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Abstract—This paper presents a comprehensive 
overview of the latest studies and analyses of the cooling 
technologies and computation methods for the automotive 
traction motors. Various cooling methods, including the 
natural, forced air, forced liquid and phase change types, 
are discussed with the pros and cons of each method 
being compared. The key factors for optimizing the heat 
transfer efficiency of each cooling system are highlighted 
here. Furthermore, the real life examples of these 
methods, applied in the latest automotive traction motor 
prototypes and products, have been set out and 
evaluated. Finally, the analytical and numerical techniques 
describing the nature and performance of different cooling 
schemes have been explained and addressed. This paper 
provides guidelines for selecting the appropriate cooling 
methods and estimating the performance of them in the 
early stages of their design. 
 

Index Terms—Automotive applications, cooling, traction 
motors, thermal analysis, numerical analysis. 

NOMENCLATURE 

𝐴 Cross section area of heat path (m2). 

𝐴𝑙, Linear current density (kA/m). 

𝐴𝑖,𝐴𝑜 Inlet and outlet cross section areas (m2). 

𝑐𝑝 Specific heat capacity (J/kg). 

𝐷  Diameter (m). 

𝑓𝑠,𝑓𝑟 Friction loss factor (dimensionless). 

𝑔 Gravitational attraction force (m/s2). 

𝐺𝑟 Grashof number (dimensionless). 

𝐻 Fin extension (m). 

ℎ Heat transfer coefficient (W/m2K). 
ℎ𝑙 Latent heat (kJ/kg). 

𝑘 Loss coefficient (dimensionless). 
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𝐽 Current density (A/mm2) 

𝐿 Length of the surface (m). 

𝑁 Number of fins (dimensionless). 

𝑁𝑢𝑁𝑎𝑡𝑢𝑟𝑎𝑙  Natural Nusselt number (dimensionless). 

𝑁𝑢𝐹𝑜𝑟𝑐𝑒𝑑  Forced Nusselt number (dimensionless). 

∆𝑝 Pressure drop (Pa). 

𝑃𝑟 Prandtl number (dimensionless). 

𝑅 Convection thermal resistance (K/W). 
𝑅𝑒 Reynold number (dimensionless). 

𝑅𝑒𝑟 Rotational Reynold number (dimensionless). 

𝑇𝑤, 𝑇𝑓  Wall and fluid temperatures (K). 

∆𝑇 Temperature difference (K). 

𝑆 Fin pitch (m).  

𝑉 Axial velocity (m/s). 

𝑉𝑟  Tangential velocity (m/s). 

𝜇 Dynamic viscosity (Pa∙s). 

𝜆 Thermal conductivity (W/m∙K). 
𝜌 Density (kg/m3). 

𝛽 Coefficient of the expansion (dimensionless). 

𝜎 Tangential stress (kPa). 

I. INTRODUCTION 

HILE operating an electric motor, heat is generated due 

to the electromagnetic losses, mechanical power losses 

and other stray losses that take place in various components 

within an electric motor. Through conduction, convection 

and/or radiation, the thermal energy is transferred to a cooling 

medium [1] on the basis of a temperature difference between 

the hot and cold bodies. However, a detailed thermal 

management is essential during critical operating conditions, 

such as overload running, phase changing and/or asymmetric 

faults, to avoid failures that are usually due to the local hot 

spot formation, and material degradation [2-5]. Furthermore, 

the topic of magnetic losses and heat generation governs the 

performance of the electromagnetic efficiency and longer life 

expectancy. Firstly, excessively high temperatures can cause 

accelerated insulation aging [6] and deterioration within some 

essential components, such as winding conductors [7]. 

Secondly, the remanence and coercivity of the rare earth 

magnets are inversely proportional to the temperature. As a 

result of which, partial or full demagnetization at higher 

temperatures may occur [8, 9]. In case of the ferrite and 

recycled magnets [10, 11], the lower rotor temperatures may 
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significantly boost the torque density and / or efficiency of the 

motor, as for the remanence sensitivity of these magnet to the 

temperature is 200%-300% higher than the conventional rare 

earth magnets. In addition, the electrical resistivity of the 

winding conductors is in a direct proportion to the 

temperature. This process can lead to a positive feedback in 

which an accelerated loss and temperature rises occur in the 

windings [12]. Finally, the thermal impact on the geometrical 

dimensions of the motor’s physical structure, such as a 

narrowing within the airgap, may alter the motor’s nominal 

performance, or, in serious cases, result in faults and failures 

[13]. To tackle the thermal challenges in an electric motor, 

alongside the minimization of the magnetic losses as sources 

of heat, one needs to carefully address the heat dissipation 

mechanisms for a given design in order to obtain a balanced 

heat distribution across different components. 

