
Privacy Preserving Biometric Authentication for Fingerprints and
Beyond

Marina Blanton

University at Buffalo

Buffalo, USA

mblanton@buffalo.edu

Dennis Murphy

University at Buffalo

Buffalo, USA

dpm29@buffalo.edu

ABSTRACT
Biometric authentication eliminates the need for users to remember

secrets and serves as a convenient mechanism for user authenti-

cation. Traditional implementations of biometric-based authenti-

cation store sensitive user biometry on the server and the server

becomes an attractive target of attack and a source of large-scale

unintended disclosure of biometric data. To mitigate the problem,

we can resort to privacy-preserving computation and store only

protected biometrics on the server. While a variety of secure com-

putation techniques is available, our analysis of privacy-preserving

biometric authentication constructions revealed that available solu-

tions fall short of addressing the challenges of privacy-preserving

biometric authentication. Thus, in this work we put forward new

constructions to address the challenges.

Our solutions employ a helper server and use strong threat mod-

els, where a client is always assumed to be malicious, while the

helper server can be semi-honest or malicious. We also determined

that standard secure multi-party computation definitions are insuffi-

cient to properly demonstrate security in the two-phase (enrollment

and authentication) entity authentication application. We thus ex-

tend the model and formally show security in the multi-phase

setting, where information can flow from one phase to another

and the set of participants can change between the phases. We

implement our constructions and show that they exhibit practical

performance for authentication in real time.

KEYWORDS
secure computation, biometric authentication, multi-phase secure

execution, garbled circuit evaluation, oblivious transfer

1 INTRODUCTION
Biometric-based authentication provides a convenient user authen-

tication mechanism which does not require users to remember

passwords or maintain other secrets. Biometric-based authentica-

tion is also now more easily accessible than before to the average

user for a variety of application due to proliferation of smartphones

equipped with sufficient sensors. Biometric data, however, requires

strong protection because, unlike password-based authentication,

biometry cannot be replaced if the data becomes compromised.

Enhancing protection of biometric data used in biometric-based

authentication is the focus of this work.

We consider the problem of privacy-preserving biometric authen-

tication in a system where users authenticate to a server using their

biometric data, but the authentication server does not have access

to the users’ biometric data in the clear. If the information stored on

the server does not allow one to recover user’s biometric samples,

user biometric data cannot be easily abused by insiders or through

computer break-ins. Large-scale leakage of sensitive biometric data

is of growing concern due to increasing availability of large-scale

biometric data sets. Thus, this work targets designing a robust and

practical solution to privacy-preserving biometric-based authentica-

tion which can be employed in place of traditional biometric-based

authentication mechanisms and which makes abuse of sensitive

biometric data more difficult.

In the context of privacy-preserving biometric-based authenti-

cation, we can consider two types of solutions: (i) those based on

secure sketches and fuzzy extractors and (ii) solutions based on

secure multi-party computation (SMPC). The former has a disad-

vantage that it discloses partial information about each biometric

sample, the implications of which are hard to quantify, and we

focus on the latter that can guarantee that no biometric-related

information of a user is disclosed to any party.

Now if we consider secure two-party computation between a

user and an authentication server, we can distinguish between two

types based on the amount of interaction: (i) interactive two-party

computation where the user carries the full burden of participating

in secure evaluation of biometric matching and (ii) non-interactive

computation on encrypted data. Note that in the context of user

authentication, we must assume that a user can act maliciously

in the attempt to circumvent the authentication mechanism and

obtain access to the system at any cost. This means that when mod-

eling SMPC, we must provide security in the presence of malicious

users, which increases the protocols’ cost. This is undesirable for

clients operating from computationally-limited battery-powered

devices and thus may present usability concerns. On the other hand,

non-interactive computation that employs fully homomorphic en-

cryption (HE) permits comparing an encrypted biometric sample

provided by the user at authentication time and the encrypted sam-

ple captured at the enrollment time. A concern with this solution

is that, in order for the user biometric data to stay private from

the server, the decryption key must be available only to the client.

This means that it is not possible for a client to enroll once and

later be able to authenticate from any computer or device because

each device has to have the user’s private decryption key. This

nullifies the advantages of biometric-based authentication which

permits authentication without the need to remember passwords

or maintain secret keys and brings us back to requiring the user to

use secrets together with their biometry.

To mitigate these issues, our approach is to introduce a helper

server. This is not a new idea by itself, but it makes a significant dif-

ference for this application. The helper server does not contribute

any inputs and does not learn any information about user biometric

data or the result of user authentication, but rather contributes its

Marina Blanton and Dennis Murphy

computational power and can store protected biometric data. Mul-

tiple authentication servers can use the same helper server. This

setup improves both usability and efficiency, as we demonstrate in

this work. In particular, that expands the set of techniques we can

use for privacy-preserving biometric matching and authentication

and consequently aids efficiency. It also permits minimal involve-

ment of users and removes the need for storing any keys or other

secrets on user devices. This improves usability and enables a user

to authenticate from different devices and a variety of platforms

including weak battery-powered devices.

An interesting aspect of this work is that we found that employ-

ing traditional SMPC security definitions for (privacy-preserving)

authentication is insufficient and there is a need for new defini-

tions. In particular, SMPC is concerned with a single evaluation of

a function, during which the set of participants does not change.

In the context of authentication, on the other hand, we deal with

two phases: enrollment and authentication. Furthermore, the par-

ticipants themselves can change because a malicious user might

attempt to impersonate another user during authentication (while

enrollment was carried out by the authentic user). While we can

use traditional security definitions to ensure that the participants

do not learn unauthorized information during a given phase, there

is still a need to link the two phases together and ensure that no

biometric-based information is available to the participants as a

result of information flow from one phase to another. This is be-

cause the servers will obtain certain output after the enrollment

phrase, but the output of function evaluation is never protected

under the standard definition and is not treated as leakage. Thus,

in this application we need to consider the overall view of the two-

step process, conceptually treating the output of the first stage as

an intermediate result (which must reveal no information) and not

as the target output (which is allowed to reveal information). This

will also permit us to demonstrate that a malicious user is unable

to learn sensitive biometric data of any enrolled user.

We determined that a few prior publications that treat the topic

of biometric-based authentication [1, 3, 20] use a two-phase model;

however, the definitions have custom interfaces and are not applica-

ble to other functionalities. We provide a more detailed comparison

in the related work section.

Our solution is based on garbled circuit evaluation (GCE) [36]

and we use two strong threat models, in both of which the client

is malicious and can behave arbitrary. In the weaker model, the

servers are semi-honest (follow the prescribed protocols) and do

not collude with each other or the clients. In the stronger model,

the helper server can act maliciously and can additionally collude

with clients. When building our constructions, we introduce a vari-

ant of oblivious transfer (OT), termed oblivious transfer with bit

operations (OTB), which may be of independent interest, and con-

sider over-the-threshold cosine similarity and Euclidean distance

as the basis for biometric matching. We formally prove security

of our solutions under standard security definitions, expanded as

discussed above to accommodate multi-phase computation where

the participants can change between the phases. We also implement

and empirically evaluate performance of our solutions and show

that they are well suited for authentication in real time.

Related Work. The first line of work that employ cryptography to

protect confidentiality of biometric data during matching uses se-

cure sketches and fuzzy extractors, e.g., [10, 23, 28, 30, 35], some of

which make use of an additional secret or password to improve the

properties of the solution. The second line of research – closer to

this work – uses SMPC or secure outsourcing. Constructions for dif-

ferent biometric modalities have been developed. For instance, they

include face [14, 19, 31, 33], iris [11, 12], fingerprints [7, 12, 13, 18],

voice [4], and others. The computation itself widely differs in the

complexity, ranging from simple Hamming or Euclidean distance

over integers to hidden Markov model evaluation on floating-point

values. A variety of techniques have been used including GCE,

secret sharing, encryption with special properties (e.g., HE and

predicate encryption), and a combination thereof. Most results

above above focused on privacy-preserving biometric matching or

identification in the semi-honest security setting. Authentication,

however, demands a stronger security model in which clients must

be assumed to be malicious.

Publications that treat privacy-preserving biometric authentica-

tion in the presence of a malicious client include [1, 2, 16, 21, 34]
1
.

Several of them use HE to perform a simple distance computation

and disclose it to one of the parties. For instance, in [15, 16, 21] the

server computes dist · 𝑟0 +𝑟1, where dist is (Hamming or Euclidean)

distance between the enrollment and current biometric samples and

𝑟0, 𝑟1 are large random values. The use of the randomizing values

prevents a malicious client from making meaningful changes to the

distance prior to sending it to the server. This structure has two

disadvantages: (i) each client has to maintain a secret key on each

device he/she wants to use for authentication (which our solution

is set to mitigate) and (ii) the computed distance is revealed to one

of the parties, commonly the server who can compile distributions

of this information for each user over time or, worse, to the (mali-

cious) client who can use the distance as the guide for improving

its strategy for impersonating the authentic user. [34] employs HE

in their semi-honest protocol and GCE when the client can be ma-

licious. In both cases, the client has to maintain a secret key or

another state. Further, none of these solutions connect enrollment

and authentication to protect enrollment data from malicious users.

HE together with digital signatures, GCE, and zero-knowledge

proofs are used in [2] for evaluating cosine similarity as a distance

metric. While it does treat malicious adversaries, active tampering

is limited to client devices only, and the remaining participants are

semi-honest. Specifically, these participants are service providers

and terminals, where a terminal is an external device outside client

control which obtains the authentication phase biometric. This

setting is equivalent to our weaker (non-colluding) security model.

Both secret keys and encoded templates are stored on the devices,

which can reveal non-revocable template information to adversaries

with access to the device. Two of their constructions also leak the

computed distance. [1] uses the same set of primitives in a more

general construction proven UC-secure, where multiple devices

need to interact to authenticate the client. However, secret keys

are distributed across devices such that an adversary controlling

1
In addition, [29, 37] are also said to provide privacy-preserving authentication. How-

ever, in the solution of [37] an authority obtains cleartext access to user biometrics

and thus does not achieve privacy, while in [29] the client is considered fully trusted

and consequently the construction does not correspond to authentication.

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

enough of them gains the secret key along with non-revocable

enrollment templates. The protocol is for cosine similarity and

proved secure in the random oracle model. [25] is a general-purpose

SMPC compiler which can support a similar structure but cannot

handle collusion between active adversaries and does not consider

participants which may change between phases. A recent work [20]

proposed a dynamic and multi-phase protocol based on functional

encryption. It, however, still requires the client to store secrets and

the performance is slower than ours, despite not taking network

communication time into account as we do.

As far as definitional differences go, [3] provides custom inter-

faces, algorithms, and security properties and does not use standard

SMPC definitions. [2] uses the real-ideal paradigm, but does not

discuss the possibility of the enrollment and matching phases being

carried out by different parties. [1] considers the UC framework,

but does not provide general SMPC definitions.

There are publications that modify conventional matching for

a biometric modality to be more amenable for use with privacy-

preserving techniques. A notable example is SCiFI [31] that de-

signed a new face identification mechanism and built a correspond-

ing privacy-preserving protocol. Fingerprints are another example

where conventional minutiae-based matching is complex, and thus

privacy-preserving solutions initially focused on simple but inaccu-

rate FingerCode matching [7], and eventually grew to support con-

ventional minutiae-based matching [8]. A more attractive approach

is to develop a new feature representation and matching algorithm

of high accuracy, as was done in DeepPrint [17]. That work showed

that it is possible to represent fingerprints as fixed-length vectors

and use simple Euclidean distance or cosine similarity for biometric

matching, while achieving nearly identical accuracy to that of top

performing variable-length minutiae-based matching algorithms.

We built on [17] and use it as a basis for biometric matching in

secure authentication protocols we develop. For potential deploy-

ment at scale, [27] provides an efficient virtual memory manager for

secure computation and may facilitate efficient batching of many

authentication sessions in parallel.

2 PRELIMINARIES
2.1 Problem Statement
We consider a setting where a client 𝐶 uses a service that employs

biometric data for entity authentication. At the enrollment time,

the client registers with the service, which involves 𝐶 capturing

its biometric sample, extracting features to produce representation

𝐵, and storing the result in a privacy-preserving way with the

service. At the time of authentication, the client captures a new

biometric sample and produces representation 𝐵, after which the

client and the service engage in a protocol. As a result, the client

is either authenticated and gains access to the service or is denied

access. The computation involves performing biometric matching

by first computing the distance between the enrollment and current

biometric samples, 𝑑 = dist(𝐵, 𝐵), and consequently comparing the

distance to a predefined threshold 𝑡 .

Because we utilize a helper server for usability and efficiency rea-

sons, we denote the main authentication server as 𝑆1 and a helper

server as 𝑆2 (recall that the same helper server can be employed by

different services). Security requirements are such that 𝑆1 has no

access to sensitive biometric information about any user𝐶 and only

determines the outcome of each authentication (i.e., whether the

supplied biometric was a close match and is considered authentic us-

ing the over-the-threshold computation described above). 𝑆2 learns

no information about any biometrics and no information about

authentication outcomes, i.e., its purpose is to improve efficiency

and usability of the protocols for the client and the service.

Because we work with authentication, we must assume that the

client is malicious, i.e., it will try all means at its disposal in the

attempt to successfully authenticate without sufficient credentials.

The servers, on the other hand, can be more trustworthy and can

be expected to follow the prescribed computation. In particular,

because 𝑆1 is the authentication server, it must properly enforce

access control and correctly perform the computation (as otherwise

no meaningful guarantees can be maintained in the presence of a

malicious client). However, someone with access to the server (e.g.,

a dishonest insider or in the case of a computer break-in) might be

interested in extracting biometric information about the users from

the information that the server handles. This includes information

stored at the server and the server’s view during all registration and

authentication protocols. For that reason, we begin with a model

of the servers being semi-honest and non-colluding.

In addition, because the helper server 𝑆2 is not controlled by the

service and may not be as trustworthy, we consider the possibility

of 𝑆2 behaving maliciously. For that reason, we consider a stronger

security model, in which 𝑆1 remains to be semi-honest and non-

colluding with other parties, while 𝑆2 can be malicious and possibly

colluding with clients 𝐶 (who are always assumed to be malicious).

This stronger model has implications on the cost of the protocols

in order to maintain security.

2.2 Security Definitions
We use the standard formulation of security that relies on the

real/ideal paradigm in the presence of malicious adversaries and

guarantees correctness and no unintended information disclosure.

The definition requires that the view of any adversary in real pro-

tocol execution is computationally indistinguishable from its view

in an ideal world execution, where an ideal functionality produces

the output and parties not controlled by the adversary are not

participating in the computation.

In a general setup, let parties 𝑃1, . . ., 𝑃𝑛 engage in a secure multi-

party protocol Π that computes function 𝑓 . We specify 𝑓 as tak-

ing 𝑛 inputs x1, . . ., x𝑛 and producing 𝑛 outputs y
1
, . . ., y𝑛 , i.e.,

𝑓 (x1, . . ., x𝑛) = (y
1
, . . ., y𝑛). Each x𝑖 and y𝑖 is treated as a vec-

tor to permit entering and receiving multiple values, but some

participants may not provide any inputs and/or receive no output

(in which case the corresponding x𝑖 and/or y𝑖 is empty).

