (OA of 84.23% and κ of 0.82), 500 

respectively. The accuracy increase was much more dramatic in comparison with other 501 
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benchmark methods, including the pixel-wise CNN (81.62% OA and κ of 0.80), the OBIA-502 

SVM (79.54% OA and κ of 0.78), as well as the MRF (OA of 78.67% and κ of 0.76). The 503 

superiority of the proposed OCNN128+48* was further demonstrated by the per-class mapping 504 

accuracy (Table 3). From the table, it can be seen that the accuracies of highway and railway 505 

were increased significantly by 5.34% and 4.64% respectively, compared with the OCNN128. 506 

This was followed by a moderate increase of 3.24% for the parking lot class. Other land use 507 

classes (e.g. commercial, industrial, etc.) were slightly increased in terms of classification 508 

accuracy (less than 1.5%) without statistical significance in comparison with OCNN128. When 509 

comparing with the OCNN48*, the accuracy increase of the proposed OCNN128+48* was 510 

remarkable for the majority of general object classes, with increases of up to 6.06%, 6.51%, 511 

4.98%, 4.7% and 4.68%, for the classes of commercial, industrial, redeveloped area, park and 512 

recreational area, and high-density residential, respectively; whereas the accuracies of the 513 

medium-density residential and the parking lot increased moderately, by 3.31% and 3.81%, 514 

respectively. For linearly shaped objects, however, the OCNN128+48* was not substantially 515 

superior to the OCNN48*, with just a slight accuracy increase of 1.52% for highway and 2.41% 516 

for railway, respectively. For general objects with complex semantic functions, including 517 

commercial, industrial, redeveloped area, park and recreational area, and high-density 518 

residential, the increase in accuracy of the OCNN128+48* was much more significant, by up to 519 

6.06%, 6.51%, 4.98%, 4.7% and 4.68%, respectively.  520 

In terms of the pixel-wise CNN, effectiveness was observed for certain complex objects (e.g. 521 

the accuracy for the industrial land use was up to 80.23%). However, the simple and 522 

geometrically distinctive land use classes were not accurately mapped, with the largest 523 

accuracy difference up to 6.57% for the class highway compared with the OCNN128+48*. By 524 

contrast, the OBIA-SVM demonstrated some advantages on simple land use classes (e.g. the 525 

accuracy of railway up to 90.65%), but it failed to accurately identify more complex general 526 

objects (e.g. an accuracy as low as 71.87% for commercial land use). The MRF presented the 527 

smallest classification accuracy for most land use classes, especially the complex general land 528 

uses (e.g. 12.37% accuracy lower than the OCNN128+48* for commercial land use). 529 

 530 

Table 3. Classification accuracy comparison amongst MRF, OBIA-SVM, Pixel-wise CNN, OCNN48*, OCNN128, 531 

and the proposed OCNN128+48* method for Southampton using the per-class mapping accuracy, overall accuracy 532 

(OA) and Kappa coefficient (κ). The bold font highlights the greatest classification accuracy per row.  533 

Class MRF OBIA-SVM Pixel-wise CNN OCNN48* OCNN128 OCNN128+48* 

commercial 70.09 72.87 73.26 76.4 81.13 82.46 



20 
 

highway 77.23 78.04 76.12 78.17 74.35 79.69 

industrial 67.28 69.01 71.23 78.24 83.87 84.75 

high-density residential 81.52 80.59 80.05 81.75 85.35 86.43 

medium-density residential 82.74 84.42 85.27 87.28 90.34 90.59 

park and recreational area 91.05 93.14 92.34 92.59 96.41 97.09 

parking lot 80.09 83.17 84.76 86.02 85.59 88.83 

railway 88.07 90.65 86.57 89.51 87.28 91.92 

redeveloped area 89.13 90.02 89.26 89.71 94.57 94.69 

harbour and sea water 97.39 98.43 98.54 98.62 98.75 98.95 

Overall Accuracy (OA) 78.67% 79.54% 81.62% 84.23% 87.31% 89.52% 

Kappa Coefficient (κ) 0.76 0.78 0.8 0.82 0.86 0.88 

 534 

An object-based accuracy assessment was implemented in S1 to validate the classification 535 

performance in terms of over-classification (OC), under-classification (UC), and total 536 

classification error (TCE). Three typical methods, including OBIA-SVM (denoted as OBIA), 537 

pixel-wise CNN (denoted as CNN), and the proposed OCNN128+48* method (denoted as OCNN), 538 

were evaluated, with accuracy comparisons of each land use class listed in Table 4. Clearly, 539 

the proposed OCNN method produced the smallest OC, UC, and TCE errors, respectively 540 