Generally speaking, a thermal design uses a closed or an 

open cooling circuit to achieve a critical temperature balance 

within an electric motor. Heat from the inner components is 

conducted to the outer surface of the motor and then is 

subjected to the convective cooling. The former process is a 

kind of passive thermal design, which is affected by material 

properties, geometrical layout and contact interfaces. This 

process is considered economical and does not produce any 

additional parasitic effects such as acoustic noise. An 

alternative method is the so-called active cooling design in 

which an extra source of energy is applied to circulate a fluid 

with a high heat capacity in order to exchange and extract the 

heat from the hot surfaces [14]. This active method of cooling 

applies an external force created by a special device, e.g. 

pumps, fans to generate sufficient coolant flow to remove heat 

from the interior parts of a motor. This approach provides a 

high convection heat transfer capacity but the extra provisions 

are required for diminishing not only friction losses, but also 

risks of short circuit faults and corrosion [15]. Table I lists the 

typical values for the tangential stress 𝜎, linear current density 

𝐴𝑙, current density 𝐽 and heat transfer coefficients ℎ of 

different cooling methods. 

A diversification of cooling approaches have been pursued 

to meet the cooling demands placed on various applications. 

However, the rapid growth of aerospace and traction industries 

have brought about increased requirements for electric motors 

such as compactness, high speed and high power density. This 

leads to significant rises in temperature in cases where 

miniaturized motors are involved, thus necessitating a more 

sophisticated and complicated cooling system to keep the 

working temperature within a safe range [16, 17]. 

In this paper, a detailed analysis of the active type cooling: 

the natural [21-28], forced air [29-42], forced liquid [43-63] 

and phase change types [18, 66-68], are reviewed in Section 

II. On this basis, a comprehensive summary of the convection 

methods as applicable to the automotive traction motors 

cooling contexts have been provided with the advantages and 

disadvantages of each method being compared. The essential 

elements for optimizing the cooling performance of each 

method together with the leading applications are specifically 

highlighted. In addition, the latest automotive traction motor 

prototypes and products [69-75] employing these methods, 

have been set out and evaluated in Section III. In Section IV, 

the use of the analytical lumped-circuit and the computational 

fluid dynamics techniques [90-94] for calculating the cooling 

performance are proposed and discussed. Section V sets out 

the conclusion in which a number of recommendations 

concerning the future developments and applications is 

offered. The aim of this paper is to familiarize and equip the 

electrical machine designers with a concise knowledge of the 

thermal background to improve upon the overall performance 

of their products. 
TABLE I 

THE TYPICAL VALUES FOR DIFFERENT COOLING METHODS [18-20]. 

Cooling method 𝜎, kPa 𝐴𝑙, kA/m 𝐽, A/mm2 ℎ, W/m2 K 

Natural convection - - 1.5-5 5-30 

Forced 

gas 
cooled 

Air <15 <80 5-10 20-300 

Hydrogen <25 70-110 7-12 100–1000 

Forced 

liquid 

cooled 

Indirect 20-60 90-130 7-20 100-10000 

Direct  60-100 100-200 10-30 200-25000 

Phase change - - - 500–50000 

II. COOLING METHODS 

A. Natural passive cooling 

Natural cooling uses the on-site energy, combined with the 

configuration of motor components to dissipate heat. The 

housing is the main path through which the heat is removed 

from inner components to the ambient environment. The 

design of the housing needs to be optimized in order to 

maximize the rate of convective heat dissipation. 

In practice, correlations of convective heat transfer (HTC) ℎ 

have been developed for natural cooling to show that the 

Nusselt number 𝑁𝑢 mainly depends on the Grashof number 

𝐺𝑟 and the Prandtl number 𝑃𝑟 [21], defined as equations (1-

4): 

 

 𝑁𝑢 = ℎ ∙ 𝐿/𝜆 (1) 

 𝑁𝑢𝑁𝑎𝑡𝑢𝑟𝑎𝑙 = 𝑓(𝐺𝑟, 𝑃𝑟) (2) 

 𝐺𝑟 =
𝑔𝛽𝜌2(𝑇𝑤 − 𝑇𝑓)𝐿3

𝜇2
 (3) 

 𝑃𝑟 = 𝜇 ∙ 𝑐𝑝/𝜆 (4) 

 

A suitably designed finned housing can improve the heat 

transfer coefficient value as compared to a non-finned 

housing. The cooling fins are normally placed on the surface 

of the housing, and are oriented in such a way as to not disturb 

the natural airflow. There are two types of fins branching off 

in different directions relative to the motor shaft: one being a 

radial fin array [22], the other an axial fin array [23]. 

The heat transfer rate from fins to the ambient environment 

may rise either by increasing the heat transfer coefficient 

and/or the fin surface area. However, the natural convection 

heat transfer coefficient depends on the ambient conditions. A 

common practice for improving the natural convection heat 

transfer is to extend the fin area; however, this increases the 

resistance of the air flow which in turn diminishes the gain 
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factor. The optimization of the fin extension 𝐻, fin pitch 𝑆 and 

the number of fins 𝑁 which are illustrated in Fig. 1, are the 

main ways to increase the natural cooling performance [24-

29]. The key design objective must be to maximize the rate of 

the heat dissipation, while minimizing the weight and volume 

of the cooling fins. 

 

 
Fig. 1.  Fin configuration geometry. 

 

The natural cooling approach, however, is appropriate only 

for low or medium-power motors or large electric motors with 

sufficient heat transfer areas. 

