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Abstract

We show that key exchange and two-party computation are exactly equivalent to monoid actions
with certain structural and hardness properties. To the best of our knowledge, this is the first “natural”
characterization of the mathematical structure inherent to any key exchange or two-party computation
protocol, and the first explicit proof of the necessity of mathematical structure for public-key cryptography.
We then utilize these characterizations to show a new black-box separation result, while also achieving a
simpler and more general version of an existing black-box separation result. Concretely, we obtain the
following results:

TWO-PARTY KEY EXCHANGE. We show that that any two-party noninteractive key exchange protocol
is equivalent to the existence of an abelian monoid equipped with a natural hardness property, namely
(distributional) unpredictability. More generally, we show that any k-round (two-party) key exchange
protocol is essentially equivalent to the existence of a (distributional) unpredictable monoid with certain
commutator-like properties. We then use a generic version of this primitive to show a simpler and more
general version of Rudich’s (Crypto ’91) black-box separation of k-round and (k+1)-round key exchange.

TWO-PARTY COMPUTATION. We show that any maliciously secure two-party computation protocol is
also equivalent to a monoid action with commutator-like properties and certain hardness guarantees. We
then use a generic version of this primitive to show a black-box separation between k-round semi-honest
secure two-party computation and (k + 1)-round maliciously secure two-party computation. This yields
the first black-box separation (to our knowledge) between k-round and (k + 1)-round maliciously secure
two-party computation protocols.

We believe that modeling cryptographic primitives as mathematical objects (and our approach of using such
modeling for black-box separations) may have many other potential applications and uses in understanding
what sort of assumptions and mathematical structure are necessary for certain cryptoprimitives.
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1 Introduction

An important question in the theory of cryptography is also one of the simplest to state: what implies
public-key cryptography? In particular, the idea of separating public-key cryptography from symmetric-key
cryptography using mathematical structure has been around for quite some time: Barak mentions this in “The
Complexity of Public-Key Cryptography” [Bar17]. As he puts it, “... it seems that you can’t throw a rock
without hitting a one-way function” but public-key cryptography is somehow “special.” Barak implicitly
argues that there is some mathematical structure inherent in public-key cryptography: “One way to phrase
the question we are asking is to understand what type of structure is needed for public-key cryptography.”
However, formalizing this has proven to be difficult.

A number of works have shown connections between particular mathematical structures and cryptography.
Hohenberger showed that pseudo-free groups had numerous cryptographic applications [Hoh03] which
led to several follow-up works [Riv04, CFW11]. Other works [JQSY19, ADMP20] focused on building
cryptography from “hard” group actions, and some papers focusing on Braid group cryptography have had
interesting discussions on mathematical structure and cryptography [Gar08, AJJ12]. Brown [Bro21] explores
noninteractive key exchange from the perspective of associative operations and semigroups; this core idea
purportedly dates back to the thesis of Alan T. Sherman.1

Characterizing Cryptoprimitives by Structure. There has been a line of work [AMPR19, AMP19,
BKLS24, MP23] focused more directly on the characterization of cryptographic primitives by mathemat-
ical structure: roughly speaking, the authors of these papers show that certain primitives in the world of
Minicrypt [Imp95] (i.e., one-way functions, pseudorandom generators, weak unpredictable functions, and
weak pseudorandom functions) that are homomorphic between the input space (or the key space if it exists)
and the output space directly imply the existence of many cryptographic primitives. However, with the
possible exception of [MP23], these works are purely constructive and not very useful for separations: they
show that simple primitives endowed with extra structure can be used to build powerful cryptographic
primitives.

Black-Box Separations. Another fundamental question in cryptography is to understand the power of a
cryptographic primitive in terms of what other primitives are (im)possible to build from it in a black-box
way. Understanding these implications lets us design new primitives, figure out attacks, and understand
cryptographic primitives better in a complexity-theoretic sense.