(highlighted by bold font), constantly smaller than those of the CNN and OBIA. Generally, the 541 

UC errors are smaller than OC errors, demonstrating that a slight over-segmentation was 542 

produced. Specifically, the OCNN demonstrates excellent object-level classification, with the 543 

majority of classes less than 0.2 in TCE. Those complex land use classes, including commercial 544 

and industrial, can be segmented precisely and classified with small TCE of 0.22 and 0.20, less 545 

than those of CNN (0.29 and 0.27) and OBIA (0.39 and 0.38). The parking lot objects with 546 

complex land use patterns, were also recognised accurately with high fidelity (OC of 0.22, UC 547 

of 0.13, and TCE of 0.17), less than CNN (0.28, 0.17, and 0.22) as well as OBIA (0.41, 0.32, 548 

and 0.37). For those LS-objects, the OCNN achieved promising accuracy in comparison with 549 

the other two benchmarks. For example, the TCEs of highway and railway produced by the 550 

OCNN were 0.17 and 0.09, smaller than those of the CNN (0.25 and 0.22) and OBIA (0.20 and 551 

0.18). All the other land use categories demonstrate increased segmentation accuracy. For 552 

instance, the TCE of park and recreational area was 0.18 with the OCNN, less than for the CNN 553 

of 0.24 and OBIA of 0.32. 554 

 555 

Table 4 Object-based accuracy assessment among OBIA-SVM (OBIA), Pixel-wise CNN (CNN), and the 556 

proposed OGC-CNN128+48* method (OCNN) for Southampton using error indices of OC, UC, and TCE. The bold 557 

font highlights the smallest classification error of a specific index per row.  558 

Class 
OC UC TCE 

OBIA CNN OCNN OBIA CNN OCNN OBIA CNN OCNN 
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commercial 0.45 0.33 0.26 0.34 0.26 0.18 0.39 0.29 0.22 

highway 0.23 0.29 0.19 0.17 0.21 0.16 0.20 0.25 0.17 

industrial 0.42 0.31 0.23 0.36 0.24 0.17 0.38 0.27 0.20 

high-density residential 0.34 0.28 0.14 0.26 0.19 0.08 0.30 0.23 0.11 

medium-density residential 0.29 0.21 0.16 0.21 0.14 0.09 0.25 0.17 0.12 

park and recreational area 0.36 0.29 0.24 0.28 0.19 0.12 0.30 0.24 0.18 

parking lot 0.41 0.28 0.22 0.32 0.17 0.13 0.37 0.22 0.17 

railway 0.25 0.27 0.12 0.11 0.18 0.06 0.19 0.21 0.09 

redeveloped area 0.37 0.32 0.21 0.29 0.25 0.13 0.33 0.28 0.17 

harbour and sea water 0.18 0.19 0.14 0.07 0.11 0.06 0.12 0.15 0.09 

 559 

Experiment 2: The most accurate classification performance was also achieved in S2 by the 560 

proposed method, as illustrated by the quantitative accuracy results in Table 5. From the table, 561 

it can be seen that OCNN128+48* obtained the greatest overall accuracy (OA) of 90.87% with a 562 

Kappa coefficient (κ) of 0.88, significantly larger than the OCNN128 (OA of 88.74% and κ of 563 

0.86), the OCNN48* (OA of 85.06% with κ of 0.83), the Pixel-wise CNN (OA of 82.39% and 564 

κ of 0.81), the OBIA-SVM (OA of 80.37% with κ of 0.79), and the MRF (OA of 78.52% with 565 