B. Forced cooling 

Forced cooling is a more popular approach than the passive 

type discussed in Section A, as more power dense and 

compact motors are being introduced to the market. As 

compared to the natural cooling, the forced cooling uses an 

external device and source of energy to create sufficient 

coolant flow to exchange and extract the heat from the hotter 

components. The Reynolds Number 𝑅𝑒 is used to determine 

the flow patterns, so-called flow regimes, under different 

cooling media and architectures, and can be analytically 

estimated by (5). The heat transfer based on the forced 

convection method can be defined as a function of 𝑅𝑒 and 𝑃𝑟 

in accordance with (6) [21],  

 

 𝑅𝑒 =
𝜌𝐷𝑉

𝜇
 (5) 

  𝑁𝑢𝐹𝑜𝑟𝑐𝑒𝑑 = 𝑓(𝑅𝑒, 𝑃𝑟) (6) 

1) Forced air 

In a forced air cooling system, a fan or a blower is 

employed to generate the continual passage of air through a 

motor or over its exterior. Depending on the enclosure of a 

motor, forced air can be divided into two different varieties: an 

enclosed fan cooled (EFC) motor and an open fan cooled 

(OFC) motor. 

An EFC motor consists of an inner and an outer flow 

circuit. These are displayed in Fig. 2 [30, 31]. The 

recirculating air from the inner circuit brings heat from the 

inner motor to the housing frame, where an outer flow circuit 

functions as a heat sink. The EFC configuration prevents a 

free exchange of air between the inside and the outside of the 

motor. An internal fan, either integral to the rotor or mounted 

on the shaft, circulates air inside the enclosure which promotes 

the heat transfer to the frame. An exterior fan, makes the 

surrounding air pass over the housing, thus removing heat to 

the ambient environment. However, the efficiency of a shaft-

mounted fan is limited by the speed of shaft. Hence an 

external fan or blower is employed to generate the optimal 

level of air pressure independently of the shaft speed. For an 

EFC approach, the recirculated air is often cooled via the 

ambient air through the external frames in case of the small 

motors or by an air-to-water heat exchanger in case of the 

large motors. The key benefit of the EFC scheme is that the 

interior parts are better protected against pollutants which may 

block the ventilation ducts, with the risk of impeding the 

airflow. Furthermore, the cooling performance can be 

improved by replacing the air with a suitable gas that has 

higher heat conduction and higher specific heat capacity than 

air, e.g. hydrogen [32]. This is owing to the fact that the 

smaller and lighter gas molecules can result in a lower 

windage loss and better heat transfer than air. 

An OFC motor ventilation structure is illustrated in Fig. 3. 

The coolant air is continuously drawn from the ambient 

environment into the motor enclosure, and not re-circulated. 

Since, in this method, the motor is exposed to the 

environmental contaminants, provisions such as using filtering 

or employing indirect air channels need to be in place to 

prevent particles or moisture from entering the motor [33]. 

Because of the accumulated pollutants, OFC motors are 

regularly dismantled for a clean-up operation once every two 

or three years [34]. 

 

 
Fig. 2.  The ventilation structure of an EFC motor. 

 

 
Fig. 3.  The ventilation structure of an OFC motor. 

 

 
Fig. 4.  A typical fan characteristic curve [35]. 

 

The cooling performance of the forced air motors strongly 

depends on how large the surface contact areas is between the 

coolant and the motor components. This can be improved by 

adding geometrical modification such as cutting multiple air 

slots into the shaft, rotor, or the stator core [36]. 
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In a fan based cooling system, the fan provides a 

differential pressure to make the coolant air flow. Fig. 4 shows 

the relationship between the fan characteristic and the motor 

enclosure system resistance curve, as well as the operating 

pressure and flow rate at the intersection point. The bending of 

the fan characteristic curve is due to the energy losses, and can 

be improved by optimizing the aerodynamic structure of the 

blades. A new kind of axial fan with forward-swept and 

inclined blades is employed in [37-39] to reduce the 

ventilation resistance inside an electric motor, as is illustrated 

in Fig. 5. Further enhancement in cooling can be achieved by 

various retrofit methods, such as adding internal air baffles to 

an EFC motor [40], or by interrupting any combination of  

flows from occurring especially at high rotor speed [35], as is 

shown in Fig. 6. 

One of the major challenges associated with fan cooling is 

the emission of acoustic noise, especially at a high speed fan 

operation. Several noise mitigation methods have been 

proposed by the literature: a) using forward-swept inclined 

fans [37, 38]; b) using a better aero-foil shape blade cross-

section [41]; c) using inlet bell-mouth entry [42]; d) using 

composite materials for blades [42]; e) reducing the number of 

blades [41, 42]; f) using irregular-pitch-blade fan [30, 42, 43]; 

g) using a mixed flow (both axial and radial) fan [41]. 

 

 
Fig. 5.  The axial fan with forward swept and inclined blades [39]. 

 

  
Fig. 6.  Arrangement of flow guard [35]. 

2) Forced liquid  

A forced liquid cooling solution is suitable in particular 

applications, especially for high-power electric motors, where 

the requisite outputs cannot be attained by EFC or OFC 

motors. Forced liquid cooling approaches such as those that 

are designed for electric motors are presented in Fig. 7. In 

such a cooling system, the forced liquid passes through the 

housing jacket, stator channels and/or rotor channels. 