Some of the oldest and most famous black-box separation results are about key exchange: in perhaps
the most well-known work on black-box separations [IR89], Impagliazzo and Rudich showed how to
separate key exchange (of any number of rounds) from one-way functions. In a follow-up work, Barak and
Mahmoody [BM09] improved the result of Impagliazzo and Rudich, proving a “query-optimal” attack that
nicely matched the known positive result: the famous Merkle puzzles [Mer78]. In addition, Rudich [Rud92]
showed how to black-box separate k-round key exchange from (k+1)-round key exchange for any (constant)
k. More recently, separations have helped us better understand things like MPC round complexity [ABG+20]
and indistinguishability obfuscation [GMM17a, GMM17b]. We refer to [Fis12] for a comprehensive survey
of the enormous literature on black-box reductions and separations in cryptography, and present a more
detailed treatment of related work in Section 1.3.

1We were unfortunately unable to find an appropriate reference.
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Relativizing Reductions. A well-studied approach to establishing black-box separations is to prove the
impossibility of a relativizing reduction [RTV04] between certain primitives. In these sorts of separations,
which aim to separate a “stronger” primitive from a “weaker” primitive, typically some oracle O or set of
oracles with certain structure are assumed to exist. Generally speaking the structure of the oracle mimics
the functionality of the “weaker” primitive in the separation result. It is then shown that, given O and some
very powerful oracle (e.g. an NP-oracle), it is impossible to build the “stronger” primitive. The powerful
NP-oracle (or sometimes an even more powerful oracle, like a PSPACE-oracle) serves to ensure that no
hardness assumptions can be used other than what is inherent to the oracle O. In these reductions, the oracle
O can sometimes be stronger (or at least not necessarily equivalent to) the “weaker” primitive involved in the
black-box separation. This extra slack has the potential to make black-box separation results much trickier
since O may be “in between” the strong and weak primitives in terms of its power.

Separations using Mathematical Structure. In this work, we investigate the possibility of defining oracles
that are exactly equivalent to generic versions of primitives that we want to separate. Such an approach
potentially allows us to construct new or simplified separation results since oracles that are exactly equivalent
to generic versions of primitives might be easier to separate than those that are not exactly equivalent.
Moreover, characterizing cryptographic primitives in a way that leads to easily defined oracles may allow
for interesting observations on what is necessary for building the primitives themselves in terms of both
mathematical structure and hardness, which could be of independent interest, particularly for mathematicians
looking to find new hardness assumptions and objects of cryptographic interest.

This motivates us to ask the following: can we characterize important cryptoprimitives exactly by their
mathematical structure? And does characterizing cryptographic primitives in terms of the algebraic structure
inherent to them enable new black-box separation results (or alternatively, enable simpler and more general
versions of existing black-box separation results)?

1.1 Our Contributions

In this paper, we answer the above question in the affirmative. We present novel characterizations of common
cryptographic primitives in terms of the mathematical structure that is inherent to such primitives. We
additionally show that such characterization offers new possibilities for black-box separation results involving
such primitives.

Concretely, we focus on two very popular and well-studied cryptographic primitives, namely two-party
key exchange (abbreviated henceforth as KE) and two-party computation (abbreviated henceforth as 2-PC).
We show that KE and 2-PC are exactly equivalent to monoid actions1 with certain structural and hardness
properties. To the best of our knowledge, this is the first “natural” characterization of the mathematical
structure inherent to any KE or 2-PC protocol, and the first explicit proof of the necessity of mathematical
structure for public-key cryptography. We then utilize these characterizations to show new black-box
separation results.

Structure of Key Exchange. Recently, group actions have become a popular concept in cryptography, as
they have been used to model elliptic curve isogenies [BY91, Cou06, ADMP20]. Informally speaking, a
group action is a tuple of a group G, a set X , and an operation ⋆ where the identity (there is some identity
element e ∈ G such that, for all x ∈ X , e ⋆ x = x) and composability (for all g, h ∈ G, g ⋆ (h ⋆ x) = gh ⋆ x)
axioms hold.