κ of 0.76). The effectiveness of the OCNN128+48* was also demonstrated by the per-class 566 

mapping accuracy. Compared with the OCNN128, the classes formed by linearly shaped objects, 567 

including the highway, railway and canal, had significantly increased accuracies of up to 5.36%, 568 

3.06% and 3.48%, respectively (Table 5). Such increases can also be noticed in Figure 9 (a 569 

subset of S2), where the misclassifications of railway and highway shown in Figure 9(g) were 570 

rectified in Figure 9(h) classified by the OCNN128+48*. At the same time, the parking lot land 571 

use class was moderately increased by 2.28%. Whereas, other land use classes had slightly 572 

increases in accuracy of less than 1% on average. In contrast, the OCNN128+48* led to no 573 

significant increases over the OCNN48* for the linear object classes, with accuracy increases 574 

for highway, railway and canal of 1.8%, 0.42% and 1.22%, respectively. For the general classes, 575 

especially the complex land uses (e.g. commercial, industrial etc.), remarkable accuracy 576 

increases were achieved with an average up to 6.75%. Figure 9(f) (classified by OCNN48*) also 577 

showed the confusion between the commercial and industrial land use classes, which was 578 

revised in Figure 9(h). With respect to the benchmark comparators, the accuracy increase of 579 

OCNN128+48* was much more obvious for most of the land use classes, with the largest accuracy 580 

increase up to 12.39% for parking lot, 11.21% for industrial, and 8.56% for commercial, 581 

compared with the MRF, OBIA-SVM and Pixel-wise CNN, respectively. The undesirable 582 

visual effects and misclassifications can also be seen in Figure 9(c-e), which were corrected in 583 

Figure 9(h).  584 
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 585 

Figure 9 Classification results in study site S2, with (a) an image subset (R G B bands only), (b) the ground 586 

reference, (c) MRF classification, (d) OBIA-SVM classification, (e) Pixel-wise CNN classification, (f) OCNN48* 587 

classification, (g) OCNN128 classification, and (h) OCNN128+48* classification. 588 

 589 

Table 5 Classification accuracy comparison amongst MRF, OBIA-SVM, Pixel-wise CNN, OCNN48*, OCNN128, 590 

and the proposed OCNN128+48* method for Manchester, using the per-class mapping accuracy, overall accuracy 591 

(OA) and Kappa coefficient (κ). The bold font highlights the greatest classification accuracy per row.  592 

Class MRF OBIA-SVM Pixel-wise CNN OCNN48* OCNN128 OCNN128+48* 

commercial 71.11 72.47 74.16 76. 27 82.43 82.72 

highway 80.43 79.26 80.59 82.57 79.01 84.37 

industrial 73.52 72.05 74.84 76.22 82.19 83.26 

residential 78.41 80.45 80.56 83.09 84.75 84.99 

parking lot 79.63 82.06 84.37 87.86 89.74 92.02 

railway 85.94 88.14 88.32 91.06 88.42 91.48 

park and recreational area 88.42 89.54 90.76 91.34 94.38 94.59 

redeveloped area 82.07 84.15 87.04 88.83 93.16 93.75 

canal 90.02 92.28 94.18 97.52 95.26 98.74 

Overall Accuracy (OA) 78.52% 80.37% 82.39% 85.06% 88.74% 90.87% 

Kappa Coefficient (κ) 0.76 0.79 0.81 0.83 0.86 0.88 

 593 

Similar to S1, the object-based accuracy assessment was conducted in S2 to investigate the 594 

over-, under-, and total classification errors of each class using the OCNN, CNN and OBIA 595 

methods (Table 6). The error indices in S2 (Table 6) present a similar trend with those in S1 596 

(Table 4), although the geometric errors for S2 are smaller than for S1 due to the relatively 597 

regular land use structures and configurations in Manchester city centre. The proposed OCNN 598 

yielded the greatest classification accuracy with the smallest error indices (highlighted by bold 599 

font), smaller than those of the CNN and OBIA. The OCNN accurately differentiated the 600 

complex land use classes, with a TCE of 0.20, 0.17, and 0.15 for the classes of commercial, 601 

industrial and parking lot, respectively (Table 6), significantly smaller than for the CNN (0.27, 602 