However, the forced liquid cooling system suffers from a 

number of weaknesses, such as stains, corrosion, leakage and 

contamination. The remaining stains inside of cooling 

channels may lead to a significant rise in flow resistance, 

which causes a decrease in the cooling effectiveness. The most 

common liquid coolant in thermal management of electric 

motors is water. The reason why water is chosen is primarily 

due to the high relative heat capacity of this liquid. In addition, 

a number of components are available for commercial 

applications, such as ethylene glycol and water (EGW) 50/50 

and engine oil. 

 

 
Fig. 7.  The forced liquid cooling models. 

a. Housing water jacket  

The cooling via a housing jacket is the most common forced 

cooling approach. This is where the liquid flows through the 

cooling channels situated in a thermally conductive frame 

above the stator stack [17, 44-46]. The heat generated in the 

coils, as well as in the stator and rotor laminations, is initially 

transferred to the cooling housing through conduction, and is, 

then transferred to the ambient environment via convection in 

the coolant fluid. The efficiency of the liquid cooling 

technique heavily depends on the geometrical clearance and 

the resultant thermal resistance between the laminated stator 

core and the cooling housing. 

The effects of different parameters on the contact thermal 

resistance between the laminated stator core and the frame, 

such as shrink fit pressure, thermal paste use etc., were 

experimentally investigated in [47]. A ferrite magnet motor 

design, [48], is used to verify the effect of the contact 

interfaces on the stator winding and magnet temperature. The 

results at 10000 rpm/55.5 kW, as is shown in Fig. 8, are based 

on an analytical method using Motor-CAD and these indicate 

that a poor contact between the stator and frame encourages an 

increase in the temperature of the winding and the magnet, 

with the maximum possible increase being about 40 ˚C .An 

alternative to water in a liquid cooling system, includes Shell 

Tellus oil premium 22 [49], and Statoil transmission oil [50], 

which are provided from the lubricating oil already applied to 

the gearbox system. 

Whilst a housing jacket provides a sufficient heat transfer 

for the active part of the stator winding, it is, usually, 

inadequate to dissipate the heat from the end winding and 

rotor due to the high thermal resistance between the heat 

source and the coolant. This can be particularly problematic 

for motors with long end windings, such as distributed wound 

motors with few pole numbers. 

 

  
Fig. 8.  Sensitivity analysis of the stator and housing contact interfaces on 
components temperature. 
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b. Stator cooling 

A further method of liquid cooling is via cooling slots cut 

directly into the stator laminations. These are located in the 

stator yoke [51-55] or the winding slots [56-59]. Even if the 

coolant gets closer to the windings and the laminations, 

resulting in a smaller thermal resistance, care must be taken to 

prevent the cooling slots from disturbing the magnetic flux in 

the stator core [60, 61]. In [52], the effects of an evenly spaced 

number of different water slots on the average temperatures of 

winding (T1), winding epoxy (T2), slot insulation (T3), iron 

core mover (T4), have been shown in Fig. 9. These effects are 

based on finite element (FE) simulations to demonstrate the 

effectiveness of the approach for this water-cooled permanent 

magnet linear motor. It is worth noting that the maximum 

number of water pipe slots should be chosen as a tradeoff 

between the ease of manufacture and the required temperature 

rise limitations. 

Using a wet stator is a less commonly employed way of 

stator cooling. In this less common method, a fluid with a high  

heat transfer coefficient, such as hydraulic oil [62], is made to 

pass through the armature end windings and the stator 

laminations. A sleeve is introduced to prevent the liquid from 

entering the air gap in order to avoid windage loss, as 

illustrated in Fig. 10. This cooling approach provides the 

minimum thermal resistance between the coolant and the heat 

source, providing the best heat transfer capability [63]. 

 

 
Fig. 9.  Stator winding maximum temperature at various flow speeds with 

different water slots based on FE simulations [51]. 
 

Oil InOil Out

Stator sleeve
Air

 
Fig. 10.  Wet stator cooling system. 

c. Rotor cooling  

Having an internal rotor is usually associated with a poor 

heat transfer due to the airgap acting as an insulating material. 

Poor heat transfer leads to a loss of electromagnetic 

performance. To enhance the heat transfer, the enclosed air 

can be replaced by a high thermal conductivity medium, i.e. 

water or oil [62]. After that, the motor is totally flooded and 

the rotor and stator surfaces are directly flushed by a coolant. 

However, a direct liquid cooling method is not an economical 

and practical one. This is due to the extra provisions required 

for diminishing not only the friction losses, but also risks of 

short circuit faults and corrosion [62]. Reference [64] 

introduces an annular gap between the winding and the airgap 

for slotless motors. This is where the coolant is brought closer 

to the rotor. As a rotary part, the direct liquid cooling 

apparatus of a rotor is difficult to manufacture. As a results, a 

hollow shaft cooling system [65] as an indirect way of 

dissipating heat can be employed. Fig. 11 presents a shaft 

cooling system, where the coolant is introduced into the 

system via a coupling connected to a stationary inner tube and 

is driven back to the gap between the injection tube and the 

hollow shaft [16]. 