Adversary A is permitted to corrupt one or more participants

based on the threat model. The remaining parties are honest and

denoted byH . We let VIEWΠ,A denote the view of adversary A
after an execution of Π. The view is the union of the views of the

parties controlled by A, which include their inputs, randomness

used during the computation, and all messages received during

the computation from other participants. We also let OUTΠ,H de-

note the output of the honest parties after the execution, i.e., the

produced y𝑖 that correspond to the honest parties. Let 𝜅 denote a

Marina Blanton and Dennis Murphy

security parameter and define

REALΠ,A (1𝜅 , {x𝑖 }𝑛𝑖=1)
def

= VIEWΠ,A ∪ OUTΠ,H

In the ideal world, there is no protocol execution and instead a

probabilistic polynomial time (PPT) simulator S interacts with

A. The simulator is able to query an ideal functionality F which

computes function 𝑓 on behalf of the participants and the goal is to

simulate Π’s execution without access to the data of non-corrupt

participants. As before, the view of A corresponds to the inputs,

random choices, and the messages received by the parties controlled

by A during the simulation, which we denote by VIEW 𝑓 ,A .
The ideal functionality evaluates function 𝑓 on behalf of the

participants. It uses inputs of honest participants and obtains inputs

of corrupt participants from S. When A is semi-honest, S obtains

access to inputs of the corrupt parties controlled byA and supplies

them to F . When A is malicious, it can instruct the parties it

controls to deviate from the prescribed computation and enter their

inputs into the computation in a different form. Thus, it is S’s
task to extract the corrupt parties’ inputs the way they are entered

into the computation and communicate the inputs to F , who will

evaluate the function using the supplied inputs. Note that S or

F can abort if either of them obtain empty or malformed inputs

or messages. If the evaluation is successful, the parties obtain the

output of 𝑓 , and we denote the output of honest parties by OUT 𝑓 ,H .
Similar to the real execution, we define

IDEAL𝑓 ,S(A) (1𝜅 , {x𝑖 }𝑛𝑖=1)
def

= VIEW 𝑓 ,A ∪𝑂𝑈𝑇𝑓 ,H
Given the above, we formulate the security definition as:

Definition 1. An 𝑛-party protocol Π between 𝑃1, . . . , 𝑃𝑛 securely
evaluates function 𝑓 if for all PPT adversaries A controlling a subset
of the participants, all input vectors x𝑖 , and 𝜅 ∈ Z, there exists a PPT
simulator S such that

REALΠ,A (1𝜅 , {x𝑖 }𝑛𝑖=1)
𝑐≈ IDEAL𝑓 ,S(A) (1𝜅 , {x𝑖 }𝑛𝑖=1)

where
𝑐≈ denotes computational indistinguishability.

Because in our context information produced in one phase of

the computation is used as input into another phase, we extend

the standard definition to support multi-stage computation. For

simplicity, we consider computation consisting of two phases, but

the concept easily generalizes to any number of phases. To accom-

plish this, we define the outputs of the first phase to be additional,

auxiliary inputs u𝑖 (which may be empty) into the second phase.

Conceptually, this can be pictured as we pause after the first phase,

save the output as the current state, and resume the computation

once the inputs into the second phase are received. Note that each

phase receives inputs from the parties and the second phase ad-

ditionally receives the outputs from the first phase in the form of

auxiliary inputs.

It is important to take into account that the participating par-

ties might change between the phases of the computation. This is

the case for authentication applications, where a malicious user

(imposter) might attempt to authenticate impersonating another

user who previously enrolled in the system (authentic user). For

that reason, we define two different, overlapping sets of partici-

pants 𝑃
(1)
1

, 𝑃
(1)
2

, . . . , 𝑃
(1)
𝑛1

and 𝑃
(2)
1

, 𝑃
(2)
2

, . . . , 𝑃
(2)
𝑛2

. Here superscript

(𝑗) denote data associated with phase 𝑗 and 𝑛1 (respectively, 𝑛2)

denote the number of participants in the first (resp., second) phase.

If 𝑃
(1)
𝑖

= 𝑃
(2)
𝑗

for some 𝑖 and 𝑗 , i.e., the party is involved in both

phases, then it will have an auxiliary input for the second phase.

The remaining participants, i.e., those who are involved only in one

of the phases, contribute their input and receive the output as in

the conventional formulation of an execution.

The more complex participant structure requires that we also

carefully specify adversarial corruptions. If a party is controlled by

an adversary, the adversary controls it in both stages of the com-

putation. If an adversary controls multiple conspiring participants,

it will control them in all phases in which the parties are active

protocol participants.

Let 𝑓 denote the multi-phase functionality and 𝑓 (1) and 𝑓 (2)

denoted the functions we evaluate in phases 1 and 2, respectively.

The auxiliary input is set for each 𝑃
(2)
𝑖

as u(2)
𝑖

= y(1)
𝑗

if 𝑃
(2)
𝑖

=

𝑃
(1)
𝑗

for some 𝑗 and u(2)
𝑖

is empty if 𝑃
(2)
𝑖

was not a protocol par-

ticipant in phase 1. Given this, we define real and ideal views

in the second (or any subsequent) phase of the computation as

REALΠ (2) ,A (1𝜅 , {x
(2)
𝑖

, u(2)
𝑖
}𝑛2

𝑖=1
) def= VIEWΠ (2) ,A ∪ OUTΠ (2) ,H and

IDEAL𝑓 (2) ,S(A) (1𝜅 , {x
(2)
𝑖

, u(2)
𝑖
}𝑛2

𝑖=1
) def= VIEW 𝑓 (2) ,A ∪ OUT 𝑓 (2) ,H .

Definition 2. A sequence of two protocols Π (1) and Π (2) , ex-
ecuted by parties 𝑃 (1)

1
, . . . , 𝑃

(1)
𝑛1

and 𝑃 (2)
1

, . . . , 𝑃
(2)
𝑛2

, respectively, se-
curely evaluates the sequence of functions 𝑓 (1) and 𝑓 (2) if for all PPT
adversaries A controlling a subset of the parties, all input vectors
x(1)
𝑖

, 1 ≤ 𝑖 ≤ 𝑛1, and x(2)
𝑖

, 1 ≤ 𝑖 ≤ 𝑛2, all auxiliary input vectors

u(2)
𝑖

= y(1)
𝑗

subject to 𝑃
(2)
𝑖

= 𝑃
(1)
𝑗

, and 𝜅 ∈ Z+, there exists PPT
simulator S such that

REALΠ (1) ,A (1
𝜅 , {x(1)

𝑖
}𝑛1

𝑖=1
) 𝑐≈ IDEAL𝑓 (1) ,S(A) (1

𝜅 , {x(1)
𝑖
}𝑛1

𝑖=1
) and

REALΠ (2) ,A (1
𝜅 , {x(2)

𝑖
, u(2)

𝑖
}𝑛2

𝑖=1
) 𝑐≈

IDEAL𝑓 (2) ,S(A) (1
𝜅 , {x(2)

𝑖
, u(2)

𝑖
}𝑛2

𝑖=1
).

For the purposes of this work, the computation participants are

𝐶 , 𝑆1, and 𝑆2, i.e., we are dealing with three-party computation. As

described earlier, we consider two threat models:

(1) The minimal meaningful security model that treats 𝐶 as

malicious and 𝑆1 and 𝑆2 as semi-honest and non-colluding.

For the purposes of showing security, this means that A
can corrupt one party at a time with the specified semi-

honest/malicious abilities and our solutions need to be se-

cure for each instantiation of A.

(2) A stronger security model in which, in addition to mali-

cious client 𝐶 , helper server 𝑆2 can behave maliciously and

collude with some clients. Recall that it is not meaningful

to assume that 𝑆1 is malicious in the context of this applica-

tion, and 𝑆1 also does not collude with other parties. This

means that A has two instantiations: semi-honest 𝑆1 and

malicious and colluding 𝐶 and 𝑆2.

The user who participates in the registration is called authentic

𝐶auth. The same or a different user might attempt to authenticate

later by engaging in the authentication protocol. If the user does

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

not change, the parties 𝑆1, 𝑆2,𝐶auth participate in both phases of

the protocol. Otherwise, the second phase is a three-party protocol

executed by 𝑆1, 𝑆2, and an imposter client, denoted as 𝐶imp.

2.3 Building Blocks
In this work, we use the following cryptographic primitives:

• Oblivious Transfer (OT) is a protocol between two parties,

sender 𝑆 and receiver 𝑅. In 1-out-of-2 OT, OT
2

1
, the sender

holds two strings,𝑚0 and𝑚1, while the receiver holds bit

𝑏 and learns 𝑚𝑏 . The security requirements are that the

sender learn nothing about 𝑏, while the receiver learns

nothing about the remaining string𝑚
1−𝑏 .

Additionally, we employ a new (to the best of our knowl-

edge) generalization of OT, which we refer to as Oblivious
Transfer with Bit Operations (OTB). In this setting, the sender
additionally holds an input bit 𝑐 , and the receiver obtains

𝑚𝑏⊙𝑐 , where ⊙ is a previously agreed upon boolean binary

function. Details are provided in Section 2.3.1.

OT extensions are commonly used for efficiency when mul-

tiple calls to OT are needed. OT and OT extensions take

a computational security parameter 𝜅, and constructions

secure in the malicious model can also rely on a statistical

security parameter 𝜌 .

• Garbled circuit (GC) evaluation is a secure two-party proto-

col parameterized by computational security parameter 𝜅

that evaluates some function 𝑓 , represented as a boolean

circuit, on private inputs. One party, garbler𝐺 , chooses two

random labels ℓ0
𝑖
, ℓ1
𝑖
to represent each (boolean) wire 𝑖 in

the circuit. For each binary gate of the circuit, 𝐺 derives

an encryption key from each of the four possible input

wire label pairs and uses these to encrypt the label of the

corresponding output wire. This collection of per-gate ta-

bles constitutes the garbled circuit G𝑓 . The other party,

evaluator 𝐸, receives from 𝐺 both G𝑓 and the set of input

wire labels corresponding to 𝐺 ’s input values (which are

required to not reveal anything about the input they repre-

sent). 𝐸 then engages in an OT
2

1
protocol with 𝐺 to obtain

the wire labels corresponding to 𝐸’s input values. Finally,

𝐸 evaluates the circuit gates beginning with the input la-

bels and obtains the final output label(s). At the end of the

protocol, 𝐸 sends the corresponding output label(s) to 𝐺

(which necessarily reveals the actual output to 𝐺). For the

construction to comply with the security definition, it must

be the case that

– 𝐺 and 𝐸 learn nothing about each others’ input and

– 𝐺 learns the function output.

The literature contains a number of well known optimiza-

tions to the original Yao construction [36]. This includes

the use of the “free XOR” gates introduced in [26] which

imposes a certain relationship between the two labels corre-

sponding to a wire, namely, that ℓ1
𝑖
⊕ ℓ0

𝑖
= Δ for each wire 𝑖 .

The labels are also commonly generated as pseudo-random

strings. In our implementation discussed in Section 4, we

use garbling as in the JustGarble work [9].

The conventional variant of GCE for semi-honest adver-

saries provides resilience against malicious evaluators, as

long as the appropriate variant of OT is used. We do not

require a strengthened variant secure against malicious ad-

versaries, since within our protocols it is possible to arrange

for the circuit garbler to be semi-honest.

• A commitment scheme is parameterized by a security pa-

rameter𝜅 and characterized by two algorithms, commit and

open. The commit algorithm is randomized and denoted

by 𝑐 = com(𝑥, 𝑟), where 𝑥 is the value being committed

and 𝑟 is randomness specified explicitly. We call 𝑐 to be a

commitment to 𝑥 . Commitment 𝑐 can later be opened (typi-

cally by revealing 𝑥 and 𝑟), which exposes the value of 𝑥 .

The security requirements are hiding and biding properties

of the commitment scheme. Namely, hiding requires that

the release of 𝑐 does not disclose information about 𝑥 and

binding requires that it is infeasible to open a commitment

𝑐 to any value other than the value 𝑥 used to produce the

commitment. The security guarantees can be information-

theoretic or computational.

2.3.1 Oblivious Transfer with Bit Operations. This generalization
of OT works with any already proven secure OT scheme. Here,

the parties agree upon a binary boolean function, denoted as ⊙ :

F2×F2 → F2. In addition to the sender holdingmessages𝑚0 and𝑚1

and the receiver holding bit 𝑏, the sender now also holds an input

bit 𝑐 . Then the receiver obtains𝑚𝑏⊙𝑐 without learning anything

else, while the sender learns nothing about receiver’s input 𝑏.

This operation is realized using regular OT, where instead of

entering (𝑚0,𝑚1), the sender enters (𝑚0,𝑚1) specified as follows

for the three most common binary boolean operations:

• AND: the sender sets𝑚0 =𝑚0 and𝑚1 =𝑚𝑐

• OR: the sender sets𝑚0 =𝑚𝑐 and𝑚1 =𝑚1

• XOR: the sender sets𝑚0 =𝑚𝑐 and𝑚1 =𝑚¬𝑐
In terms of correctness, notice that in the case of AND, if the sender

holds 𝑐 = 0, then the receiver obtains𝑚0 regardless of their input

(𝑏∧0 = 0), and𝑚𝑏 otherwise (𝑏∧1 = 𝑏). Similarly, in the case of OR,

if the sender holds 𝑐 = 1, then the receiver obtains𝑚1 regardless of

their input and𝑚𝑏 otherwise. And in the case of XOR, 𝑏 ⊕ 𝑐 = 𝑐 if

and only if 𝑏 = 0, while 𝑏 ⊕ 𝑐 = ¬𝑐 = 𝑐 ⊕ 1 if and only if 𝑏 = 1.

In terms of security, nothing in this modification allows the

sender to learn 𝑏 if the OT being used already prevents this (al-

though the sender may know which string the receiver gets; this

is a function of the sender’s input). Similarly, the receiver receives

exactly one string𝑚𝑏⊙𝑐 without learning𝑚¬(𝑏⊙𝑐) and does not

learn anything about 𝑐 (but the receiver may know they are getting

𝑚𝑏 based on their input and the function ⊙ being computed).

We will be using this OT variant while transferring GC labels

that correspond to an XOR-share of the clients’ private biometric

data and denote it as OTB.

2.4 DeepPrint Fingerprint Matching
We are interested in supporting authentication based on popular

biometric modalities with good distinguishing properties such as

fingerprints and iris codes. Iris codes are represented as binary

strings and their matching is based on the Hamming distance. As a

result, iris matching does not introduce significant complexity. On

the other hand, conventional minutiae-based comparison of finger-

prints is complex and not well suited for use in secure computation.

Marina Blanton and Dennis Murphy

For that reason, DeepPrint [17] that uses deep neural network for

fingerprint feature selection with excellent discriminating proper-

ties is of interest to us. The resulting fingerprint representations

are fixed length and can be compared using simple conventional

distance metrics, making it easier to use the representation with

cryptographic tools.

DeepPrint encodes a fingerprint biometric as a vector of 192

single-precision floating-point values, which is normalized to be

unit length. A unit-length vector is defined as having its 𝐿2 norm, de-

noted by ∥𝐵∥ for a biometric vector 𝐵, be equal to 1. Concretely, for

vector 𝐵 = (𝐵 [𝑖])𝑤
𝑖=1

, it is required that ∥𝐵∥ =
√︃∑𝑤

𝑖=1 𝐵 [𝑖]2 = 1.
2

Then the distance between two unit-length DeepPrint representa-

tions 𝐵 and 𝐵 can be determined using the cosine similarity between

the two vectors, defined as the dot product of the vectors divided by

the product of their 𝐿2 norms (∑𝑤
𝑖=1 𝐵 [𝑖]𝐵 [𝑖])/(∥𝐵∥∥𝐵∥). Of course,

when normalizing to unit length, this division is unnecessary.

The range of values the cosine similarity distance metric may

take on normalized inputs is [−1, 1], with 1 representing an exact

match. Thus, to determine if two representations are within a close

distance, treated as a “match,” it suffices to determine if their dot

product is within the range (1− 𝑡, 1] for a desired threshold value 𝑡 .
The authors of [17] also used Euclidean distance as a distance

function. For two unit-length vectors 𝐵 and 𝐵, Euclidean distance

defined as

√︃∑𝑤
𝑖=1 (𝐵 [𝑖] − 𝐵 [𝑖])2 yields values in the range [0, 2],

with 0 representing an exact match. Thus, a match is determined

by checking if the distance is within [0, 𝑡) for some threshold 𝑡 . For

performance reasons, we work with squared Euclidean distance, in

which case the threshold 𝑡 needs to be adjusted accordingly. We

use notation 𝑑 ∼ 𝑡 to denote the result of comparing the distance 𝑑

to threshold 𝑡 , where the exact operation depends on the distance

metric (i.e., checking 1−𝑡 < 𝑑 ≤ 1 for cosine similarity and𝑑 < 𝑡 for

Euclidean distance); dist(𝐵, 𝐵) denotes the distance computation.