0.26, and 0.24), and OBIA (0.37, 0.35, and 0.32). Those linearly shaped objects, including 603 
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highway, railway, and canal, were precisely characterised by the OCNN method, with a TCE 604 

of 0.16, 0.09, and 0.08, significantly smaller than for the CNN (0.22, 0.21, and 0.14) and OBIA 605 

(0.18, 0.19, and 0.12). The residential land use was also clearly improved with a very small 606 

TCE of 0.10, smaller than for the CNN (0.22) and OBIA (0.26). Other land use classes, such 607 

as the park and recreational area and the redeveloped area, were also better distinguished by 608 

the OCNN (0.16 and 0.15 in terms of TCE), smaller than for the CNN (0.21 and 0.25) and 609 

OBIA (0.28 and 0.30). 610 

Table 6 Object-based accuracy assessment among OBIA-SVM (OBIA), Pixel-wise CNN (CNN), and the 611 

proposed OGC-CNN128+48* method (OCNN) for Manchester using error indices of OC, UC, and TCE. The bold 612 

font highlights the lowest classification error of a specific index per row.  613 

Class 
OC UC TCE 

OBIA CNN OCNN OBIA CNN OCNN OBIA CNN OCNN 

commercial 0.41 0.32 0.24 0.32 0.23 0.16 0.37 0.27 0.20 

highway 0.22 0.27 0.18 0.15 0.19 0.15 0.18 0.23 0.16 

industrial 0.39 0.31 0.20 0.31 0.22 0.14 0.35 0.26 0.17 

residential 0.30 0.24 0.12 0.22 0.20 0.09 0.26 0.22 0.10 

parking lot 0.37 0.26 0.19 0.28 0.22 0.12 0.32 0.24 0.15 

railway 0.22 0.25 0.10 0.14 0.19 0.07 0.18 0.22 0.09 

park and recreational area 0.31 0.25 0.21 0.26 0.17 0.10 0.28 0.21 0.16 

redeveloped area 0.34 0.29 0.18 0.26 0.22 0.12 0.30 0.25 0.15 

canal 0.16 0.17 0.12 0.08 0.12 0.05 0.12 0.14 0.08 

 614 

A sensitivity analysis was conducted to further investigate the effect of different input window 615 

sizes on the overall accuracy of urban land use classification (see Figure 10). The window sizes 616 

varied from 16×16 to 144×144 with a step size of 16. From Figure 10, it can be seen that both 617 

S1 and S2 demonstrated similar trends for the proposed OCNN and the pixel-wise CNN (CNN).  618 

With window sizes smaller than 48×48 (i.e. relatively small windows), the classification 619 

accuracy of OCNN is lower than that of CNN, but the accuracy difference decreases with an 620 

increase of window size. Once the window size is larger than 48×48 (i.e. relatively large 621 

windows), the overall accuracy of the OCNN increases steadily until the window is as large as 622 

128×128 (up to around 90%), and outperforms the CNN which has a generally decreasing trend 623 

in both study sites. However, an even larger window size (e.g. 144×144) in OCNN could result 624 

in over-smooth results, thus reducing the classification accuracy. 625 
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 626 

Figure 10 The influence of CNN window size on the overall accuracy of pixel-wise CNN and the proposed 627 

OCNN method for both study sites S1 and S2. 628 

 629 

3.4 Computational efficiency 630 

The computational efficiency of the proposed method was evaluated and compared with the 631 

other methods listed in Table 7. The classification experiments were implemented using 632 

Keras/Tensorflow under a Python environment with a laptop of NVIDIA 940M GPU and 12.0 633 

GB memory. As shown in Table 7, the training time of the Pixel-wise CNN, OCNN48*, 634 

OCNN128 and the proposed OCNN128+48* were similar in both experiments, with an average 635 

time of 4.27 h, 4.36 h, 4.74 h, and 4.78 h, respectively. The prediction time for the Pixel-wise 636 