The heat transfer characteristics of the rotor cooling system 

are complex. A secondary flow will occur as a result of the 

rotation while the cold and dense fluid in the center tends to 

move radially to the wall due to the Centrifugal and Coriolis 

Effect. Consequently, the convection heat transfer coefficient 

correlations of a stationary case is invalid for rotor cooling 

[66] and the rotational Reynold number 𝑅𝑒𝑟 must be 

introduced to estimate the effect of the rotation. The typical 

form of the convection correlation for rotating flow is defined 

as (7) (8) [66]. Reference [65, 66] have experimentally and 

theoretically demonstrated that the rotational speed can 

significantly increase the convective heat transfer in the rotor 

cooling above the stationary condition. 

 

 𝑁𝑢 = 𝑓(𝑃𝑟, 𝑅𝑒, 𝑅𝑒𝑟  )  (7) 

 𝑅𝑒𝑟 = 𝜌𝐿𝑉𝑟/ 𝜇   (8) 

 

`
`

Seal

Stationary  

cooling tube

Rotor

Inlet

Outlet

Bearing

Shaft

 
Fig. 11.  Indirect rotor cooling scheme. 

d. Phase change 

In a phase change cooling system, a coolant is applied in 

such a way that at least a portion of the coolant is transformed 

into vapor upon heating. The principle of a phase change loop 

is illustrated in Fig. 12. A refrigerant is pumped into the heat 

source as an evaporator, at which point, after absorbing the 

thermal energy, is transformed into a gaseous state. The heated 

gas is then recycled back into the compressor, releasing 

thermal energy. The refrigerant at the liquid state is pumped 

back again as a new cycle begins. Phase change cooling 

systems provide high heat dissipation rates at higher operation 

temperatures with a considerably smaller working volume 

than a single phase [67]. The simplest phase change cooling 

scheme is a heat pipe. It is a closed pipe filled with a dedicated 

working fluid. In manufacturing terms, heat pipes can easily 

be installed in electric motors. However, the heat transfer 

capability of a heat pipe depends on the dimensions and the 

temperature drop between the two ends [19]. 

Spray cooling [68-70] is another cooling technique which 

involves a phase change. Spray cooling of the stator and rotor 

end turns is depicted in Fig. 13. A cooler liquid is sprayed 

onto the end-windings and/or rotor via nozzles. After moving 

over various surfaces on the inside of the motor, the coolant is 
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partially evaporated into a gaseous state (phase change), which 

is condensed back into liquid in the condenser and drained out 

into the reservoir along with the unevaporated coolant. Spray 

cooling can be used to transfer large amounts of energy 

through the latent heat of evaporation and create uniform 

temperatures without reducing magnetic field fluctuations or 

creating electric noise. Despite these advantages, spray 

cooling is considered excessively complex insofar as it 

requires nozzles with high amounts of pressure [71]. The 

submerged double jet impingement method [72] and 

experimental approach [14] are used for calculating the heat 

transfer coefficients of the spray cooling. 

 
Fig. 12.  Primary components of a phase change cooling loop. 

Inlet

 
Fig. 13.  A spray cooling on the stator and rotor end windings [73]. 

e. Hybrid approach 

In most cases, an electric motor can work reliably under 

conditions of substantial overloading by applying a single 

method of cooling. However, for the high power density 

applications, such as traction motors, a single cooling method 

may not be sufficient. On this basis, a combined forced-air and 

liquid cooling system have been applied in [22, 46, 52, 74]. 

The results relating to the rise in temperature for 30 kW 

traction motor compare individual and coupled cooling 

systems, as is shown in Fig. 14. It is noted that the coupled 

cooling schemes are more effective whilst any suitability for 

the mass production remains a challenge due to the 

manufacturing complexity [16]. 

 

 
Fig. 14.  The performance comparison for various cooling system [16]. 

III. TRACTION APPLICATIONS 

The Nissan-leaf electric motor shown in Fig. 15 (a) uses a 

water jacket for cooling an interior permanent magnet traction 

motor. Three cooling channels in Fig. 15 (b) are provided in 

the frame above the stator stack in parallel using EGW 50/50 

as a coolant to ensure a sufficient cooling performance. 

In Fig. 16 [57], a forced cooling fluid flows through the slot 

cooling tubes (with the option of being connected in series or 

parallel). The slot cooling tubes are placed inside the winding 

slots, adjacent to the coils. 

A plurality of heat pipes are inserted in the stator slots in 

[60], as is displayed in Fig. 17 (a). All the heat pipes are 

extended into a cooling chamber that can be filled with oil or 

some other cooling fluid. Another example in [75], Fig. 17 (b) 

discloses a heat pipe that is located in the motor hollow axle, 

where a metallic plate as a heat exchanger is mounted at the 

end of the heat pipe. 

Zytek Electric Traction Motor [76], as is shown in Fig. 18, 

is based on a dual cooling system, a self-ventilated cooling 

where internal forced air flows through the rotor axial ducts, 

as well as the airgap of the motor, in combination with a 

housing water jacket. The recirculating air brings heat from 

the inner motor to the heat exchanger. 