DeepPrint representation requires 768 bytes of storage for 192

32-bit (single precision) floating-point values, but can be com-

pressed to 200 bytes. This is accomplished in [17] by compressing

a floating-point vector element to an 8-bit integer using min-max

normalization as follows: Given DeepPrint floating-point vector

𝐵 = (𝐵 [1], . . . , 𝐵 [192]), define ℎ𝐵 = max𝑖 {𝐵 [𝑖]}, ℓ𝐵 = min𝑖 {𝐵 [𝑖]}
and compute

𝐵 [𝑖] =
⌊
255(𝐵 [𝑖] − ℓ𝐵)

ℎ𝐵 − ℓ𝐵

⌋
(1)

for 𝑖 ∈ [1, 192]. The compressed representation stores 192 8-bit inte-

gers 𝐵 [𝑖] and two 32-bit floating point values ℎ𝐵 and ℓ𝐵 . Matching

of two compressed representations is performed by decompress-

ing the representations and computing the distance on floats. The

compression has a minimal impact on the matching accuracy [17].

2.5 Vector Normalization in Adversarial
Settings

Normalization of DeepPrint biometric representations is assumed

to be performed as part of feature extraction after biometric sam-

pling. Its presence has a direct impact on how the threshold 𝑡 that

determines a match of two biometric representations is chosen:

scaling normalization will result in scaling the threshold 𝑡 as well.

2
For performance reasons, we can instead check the square of the norm against 1.

This is of interest for us because in the context of this work

a biometric sample comes from a user who can act maliciously

and construct a biometric representation that deviates from the

expectations including normalization. Thus, it becomes important

to enforce proper normalization of a biometric representation a

user submits. If normalization is not enforced, a malicious user

can succeed with authentication without a matching biometric by

manipulating vector normalization. As a specific example, consider

that squared Euclidean distance is used for distance computation

and biometric vectors 𝐵 are assumed to be unit-length normal-

ized (i.e., ∥𝐵∥ = ∥𝐵∥2 = 1). For two vectors 𝐵 and 𝐵, the squared

Euclidean distance is ∥𝐵 − 𝐵∥2. By the triangle inequality, we have

∥𝐵 − 𝐵∥2 ≤ (∥𝐵∥ + ∥𝐵∥)2 = ∥𝐵∥2 + 2∥𝐵∥∥𝐵∥ + ∥𝐵∥2

Now if the distance between vectors 𝐵 and 𝐵 is compared to a

predetermined threshold 𝑡 and the client is at liberty to normalize

both 𝐵 and 𝐵 to any value 𝑁 they wish, then choosing 𝑁 < 1

2

√
𝑡 for

both 𝐵 and 𝐵 will result in successful authentication independent

of the actual vectors (i.e., in such cases, ∥𝐵 − 𝐵∥2 < 𝑡 is always

true). Even when the adversary tampers with (normalization of)

one of the vectors, it is still possible to deviate from the intended

authentication rules. For this reason, we enforce proper length

normalization of all biometrics and include measures to verify that

client submitted biometrics are of the correct form. While there

may be input formats and distance metrics which prevent abuse

when only the enrollment biometric is properly normalized, we

conservatively enforce proper normalization at both enrollment

and authentication time.

3 SOLUTIONS BASED ON GARBLED CIRCUIT
EVALUATION

Recall that we consider two threat models: (i) semi-honest servers 𝑆1
and 𝑆2 and malicious client and𝐶 (ii) semi-honest 𝑆1 and malicious

and colluding 𝑆2 and 𝐶 . We label the first model as SH and the

second asMAL. We start with our solution secure in the first model

and consequently strengthen it to maintain security in the second,

stronger model.

In our solution, the client’s involvement is minimal and its task

primarily consists of splitting its biometric into two XOR shares and

communicating the respective shares to the servers 𝑆1 and 𝑆2. This

will take place both at registration and authentication. At registra-

tion time, the servers perform the normalization check on the user’s

private biometric using OTB and GC. In this computation, 𝑆1 acts

as the garbler and 𝑆2 as the evaluator. If the normalization check

succeeds, the servers accept and store the biometric. The authen-

tication phase proceeds similarly, where in addition to checking

whether the submitted biometric meets the normalization criteria,

the servers also compute the distance between the registered and

newly received biometrics and determine if the distance is within

the desired threshold.

When 𝑆2 can be malicious (the second, stronger model), addi-

tional information is stored at registration time. In addition to

storing shares of user biometric 𝐵, the servers obtain and check

a one-way function of 𝐵 that allows the servers to verify correct

share reconstruction within the garbled circuit without obtaining

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

Functionality F
reg-sh

(1) F
reg-sh receives input 𝐵 ∈ {0, 1}𝑚 from 𝐶 .

(2) F
reg-sh samples 𝑟

𝑅← {0, 1}𝑚 and defines 𝐵1 = 𝑟 and 𝐵2 =

𝑟 ⊕ 𝐵.
(3) F

reg-sh computes 𝑏 = (∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1).
(4) F

reg-sh outputs 𝑏 to 𝑆1.

(5) If 𝑏 = 1, then F
reg-sh outputs 𝐵1 to 𝑆1, 𝐵2 to 𝑆2 and accept

to 𝐶 and 𝑆2.

(6) Otherwise, F
reg-sh outputs ⊥ to 𝑆1 and 𝑆2 and reject to 𝐶

and 𝑆2.

Figure 1: Ideal registration functionality with semi-honest
servers.

Functionality F
auth-sh

(1) F
auth-sh receives 𝐵1 ∈ {0, 1}𝑚 from 𝑆1, 𝐵2 ∈ {0, 1}𝑚 from

𝑆2, and 𝐵 ∈ {0, 1}𝑚 from 𝐶 .

(2) F
auth-sh computes (𝑏1, 𝑏2) = (dist(𝐵1 ⊕ 𝐵2, 𝐵) ?∼ 𝑡 ,∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1).
(3) F

auth-sh outputs (𝑏1, 𝑏2) to 𝑆1.
(4) If (𝑏1, 𝑏2) = (1, 1), then Fauth-sh outputs accept to𝐶 , other-

wise F
auth-sh outputs reject to 𝐶 .

(5) F
auth-sh sends terminate to 𝑆2.

Figure 2: Ideal authentication functionality with semi-honest
servers.

any information about 𝐵. That additional information is used dur-

ing the authentication phase to ensure that 𝑆2 did not tamper with

its values, and we additionally employ stronger tools such as OT

resilient to malicious behavior.

In the rest of the paper, we assume a fixed-length biometric

representation of𝑚 bits (representing𝑤 elements of 𝐵). Notation

𝑥
𝑅← 𝑋 means that variable 𝑥 is sampled uniformly at random

from the set 𝑋 . When working with GCs, we let 𝑛 denote the

total number of wires, where the wires with the lowest indices

correspond to the inputs and the wires with the highest indices

correspond to the output. The parties hold security parameter 𝜅 and

agree on the realizations of the building blocks. All protocols assume

the existence of secure channels between each pair of parties for

sending sensitive information such as shares and keys.

3.1 Malicious 𝐶, semi-honest 𝑆1 and 𝑆2

We start the description of our first solution with the expected

functionalities for registration and authentication, which are listed

in Figures 1 and 2, respectively.

At registration time, the client (which may be corrupt) supplies

its biometric 𝐵, from which it generates two XOR shares 𝐵1 and

𝐵2. The ideal functionality performs the normalization check for

𝐵, the output of which is bit 𝑏, which is communicated to 𝑆1. If

the check succeeds, the ideal functionality outputs accept to all

parties and shares 𝐵1 and 𝐵2 to 𝑆1 and 𝑆2, respectively. Otherwise,

Protocol 1 Registration Reg-SH
Input: 𝐶 holds biometric 𝐵.

Output: 𝑆1 receives bit 𝑏 and biometric share 𝐵1; 𝑆2 receives

accept or reject and biometric share 𝐵2; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅.

Protocol steps:

(1) 𝐶 generates𝑚-bit random value 𝑟
𝑅← {0, 1}𝑚 , sets 𝐵1 = 𝑟 ,

computes 𝐵2 = 𝐵1 ⊕ 𝐵, and securely communicates 𝐵1 to

𝑆1 and 𝐵2 to 𝑆2. If the receiving server determines that 𝐵1
or 𝐵2 is not an𝑚-bit string, it signals abort.

(2) 𝑆1 generates labels ℓ
𝑗
𝑖
for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ {0, 1}, computes

garbled gates G𝑓 for the normalization check computation,

and sends G𝑓 to 𝑆2.

(3) 𝑆1 and 𝑆2 engage in𝑚 instances of OTB
2

1
to communicate to

𝑆2 labels ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑖

for 𝑖 ∈ [1,𝑚]: 𝑆1 enters labels ℓ𝐵1 [𝑖]
𝑖

and ℓ
𝐵1 [𝑖]⊕1
𝑖

into OT, 𝑆2 enters bit 𝐵2 [𝑖] and learns label

ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑖

= ℓ
𝐵 [𝑖]
𝑖

.

(4) 𝑆2 evaluates the circuit and sends the computed label of the

output wire ℓ𝑏𝑛 to 𝑆1.

(5) If ℓ𝑏𝑛 = ℓ0𝑛 , 𝑆1 signals rejection to𝐶 and 𝑆2; 𝑆1 and 𝑆2 output

⊥.
(6) Otherwise, 𝑆1 signals acceptance to 𝐶 and 𝑆2; 𝑆1 outputs

𝐵1 and 𝑆2 outputs 𝐵2.

the parties receive reject and 𝑆1 and 𝑆2 receive empty string ⊥ in

place of shares.

During authentication, servers 𝑆1 and 𝑆2 contribute the shares

𝐵1 and 𝐵2 they received during registration, while the client con-

tributes biometric 𝐵. The functionality performs two checks:

(1) normalization check for 𝐵: 𝑏1 = (
∑𝑤
𝑖=1 (𝐵 [𝑖])

2
?

= 1)
(2) comparison of the distance between enrollment and authen-

tication biometrics 𝐵 and 𝐵 to threshold 𝑡 : 𝑏2 = (dist(𝐵1 ⊕
𝐵2, 𝐵) ?∼ 𝑡).

The resulting bits 𝑏1, 𝑏2 are communicated to 𝑆1 who then notifies

the client of the accept (if both checks pass) or reject decision. Note

that we could output a single bit 𝑏1 ∧ 𝑏2 to 𝑆1 to indicate success,

but it may be beneficial to differentiate between rejection based on

the distance and rejection based on the normalization failure. The

former may be the result of authentic user authentication failure,

while the latter indicates malfeasance by the client.

The registration and authentication protocols in this model are

given as Protocol 1, Reg-SH, and Protocol 2, Auth-SH, respectively.
In Protocol 1, client 𝐶 samples a fresh biometric vector 𝐵 for en-

rollment, splits it into XOR shares 𝐵1 and 𝐵2, and sends the shares

𝐵1 and 𝐵2 to 𝑆1 and 𝑆2, respectively. The two servers engage in

GC evaluation to determine whether or not the received biometric

vector 𝐵 is unit-length normalized, with 𝑆1 serving the role of the

garbler and 𝑆2 the role of the evaluator.

Instead of entering 𝐵1 and 𝐵2 as inputs into GC evaluation, the

servers utilize𝑚 instances of OTB
2

1
to enter 𝐵1 ⊕ 𝐵2 directly using

the first 𝑚 wires. The boolean operation of OTB allows for the

computation of 𝐵1 [𝑖] ⊕ 𝐵2 [𝑖] outside the GC and is realized as

follows. With regular OT, 𝑆1 would supply labels ℓ
0

𝑖
and ℓ1

𝑖
, while 𝑆2

Marina Blanton and Dennis Murphy

Protocol 2 Authentication Auth-SH

Input: 𝐶 holds biometric 𝐵, 𝑆1 holds biometric share 𝐵1, 𝑆2 holds

biometric share 𝐵2.

Output: 𝑆1 receives bits 𝑏1 and 𝑏2; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅 and

threshold 𝑡 .

Protocol steps:

(1) 𝐶 generates𝑚-bit random value 𝐵2
𝑅← {0, 1}𝑚 , sets 𝐵1 =

𝐵2 ⊕𝐵, and sends 𝐵2 to 𝑆2 and 𝐵1 to 𝑆1. If the received 𝐵1 or
𝐵2 is not an𝑚-bit string, the corresponding server signals

abort.

(2) 𝑆1 generates labels ℓ
𝑗
𝑖
for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ {0, 1}, computes

garbled gates G𝑓 for the over-the-threshold distance com-

putation and normalization check, and sends G𝑓 to 𝑆2.

(3) 𝑆1 and 𝑆2 engage in 2𝑚 instances of OTB
2

1
to communicate

to 𝑆2 labels ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑖

and ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑚+𝑖 for 𝑖 ∈ [1,𝑚]:

(a) 𝑆1 enters labels ℓ
𝐵1 [𝑖]
𝑖

and ℓ
𝐵1 [𝑖]⊕1
𝑖

into OT, 𝑆2 enters

bit 𝐵2 [𝑖] and learns label ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑖

= ℓ
𝐵 [𝑖]
𝑖

.

(b) 𝑆1 enters labels ℓ
𝐵1 [𝑖]
𝑚+𝑖 and ℓ

𝐵1 [𝑖]⊕1
𝑚+𝑖 into OT, 𝑆2 enters

bit 𝐵2 [𝑖] and learns label ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑚+𝑖 = ℓ

𝐵 [𝑖]
𝑚+𝑖 .

(4) 𝑆2 evaluates the circuit and sends the computed labels of

the output wires ℓ
𝑏2
𝑛−1 and ℓ

𝑏1
𝑛 to 𝑆1.

(5) If ℓ
𝑏2
𝑛−1 = ℓ1

𝑛−1 and ℓ
𝑏1
𝑛 = ℓ1𝑛 , 𝑆1 sends accept to 𝐶 and

terminate to 𝑆2.
(6) Otherwise, 𝑆1 sends reject to 𝐶 and terminate to 𝑆2.

would supply 𝐵2 [𝑖] and receive ℓ
𝐵2 [𝑖]
𝑖

. In our protocol, 𝑆1 instead

supplies labels ℓ
𝐵1 [𝑖]
𝑖

and ℓ
𝐵1 [𝑖]⊕1
𝑖

. As a result, when 𝑆1’s share

𝐵1 [𝑖] = 0, the labels are supplied as usual. However, when 𝐵1 [𝑖] = 1,

the supplied labels are swapped relative to usual OT operation. The

outcome is that the receiver obtains labels representing the XOR of

share bits 𝐵1 [𝑖] and 𝐵2 [𝑖], or 𝐵 [𝑖]. We can use an OT extension in

the implementation.

After circuit evaluation, 𝑆2 obtains the output label ℓ
𝑏
𝑛 that repre-

sents the outcome of the normalization check and indicates whether

registration was successful. 𝑆1 interprets the result and communi-

cates the decision to the other parties.

Protocol 2 proceeds similar to Protocol 1. This time, the parties

use 2𝑚 instances of OTB to communicate GC labels corresponding

to inputs 𝐵 = 𝐵1 ⊕ 𝐵2 and 𝐵 = 𝐵1 ⊕ 𝐵2 to 𝑆2. The output wires

with indices 𝑛 − 1 and 𝑛 correspond to the decision bits 𝑏2 and 𝑏1,

respectively. If both checks succeed, the client obtain the accept

decision and otherwise, it learns that the protocol did not succeed.

Our first security result is as follows:

Theorem 1. The sequence of Protocols 1 and 2 executed by par-
ticipants 𝑆1, 𝑆2,𝐶auth is secure in the presence of semi-honest 𝑆1 and
𝑆2 and malicious 𝐶auth according to Definition 2, given supplemental
functionalities with security guarantees as discussed in Section 2.3.