1For unfamiliar readers, we explain and formally define these in our preliminaries and technical overview.
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As shown in [ADMP20], we can define similar assumptions with group actions as is done with groups:
for instance, informally speaking, the group action CDH problem (GA-CDH) is, for randomly sampled
g, h ∈ G and x ∈ X , given x, g ⋆ x, and h ⋆ x, output gh ⋆ x. Analogous to how we can build key exchange
from abelian groups where the CDH assumption holds, we can build key exchange from abelian group
actions where the GA-CDH assumption holds: given a public set element x, Alice samples g ∈ G and sends
g ⋆ x to Bob, Bob samples h ∈ G and sends h ⋆ x to Alice, and both Alice and Bob compute gh ⋆ x. At a
high level1, this is how CSIDH [CLM+18] (and certain other families of isogeny-based assumptions) can be
used to build key exchange.

Recall that a monoid is just a group where the property that elements have unique inverses is not required
to hold. Similarly, we can define a monoid action as just the same thing as a group action except we use a
monoid instead of a group. In this work, we show that any two-party non-interactive KE protocol is equivalent
to the existence of an abelian monoid action equipped with a natural hardness property that is quite similar to
a CDH assumption on monoid actions, namely (distributional) unpredictability. Our result is captured by the
following (informal) theorem (see Theorems 2.4 and 2.5 for a more formal exposition):

Theorem 1.1 (Informal). Any two-party non-interactive KE protocol is equivalent to a “hard” abelian
monoid action, where the hardness assumption is distributional unpredictability.

We generalize this result to show that any two-party k-round KE protocol is equivalent to the existence of
a (distributional) unpredictable monoid action with certain commutator-like properties. This gives us what
we consider to be the first “natural” characterization of KE with respect to mathematical structure. While it
has long been folklore knowledge that some kind of structure is necessary for public-key cryptography, we
believe that this is the first formalization of this idea. Moreover, it is only slightly weaker than a common
abstraction–group actions–used to build popular key exchange protocols today.

We also emphasize that our result handles “noisy” key exchange protocols like those from LWE, and we
explain this in detail later in the paper.

Revisiting KE Separation by Rounds. We consider a mathematically structured oracle representing a
generic version of the monoid action above. We then use this oracle in order to show the impossibility
of a relativizing reduction from k-round key exchange to (k + 1)-round key exchange for a fixed k (see
Theorem 2.10 for a more formal exposition). This enables us to build a tighter, more rigorously formal,
and more efficient version of the KE separation result due to Rudich [Rud92]. In particular, Rudich’s proof
constructs an oracle relative to which there exists a (k + 1)-round KE protocol such that the communication
required for the protocol grows exponentially in k, and Rudich only argues a proof for a separation between
KE for two rounds (of communication) from one, leaving the generalization to the reader. On the other
hand, we show that relative to our oracle, there exists an efficient (k + 1)-round KE protocol, where the
communication required grows polynomially in the number of rounds k (see Theorem 2.11 for the formal
statement). Finally, we build upon the proof frameworks used in [BM09] to show that, relative to the same
oracle, there does not exist a k-round KE protocol (stated formally in Theorem 2.12).

Structure of Two-Party Computation. We show that any maliciously secure 2-PC protocol is also
equivalent to a monoid action with certain commutator-like properties and certain hardness guarantees.
The “hard” monoid action used in this characterization of 2-PC is (slightly) more complicated than the one
we showed was equivalent to KE. Intuitively, rather than just using “random” monoid elements as we did

1Due to [PR23], we can now consider CSIDH to be an effective group action.
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above with key exchange, we can encode each player’s secret information as well as the computation to
be performed in the monoid elements themselves; the monoid action itself can be just to incorporate (but
selectively hide) this information.

Thus, the main differences with the structural characterization of KE outlined above come from the facts
that: (a) any 2-PC protocol must allow evaluating deterministic functions on the parties’ inputs (a KE protocol,
on the other hand, only outputs a random key to the parties involved), and (b) 2-PC has a very different notion
of security as compared to KE. Consequently, the monoid action used in our characterization of 2-PC requires
different structural and hardness properties as compared to its counterpart used in the characterization of KE.
Our result is captured by the following (informal) theorem (see Theorem 4.4 for a more formal exposition):

Theorem 1.2 (Informal). Any maliciously secure 2-PC protocol is equivalent to a monoid action satisfying
certain commutator-like properties and certain (simulation-based) hardness guarantees.