CNN was the longest compared with other OCNN-based approaches with 321.07 h on average, 637 

about 100 times longer than those of the OCNN-based approaches. Among the three OCNN 638 

methods, the OCNN128 and the OCNN128+48* were similar in computational efficiency with 639 

average of 2.81 h and 2.9 h, respectively, longer than that of the OCNN48* (1.78 h on average) 640 

for the two experiments. The benchmark methods, the MRF and OBIA-SVM, spent much less 641 

time on the training and prediction phases than the CNN-based methods, with an average of 642 

1.4 h and 1.2 h for the two experiments, about 20 times and 3 times less than the pixel-wise 643 

CNN and the OCNN-based approaches, respectively. 644 

Table 7. Comparison of computational times amongst MRF, OBIA-SVM, Pixel-wise CNN, OCNN48*, OCNN128, 645 

and the proposed OCNN128+48* approach in S1 and S2. 646 

  
Study 

area 

No. of 

object 

Mean 

Area 

(m2) 

Computation time (h) 

MRF 
OBIA-

SVM 

Pixel-wise 

CNN 
OCNN48* OCNN128 OCNN128+48* 

Train 
S1 6328 25.37 1.42 0.58 4.45 4.45 4.88 4.92 

S2 6145 25.92 1.37 0.44 4.08 4.27 4.59 4.64 

Predict 
S1 61 921 26.61 1.52 1.76 326.78 1.82 2.83 2.94 

S2 58 408 25.75 1.33 1.55 315.36 1.74 2.78 2.86 

 647 

 648 

 649 
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4. Discussion 650 

Urban land use captured in VFSR remotely sensed imagery is highly complex and 651 

heterogeneous, with spatial patterns presented that imply a hierarchical or nested class structure. 652 

Classifying urban land use requires not only a precise characterisation of image objects as 653 

functional units, but also an accurate and robust representation of spatial context.  A novel 654 

object-based CNN method for urban land use classification using VFSR remotely sensed 655 

imagery was, therefore, proposed, in which the functional units are derived at object levels and 656 

the spatial patterns are learned through CNN networks with hierarchical feature representation. 657 

The OCNN method is fundamentally different from the work proposed by Zhao et al. (2017a) 658 

in multiple aspects, including: (1) the realisation of an object-based CNN for land use 659 

classification under the OBIA framework using geometric characterisations to guide the choice 660 

of sizes and locations of image patches; (2) the use of within-object and between-object 661 

information learnt by the OCNN model to represent the spatial and hierarchical relationships; 662 

(3) the high computational efficiency achieved with targeted sampling at the object level to 663 

avoid a pixel-wise (i.e., densely overlapping) convolutional process. 664 

4.1 Convolutional neural networks for urban land use feature representation 665 

Urban land use information is characterised as high-level spatial features in VFSR remotely 666 

sensed data, which are an abstraction of the observed spatial structures or patterns. 667 

Convolutional neural networks (CNN) are designed to learn such complex feature 668 

representations effectively from raw imagery, end-to-end, by cascading multiple layers of 669 

nonlinear processing units.  As shown in Table 3, the pixel-wise CNN achieved greater 670 

classification accuracy than the traditional MRF and OBIA-SVM methods on complex land 671 

use categories, such as Commercial, Industrial, and Parking lot, owing to its capacity for 672 

complex spatial contextual feature representation. Nevertheless, the pixel-wise CNN is 673 

essentially designed to predict image patches, whereas urban land use classification requires 674 

each pixel of the remotely sensed imagery to be labelled as a particular land use class to create 675 

a thematic map. The boundary information of the land use is often weakened by the pixel-wise 676 

convolutional process with image patches, where blurred boundaries occur between the 677 

classified objects with a loss of small useful land features, somewhat similar to morphological 678 

or Gabor filter methods (Pingel et al., 2013; Reis and Tasdemir, 2011). This problem is 679 

exacerbated when trying to extract high-level land use semantics using deep CNN networks 680 