Theorem 2. The sequence of Protocols 1 and 2, where Protocol 1
is executed by participants 𝑆1, 𝑆2,𝐶auth and Protocol 2 is executed by
participants 𝑆1, 𝑆2,𝐶imp, is secure in the presence of semi-honest 𝑆1
and 𝑆2 and malicious 𝐶auth or 𝐶imp according to Definition 2, given

Functionality F
reg-mal

(1) F
reg-mal

receives input 𝐵 ∈ {0, 1}𝑚 , 𝑐 , and 𝑣 from 𝐶 .

(2) F
reg-mal

samples 𝑟
𝑅← {0, 1}𝑚 and defines 𝐵1 = 𝑟 and 𝐵2 =

𝑟 ⊕ 𝐵.
(3) F

reg-mal
computes (𝑏1, 𝑏2) = (

∑𝑚
𝑖=1 𝐵 [𝑖]2

?

= 1, com(𝐵, 𝑣) ?

=

𝑐).
(4) F

auth−mal
outputs (𝑏1, 𝑏2) and (𝐵1, 𝑐) to 𝑆1 and (𝐵2, 𝑣) to

𝑆2.

(5) In addition, if (𝑏1, 𝑏2) = (1, 1), Freg-mal
outputs accept to𝐶

and 𝑆2; otherwise, it outputs reject to 𝐶 and 𝑆2.

Figure 3: Ideal registration functionality with malicious and
colluding 𝑆2 and 𝐶.

supplemental functionalities with security guarantees as discussed in
Section 2.3.

The proofs can be found in Appendix A.

3.2 Malicious and colluding 𝐶 and 𝑆2,
semi-honest 𝑆1

We now consider a stronger threat model in which the helper server

𝑆2 can act maliciously and collude with clients 𝐶 .

When 𝑆2 is not guaranteed to follow the prescribed behavior,

it can deviate from the prescribed computation during a protocol

execution, but also modify the biometric share 𝐵2 that it receives as

part of registration when entering it in the authentication protocol.

For that reason, we need to be able to detect this kind of misbe-

havior in addition to detecting client’s misbehavior when it does

not use a normalized biometric. Deviations from the prescribed

behavior during the protocol execution can be addressed by em-

ploying techniques resilient to malicious behavior, while changes

to 𝐵2 between protocol executions require a new solution.

Our solution to this problem is to modify the registration phase

to enable 𝑆1 to learn a function of 𝑆2’s share 𝐵2, which is later used

during the authentication to verify that the share that 𝑆2 inputs

matches 𝑆1’s verification token. We use a commitment scheme for

this purpose: the client is instructed to compute a commitment 𝑐

to its enrollment biometric 𝐵 and the commitment 𝑐 is given to

𝑆1. The binding property of the commitment ensures that it is not

feasible for 𝑆2 (or 𝑆2 in collusion with 𝐶) to later enter a different

biometric 𝐵′ ≠ 𝐵 that matches commitment 𝑐 . The random choices

𝑣 used in producing commitment 𝑐 = com(𝐵, 𝑣) cannot be disclosed
to 𝑆1 because they permit the opening of the commitment (and

thus disclosure of 𝐵) and for that reason, 𝑣 is known only to 𝑆2.

Note that commitments are used an unconventional way in a three-

party setting, but their properties allow us to achieve security in a

multi-phase execution.

The ideal functionality for registration in this stronger security

model is given in Figure 3. In addition to producing shares 𝐵1 and

𝐵2 of enrollment biometric 𝐵, the computation includes two checks:

(1) normalization check for 𝐵: 𝑏1 = (
∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1)
(2) check that commitment 𝑐 matches biometric𝐵:𝑏2 = (com(𝐵,

𝑣) ?

= 𝑐).

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

Functionality F
auth-mal

(1) F
auth-mal

receives 𝐵1 ∈ {0, 1}𝑚 and 𝑐 from 𝑆1, 𝐵2 ∈ {0, 1}𝑚
and 𝑣 from 𝑆2, and 𝐵 ∈ {0, 1}𝑚 from 𝐶 .

(2) F
auth-mal

computes (𝑏1, 𝑏2, 𝑏3) = (dist(𝐵1 ⊕ 𝐵2, 𝐵) ?∼
𝑡,

∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1, com(𝐵1 ⊕ 𝐵2, 𝑣)
?

= 𝑐).
(3) F

auth-mal
outputs (𝑏1, 𝑏2, 𝑏3) to 𝑆1.

(4) If (𝑏1, 𝑏2, 𝑏3) = (1, 1, 1), then Fauth-mal
outputs accept to 𝐶

and terminate to 𝑆2.
(5) Otherwise if 𝑏1 = 0 or 𝑏2 = 0, then F

auth-mal
outputs reject

to 𝐶 and terminate to 𝑆2.
(6) Otherwise F

auth-mal
signals abort.

Figure 4: Ideal authentication functionality with malicious
and colluding 𝑆2 and 𝐶.

If registration is successful, 𝑆1 obtains and stores 𝐵1 and 𝑐 , while

𝑆2 obtains and stores 𝐵2 and 𝑣 .

At authentication time, the servers contribute their shares of

𝐵 and 𝐵 as before, but also the remaining values (𝑐 and 𝑣) that

they received at registration time. This time the authentication

functionality computes three checks:

(1) comparison of the distance between enrollment and authen-

tication biometrics 𝐵 and 𝐵 to threshold 𝑡 : 𝑏2 = (dist(𝐵1 ⊕
𝐵2, 𝐵) ?∼ 𝑡)

(2) normalization check for 𝐵: 𝑏1 = (
∑𝑚
𝑖=1 (𝐵 [𝑖])2

?

= 1)
(3) check that commitment 𝑐 matches submitted biometric 𝐵:

𝑏3 = (com(𝐵1 ⊕ 𝐵2, 𝑣)
?

= 𝑐).
𝑆1 receives these three bits, which allows it to determine the reason

for failure (and address it outside the protocol). If at least one bit is

0, authentication fails. Figure 4 specifies the ideal functionality.

As can be seen from the figure, the ideal functionality is written

to differentiate between two authentication failure modes: commu-

nicating a reject decision to the client and sending an abort signal.

The reason is that when the last check fails (𝑏3 = 0), we know

that the failure is due to 𝑆2’s misbehavior and the client receives

a message that the operation did not go through (as opposed to

successfully finished with a negative result). It is also possible for

other checks to fail due to 𝑆2’s misbehavior, but they can also be a

result of the client submitting a biometric which is not normalized

or not within the desired distance from the enrollment biometric.

The registration protocol for this setting is called Reg-MAL and

is given as Protocol 3. It proceeds by the client generating shares

and a commitment, and the servers verifying that they received

consistent values and properly normalized input. Similar to the

normalization check, the commitment check takes place within

the garbled circuit. For concreteness, let |𝑣 | = 𝜅1, |𝑐 | = 𝜅2, and the

inputs being entered into the GC evaluation as 𝐵, 𝑣 , and 𝑐 . Secret-

shared 𝐵 is entered into GC evaluation via OTB as before, while 𝑣 is

entered using conventional OT. We have to resort to a maliciously

secure variant of OT to guarantee correct execution. Recall that

GC evaluation itself is resilient to malicious behavior. At the end

of GC evaluation, 𝑆2 obtains the output labels ℓ
𝑏2
𝑛−1 and ℓ

𝑏1
𝑛 that it

communicates to 𝑆1. Note that 𝑆2 can tamper with them prior to

sending. If the received labels correspond to bits 1, 𝑆1 announces

Protocol 3 Registration Reg-MAL
Input: 𝐶 holds biometric 𝐵.

Output: 𝑆1 receives bits 𝑏1 and 𝑏2, biometric share 𝐵1, and

verification token 𝑐; 𝑆2 receives accept or reject, biometric share

𝐵2, and verification supplement 𝑣 ; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅 and

statistical security parameter 𝜌 .

Protocol steps:

(1) 𝐶 generates𝑚-bit random value 𝑟
𝑅← {0, 1}𝑚 , sets 𝐵1 = 𝑟

and 𝐵2 = 𝐵1 ⊕ 𝐵, and computes 𝑐 = com(𝐵, 𝑣) using freshly
generated randomness 𝑣 .

(2) 𝐶 securely communicates (𝐵1, 𝑐) to 𝑆1 and (𝐵2, 𝑣) to 𝑆2. If
any communicated value is malformed, the corresponding

server signals abort.

(3) 𝑆1 generates labels ℓ
𝑗
𝑖
and garbled gates G𝑓 for the normal-

ization and commitment checks and sends G𝑓 to 𝑆2.

(4) 𝑆1 and 𝑆2 engage in𝑚 instances of maliciously secure OTB

to communicate to 𝑆2 labels ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑖

for 𝑖 ∈ [1,𝑚] as in
prior protocols and𝜅1 instances of conventional maliciously

secure OT to communicate to 𝑆2 labels ℓ
𝑣 [𝑖]
𝑚+𝑖 for 𝑖 ∈ [1, 𝜅1].

𝑆1 also sends labels ℓ
𝑐 [𝑖]
𝑚+𝜅1+𝑖 for 𝑖 ∈ [1, 𝜅2] to 𝑆2.

(5) 𝑆2 evaluates the circuit and communicates the output labels

ℓ
𝑏2
𝑛−1 and ℓ

𝑏1
𝑛 to 𝑆1.

(6) 𝑆1 performs the following:

(a) If ℓ
𝑏2
𝑛−1 = ℓ1

𝑛−1 and ℓ
𝑏1
𝑛 = ℓ1𝑛 , 𝑆1 broadcasts accept. 𝑆1

stores (𝐵1, 𝑐) and 𝑆2 stores (𝐵2, 𝑣).
(b) Otherwise, 𝑆1 sends reject to all parties.

successful completion. If at least one of the labels is invalid, 𝑆1
aborts. Otherwise, it sends a reject signal.

Authentication is termed Auth-MAL and is given as Protocol 4.

The changes to the previous authentication protocol include: (i) the

addition of commitment inputs (𝑐, 𝑣), (ii) the use of OT for entering

𝑣 , (iii) changes to the circuit to perform commitment verification,

(iv) the use of maliciously secure OT, and (v) different handling of

the results of function evaluation by 𝑆1. We assume that the circuit

wires are allocated to the inputs in the following order: 𝐵 (𝑚 bits),

𝐵 (𝑚 bits), 𝑣 (𝜅1 bits), and 𝑐 (𝜅2 bits). As before, the circuit size is

denoted by 𝑛, while the output wires this time are 𝑛 − 2, 𝑛 − 1, 𝑛.
Authentication is successful when all output bits are 1 (i.e., all

three checks pass). Any malformed output labels and the failure of

the commitment check point to 𝑆2’s misbehavior and result in abort,

while failures of the normalization check and a large difference

between 𝐵 and 𝐵 can be due to 𝐶 or 𝑆2 and result in reject.

Theorem 3. The sequence of Protocols 3 and 4 executed by par-
ticipants 𝑆1, 𝑆2,𝐶auth is secure in the presence of semi-honest 𝑆1, and
malicious and colluding 𝑆2 and𝐶auth, according to Definition 2, given
supplemental functionalities with security guarantees as discussed in
Section 2.3.

Theorem 4. The sequence of Protocols 3 and 4, where Protocol 3
is executed by participants 𝑆1, 𝑆2,𝐶auth and Protocol 4 is executed by
participants 𝑆1, 𝑆2,𝐶imp, is secure in the presence of semi-honest 𝑆1,

Marina Blanton and Dennis Murphy

Protocol 4 Authentication Auth-MAL

Input: 𝐶 holds biometric 𝐵, 𝑆1 holds biometric share 𝐵1 and

verification token 𝑐; 𝑆2 holds biometric share 𝐵2 and verification

supplement 𝑣 .

Output: 𝑆1 receives bits 𝑏1, 𝑏2, and 𝑏3; 𝐶 receives accept or reject.

Common Input: Computational security parameter 𝜅, statistical

security parameter 𝜌 , and threshold 𝑡 .

Protocol steps:

(1) 𝐶 generates𝑚-bit random value 𝐵2
𝑅← {0, 1}𝑚 , sets 𝐵1 =

𝐵2 ⊕ 𝐵, and sends 𝐵1 to 𝑆1 and 𝐵2 to 𝑆2. If any received

value is malformed, then the corresponding server signals

abort.

(2) 𝑆1 generates labels ℓ
𝑗
𝑖
, computes garbled gates G𝑓 for the

over-the-threshold distance computation, normalization

check, and commitment verification, and sends G𝑓 to 𝑆2.

(3) 𝑆1 and 𝑆2 engage in 2𝑚 instances of maliciously secure OTB

to communicate to 𝑆2 labels ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑖

and ℓ
𝐵1 [𝑖]⊕𝐵2 [𝑖]
𝑚+𝑖

for 𝑖 ∈ [1,𝑚] and 𝜅1 instances of conventional maliciously

secure OT to communicate to 𝑆2 labels ℓ
𝑣 [𝑖]
2𝑚+𝑖 for 𝑖 ∈ [1, 𝜅1].

𝑆1 also sends labels ℓ
𝑐 [𝑖]
2𝑚+𝜅1+𝑖 for 𝑖 ∈ [1, 𝜅2] to 𝑆2.

(4) 𝑆2 evaluates the circuit and sends the computed output

labels ℓ
𝑏3
𝑛−2, ℓ

𝑏2
𝑛−1, and ℓ

𝑏1
𝑛 to 𝑆1.

(5) 𝑆1 performs the following:

(a) If ℓ
𝑏3
𝑛−2 = ℓ1

𝑛−2, ℓ
𝑏2
𝑛−1 = ℓ1

𝑛−1, and ℓ
𝑏1
𝑛 = ℓ1𝑛 , 𝑆1 sends

accept to 𝐶 and terminate to 𝑆2.
(b) If ℓ

𝑏2
𝑛−1 = ℓ0

𝑛−1 or ℓ
𝑏1
𝑛 = ℓ0𝑛 , 𝑆1 ends reject to 𝐶 and

terminate to 𝑆2.
(c) Otherwise, 𝑆1 signals abort to 𝐶 and 𝑆2.

and malicious and colluding 𝑆2 and (𝐶auth or𝐶imp), according to Def-
inition 2, given supplemental functionalities with security guarantees
as discussed in Section 2.3.

The proofs can be found in Appendix A.

4 IMPLEMENTATION AND EVALUATION
4.1 Working with Compressed DeepPrint

Representation
The use of GCs permits implementing any desired functionality and

we realize DeepPrint’s matching using compressed representation

to lower the cost of the computation. Recall that the main benefit

of compressed DeepPrint representation is to lower its storage cost,

as the value is uncompressed during the matching. However, in

the context of this work, shorter bitlength representation and the

use of integer instead of floating-point values can aid efficiency of

the computation itself. Thus, we would like to compute as much as

possible using the compressed form in a manner which is not lossy

with respect to this compression heuristic.

To this end, suppose that we are comparing two DeepPrint

representations 𝑋 and 𝑌 consisting of 𝑤 (=192) elements. Recall

that the compressed representation of 𝑋 uses ℎ𝑋 , ℓ𝑋 together

with 8-bit integers 𝑋 [𝑖] defined in equation 1. We also define

Δ𝑋 = (ℎ𝑋 − ℓ𝑋)/255 > 0, represent a compressed biometric as

𝑋
def
= (Δ𝑋 , ℓ𝑋 , {𝑋 [𝑖]}𝑖), and define its decompressed 32-bit (sin-

gle precision) floating point biometric as 𝑋 = {𝑋 [𝑖]}𝑖 , where
𝑋 [𝑖] def= 𝑋 [𝑖]Δ𝑋 + ℓ𝑋 .