New Malicious 2-PC Separation by Rounds. As in the case of KE, we again consider a mathematically
structured oracle representing a generic version of the monoid action above (which is, in turn, equivalent to a
generic version of maliciously secure 2-PC with abort security). We show how to use this oracle in order to
establish the impossibility of a relativizing reduction from k-round semi-honest secure 2-PC to (k+1)-round
maliciously secure 2-PC for a fixed k. This yields the first black-box separation (to our knowledge) between
k-round and (k + 1)-round maliciously secure 2-PC protocols. Our result is captured by the following
(informal) theorem (see Theorem 2.16 for a more formal exposition):

Theorem 1.3 (Informal). For a fixed k ∈ N, there does not exist a relativizing reduction from k-round
semi-honest secure 2-PC to (k + 1)-round maliciously secure 2-PC.

At a high level, we prove this theorem as follows: for a fixed k ∈ N, we construct an oracle relative
to which there exists an efficient (k + 1)-round 2-PC protocol satisfying (with aborts) against malicious
corruptions, such that the communication required in the 2-PC protocol grows polynomially in the number of
rounds k (see Theorem 2.17 for the formal statement). We then show that, relative to the same oracle, there
does not exist a k-round 2-PC protocol satisfying security against semi-honest corruptions (stated formally in
Theorem 2.18). In order to prove this theorem, we need additional techniques not used in our key exchange
separation. These additional techniques are mainly focused on handling the fact that, unlike key exchange, a
2-PC protocol involves inputs the parties’ own internal randomness, and the attacker’s goal is to recover more
information about an honest party’s input beyond the function output.

Comparison with Known Results. We place our black-box separation result in the context of known
black-box reductions and separations in the 2-PC literature. We begin by noting that [GKM+00] showed
a black-box separation between k-round and (k + 1)-round (maliciously secure) oblivious transfer (OT).
Coupled with the seminal result of Yao [Yao86] proving the (black-box) equivalence of k-round OT and
k-round 2-PC in the setting of semi-honest corruptions, this immediately yields a black-box separation
of k-round 2-PC from (k + 1)-round 2-PC in the same setting. However, this does not yield a black-box
separation result in the setting of malicious corruptions, which is our focus. In fact, extending the known
black-box separation results to the setting of general maliciously secure 2-PC seems technically challenging,
as outlined below.

Observe that an analogue of Yao’s result (i.e., a round-preserving black-box reduction of k-round 2-PC to
k-round OT) in the setting of malicious corruptions would immediately imply our result. However, to the best
of our knowledge, such a reduction is only known for the special case of k = 2 rounds [IKO+11, IKSS22],
and it is not clear how one might generalize these results to k > 2 rounds.
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Concretely, suppose that there was a round-preserving black-box reduction of k-round 2-PC to k-round
OT for any fixed k ≥ 2. Coupled with the black-box separation between k-round and (k + 1)-round
(maliciously secure) OT from [GKM+00], this would immediately yield a black-box separation between
maliciously secure k-round and (k + 1) 2-PC for any fixed k ≥ 2 (and thus imply our separation result).
However, to our knowledge, such a general round-preserving black-box reduction is not known in the
malicious corruption setting.

Alternatively, suppose that there was a round-preserving black-box reduction of k-round 2-PC to k-round
OT for some fixed k > 2 (this is a seemingly weaker assumption as compared to the one for the first
observation). Coupled with the black-box separation between k-round and (k+1)-round (maliciously secure)
OT from [GKM+00] and the known round-preserving black-box reduction of 2-round 2-PC to 2-round OT
from [IKO+11, IKSS22], this would immediately yield a black-box separation between maliciously secure
2-round and k-round 2-PC (but not k′-round 2-PC for some k′ ̸= k, thus implying a weaker version of our
separation result). Unfortunately, such a round-preserving reduction is, in fact, not known in the malicious
corruption setting for any k > 2. To summarize, our result is the first black-box separation of maliciously
secure 2-PC by rounds and is, to the best of our knowledge, not subsumed by known black-box reductions
and separations in the 2-PC literature.