with large input window sizes (see the declining trend of overall accuracy for large window 681 

sizes as illustrated by Figure 10 due to the over-smoothness). These demonstrate the need for 682 
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innovation through adaptation of the CNNs for urban land use classification using appropriate 683 

functional units and convolutional processes. 684 

4.2 Object-based CNN (OCNN) for urban land use classification 685 

The proposed object-based CNN (OCNN) is built upon segmented objects with spectrally 686 

homogeneous characteristics as the functional units, in which the precise boundary information 687 

is characterised at the object level. Unlike the standard pixel-wise CNN with image patches 688 

that are densely overlapping throughout the image, the OCNN method analyses and labels 689 

objects using CNN networks by incorporating the objects and their spatial context within image 690 

patches. This provides a new perspective for object description and feature characterisation, 691 

where both within-object information and between-object information are jointly learned inside 692 

the model. Since each segmented object is labelled with a single land use as a whole, the 693 

homogeneity of each object is crucial to achieving high land use classification accuracy. To 694 

produce a set of such objects with local homogeneity, a slight over-segmentation was adopted 695 

in this research, as suggested by previous studies (e.g. Hofmann et al., 2011; Li et al., 2015). 696 

In short, the OCNN method, as a combination of CNN and OBIA, demonstrates strong capacity 697 

for classifying complex urban land uses through deep feature representations, while 698 

maintaining the fine spatial details using regional partition and boundary delineation.  699 

Each segmented object has its distinctive geometric characteristics with respect to the specific 700 

land use category. Representations of objects using OCNN should be scale-dependent with 701 

appropriate window sizes and convolutional positions to match the geometric distributions, 702 

especially when dealing with the two types of objects with geometrically distinctive 703 

characteristics, namely, general objects (G-objects) and linearly-shaped objects (LS-objects). 704 

For those G-objects with complex urban land use, a deep CNN network (eight-layers) with a 705 

large input image patch (128×128) was used to accurately identify an object with a large extent 706 

of contextual information. Such an image patch could reflect the real dimension of G-objects 707 

and their wide context (64m×64m in geographical space). The convolutional position of the 708 

CNN network was theoretically derived close to the central region of a moment box, where 709 

both object geometry and spatial anisotropy were characterised. In this way, the within-object 710 

(at the centre of the image patch) and between-object (surrounding context within the image 711 

patch) information are used simultaneously to learn the objects and the surrounding complex 712 

spatial structures or patterns, with the largest overall accuracy at large context (Figure 10). The 713 

LS-objects, such as Highway, Railway and Canal, were sampled along the objects using a range 714 

of less deep CNNs (six-layers) with small window size (48×48) (or 24m×24m geographically) 715 
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and were classified through majority voting. These small window size CNNs focus on the 716 

within-object information, which often includes homogeneous characteristics within objects 717 

(e.g. rail tracks, asphalt road), and avoid the great variation between adjacent objects (e.g. trees, 718 

residential buildings, bare land etc. alongside the Highway). Moreover, the small contextual 719 

image patches with less deep networks cover the elongated objects sufficiently, without losing 720 

useful within-object information through the convolutional process. To integrate the two 721 

classification models for G-objects and LS-objects, a simple rule-based classification 722 

integration was employed conditional upon model predictions, in which the majority of the 723 

classification results were derived from the CNNs with large window size, whereas the 724 

predictions of Highway, Railway and Canal were trusted by the voting results of small window 725 

CNNs alone. Thus, the type of object (either as a G-object or a LS-object) is determined through 726 

CNN model predictions and rule-based classification integration. Such a decision fusion 727 

approach provides a pragmatic and effective manner to combine the two models by considering 728 

the object geometry and class-specific adaptations. Overall, the proposed OCNN method with 729 

large and small window size feature representations is a feasible solution for the complex urban 730 

land use classification problem using VFSR remotely sensed imagery, with massive 731 

generalisation capability for a broad range of applications. 732 

4.3 Computational complexity and efficiency 733 

Throughout the computational process, the model inference of the pixel-wise CNN is the most 734 

time-consuming stage for urban land use classification using VFSR remotely sensed imagery. 735 