When using cosine similarity comparing normalized vectors

which have been compressed and subsequently decompressed, as

is done in [17], it suffices to compare the dot product 𝑋 · 𝑌 against

a threshold value. With this in mind, we have

𝑋 · 𝑌 =

𝑤∑︁
𝑖=1

𝑋 [𝑖]𝑌 [𝑖] =
𝑤∑︁
𝑖=1

(𝑋 [𝑖]Δ𝑋 + ℓ𝑋) (𝑋 [𝑖]Δ𝑌 + ℓ𝑌)

=

𝑚∑︁
𝑖=1

(𝑋 [𝑖]𝑌 [𝑖]Δ𝑋Δ𝑌 + ℓ𝑋𝑌 [𝑖]Δ𝑌 + ℓ𝑌𝑋 [𝑖]Δ𝑋 + ℓ𝑋 ℓ𝑌)

=

(
Δ𝑋Δ𝑌

𝑤∑︁
𝑖=1

𝑋 [𝑖]𝑌 [𝑖]
)
+

(
ℓ𝑋Δ𝑌

𝑤∑︁
𝑖=1

𝑌 [𝑖]
)

+
(
ℓ𝑌Δ𝑋

𝑤∑︁
𝑖=1

𝑋 [𝑖]
)
+𝑤ℓ𝑋 ℓ𝑌

In the final line of this equation, there are𝑤 8-bit multiplications

outputting 16-bit values, which are much cheaper than floating-

point or even 32-bit integer operations. The summations then re-

quire 8 + ⌈log
2
(𝑤)⌉ bits to represent the

∑𝑤
𝑖=1 𝑋 [𝑖] and

∑𝑤
𝑖=1 𝑌 [𝑖]

terms, and 16 + ⌈log
2
(𝑤)⌉ bits for the ∑𝑤

𝑖=1 𝑋 [𝑖]𝑌 [𝑖] term. Once

the computation is performed on short values, we convert the

sums to floating-point representation and compute the remaining

operations using regular floating-point arithmetic. This adds 3 con-

versions, 8 single-precision floating-point multiplications and 3

32-bit floating-point additions.

Conversion to a floating-point value involves locating the index

of the most significant non-zero bit, shifting the mantissa by this

value, and adjusting the exponent by that value as well. Other

operations such as floating-point addition involve shifting by an

oblivious value as well.

Euclidean distance can be computed over compressed values as

𝑤∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 =
𝑤∑︁
𝑖=1

(𝑋 [𝑖]Δ𝑋 − 𝑌 [𝑖]Δ𝑌 + ℓ𝑋 − ℓ𝑌)2

=

(
Δ2

𝑋

𝑤∑︁
𝑖=1

𝑋 [𝑖]2
)
+

(
Δ2

𝑌

𝑤∑︁
𝑖=1

𝑌 [𝑖]2
)

−
(
2Δ𝑋Δ𝑌

𝑤∑︁
𝑖=1

𝑋 [𝑖]𝑌 [𝑖]
)
+

(
2(ℓ𝑋 − ℓ𝑌)Δ𝑋

𝑤∑︁
𝑖=1

𝑋 [𝑖]
)

−
(
2(ℓ𝑋 − ℓ𝑌)Δ𝑌

𝑤∑︁
𝑖=1

𝑌 [𝑖]
)
+𝑤 (ℓ𝑋 − ℓ𝑌)2

which shows an increase in the number of short integer, floating-

point, and integer to floating-point conversion operations.

4.2 Circuit Optimizations
We employ a number of optimizations within our circuits in an

effort to make our implementation as efficient as possible.

The operations described above need to be implemented using

garbled circuits. Our GC implementation was built to maximize

efficiency starting from the lowest levels. For example, the initial

codebase for JustGarble [9] does not have provisions for efficiently

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

incorporating constant publicly known values. We build this into

the code systematically, giving a special designation to any wire

carrying a public constant. This allows us to employ the logic used

in OTB to eliminate unnecessary gate execution. Specifically, if at

least one input to any AND, OR, or XOR gate is a public constant,

then in almost all cases no gate execution is needed. For example,

for an AND gate:

• if one input is 0, then 0 is passed though;

• If one input is 1, then the other value is passed though;

• If the inputs are the same, meaning that they come from

the same wire or have the same constant value, then the

input is passed though.

Furthermore, if both inputs into a gate are constant, then the output

will also be constant. And if constant inputs on average have a sim-

ilar number of 0s and 1s, nearly half of the outputs will on average

be constant. This optimization can, for example, cut approximately

in half the number of gates needed to evaluate multiplication when

compared to the built-in multiplication in JustGarble (where inter-

mediate values are represented using 2𝑛 bits, while after shifting

an 𝑛-bit argument, half of the bits are 0).

We layer higher-level circuit optimizations on top of this foun-

dation. In order to discuss this further, we define additional nota-

tion. We use double-square brackets to denote private variables

represented as bit vectors of some length; e.g., J𝑎K. We refer to a

subset of such vectors using array notation with 0-indexing, so

that J𝑎K[𝑗 − 1..0] refers to the 𝑗 least significant bits of J𝑎K. Un-
less otherwise noted, 𝑛 is refers to the bitlength of the primary

(integer) input into a function. We also denote bit strings using no-

tation such as 0
𝑖
1
𝑗
, which in this example represents 𝑖 0s followed

by 𝑗 1s, where we assume the most significant bit is on the left.

We may combine these notations with concatenation, so that, e.g.,

0
𝑖J𝑎K[𝑛 − 1..𝑛 − 𝑘] | |1𝑗 refers to 𝑖 0s, followed by the 𝑘 most signifi-

cant bits of J𝑎K, followed by 𝑗 1s, reading from most significant bit

to least.

Most of the cases in which we prepend or append a vector with 0s

is equivalent to shifting an private bit vector by a publicly known

value, which by itself does not incur any gates. This stands in

contrast to the Obliv_Shift function we will discuss later, which

shifts a private value by a private (oblivious) amount.

One circuit-level optimization we discuss is an integer squaring

routine, which we also extend to squaring floating-point values.

At a high level, it operates by splitting an 𝑛-bit input 𝑎 into two

parts of equal length 𝑎hi and 𝑎lo , where 𝑎 = 2
𝑛/2 · 𝑎hi + 𝑎lo . Then

it recursively computes the squares of each of these halves, along

with their product (the latter uses standard textbook multiplication).

The algorithm recurses until the input length is no greater than

the stopping bitlength parameter, denoted by stop. Note that we
generally find a stop = 4 to be optimal in most situations and use

it for all computation in this work. The construction is given as

Algorithm 1.

The algorithm runs in 𝑂 (𝑛2) time and thus is not asymptoti-

cally better than textbook multiplication that performs a series

of shifts and additions. It does, however, benefit from more fa-

vorable constants and tends to half as many gates as that of text-

book multiplication. Let an "operation" to be one AND gate plus

a full 1-bit adder (which is realized in JustGarble with 1 AND and

Algorithm 1 JresultK = Square(J𝑎K, 𝑛, stop)
1: if 𝑛 ≤ stop then
2: return J𝑎K · J𝑎K
3: end if
4: J𝑎hiK = J𝑎K[𝑛 − 1..𝑛/2]
5: J𝑎loK = J𝑎K[𝑛/2 − 1..0]
6: 𝑛 ≫= 1

7: J𝑎2hiK = Square(J𝑎hiK, 𝑛, stop)
8: J𝑎2loK = Square(J𝑎loK, 𝑛, stop)
9: J𝑎midK = J𝑎hiK · J𝑎loK
10: J𝑎2hiK = J𝑎2hiK| |0

2·𝑛

11: J𝑎midK = 0
𝑛−1 | |J𝑎midK| |0𝑛+1

12: J𝑎2loK = 0
2·𝑛 | |J𝑎2loK

13: JresultK = J𝑎2hiK + J𝑎midK + J𝑎2loK
14: return JresultK

4 XOR gates) and 𝑗 be the depth of recursion in the Square al-

gorithm. Then line 9 in Algorithm 1 incurs

∑𝑗

𝑖=1
2
𝑖−1 (2−𝑖𝑛)2 =

(2−1 − 2− 𝑗−1)𝑛2 operations over all recursive instances, line 2 in-
curs 2

𝑗 (𝑛2− 𝑗)2 = 2
− 𝑗𝑛2 operations over all instances, and line 13

incurs

∑𝑗

𝑖=1
3 · 2𝑖−1 (2−𝑖𝑛) = 3𝑛𝑗/2 operations over all instances. In

total, we have (2−1 + 2− 𝑗−1)𝑛2 + (3 · 2−1 · 𝑗)𝑛 operations, which

asymptotically tends towards 𝑛2/2 for large 𝑛, whereas textbook
multiplication performs exactly 𝑛2 operations. Also note that the

summation on line 13 benefits from the systematic handling of

addition with 0, which implies the factor of 3 instead of 4 in the

above analysis. This algorithm is not to be confused with the recur-

sive Karatsuba multiplication [24] of lower complexity 𝑂 (𝑛log2 3).
We find that Karatsuba multiplication becomes more efficient for

inputs above about 32 bits, which is larger than the integers we are

multiplying. Thus, Karatsuba multiplication was not used in our

implementation.

In our floating-point squaring routine, squaring occurs on 24-

bit mantissas. The recursive squaring algorithm alone reduces the

number of gates from 3456 in standard multiplication to 2592 gates

(one third of which are AND gates). However, both our squaring

routine and textbook multiplication perform even better. This is

because some computation that operates on two identical values

(e.g., that on line 2 of Algorithm 1) can benefit from the "inputs are

the same" gate-level optimization that eliminates some gates. This

permits conventional multiplication of 24-bit integers using 3266

gates, while other squaring algorithm uses 1931 gates.

We employ a number of other optimizations that allowed us

to generate very efficient circuits, particularly for floating-point

operations. That is, we are aware of only one other work [32]

that built garbled circuits for floating-point operations, and our

circuits compare very favorably. Our single-precision floating-point

addition uses 2030 gates vs. 7052 gates in [32]; our multiplication

has 3690 gates vs. 7701 gates in [32], and comparison is efficient at

300 gates (not tested in [32]). We also employ optimized circuits

for summation of multiple values, over both integer and floating-

point values. We note that there can be differences in the treatment

of exceptions (e.g., we treat infinity as non-a-number NaN which

Marina Blanton and Dennis Murphy

Algorithm 2 ⟨JidxK, J𝑛𝑧K⟩ = MSNZB(J𝑎K, 𝑛)
1: J𝑝K = 0| | Prefix_Or(J𝑎K)
2: JmaskK = (0| |J𝑝K) ⊕ (J𝑝K| |0)
3: JmaskK = JmaskK[𝑛..1]
4: JnzK = J𝑝K[0]
5: JidxK = 0

6: for 𝑖 = 0 to 𝑛 − 1 do
7: JtmpidxK = 𝑖 ∧ JmaskK[𝑖]
8: JidxK ⊕ = JtmpidxK
9: end for
10: return ⟨JidxK, JnzK⟩

improves performance), but we expect that even with full IEEE 754

standard treatment, our circuits will compare favorably.

We next describe two optimized circuits which are needed to

convert a private integer to a floating point value. The first is de-

termining the most significant non-zero bit (MSNZB) of an integer.

This is used for a number of operations including comparisons

(both integer and floating-point) and is realized in a two-stage Al-

gorithm 2. The first stage produces a mask, in which for any given

input, the output stores a 1 in the MSNZB position (if any) and 0

everywhere else. The second stage converts the mask into a base

2 representation of the MSNZB position. This is used, e.g., during

conversion of an integer to a floating-point value, since the expo-

nent depends on the index of the MSNZB. The algorithm produces

two values: the index of the MSNZB idx and a flag nz indicating
whether there were no non-zero bits.

The prefix OR operation on line 1 of Algorithm 2 computes an

array of bits, where the 𝑖th bit is set to the OR of bits 𝑎[𝑖] through
𝑎[𝑛 − 1]. This means that the most significant bits of the output

will be 0 until we come across the first non-zero bit, after which all

other bits will be set to 1. We obtain that after calling line 1, 𝑝 will

be of the form 0
𝑛+1− 𝑗

1
𝑗
, where the MSNZB is at index 𝑗 . Lines 2–3

convert the mask value to be of the form where only the bit in the

MSNZB position is set, i.e., it will be of the form 0
𝑛− 𝑗

10
𝑗−1

(this

computation coincides with the inverse prefix XOR computation).

Prepending and appending extra 0 bits on lines 1–3 is used for

simplifying the algorithm.

This algorithm can also be used to demonstrate the impact of

efficiently incorporating constant values, which results in many

operations in the loop on lines 6–9 to not incur gates. That is,

indices are constant, which means that for any set bit of index 𝑖 the

other value is passed through to the corresponding bit in tmpidx.
And for any unset bit in 𝑖 , a constant zero value is fed into the

corresponding bit in tmpidx. The latter case also results in passing

the value through during the computation on line 8.

Another interesting functionality is Algorithm 3 that shifts a

private integer by a private (oblivious) amount. This algorithm

works by iterating through each bit of the binary representation of

the amount to shift and branching into two cases: one which shifts

the input by the amount represented by that bit position and one

which doesn’t. Then one of those options is selected based on the

actual value of the bit on line 10. As always, conditional selection

can be written as Ja_shK = (Ja_shK⊕ JprevK) ∧Jobl_shK[𝑖] ⊕ JprevK,
which lowers the number of AND gates by a factor of 2.

Algorithm 3 Ja_shK = Obliv_Shift(J𝑎K, 𝑛, dir,maxsh, Jobl_shK)
1: Ja_shK = J𝑎K
2: cur_sh = 1

3: for 𝑖 = 0 to ⌊log
2
(maxsh)⌋ do

4: JprevK = Ja_shK
5: if dir = left then
6: Ja_shK = JprevK[(𝑛 − 1 − cur_sh) ..0] | |0cur_sh
7: else
8: Ja_shK = 0

cur_sh | |J𝑝𝑟𝑒𝑣K[(𝑛 − 1) ..cur_sh]
9: end if
10: Ja_shK = (Jobl_shK[𝑖] ∧ Ja_shK) ⊕ (¬J𝑜𝑏𝑙_𝑠ℎK[𝑖] ∧ JprevK)
11: cur_sh ∗ = 2

12: end for
13: return Ja_shK

Algorithm 4 ⟨JmantK, JexpK, JsignK⟩ = Integer_to_Float(J𝑎K, 𝑛)
1: ⟨JnzK, JidxK⟩ = MSNZB(JaK, 𝑛)
2: JexpK = JidxK + 127
3: Jobl_shK = 𝑛 + 1 − JidxK
4: if 𝑛 ≥ 23 then
5: Ja_shK = Obliv_Shift(JaK, 𝑛, left, 𝑛, Jobl_shK)
6: JmantK = J𝑎_𝑠ℎK[𝑛 − 1..𝑛 − 23]
7: else
8: Ja_shK = JaK[𝑛 − 1..0] | |023−𝑛
9: JmantK = Obliv_Shift(Ja_shK, 𝑛, left, 𝑛, Jobl_shK)
10: end if
11: JexpK ∧ = JnzK
12: return ⟨JmantK, JexpK, 0⟩

The above two algorithms are useful for conversion from integer

to floating-point representation, which we provide as Algorithm 4.

We compute the position of the MSNZB of the input and use the

bits starting from that position to form the significand, and set the

exponent also based on the position of the MSNZB. In IEEE 754

specification, the exponent is in the range [−126, 127] represented
as unsigned, and thus we adjust it by adding 127. Formsing the sig-

nificand differs based on whether the input’s bitlength 𝑛 is smaller

than the single-precision signficand’s bitlength (23) or not. That is,

if 𝑛 < 23, the input is shifted left and right-padded with 0s to form

a 23-bit vector prior to oblivious shift to set the MSNZB in the MSB

position. And if 𝑛 ≥ 23, the oblivious shift occurs first, followed by

truncation of the 𝑛 − 23 least significant bits. Our experiments in

Section 4.3 use 𝑛 = 8. This procedure is specific to unsigned integer

inputs and thus the sign in the result is always 0.

4.3 Experimental Evaluation
Our implementation uses the GC instantiation from [9] with the

free-XOR and row reduction optimizations, along with those dis-

cussed above. The OT extension is from [5] for the protocols with

semi-honest 𝑆2, and from [6] for the protocols with malicious 𝑆2.