An Observation on (Noisy) Multiparty NIKE. A natural question that extends our work is to ask if there
exists a structural characterization of k-party NIKE that would make it easy to black-box separate NIKE
protocols by number of parties (more precisely, show a black-box separation between (k+1)-party NIKE and
k-party NIKE). We give evidence that such a characterization is likely to require very different techniques (at
least generally for fixed k ≥ 2). In particular, we show that (for large enough k), a k-party NIKE protocol
black-box implies a slightly weaker variant of a (k + 1)-party NIKE protocol. We call a this weaker variant a
(k + 1)-party “2-noisy” NIKE protocol. Informally speaking, we say that a NIKE protocol is “ℓ-noisy” (for
ℓ > 1) if, instead of outputting a single shared key to all parties, the protocol outputs a total of ℓ candidate
keys to each party with the following properties: (a) one of the ℓ keys received by each party is guaranteed
to be shared by all parties, and (b) a passive eavesdropping (computationally bounded) adversary cannot
predict (with non-negligible property) any of the ℓ candidate keys received by each party.

For many practical applications (such as encryption), an ℓ-NIKE protocol in conjunction with a random
oracle offers the same functionality as a regular NIKE protocol, albeit less efficiently. We show that, for
large enough k, a k-party (regular) NIKE protocol implies (in a black-box manner) a (k + 1)-party 2-noisy
NIKE protocol. As we discuss in Section 5, this observation rules out the possibility of using our black-box
separation techniques, and more generally, the separation frameworks that we build upon [IR89, Rud92,
BM09], to black-box separate NIKE by number of parties.

1.2 Implications of Our Results

We show in this paper that structural characterizations of cryptoprimitives can be useful for black-box
separation results, and we believe the separations that we have shown in this work only scratch the surface of
what might be possible with these techniques. However, we also believe that characterizing cryptoprimitives
explicitly by their structure could have extremely useful applications (even beyond black-box separations).

One of the most interesting and relevant areas of cryptographic research today is post-quantum cryptogra-
phy. Many people today consider it worrisome that so many of our post-quantum cryptosystems are based on
(essentially) a single hard problem: finding short vectors in lattices. In fact, NIST [oST22] said the following
in their call for additional digital signatures: “NIST is primarily interested in additional general-purpose
signature schemes that are not based on structured lattices.” The text continues, later, “NIST is open to
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receiving additional submissions based on structured lattices, but is intent on diversifying the post-quantum
signature standards.” We consider it notable that an organization like NIST is willing to call out the lack of
post-quantum assumption diversity so directly.

But from where do new cryptographic assumptions come? Historically, the most trusted assumptions have
come from the world of mathematics[DH76, RSA78] [Ajt96, Cou06] and are usually based upon problems
that mathematicians have been studying for decades. We hope that explicitly defining cryptoprimitives as
mathematically structured objects will enable mathematicians and cryptographers to search more efficiently
for potentially new (post-quantum) assumptions for public-key cryptography, since they will know exactly
what kind of mathematical structure is required. Knowing that key exchange explicitly requires an abelian
monoid action, for instance, substantially restricts the kind of mathematical assumptions that could be used
to build key exchange, and thus may help researchers to narrow down the search for new key exchange
constructions. A similar argument applies to 2-PC (and, generally, any public-key cryptoprimitive).

1.3 Related Work

We discuss some related work here.

Black-Box Separations. There has been a substantial amount of work done on cryptographic black-box
separations and generic models. Some of the classical results include black-box separating collision-resistant
hash functions (CRHFS) from general assumptions [Sim98], separating PKE and oblivious transfer (OT)
[GKM+00], more general results on reducibility [RTV04], and generic cryptographic models [Sho97, Fis00].
We refer to [Fis12] for a survey of black-box reductions and separations in cryptography.