A list of the various cooling methods installed in the latest 

traction motors has been provided in Table II . 

           
Fig. 15.  a) Nissan-leaf electric motor     b) Model of cooling water  

 

          
Fig. 16.  Slot duct cooling for the whole motor (left) and single teeth prototype 
(right) [55]. 

  
Fig. 17.  Motor assembly with heat pipe cooling system [71, 73]. 

 

     
Fig. 18.  ZYTEK high power density PMSM with dual cooling system [76]. 
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TABLE II 

THE VARIOUS COOLING METHODS APPLIED FOR AUTOMOTIVE TRACTION MOTO

 

IV. COMPUTATION METHODS 

An accurate understanding of the cooling performance in an 

electric motor is a prerequisite of an accurate and efficient 

thermal design. The key parameters to achieve this goal are 

the convection heat transfer, flow resistance, and fan 

performance in case of fan cooled systems, etc., while the 

common approaches include analytical lumped-circuit and 

numerical methods. 

The analytical approach can be subdivided into two main 

calculation types: heat-transfer and flow-network analyses. 

Both of them are based on readily available empirical 

correlations in the thermal analytical literature and have the 

advantage of being fast. In the lumped-circuit thermal 

network, the convection heat transfer between the surface of 

the motor components and the coolant is described by 

convection thermal resistance defined as (9). The temperature 

of the motor components allow predictions based on the 

convection thermal resistances for a given power distribution. 

In the flow network, a drop in pressure takes place due to the 

flow restrictions (e.g. friction, expansion, contraction). Any 

loss in pressure is usually quantified with an empirical loss 

coefficient (𝑘) based upon the flow of kinetic energy, defined 

as (10). The dimensionless correlations used for calculating 

the convection heat transfer coefficient and the flow resistance 

coefficient are reported in Table III and Table IV respectively. 

 

𝑅 = 1/(ℎ ∙ 𝐴) (9) 

Δ𝑝 = 𝑘 ∙
1

2
𝜌𝑉2 (10) 

 

The numerical approaches based on the time step Finite 

Element Analysis (FEA) and Computational Fluid Dynamics 

(CFD) methods are commonly applied to the complicated 

cases (e.g. in case of a rotor duct, or a mounted fan system). 

However, the model setup and computations can be highly 

time-consuming especially when 3D modelling in necessary.  

 

The FEA is a highly accurate tool for modelling the solid 

conduction heat transfer. However, in case of the cooling by 

connecting two different media, CFD needs to be employed to 

predict the coolant velocity distribution and pressure drops in 

the cooling ducts as well as the coolant heat transfer 

coefficient at the boundaries through the complex shape area. 

CFD is based on the finite volume technology with the aim of 

simulating 3-D laminar or turbulent flow with a high degree of 

accuracy. 
TABLE III 

THE FLOW RESISTANCE COEFFICIENT. 

Friction loss coefficient 

Stationary pipe 

𝑘 = 𝑓𝑠 ∙ 𝐿 𝐷⁄  
𝑓𝑠={

64/𝑅𝑒; 𝑅𝑒 < 2300

0.316/𝑅𝑒0.25, 4000 < 𝑅𝑒 < 10000
; } 

[83] 

Rotating shaft 

𝑘 = 𝑓𝑟 ∙ 𝐿 𝐷⁄  𝑓𝑟/𝑓𝑠={

1; 𝑉𝑟/𝑉 < 0.35

0.579(𝑉𝑟/𝑉)−0.52; 0.35 ≤ 𝑉𝑟/𝑉 ≤ 0.8

0.47(𝑉𝑟/𝑉)−1.42; 0.8 < 𝑉𝑟/𝑉) < 1.2

}; 

[84] 

Air gap 

𝑘 =𝑓𝑟 ∙ 𝐿 𝐷⁄  
𝑓𝑟/𝑓𝑠={1 + (7/8)2(𝑅𝑒𝑟/2𝑅𝑒)2}0.38 

[85] 

Rotor ducts 

𝑘 = 𝑓𝑟 ∙ 𝐿 𝐷⁄  
𝑓𝑟/𝑓𝑠={

0.5𝑅𝑒𝑟
0.16𝑅𝑒−0.03; 900 < 𝑅𝑒 < 9880

0.842𝑅𝑒𝑟
0.023𝑅𝑒0.002; 𝑅𝑒 > 9880

} 
[86] 

Sudden expansion, contraction loss coefficient  

Stationary pipe 𝑘 = (1 − 𝐴𝑖/𝐴𝑜)2 [83] 
Entrance of air 

gap 
𝑘 = 0.1(𝑉𝑟/𝑉)2 − 0.06(𝑉𝑟/𝑉);  𝑉𝑟/𝑉 > 1 [87] 

Entrance of 

Rotor ducts 
𝑘 =0.234(𝑉𝑟/𝑉)2 − 0.043(𝑉𝑟/𝑉); 𝑉𝑟/𝑉 > 0.5 [88] 