Both of them build on an optimized version of the semi-honest pro-

tocol from [22] to generate the base OTs. Commitments are formed

using SHA-256 with 𝜅2 = 256 and |𝑣 | = 𝜅1 = 128 random bits in-

cluded as entropy supplement.𝑚 = 1600 and reported performance

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

Protocol

Dist. Circuit gates

metric Comm. Local

Auth-SH
CS 63,017 117,327

ED 82,862 152,834

Auth-MAL
CS 176,669 489,109

ED 196,514 524,616

Table 1: Circuit complexity, in gates and bytes

Protocol

Dist. LAN online time Online

metric GCE OT Other Total comm.

Auth-SH
CS 12.2 12.7 2.20 27.1

216KB

ED 15.4 12.8 2.23 30.5

Auth-MAL
CS 32.2 17.6 3.05 52.9

313KB

ED 35.1 17.7 3.15 56.0

Table 2: Performance of LAN authentication protocol, online
phase; runtime is in ms.

is averaged over 100 runs. The implementation is available as open

source from https://github.com/applied-crypto-lab/biom-auth.

The the following machines were used to run the experiments:

• An AMD Ryzen5-3600 6-core processor machine operating

at 3.6 GHz, running openSUSE Leap 15.3 on the GNU/Linux

kernel 5.3.18-150300.59.101-default.

• Identical computers with Intel Xeon E5-2620v4 8-core pro-

cessors operating at 2.1GHz, running Ubuntu 20.04.3 LTS

on the GNU/Linux kernel 5.4.0-131-generic x86_64.

All communication used TCP sockets with the following setup:

• Each party on a different Xeon machine on a LAN.

• The two servers on Xeon machines on a LAN, with the

client on the Ryzen machine connecting via VPN from the

internet.

Network latency and throughput were measured by transmitting

buffers of size 4
𝑖
bytes for 𝑖 ∈ [0, 12] bidirectionally. Round trip time

(RTT) is taken to be the average of transmitting ≤ 256 bytes (repre-

senting one packet). Throughput is taken to be ((2 · 8 · bufsize) −
latency)/time(sec) as a buffer of size bufsize is sent twice in this

round trip test. We obtain RTT of 0.345 ms and throughput of 946

Mb/sec for Xeon LAN and RTT of 45.9 ms and throughput of 20.4

Mb/sec for Ryzen to Xeon over internet. We use encrypted channels

for sensitive information such as biometric shares, GC labels, and

protocol outcomes (while garbled tables and OTB communication

are not encrypted).

Tables 1, 2, 3, and 4 report performance of authentication proto-

cols. The online time and communication correspond to all work

with the exception of garbling and transmitting the garbled table

and labels from 𝑆1 to 𝑆2, which can be precomputed and constitutes

offline work. Note that online communication is independent of

the distance metric, while offline runtime is independent of the

network setup (as the connection between the servers does not

change). The GC size is sub-divided into gates that involve com-

munication (AND and OR) and those that do not (XOR and NOT).

The category “Other” of online time includes communication time,

Protocol

Dist. Internet online time Online

metric GCE OT Other Total comm.

Auth-SH
CS 13.4 13.3 48.9 75.6

216KB

ED 16.9 13.5 49.1 79.5

Auth-MAL
CS 33.0 18.0 49.9 101

313KB

ED 36.3 17.9 49.8 104

Table 3: Performance of Internet authentication protocol,
online phase; runtime is in ms.

Protocol

Dist. Offline time Offline

metric Garble Send Total comm.

Auth-SH
CS 24.9 60.2 92.7 8.26 MB

ED 32.6 82.8 125 10.8 MB

Auth-MAL
CS 76.2 259 364 31.8 MB

ED 83.8 282 397 34.3 MB

Table 4: Performance of authentication protocols, offline
phase; runtime is in ms.

other local computation time, and down time. The (online) commu-

nication time is relatively insignificant for LAN tests but dominates

the mixed internet test times.

The client computation time is not included, but it is minimal,

showing that the solution is well suited for constrained devices.

In particular, client’s computation took on overage 0.17 ms with

additional 0.05 ms for data transmission to the socket, after which

the client awaits a response. In addition, the client only transmits

400B (and receives 1B), while the remaining communication is

between the servers.

One can see from the tables that cosine similarity is slightly more

efficient than squared Euclidean distance computation. While some

of the optimizations such as the squaring algorithm and reusing the

computed sum of compressed input squares in the normalization

check can be used only by the Euclidean distance computation, this

is not enough to offset the difference.

We can can compare performance of our solutions with that of

other constructions that treat biometric-based authentication and

consider at least the client to be malicious [2, 16, 20, 21, 34]. All

of them require the clients to store keys on their devices and all

with the exception of [20] consider only semi-honest servers (and

thus are closer to our first threat model). Among these, [34] has

performance on the order of seconds or larger and is not suitable

for real-time authentication. [21] takes about a second for a com-

putation that leaks the distance to the server in the semi-honest

server model. [16] does not provide sufficient information to de-

termine the time, but it is lower-bounded by several hundred ms.

With [2], authentication takes 71ms on 128-byte vectors and 102ms

on 256-byte vectors without taking communication into account,

both of which are higher than our 192-element times are. This pro-

tocol does not leak the distance to the server, but does not achieve

security (the client notifies the server of authentication outcome).

Lastly, in [20] authentication (client and server work) takes over

150ms with much shorter 64-byte templates and over 175ms with

128-byte templates without taking network communication into

https://github.com/applied-crypto-lab/biom-auth

Marina Blanton and Dennis Murphy

account and disclosing the distance to the server. Once again, this

is slower than performance of all of our protocols.

5 CONCLUSIONS
In this work, we treat the topic of privacy-preserving biometric-

based authentication that permits users to authenticate with bio-

metric data in a such a way that users do not have to maintain

any additional secrets and the authentication server does not learn

information about user biometrics. We build solutions using a num-

ber of cryptographic techniques such as garbled circuit evaluation,

a new variant of oblivious transfer, and a commitment scheme that

rely on a helper server. An interesting aspect of our work is that the

standard security definitions adopted in secure multi-party com-

putation literature were not sufficient to demonstrate security in

our application and we extend them to accommodate computation

consisting of multiple phases where the set of participants might

change from one phase to another. We consider two different se-

curity models, both of which model users as malicious and differ

in the assumptions on the servers. We formally prove all of our

constructions to be secure in the respective models and implement

them to demonstrate that they have practical performance.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their helpful feedback. This

work was supported in part by NSF grants 1822190 and 2213057 and

a Google Faculty Award. Any opinions, findings, and conclusions

expressed in this publication are those of the authors and do not

necessarily reflect the views of the funding sources.

REFERENCES
[1] S. Agrawal, S. Badrinarayanan, P. Mohassel, P. Mukherjee, and S. Patranabis.

BETA: Biometric-enabled threshold authentication. In Public-Key Cryptography
(PKC), pages 290–318, 2021.

[2] S. Agrawal, S. Badrinarayanan, P. Mukherjee, and P. Rindal. Game-Set-MATCH:

Using mobile devices for seamless external-facing biometric matching. In ACM
Conference on Computer and Communications Security, pages 1351–1370, 2020.

[3] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee. Pasta: PASsword-based

Threshold Authentication. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), page 2042–2059, 2018.

[4] M. Aliasgari, M. Blanton, and F. Bayatbabolghani. Secure computation of hidden

Markov models and secure floating-point arithmetic in the malicious model.

International Journal of Information Security, 16:577–601, 2017.
[5] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious

transfer and extensions for faster secure computation. In ACM Conference on
Computer and Communications Security (CCS), pages 535–548, 2013.

[6] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious

transfer extensions with security for malicious adversaries. Cryptology ePrint

Archive, Report 2015/061, 2015.

[7] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla,

D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fin-

gercode authentication. In ACM Workshop on Multimedia and Security, pages
231–240, 2010.

[8] F. Bayatbabolghani, M. Blanton,M. Aliasgari, andM. Goodrich. Secure fingerprint

alignment and matching protocols. arXiv Report 1702.03379, 2017.

[9] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a

fixed-key blockcipher. In IEEE S&P, pages 478–492, 2013.
[10] M. Blanton and M. Aliasgari. On the (non-)reusability of fuzzy sketches and

extractors and security in the computational setting. In International Conference
on Security and Cryptography (SECRYPT), pages 68–77, 2011.

[11] M. Blanton and M. Aliasgari. Secure outsourced computation of iris matching.

Journal of Computer Security, 20(2–3):259–305, 2012.
[12] M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint

identification. In ESORICS, pages 190–209, 2011.
[13] M. Blanton and S. Saraph. Oblivious maximum bipartite matching size algorithm

with applications to secure fingerprint identification. In European Symposium on
Research in Computer Security (ESORICS), pages 384–406, 2015.

[14] V. Boddeti. Secure face matching using fully homomorphic encryption. In IEEE
International Conference on Biometrics Theory, Applications and Systems (BTAS),
pages 1–10, 2018.

[15] F. Catak, S. Yildirim Yayilgan, and M. Abomhara. A privacy-preserving fully ho-

momorphic encryption and parallel computation based biometric data matching.

Preprints manuscript 2020070658, 2020.

[16] J. Cheon, H. Chung, M. Kim, and K.-W. Lee. Ghostshell: Secure biometric au-

thentication using integrity-based homomorphic evaluations. IACR Cryptology

ePrint Archive Report 2016/484, 2016.

[17] J. Engelsma, K. Cao, and A. Jain. Learning a fixed-length fingerprint representa-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(6):1981–
1997, 2021.

[18] J. Engelsma, A. Jain, and V. Boddeti. HERS: Homomorphically encrypted repre-

sentation search. IEEE Transactions on Biometrics, Behavior, and Identity Science,
4(3):349–360, 2022.

[19] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-

preserving face recognition. In Privacy Enhancing Technologies Symposiym (PETS),
pages 235–253, 2009.

[20] J. Ernst and A.Mitrokotsa. A framework for UC secure privacy preserving biomet-

ric authentication using efficient functional encryption. In Applied Cryptography
and Network Security (ACNS), pages 167–196. 2023.

[21] J.-K. Im, S.-Y. Jeon, and M.-K. Lee. Practical privacy-preserving face authenti-

cation for smartphones secure against malicious clients. IEEE Transactions on
Information Forensics and Security (TIFS), 15:2386–2401, 2020.

[22] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers

efficiently. In Advances in Cryptology – CRYPTO, pages 145–161, 2003.
[23] A. Juels and M. Sudan. A fuzzy vault scheme. Design, Codes and Cryptography,

38:237–257, 2006.

[24] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic

computers. 1962.

[25] B. Karmakar, N. Koti, A. Patra, S. Patranabis, P. Paul, and D. Ravi. Asterisk:

Super-fast MPC with a friend. In IEEE Symposium on Security and Privacy (S&P),
pages 127–127, 2024.

[26] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and

applications. In Automata, Languages and Programming, pages 486–498, 2008.
[27] S. Kumar, D. Culler, and R. Popa. MAGE: Nearly zero-cost virtual memory for

secure computation. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 367–385, 2021.

[28] Y. J. Lee, K. R. Park, S. J. Lee, K. Bae, and J. Kim. A new method for generating

an invariant iris private key based on the fuzzy vault system. IEEE Transactions
on Systems, Man and Cybernetics. Part B, Cybernetics, 38(5):1302–1313, 2008.

[29] M. Morampudi, M. Prasad, and U. Raju. Privacy-preserving iris authentica-

tion using fully homomorphic encryption. Multimedia Tools and Applications,
79:19215–19237, 2020.

[30] K. Nandakumar, A. Nagar, and A. Jain. Hardening fingerprint fuzzy vault using

password. In International Conference on Advances in Biometrics (ICB), pages
927–937, 2007.

[31] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI - a system for secure

face identification. In IEEE Symposium on Security and Privacy, pages 239–254,
2010.

[32] P. Pullonen and S. Siim. Combining secret sharing and garbled circuits for efficient

private IEEE 754 floating-point computations. In Financial Cryptography and
Data Security, pages 172–183, 2015.

[33] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face

recognition. In International Conference on Information Security and Cryptology
(ICISC), pages 229–244, 2010.

[34] J. Sedenka, S. Govindarajan, P. Gasti, and K. Balagani. Secure outsourced biomet-

ric authentication with performance evaluation on smartphones. IEEE Transac-
tions on Information Forensics and Security (TIFS), 10(2):384–396, 2015.

[35] U. Uludag, S. Pankanti, and A. Jain. Fuzzy vault for fingerprints. In Audio and
Video Based Biometric Person Authentication (AVBPA), pages 310–319, 2005.

[36] A. C. Yao. Protocols for secure computations. In Annual Symposium on Founda-
tions of Computer Science (SFCS), pages 160–164, 1982.

[37] H. Zhu, Q. Wei, X. Yang, R. Lu, and H. Li. Efficient and privacy-preserving online

fingerprint authentication scheme over outsourced data. IEEE Transactions on
Cloud Computing, 9(2):576–586, 2018.

A SECURITY PROOFS
Proof of Theorem 1. We need to consider each type of the ad-

versary, namely, malicious 𝐶auth, semi-honest 𝑆1, and semi-honest

𝑆2. We first note that 𝐶auth is the only party contributing input to

the computation and thus it is not possible for A𝐶auth – malicious

adversary corrupting 𝐶auth – to violate security and discover in-

formation about other parties’ inputs. Thus, we proceed with first

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

showing security in the presence of semi-honest A𝑆1 controlling

𝑆1 and build a respective simulator S𝑆1 . Afterwards, we treat the
case of semi-honest A𝑆2 controlling 𝑆2 and build its simulator 𝑆𝑆2 .

Adversary A𝑆1 . Simulation of Protocol 1, Reg-SH, proceeds as
follows:

(1) S𝑆1 invokes Freg-sh and receives bit 𝑏 and either 𝐵1 or ⊥.
(2) If F

reg-sh output 𝐵1 then S𝑆1 chooses random 𝐵2 subject

to | |𝐵1 ⊕ 𝐵2 | | = 1 and stores both values for use in the

authentication phase.

(3) Otherwise, S𝑆1 samples random 𝐵1
𝑅← {0, 1}𝑚 and chooses

random 𝐵2 subject to | |𝐵1 ⊕ 𝐵2 | | ≠ 1.

(4) S𝑆1 sends 𝐵1 to A𝑆1 .

(5) S𝑆1 receives from A𝑆1 the garbled gates G𝑓 .
(6) S𝑆1 and A𝑆1 engage in𝑚 instances of OTB, with S𝑆1 en-

tering 𝐵2 to simulate 𝑆2’s participation. As a result, S𝑆1
receives labels corresponding to 𝐵1 ⊕ 𝐵2.

(7) S𝑆1 evaluates the garbled circuit and obtains the output

label corresponding to 𝑏 and sends it to A𝑆1 .

We now argue indistinguishability between real and ideal execu-

tion. First note that 𝑆1’s view in Protocol 1 is formed by 𝑆1’s local

randomness and the following components:

(1) Receiving 𝐵1 from 𝐶 in Protocol 1 Step 1.

(2) Engaging in OTB with 𝑆2 in Protocol 1 Step 3, with 𝑆2
receiving𝑚 labels.

(3) Receiving ℓ𝑏𝑛 from 𝑆2 in Protocol 1 Step 4.

(4) Using ℓ𝑏𝑛 to determine the computation outcome.

Because A𝑆1 is semi-honest, it will not deviate from what is pre-

scribed in Protocol 1. We now examine all components above.

For part (1), S𝑆1 always sends a random 𝐵1 to A𝑆1 , which has

identical distribution to the value used in the protocol. For part (2),

the security guarantees of OTB are such A𝑆1 does not learn any

information acting as a sender and there is only a negligible in 𝜅

chance that it learns the bits input by S𝑆1 , satisfying the indistin-
guishability requirement.

For parts (3) and (4), S𝑆1 uses the output of Freg-sh in the simula-

tion steps leading up to this point to ensureA𝑆1 derives the correct

output as part of its view, as follows: If F
reg-sh reports (accept, 𝐵1),

then S𝑆1 uses this value 𝐵1 in OTB and chooses 𝐵2, which given

this 𝐵1, is guaranteed to pass the normalization check. If instead

F
reg-sh reports reject, then S𝑆1 selects a random 𝐵1 which matches

the expected share distribution in real execution and chooses 𝐵2
which is guaranteed to fail the normalization check (and will thus

trigger rejection of the enrollment biometric).