The prediction of the CNN model over the entire image with densely overlapping image 736 

patches gives rise to a time complexity of O(N), where N represents the total number of pixels 737 

of the image. Such a time complexity could be huge when classifying a large image coupled 738 

with relatively large image patches as input feature maps. In contrast, the time complexity of 739 

the proposed OCNN method is remarkably reduced from O(N) at pixel level to O(M) at object 740 

level with M segmented objects, where a significant time decrease of up to N/M times (N/M 741 

here denotes the average object size in pixels) can be achieved. The time reductions for both 742 

S1 and S2 are around 100 times, approximating to those of the mean object sizes (Table 7), 743 

thus, being more acceptable than the standard pixel-wise CNN. Such a high computational 744 

efficiency demonstrates the practical utility of the proposed OCNN method to general users 745 

with limited computational resources.  746 
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4.4 Future research 747 

The proposed OCNN method provides a very high accuracy and efficiency for urban land use 748 

classification using VFSR remotely sensed imagery. The image objects are identified through 749 

decision fusion between a large input window CNN with a deep network and several small 750 

input window CNNs with less deep networks, to account for typical distinctive object sizes and 751 

geometries. However, such two-scale feature representation might be insufficient to 752 

characterise some complex geometric characteristics. Therefore, a range of CNNs with 753 

different input patch sizes will be adopted in the future to adapt to the diverse sizes and shapes 754 

of the urban objects through weighted decision fusion. In addition, urban land use classification 755 

was undertaken at a generalized spatial and semantic level (e.g., residential area, commercial 756 

area and industrial area), without identifying smaller functional sites (e.g., supermarkets, 757 

hospitals and playgrounds etc.). This issue might be addressed by incorporating multi-source 758 

geospatial data, for example, those classified commercial areas might be further differentiated 759 

as supermarkets, retail outlets, and café areas through indoor human activities. Future research 760 

will, therefore, mine the semantic information from GPS trajectories, transportation networks 761 

and social media data to characterise these smaller functional units in a hierarchical way, as 762 

well as socioeconomic activities and population dynamics. 763 

5. Conclusions 764 

Urban land use classification using VFSR remotely sensed imagery remains a challenging task, 765 

due to the indirect relationship between the desired high-level land use categories and the 766 

recorded spectral reflectance. A precise partition of functional units as image objects together 767 

with an accurate and robust representation of spatial context are, therefore, needed to 768 

characterise urban land use structures and patterns into high-level feature thematic maps.  This 769 

paper proposed a novel object-based CNN (OCNN) method for urban land use classification 770 

from VFSR imagery. In the OCNN, segmented objects consisting of linearly shaped objects 771 

(LS-objects) and other general objects (G-objects), were utilized as functional units. The G-772 

objects were precisely identified and labelled through a single large input window (128×128) 773 

CNN with a deep (eight-layer) network to perform a contextual object-based classification. 774 

Whereas the LS-objects were each distinguished accurately using a range of small input 775 

window (48×48) CNNs with less deep (six-layer) networks along the objects’ lengths through 776 

majority voting. The locations of the input image patches for both CNN networks were 777 

determined by considering both object geometry and its spatial anisotropy, such as to 778 

accurately classify the objects into urban land use classes. Experimental results on two 779 
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distinctive urban scenes demonstrated that the proposed OCNN method significantly increased 780 

the urban land use classification accuracy for all land use categories. The proposed OCNN 781 

method with large and small window size CNNs produced the most accurate classification 782 

results in comparison with the sub-modules and other contextual-based and object-based 783 

benchmark methods. Moreover, the OCNN method demonstrated a high computational 784 

efficiency with much more acceptable time requirements than the standard pixel-wise CNN 785 

method in the process of model inference. We conclude that the proposed OCNN is an effective 786 

and efficient method for urban land use classification from VFSR imagery. Meanwhile, the 787 

OCNN method exhibited an excellent generalisation capability on distinctive urban land use 788 

settings with great potential for a broad range of applications. 789 
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