Reynolds Averaged Navier-Stokes (RANS) equations are 

mostly used to deal with the 3-D turbulent flow and heat 

transfer of cooling systems. Six Reynolds stresses need to be 

calculated in order to close the RANS equations. A common 

method is to use the eddy viscosity model via the Boussinesq 

hypothesis which relates to the Reynolds stresses as a function 

of turbulent viscosity. In order to calculate turbulent viscosity, 

various turbulent models are employed to solve one or more 

transported quantities: for example, in case of the modified 

turbulent viscosity (Spalart-Allmaras model); the turbulent 

kinetic energy k and turbulent dissipation rate ε (k-ε model),  

Motor type Max torque 

(Nm) 

Max Speed 

(rpm) 

Torque density: 

Mass/Volume 

(Nm/kg, Nm/L) 

Peak Power 

(kW) 

Power Density: 

Mass/Volume 

(kW/kg ,kW/L) 

Cooling methods Reference 

2010 Toyota Prius 

IPMSM 
205 13,500 5.5 / 16.4 60 1.6 / 4.8 Housing jacket cooling 

with oil 
[77] 

2011 Sonata PMSM 205 6000 7.5 / 20.5 30 1.1 / 3.0 Housing jacket cooling 

with oil 
[78] 

2012 Tesla Roadster 

AC IM 
370 14,000 6.98 /- 215 4.05 /- Inner forced air + Fined 

housing + outer fan 
[79] 

2012 Nissan Leaf 

IPMSM 
280 10,390 4.8 / 15.1 80 1.4 / 4.2 Housing jacket cooling 

with WEG 
[80] 

2013 Tesla S60 AC IM 430 14800 - 225 - Housing Jacket cooling+ 

Shaft cooling 
[1] 

2015 Newcastle 

University SRM 
280 10,500 5.2 / 15.9 80 1.5 / 4.5 Housing Jacket cooling 

with water 
[81] 

2016 BMW i3 IPMSM 250 11,400 6.0 / 18.2 125 3.0 / 9.1 Housing Jacket [82] 

GE Global Research 

IPMSM 

180 14,000 >5.1 / >18.6 55 >1.5 / >5.7 Housing jacket + End 

winding spray + Rotor 

cooling 

[16] 

Zytek PMSM 460 12,200 6.1 /- 170 2.3 /- Housing jacket + Forced 

fan cooling 
[76] 
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TABLE IV 

HEAT TRANSFER COEFFICIENT OF VARIOUS COOLING SYSTEM. 
Natural cooling  Reference 

 Cylinder 

housing 𝑁𝑢={
0.525(𝐺𝑟 ∙ 𝑃𝑟)0.25; 𝐺𝑟 ∙ 𝑃𝑟 < 109

0.129(𝐺𝑟 ∙ 𝑃𝑟)0.33; 𝐺𝑟 ∙ 𝑃𝑟 > 109}  
[21] 

 Finned 

housing 𝑁𝑢={
5.22 ∙ 10−3(𝐺𝑟 ∙ 𝑃𝑟 ∙ 𝑁𝑆 𝐿⁄ )0.57(𝑆 𝐿⁄ )0.412(𝐻 𝐿⁄ )0.656; 106 < 𝐺𝑟 ∙ 𝑃𝑟 ∙ 𝑁𝑆 𝐿⁄ < 2.5 ∙ 107 

2.78 ∙ 10−3(𝐺𝑟 ∙ 𝑃𝑟 ∙ 𝑁𝑆 𝐿⁄ )0.57(𝑆 𝐿⁄ )0.412(𝐻 𝐿⁄ )0.656; 2.5 ∙ 107 < 𝐺𝑟 ∙ 𝑃𝑟 ∙ 𝑁𝑆 𝐿⁄ < 1.5 ∙ 108} 
[89] 

Forced cooling   

 Cylinder 
housing 

𝑁𝑢={
0.664𝑅𝑒0.5 ∙ 𝑃𝑟0.33;  𝑅𝑒 < 5 ∙ 105, 0.6 < 𝑃𝑟 < 50

(0.037𝑅𝑒0.8 − 871) ∙ 𝑃𝑟0.33;  𝑅𝑒 > 5 ∙ 105   } 
[21] 

 Finned 
housing 

𝑁𝑢=0.03𝑅𝑒0.8{1 − 0.23(𝐿 𝑆⁄ )0.5(𝐿 − 𝐻 𝐿⁄ )1.5; For turbulent flow} [23] 

 Housing 

jacket 𝑁𝑢={   

       
3.66 + 0.668𝑅𝑒 ∙ 𝑃𝑟 ∙ 𝐷 𝐿⁄ ∙/{1 + 0.04(𝑅𝑒 ∙ 𝑃𝑟 ∙ 𝐷 𝐿⁄ )0.667}; 2300 < 𝑅𝑒

 0.125𝑚(𝑅𝑒 − 1000) ∙ 𝑃𝑟/{1 + 4.49𝑚0.5(𝑃𝑟0.667 − 1)}; 3000 < 𝑅𝑒 < 5 ∙ 106
 

 

 

 

} 

𝑚=(0.79 ln 𝑅𝑒 − 1.64)−2 

[90] 