We obtain that all components of real and ideal executions are

indistinguishable to A𝑆1 except for vanishing probability in 𝜅.

If S𝑆1 receives accept in the registration phase, we proceed to

simulation of Protocol 2,Auth-SH. Recall thatS𝑆1 retains and reuses
the values 𝐵1 and 𝐵2 from the registration phase when it was suc-

cessful. The simulator works as follows:

(1) S𝑆1 invokes Fauth-sh and receives output bits (𝑏1, 𝑏2).
(2) S𝑆1 samples random 𝐵1 and sends 𝐵1 to A𝑆1 .

(3) Using 𝐵1 and 𝐵2 from the registration phase simulation,

S𝑆1 chooses 𝐵2, subject to the following two constraints:

(a) If 𝑏1 = 0, then 𝐵2 is chosen such that dist(𝐵1⊕𝐵2, 𝐵1⊕
𝐵2) ≥ 𝑡 , and otherwise subject to dist(𝐵1 ⊕ 𝐵2, 𝐵1 ⊕
𝐵2) < 𝑡 .

(b) If 𝑏2 = 0, then 𝐵2 is chosen subject to | |𝐵1 ⊕ 𝐵2 | | ≠ 1,

and otherwise subject to | |𝐵1 ⊕ 𝐵2 | | = 1.

(4) S𝑆1 receives from A𝑆1 the garbled gates G𝑓 .
(5) A𝑆1 and S𝑆1 engage in 2𝑚 instances of OTB, with S𝑆1

entering the bits of (𝐵2, 𝐵2). As a result, S𝑆1 receives labels
corresponding to (𝐵1 ⊕ 𝐵2, 𝐵).

(6) S𝑆1 evaluates the garbled circuit, obtains the output label

corresponding to (𝑏1, 𝑏2), and sends them to A𝑆1 .

𝑆1’s view in Protocol 2 is formed by its local randomness and the

following components:

(1) 𝑆1’s share 𝐵1 received in Protocol 1, which is used as an

auxiliary input to this protocol.

(2) Receiving 𝐵1 from 𝐶 in Protocol 2 Step 1.

(3) Engaging in OTB with 𝑆2 in Protocol 2 Step 3, with 𝑆2
receiving 2𝑚 labels.

(4) Receiving ℓ
𝑏1
𝑛−1 and ℓ

𝑏2
𝑛 from 𝑆2 in Protocol 2 Step 3.

(5) Using ℓ
𝑏1
𝑛−1 and ℓ

𝑏2
𝑛 to determine the computation outcome.

The value in part (1) is output from registration and was discussed

above. For part (2), S𝑆1 sends a random 𝐵1 to A𝑆1 , which has

identical distribution to the value used in the protocol. And for part

(3), the security guarantees of OTB are again such that A𝑆1 does

not learn any information acting as a sender and there is only a

negligible in 𝜅 chance that it learns the bits input by S𝑆1 .
For parts (4) and (5), S𝑆1 again uses the output of F

reg-sh to

ensure A𝑆1 derives the correct output as part of its view. In par-

ticular, the bit 𝑏1 received from F
reg-sh represents the outcome of

the biometric distance check, and 𝑏2 represents the outcome of the

normalization check. S𝑆1 then uses the 𝐵1 it generated to choose

𝐵2 such that the distance check passes if and only if 𝑏1 = 1 and the

normalization check passes if and only if 𝑏2 = 1 (where failure of

either will trigger rejection of the authentication attempt). Thus,

again the probability that the simulated view diverges from real

execution is negligible in 𝜅.

Adversary A𝑆2 . Next we have adversary A𝑆2 controlling semi-

honest 𝑆2 and construct a corresponding simulator S𝑆2 . Simulation

of the registration phase proceeds as follows:

(1) S𝑆2 invokes Freg-sh and receives either (𝐵2, accept) or (⊥,
reject).

(2) If F
reg-sh outputs (𝐵2, accept), then S𝑆2 chooses random

𝐵1 subject to | |𝐵1 ⊕ 𝐵2 | | = 1 and stores both values for use

in the authentication phase.

(3) Otherwise, S𝑆2 samples random 𝐵2
𝑅← {0, 1}𝑚 , chooses 𝐵1

subject to | |𝐵1 ⊕ 𝐵2 | | ≠ 1, and stores both values for use in

the authentication phase.

(4) S𝑆2 sends 𝐵2 to A𝑆2 .

(5) S𝑆2 constructs a garbled circuit as per Protocol 1 sends the

garbled gates G𝑓 to A𝑆2 .

(6) S𝑆2 and A𝑆2 engage in𝑚 instances of OTB, with S𝑆2 en-
tering the bits of 𝐵1. As a result, A𝑆2 receives labels corre-

sponding to 𝐵1 ⊕ 𝐵2.
(7) S𝑆2 receives from A𝑆2 the output label corresponding to 𝑏.

Marina Blanton and Dennis Murphy

(8) If F
reg-sh output⊥, then S𝑆1 sends reject toA𝑆2 , otherwise

S𝑆2 sends accept to A𝑆2 .

𝑆2’s view in Protocol 1 is formed by 𝑆2’s local randomness and the

following components:

(1) Receiving 𝐵2 from 𝐶 in Protocol 1 Step 1.

(2) Engaging in OTB with 𝑆1 in Protocol 1 Step 3, with 𝑆2
receiving𝑚 labels.

(3) Obtaining ℓ𝑏𝑛 from garbled circuit evaluation in Protocol 1

Step 4.

(4) Receiving the registration decision from 𝑆1.

For part (1), S𝑆2 always sends a random 𝐵2 to A𝑆2 , which has

identical distribution to the value used in the protocol. For part

(2), the security guarantees of OTB are such that there is only

a negligible in 𝜅 chance that A𝑆2 learns information about the

protected messages input by S𝑆2 .
For part (3), the guarantees of garbled circuits (in particular, the

fact that the labels cannot be distinguished from random strings)

ensure that the probability ofA𝑆2 decoding the output label is neg-

ligible in 𝜅 . And for part (4), note that as with the simulation against

A𝑆1 , the inputs are crafted to ensure that the output will match

the decision output by F
reg-sh. Thus, the real and ideal execution

views are again indistinguishable to A𝑆2 except with probability

negligible in 𝜅.

If S𝑆2 receives accept in the registration phase, we proceed to

simulation of the authentication phase, as follows:

(1) S𝑆2 samples random 𝐵2 and sends it to A𝑆2 .

(2) S𝑆2 constructs a garbled circuit as per Protocol 2 and sends
to A𝑆2 the garbled gates G𝑓 .

(3) A𝑆2 and S𝑆2 engage 2𝑚 in OTB, with S𝑆2 entering bits

(0𝑚, 0𝑚). A s a result, A𝑆2 receives labels corresponding

to (𝐵2, 𝐵2).
(4) S𝑆2 receives the output labels corresponding to (𝑏1, 𝑏2)

from A𝑆2 .

(5) S𝑆2 sends to A𝑆2 the terminate signal.

Note that 𝑆2’s view in Protocol 2 is formed by its local randomness

and the following components:

(1) 𝑆2’s share 𝐵2 received in Protocol 1, which is used as an

auxiliary input to this protocol.

(2) Receiving 𝐵2 from 𝐶 in Protocol 2 Step 1.

(3) Engaging in OTB with 𝑆1 in Protocol 2 Step 3, with 𝑆2
receiving 2𝑚 labels.

(4) Obtaining ℓ
𝑏1
𝑛−1 and ℓ

𝑏2
𝑛 from garbled circuit evaluation in

Protocol 2 Step 3.

(5) Receiving the termination signal at the conclusion of Pro-

tocol 2.

The value in part (1) is output from registration and was discussed

above. For part (2), S𝑆2 sends a random 𝐵2 to A𝑆2 , identically

distributed to the value used in the protocol. For part (3), the security

guarantees of OTB are such that there is a negligible in 𝜅 chance

that A𝑆2 learns information about the protected messages input

by S𝑆2 and thus cannot determine that S𝑆2 did not enter values

according to the protocol specification (recall that A𝑆2 receives

no authentication decision). And for part (4), the guarantees of

garbled circuits again ensure that the probability of A𝑆2 decoding

the output label is negligible in 𝜅. Thus, the probability that the

simulated view diverges from real execution is negligible in 𝜅.

We also note that in all of the above cases, repeated authentica-

tion on the same biometric is still secure. That is, no substantial

advantage can be gained by running a polynomial number of au-

thentications, as the probability of leakage is negligibly small in

the security parameter. This implies the inability of any server to

succeed in reconstructing a biometric. □

Proof of Theorem 2. In the context of this theorem, security

with respect to the servers is identical to that in the context of The-

orem 1. Thus, we do not repeat security analysis in the presence of

adversarial 𝑆1 or 𝑆2 and provide simulation to argue security in the

presence of a malicious 𝐶 , where 𝐶imp initiates the authentication

phase.

AdversaryA𝐶imp . Recall that𝐶imp does not participate in the regis-

tration process for the given user and thusA𝐶imp has no knowledge

of the biometric 𝐵 and the corresponding shares 𝐵1 and 𝐵2 entered

by 𝐶auth into the computation at registration time.

We build simulator S𝐶imp for Protocol 2 that operates as follows:

(1) S𝐶imp receives 𝐵1 from A𝐶imp . If 𝐵1 is not an𝑚-bit string,

S𝐶imp signals abort.

(2) S𝐶imp receives 𝐵2 from A𝐶imp . If 𝐵2 is not an𝑚-bit string,

S𝐶imp signals abort.

(3) S𝐶imp invokes Fauth-sh on input 𝐵1⊕𝐵2 and receives accept
or reject.

(4) S𝐶imp sends the decision to A𝐶imp .

Note that client-server interaction in real and simulated executions

is simple, with the client sending shares of its input and receiving

authentication outcome. We next compare the adversarial views in

real and simulated executions.

If the client does not form the shares 𝐵1 and 𝐵2 properly and

instead sends values which are not 𝑚-bit strings, both real and

simulated executions terminate with 100% probability. Otherwise,

the shares are well-formed and will undergo identical verification to

determine the outcome (either by querying the ideal functionality

or performing the checks via garbled circuit evaluation). In both

cases, the outcome will be reject if the input 𝐵1 ⊕ 𝐵2 has not be

properly normalized and/or is not within the required distance from

the enrollment biometric 𝐵. Because the cryptographic tools used

in the real execution are computationally secure, we obtain that

there is only a negligible in 𝜅 probability thatA𝐶imp can distinguish

the two views. □

Proof of Theorem 3. In the context of this theorem,we need to

prove security in the presence of adversariesA𝑆1 and the combined

A𝐶auth∪𝑆2 . Note that similarly to the proof of Theorem 1,𝐶auth does

not gain any information by behaving maliciously in either the

registration or authentication phases. And since a malicious 𝐶auth
has the ability to dictate the outcome of both phases, collusion

with a malicious 𝑆2 is trivial, as there is nothing they can do or

learn that cannot be already achieved or provided by𝐶auth. For this

reason, we only provide a simulation in the presence of A𝑆1 . This

will change for Theorem 4, where showing security in the presence

of A𝐶imp∪𝑆2 is needed.

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

Adversary A𝑆1 . Our simulator S𝑠1 for Protocol 3, Reg-MAL, pro-
ceeds as follows:

(1) S𝑆1 invokes Freg-mal
and receives bits (𝑏1, 𝑏2) and (𝐵1, 𝑐).

(2) If 𝑏1 = 1, S𝑆1 chooses 𝐵2 subject to | |𝐵1 ⊕ 𝐵2 | | = 1; other-

wise, it chooses 𝐵2 subject to | |𝐵1 ⊕ 𝐵2 | | ≠ 1.

(3) S𝑆1 samples a 𝜅1-bit 𝑣̃ at random from the witness space of

the commitment scheme.

(4) If 𝑏2 = 1, S𝑆1 computes 𝑐̃ = com(𝐵1 ⊕ 𝐵2, 𝑣̃); otherwise,
S𝑆1 sets 𝑐̃ = 𝑐 .

(5) If (𝑏1, 𝑏2) = (1, 1),S𝑆1 stores (𝐵1, 𝐵2) and (𝑐̃, 𝑣̃) for use with
authentication.

(6) S𝑆1 sends (𝐵1, 𝑐̃) to A𝑆1 .

(7) S𝑆1 receives from A𝑆1 the garbled gates G𝑓 .
(8) S𝑆1 and A𝑆1 engage in𝑚 instances of maliciously secure

OTB and 𝜅1 instances of conventional maliciously secure

OT, where S𝑆1 enters (𝐵2, 𝑣̃) for its input. As a result, S𝑆1
receives labels corresponding to (𝐵1 ⊕ 𝐵2, 𝑣̃).

(9) S𝑆1 also receives fromA𝑆1 𝜅2 labels corresponding toA𝑆1 ’s

input 𝑐̃ .

(10) S𝑆1 evaluates the garbled circuit and sends the two output

labels to A𝑆1 .

(11) S𝑆1 receives the decision from A𝑆1 on behalf of 𝐶 and 𝑆2.

In order to compare the real and simulated views, we recall that

𝑆1’s view in Protocol 3 is formed by its local randomness and the

following interactive components:

(1) Receiving 𝐵1 and 𝑐 from 𝐶 in Protocol 3 Step 2.

(2) Engaging in OTB with 𝑆2 in Protocol 3 Step 4, with 𝑆2
receiving𝑚 labels.

(3) Engaging in OT with 𝑆2 in Protocol 3 Step 4, with 𝑆2 receiv-

ing 𝜅1 labels.

(4) Receiving ℓ
𝑏1
𝑛 and ℓ

𝑏2
𝑛−1 from 𝑆2 in Protocol 3 Step 5.

(5) Using the labels to determine the computation outcome.

We next argue indistinguishability between real and simulated exe-

cution. For part (1) above, we have that 𝑆1 receives 𝐵1 and 𝑐 from𝐶

in the protocol, while our simulator might supply 𝑆1 with amodified

𝑐̃ , which differs from 𝑐 supplied as input to the ideal functionality.

Nevertheless, we argue that the adversary is unable to distinguish

the values. In particular, when 𝑏2 = 0 (i.e., the commitment 𝑐 is not

well formed or was not specified in a consistent way), the simulated

view in this step is identical to the protocol view. In particular, client

specified commitment 𝑐 follows the same distribution as during pro-

tocol execution. However, when 𝑏2 = 1 (i.e., the commitment is well

formed and verifies), the simulator forms a different commitment

𝑐̃ and communicates (𝐵1, 𝑐̃) to 𝑆1. In that case, the commitment is

drawn from the same distribution as during the protocol execution

and the views cannot be distinguished.

For parts (2) and (3), the simulator relies on security of oblivi-

ous transfer and a computationally limited adversary is unable to

distinguish the simulation from the real protocol interaction.

Once 𝑆1 receives the output labels of garbled circuit evaluation,

it is able to interpret them and extract the output (𝑏1, 𝑏2); this
is parts (4) and (5) above. We argue that the inputs to garbled

circuit evaluation were constructed by simulator S𝑆1 in such a way

that the output bits will correspond to (𝑏1, 𝑏2) provided to S𝑆1
by ideal functionality F

reg-mal
, which correspond to true output.

In particular, if S𝑆1 receives 𝑏1 = 1 (i.e., the input biometric is

properly normalized), it uses (𝐵1, 𝐵2) subject to | |𝐵1 ⊕ 𝐵2 | | = 1;

otherwise 𝐵2 is chosen to have | |𝐵1 ⊕ 𝐵2 | | ≠ 1. This means that 𝑆1
will recover the correct bit. Similarly, if S𝑆1 receives 𝑏2 = 1 (the

commitment verifies), it constructs another valid commitment 𝑐̃

for which it knows the opening (𝐵1 ⊕ 𝐵2, 𝑣̃). If S𝑆1 receives 𝑏2 =

0 (invalid commitment), it uses the original commitment 𝑐 with

a random opening (𝐵1 ⊕ 𝐵2, 𝑣̃), which will fail the verification

with overwhelming probability, as desired. This means that during

the simulated view, 𝑆1 will recover the same (𝑏1, 𝑏2) as during
the protocol execution with all but negligible probability in the

security parameter. This means the real and simulated views are

indistinguishable.