 Rotational 

hollow 
shaft 

𝑁𝑢={
0.019𝑅𝑒0.93 + 8.51 ∙ 10−6𝑅𝑒𝑟

1.45; 0 < 𝑅𝑒 < 3 ∙ 104, 1.6 ∙ 103 < 𝑅𝑒𝑟 < 2.77 ∙ 105 

2.85 ∙ 10−4𝑅𝑒𝑟
1.19;  𝑅𝑒𝑟 > 2.77 ∙ 105 } 

[66] 

 Spray 
cooling 

𝑁𝑢=𝑃𝑟0.4{0.785𝑅𝑒0.5 ∙ 𝐿 𝐷 ∙⁄ 𝐴𝑟 + 0.0257𝑅𝑒0.83 ∙ 𝐿/𝐿∗ ∙ (1 − 𝐴𝑟)}; 𝐴𝑟 =
𝜋(1.9𝑑)2

𝐿2
 ,𝐿∗ =

0.5∙(1+√2)𝐿−3.8𝑑

2
 [72] 

 Heat pipe 𝑁𝑢=4.728 ∙ 10−7𝑅𝑒1.986 𝑐𝑝∆𝑇 ℎ𝑙⁄  [91] 

 

TABLE V 
THE APPLICATIONS AND COMPARISONS OF TURBULENCE MODELS. 

 

the specific dissipation rate ω (k-ω model). In addition, the 

Reynolds stress transport (RST) model known as a second. In 

addition, the Reynolds stress transport (RST) model known as 

a second class model is based on a direct calculation of the 

stress-tensor components, requiring 5 additional transport 

equations. The applications and comparisons of the most used 

turbulent models are shown in Table V. 

The friction coefficients and heat transfer coefficients are 

need to be predicted near the wall. Thus, it is crucially to 

choose the right combination of near wall mesh resolution and 

wall treatment. In addition, the turbulent flows are 

significantly affected by the presence of walls. The k-ε and 

RST models are mainly valid for turbulent core flows that 

occur away from the walls; and hence they are coupled with 

wall functions to bridge them with the calculated variables in 

the viscosity-affected region. The k-ω models are designed to 

be applicable throughout the boundary layer with a sufficient  

 

near-wall mesh. Moreover, the accuracy of the CFD analysis 

also depends on the quality of the data input by the user, e.g. 

the mesh size, the boundary condition and the material 

properties. 

V. CONCLUSION 

A summary of practical methods and apparatuses for 

various types of cooling of automotive traction motors has 

been presented. Depending on the capacity and installation 

conditions of an electric motor, a single or a number of 

cooling techniques can be applied accordingly. Besides the 

efficiency of a cooling system in enhancing the 

electromagnetic performance, the reliability, manufacturing 

complexity and maintenance costs of any proposed cooling 

architecture, are amongst the factors that must be considered 

in the design stage. In the future, a highly effective cooling 

and ventilating system is essential to meet the cooling 

Model Applications  Comments Time cost 

Standard k-

ε  

[15] addresses the flow velocity, the drop 

in pressure and the HTC of water in the 

water jacket cooling channels. 

Robust industry standard model, and only valid for fully turbulent flows. 

Performs poorly for complex flows involving separation and strong 

streamline curvature. 

 

Low 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

High 

Realizable 

k-ε 
[92] studies the HTC between air and 

stator of an air-cooled machine; [93] 
investigates the characteristic curve of a 

fan. 

Performance generally exceeds the standard k-ε model. Performs well for 

complex flows with large strain rates, but still suffers from the inherent 

limitations of an isotropic eddy-viscosity model.  

Standard k-

ω 
[94] investigates the HTC of end 

windings for an EFC motor. 

The k-ω models improve performance for boundary layers as compared to k-

ε. Suitable for wall-bounded boundary layer, free shear, separated and low-

Reynolds number (i.e. transitional) flows. But sensitivity to freestream  
Shear 

stress 
transport 

(SST) k-ω 

[95] studies the flow, thermal and 

windage losses characteristics of fan 

blades;[65] addresses the HTC associated 

with a shaft-cooling of the traction 
motors. 

Performs well for swirling flows without requiring sublayer damping and 

improves the separation flow prediction. Less sensitive to freestream than the 
standard model. 

RST  [96] investigates the heat transfer on the 

outward corrugated tube. 

The RST model has the potential to predict complex flows more accurately 

than eddy viscosity models because the transport equations for the Reynolds 

stresses naturally account for the effects of turbulence anisotropy, streamline 

curvature, swirl rotation and high strain rates.  
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demands placed on automotive traction motors with both 

small packaging as well as high torque and high power 

density. 

Although the analytical approach is often limited to the 

geometrics and topologies and while the accuracy depends on 

a number of empirical correlations, this approach can still 

offer a fast and simple preliminary solution. If we use FEA 

effectively in modelling the solid conduction of heat, it is 

essential that a predicted heat transfer boundary needs to be 

defined. The CFD may provide detailed insights to into the 

kinds of outputs achieved from the cooling system, while 

being computationally laborious and time intensive. A 

combination of the empirical formulations and the 

computational technologies can benefit from both analytical 

and numerical approaches, whereupon a relatively simple and 

more accurate thermal model might be obtained. 
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