If S𝑆1 receives (𝑏1, 𝑏2) = (1, 1) during registration, we proceed
with simulation of Protocol 4, Auth-MAL, as follows:

(1) S𝑆1 invokes Fauth-mal
and receives output bits (𝑏1, 𝑏2, 𝑏3).

(2) S𝑆1 samples random 𝐵1 and sends 𝐵1 to A𝑆1 .

(3) Using 𝐵1 and 𝐵2 from registration simulation, S𝑆1 chooses
𝐵2 as follows:

(a) If 𝑏1 = 1, 𝐵2 is chosen subject to dist(𝐵1 ⊕ 𝐵2, 𝐵1 ⊕
𝐵2) < 𝑡 ; otherwise, it is chosen subject to dist(𝐵1 ⊕
𝐵2, 𝐵1 ⊕ 𝐵2) ≥ 𝑡 .

(b) If 𝑏2 = 1, 𝐵2 is chosen subject to | |𝐵1 ⊕ 𝐵2 | | = 1;

otherwise, it is chosen subject to | |𝐵1 ⊕ 𝐵2 | | ≠ 1.

(4) In addition, S𝑆1 uses stored 𝑣̃ to set 𝑣 ′ as follows: if 𝑏3 = 1,

𝑣 ′ = 𝑣̃ ; otherwise, 𝑣 ′ ≠ 𝑣̃ .

(5) S𝑆1 receives from A𝑆1 the garbled gates G𝑓 and 𝜅2 labels

corresponding to A𝑆1 ’s input 𝑐 .

(6) A𝑆1 and S𝑆1 engage in 2𝑚 instances of maliciously secure

OTB and 𝜅1 instances of conventional maliciously secure

OT, with S𝑆1 entering 𝐵2, 𝐵2, 𝑣
′
. As a result, S𝑆1 receives

labels corresponding to (𝐵1 ⊕ 𝐵2, 𝐵1 ⊕ 𝐵2, 𝑣 ′).
(7) S𝑆1 evaluates the garbled circuit, obtains the output labels

corresponding to (𝑏1, 𝑏2, 𝑏3), and sends them to A𝑆1 .

(8) S𝑆1 receives the final decision fromA𝑆1 on behalf of𝐶 and

𝑆2.

This time, 𝑆1’s view in Protocol 4 is formed by its local randomness

and the following components:

(1) 𝑆1’s share𝐵1 and commitment value 𝑐 received in Protocol 3,

which is used as an auxiliary input to this protocol.

(2) Receiving 𝐵1 from 𝐶 in Protocol 4 Step 1.

(3) Engaging in OTB and OT with 𝑆2 in Protocol 4 Step 3, with

𝑆2 receiving 2𝑚 + 𝜅1 labels.
(4) Receiving labels ℓ

𝑏1
𝑛−1, ℓ

𝑏2
𝑛 , and ℓ

𝑏3
𝑛 from 𝑆2 in Protocol 4

Step 4.

(5) Using the labels to determine the computation outcome.

Parts (1)–(3) are similar to our prior analysis, where either there is

no difference in the views or the views could be distinguished only

with a negligible probability. To demonstrate indistinguishability

for parts (4)–(5), we need to show that 𝑆1 recovers the same output

bits (𝑏1, 𝑏2, 𝑏3) as what the ideal functionality Fauth-mal
(and real

execution) supply.

The bits 𝑏1 and 𝑏2 correspond to the distance and normalization

checks, respectively. The biometric shares (𝐵1 and 𝐵2) are set to

produce the correct bits during garbled circuit evaluation. However,

bit 𝑏3 is new and corresponds to the result of the commitment

Marina Blanton and Dennis Murphy

check. To this extent, the simulatorS𝑆1 uses consistent commitment

opening information when𝑏3 = 1 andmodifies 𝑣̃ otherwise to cause

the check to fail (whichwill happenwith overwhelming probability).

We obtain that 𝑆1 will recover the correct output and is unable to

distinguish the real and simulated views withmore than a negligible

probability. □

Proof of Theorem 4. In the context of this proof, showing se-

curity in the presence of semi-honest A𝑆1 follows the same pro-

cedures as in the proof of Theorem 3. Although F
auth-mal

obtains

inputs from 𝐶imp instead of 𝐶auth, the difference does not impact

simulator construction and therefore the conclusions of Theorem 3

apply here as well.

We thus proceed to show security in the presence of malicious

A𝐶∪𝑆2 . There are two adversarial structures to consider: 𝑆2 collud-

ing with 𝐶auth and 𝑆2 colluding with 𝐶imp. The latter is the most

important to consider and show that a malicious user working in

coordination with 𝑆2 is unable to attack the original user’s biomet-

ric 𝐵. The situation when the adversary is A𝑆2∪𝐶auth , however, is

different. During registration, this constitutes the identical scenario

of that of Theorem 3, where the adversary is unable to learn any

additional information. Then during authentication, A𝐶auth∪𝑆2 ’s
capabilities are that of 𝑆2 alone who does not learn any output from

the protocol. Therefore, we concentrate on showing security in the

presence of adversary A𝐶imp∪𝑆2 .

AdversaryA𝐶imp∪𝑆2 .We begin by constructing simulatorS𝐶imp∪𝑆2
for Protocol 3, the registration. Because 𝐶imp is not an active par-

ticipant of the protocol, A𝐶imp∪𝑆2 ’s capabilities during registration

are equivalent to that of A𝑆2 .

(1) S𝐶imp∪𝑆2 invokes Freg-mal
and receives (𝐵2, 𝑣) and accept

or reject decision.
(2) S𝐶imp∪𝑆2 chooses 𝐵1 ← {0, 1}𝑚 subject to | |𝐵1 ⊕ 𝐵2 | | = 1

and computes 𝑐̃ = com(𝐵1 ⊕ 𝐵2, 𝑣).
(3) S𝐶imp∪𝑆2 sends (𝐵2, 𝑣) to A𝐶imp∪𝑆2 .
(4) S𝐶imp∪𝑆2 produces garbled circuit G𝑓 as in Protocol 3 and

sends it to A𝐶imp∪𝑆2 .
(5) S𝐶imp∪𝑆2 andA𝐶imp∪𝑆2 engage in𝑚 instances ofmaliciously

secure OTB and 𝜅1 instances of conventional maliciously

secure OT, with S𝐶imp∪𝑆2 entering 𝐵1 into OTB. As a re-

sult, S𝐶imp∪𝑆2 receives labels corresponding to (𝐵1 ⊕ 𝐵2, 𝑣).
S𝐶imp∪𝑆2 also sends labels {ℓ

𝑐̃ [𝑖]
𝑚+𝜅1+𝑖 }𝑖∈[1,𝜅2] (that corresponds

to 𝑐̃) to A𝐶imp∪𝑆2 .

(6) S𝐶imp∪𝑆2 receives labels ℓ
𝑏2
𝑛−1 and ℓ

𝑏1
𝑛 from A𝐶imp∪𝑆2 .

(7) If ℓ
𝑏2
𝑛−1 = ℓ1

𝑛−1 and ℓ
𝑏1
𝑛 = ℓ1

𝑛−1,S𝐶imp∪𝑆2 stores (𝐵2, 𝑣) for use
in authentication and sends the accept or reject decision
received from to A𝐶imp∪𝑆2 . Otherwise, it sends reject to
A𝐶imp∪𝑆2 .

𝑆2’s view in Protocol 3 is formed by 𝑆2’s local randomness and the

following components:

(1) Receiving (𝐵2, 𝑐) from 𝐶 in Protocol 3 Step 2.

(2) Receiving garbled gates G𝑓 from 𝑆1 in Protocol 3 Step 3.

(3) Engaging in OTB with 𝑆1 in Protocol 3 Step 4, with 𝑆2
receiving𝑚 labels.

(4) Engaging in OT with 𝑆1 in Protocol 3 Step 4, with 𝑆2 receiv-

ing 𝜅1 labels.

(5) Receiving 𝜅2 labels ℓ
𝑐 [𝑖]
𝑚+𝜅1+𝑖 from 𝑆1 in Protocol 3 Step 4.

(6) Obtaining ℓ
𝑏1
𝑛 and ℓ

𝑏2
𝑛−1 from garbled circuit evaluation in

Protocol 3 Step 5.

(7) Receiving the registration decision from 𝑆1.

Communication in part (1) has identical distribution in real and

simulated executions. That is, the value 𝑣 is passed unmodified

from F
reg-mal

as it was obtained from 𝐶 . The value 𝐵2 is also gen-

erated according to the specification, as it would in the case of

non-adversarial 𝐶 .

Parts (2)–(5) in the simulation are executed as in real computa-

tion. Due to the security properties of garbled circuit evaluation

and OT,A𝐶imp∪𝑆2 is unable to obtain any information about 𝐵1 and

𝑐̃ that the simulator enters into the circuit. Similarly, the labels in

part (6) have identical distributions in real and simulated views and

do not reveal any information to A𝐶imp∪𝑆2 .
Part (7) is the most interesting case. There are three situations

to consider:

(1) If A𝐶imp∪𝑆2 evaluates the circuit correctly, it will arrive at
labels ℓ1𝑛 and ℓ1

𝑛−1 because the inputs into the circuit were

set to pass both checks. In that case, the simulator outputs

the accept/reject decision (which is dictated by the client’s

inputs) and is identical to that in real execution.

(2) If A𝐶imp∪𝑆2 instead modifies the values it enters into the

garbled circuit (i.e., 𝐵2, 𝑣 , or both), the verification will

not pass with overwhelming probability and the simulator

outputs reject. This is identical to the behavior in the real

execution.

(3) Lastly, ifA𝐶imp∪𝑆2 does not evaluate the circuit and returns
malformed labels which do not correspond to the labels for

circuit wires 𝑛 and 𝑛 − 1, the simulator will output reject,
which is the same as in the protocol execution.

We obtain that the real and simulated view differ with at most

negligible probability and are therefore indistinguishable.

Provided registration was successful, we continue on to the

authentication phase. To that end, wewill need to extract input from

this adversary. Note that for garbled circuits secure against (only)

semi-honest adversaries, there is no provision for the evaluator to

guarantee that each garbled gate computes the function prescribed

to it. We can leverage this fact to allow S𝐶imp∪𝑆2 to extract input

from A𝐶imp∪𝑆2 as follows: for each input bit, there exists at least

one path through G𝑓 to one of the output bits. Hence for each bit

𝑖 ∈ [1, 2𝑚 + 𝜅1] of A𝐶imp∪𝑆2 ’s input, we have S𝐶imp∪𝑆2 construct

a circuit
˜G𝑓
𝑖
where each gate along the guaranteed path is set

to be an identity gate. From this S𝐶imp∪𝑆2 can learn a single bit

of S𝐶imp∪𝑆2 ’s input, and then rewind and repeat. Since A𝐶imp∪𝑆2
learns not the bit, but a pseudo-random label for which recovery

is intractable, it cannot distinguish this execution from one which

actually computes the prescribed function 𝑓 .

We note that in what follows the notation 𝑣 ′ represents the value
the adversary inputs into the garbled circuit in the authentication

phase, whereas 𝑣 is the value output from registration, and these

need not be the same given an active adversary. The simulation of

Protocol 4 proceeds as follows:

Privacy Preserving Biometric Authentication for Fingerprints and Beyond

(1) S𝐶imp∪𝑆2 receives 𝐵1 from A𝐶imp∪𝑆2 .
(2) S𝐶imp∪𝑆2 uses the input extraction technique described

above to obtain (𝐵2, 𝐵2, 𝑣 ′).
(3) S𝐶imp∪𝑆2 constructs garbled circuit G𝑓 as per Protocol 4

and sends it to A𝐶imp∪𝑆2 .
(4) S𝐶imp∪𝑆2 engages in malicious-secure OTB and OT with

A𝐶imp∪𝑆2 , entering 𝐵1 = 𝐵1 = 0. As a result, A𝐶imp∪𝑆2
receives labels corresponding to (𝐵2, 𝐵2, 𝑣 ′).

(5) S𝐶imp∪𝑆2 sends labels {ℓ02𝑚+𝜅1+𝑖 }𝑖∈[1,𝜅2] corresponding to
𝑐 = 0 to A𝐶imp∪𝑆2 .

(6) S𝐶imp∪𝑆2 sends 𝑆2’s inputs (𝐵2, 𝑣 ′) and𝐶imp’s input 𝐵1 ⊕𝐵2
to F

auth-mal
and receives (accept, terminate), (reject, termi-

nate), or (abort, abort) outputs for 𝐶 and 𝑆2, respectively.

(7) S𝐶imp∪𝑆2 receives (ℓ
𝑏3
𝑛−2, ℓ

𝑏2
𝑛−1, ℓ

𝑏1
𝑛) from A𝐶imp∪𝑆2 .

(8) If each of the received labels corresponds to a valid label

for the associated wire, S𝐶imp∪𝑆2 sends to A𝐶imp∪𝑆2 the de-
cision it received from F

auth-mal
. Otherwise, it sends (abort,

abort) to A𝐶imp∪𝑆2 .

𝑆2 and 𝐶’s view in Protocol 4 is formed by 𝑆2’s and 𝐶’s local ran-

domness and the following interaction with 𝑆1:

(1) Receiving garbled gates G𝑓 from 𝑆1 in Protocol 4 Step 2.

(2) Engaging in OTB with 𝑆1 in Protocol 4 Step 3, with 𝑆2
receiving 2𝑚 labels.

(3) Engaging in OT with 𝑆1 in Protocol 4 Step 3, with 𝑆2 receiv-

ing 𝜅1 labels.

(4) Receiving 𝜅2 labels ℓ
𝑐 [𝑖]
𝑚+𝜅1+𝑖 from 𝑆1 in Protocol 4 Step 3.

(5) Obtaining labels ℓ
𝑏1
𝑛 , ℓ

𝑏2
𝑛−1, and ℓ

𝑏3
𝑛−2 from garbled circuit

evaluation in Protocol 4 Step 4.

(6) Receiving the authentication decision from 𝑆1.

This time, parts (1)–(5) correspond to garbled circuit and OT execu-

tion and, as before, do not disclose any information about inputs on

which the circuit is evaluated. This means that A𝐶imp∪𝑆2 is unable
to determine the fact that the simulator enters zero values into the

circuit.

For part (6), we note that the simulator submits to the ideal func-

tionality F
auth-mal

inputs extracted from the adversary as well as

information consistent with the information produced by F
reg-mal

at registration time. This means that, if the circuit is evaluated

correctly, its output will correspond to the result of evaluation of

same function as in real protocol execution. We see that in that case

the simulator simply passes the output from the ideal functionality

F
auth-mal

to the adversary.

Otherwise, A𝐶imp∪𝑆2 might deviate from circuit evaluation and

return one of more labels which do not correspond to the output

wires. In that case, the simulator sends to the corrupt parties abort,
which is the identical behavior to that in the protocol execution.

We obtain that the adversary is unable to tell the real and simu-

lated views apart with more than a negligible probability. □

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Security Definitions
	2.3 Building Blocks
	2.4 DeepPrint Fingerprint Matching
	2.5 Vector Normalization in Adversarial Settings

	3 Solutions based on Garbled Circuit Evaluation
	3.1 Malicious C, semi-honest S1 and S2
	3.2 Malicious and colluding C and S2, semi-honest S1

	4 Implementation and Evaluation
	4.1 Working with Compressed DeepPrint Representation
	4.2 Circuit Optimizations
	4.3 Experimental Evaluation

	5 Conclusions
	Acknowledgments
	References
	A Security Proofs