More recent results include an analysis of black box complexity of optimally-fair coin tossing [DLMM11,
BHMO18, HMO18, MW20, MW21], black box separating CRHFs from hierarchical identity-based encryp-
tion (IBE) schemes [MM16], black-box separating the notions of PPAD Hardness and standard crypto
assumptions [RSS17], showing limits on the usability of garbling for building PKE [GHMM18], and
separating two-round secure computation from OT [ABG+20]. There has also been work done on sepa-
rations between security notions [HK17] and compositions of reductions and the applicability to separa-
tions [CFM21]. Finally, quite a few recent works have focused on separations related to iO and advanced
primitives [FS10, GKLM12, AS15, AS16, MMN+16, GMM17a, GMM17b, BDV17].

Non-Black-Box Constructions. There are many examples of non-black-box constructions of cryptographic
primitives that manage to bypass black-box separation results. A notable example is Beaver’s two-round
OT extension protocol [Bea96], which bypasses a subsequently proposed black-box separation result for
two-round OT extension in [GMMM18]. Similarly, [BOV03] presents a non-black box construction of non-
interactive commitments from one-way functions, which bypasses a corresponding black-box separation result
in [MP12]. Additionally, non-black-box constructions of functional encryption (FE) from indistinguishability
obfuscation (iO) [BV15, AJ15] circumvent the result of [GMM17b] showing that it is impossible to build FE
from iO in a non-black box manner.

More recently, in a breakthrough result, Döttling and Garg showed a non-black construction of (hier-
archical) IBE from pairing-free CDH-hard groups [DG17a, DG17b], thereby bypassing known black-box
separations between IBE and DDH-hard groups [BPR+08, PRV12]. In another recent work [KNT18], the
known black box separation between public-key FE and secret-key FE [AS15] was bypassed via a non-black
construction.
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Implications of Black-Box Separations. Black-box separations are especially useful in the sense that
they indicate the necessity of resorting to non-black techniques when trying to build certain primitives from
other primitives. In particular, for certain advanced cryptographic primitives such ad FE and iO, there exist
many instances of non-black-box constructions of these primitives from other primitives/assumptions from
which they have been black-box separated. However, in the case of certain simpler primitives (e.g. one-way
functions and PKE), classical box-box separation results seem less likely to be circumvented. For example,
a non-black-box construction of PKE from one-way functions would bypass [IR89, BM09] and collapse
Cryptomania and Minicrypt into the same world [Imp95].

Other Related Work. We finally mention some other related work. The (black-box) impossibility of
blind signatures from one-way permutations was shown in [KSY11], which was nice example of a sep-
aration between primitives. There have been a number of interesting results on one-way functions and
trapdoor functions, including [GMR01, MM11]. Black-box separations have also been extensively studied
in the context of commitment schemes and MPC [HK05, IKLP06, HHRS07], as well as oblivious trans-
fer (OT) [GKM+00, Hai08]. Finally, we refer to fundamental work on lower bounds on signatures from
symmetric primitives [BM07] and generic oracles and oracle classes [BI87].

1.4 Paper Outline

The rest of the paper proceeds as follows. Section 2 presents a more detailed overview of our techniques.
Unfortunately, our detailed results and proofs are rather long, but we hope that reading this section makes all
of our results intelligible.

Section 3 presents the formal details of our first result, namely separating (two-party) KE by rounds, and
is sub-organized as follows. Sections 3.1 prove that any KE protocol is equivalent to the existence of an
abelian monoid action equipped with certain natural hardness properties. Sections 3.3 and 3.4 build upon
this equivalence result to present a proof of black-box separation of k-round KE from (k + 1)-round KE.
Section 4 presents the formal details of our second result, namely separating maliciously secure 2-PC by
rounds, and is sub-organized as follows. Section 4.1 proves that any 2-PC protocol satisfying malicious
security is equivalent to the existence of abelian monoid action equipped with certain additional structure
and hardness properties. Sections 4.2 and 4.3 again build upon this equivalence result to present a proof of
black-box separation of semi-honest secure k-round 2-PC from (k + 1)-round 2-PC satisfying malicious
security, where both protocols support computing symmetric functionalities. Section 4.4 generalizes this
black-box separation separation result to 2-PC protocols for asymmetric functionalities. Section 5 presents
some observations on (noisy) multiparty NIKE.

2 Technical Overview

In this section, we provide a more detailed technical overview of the results in the paper. A core component
of our work will be monoids and monoid actions. Informally speaking, a monoid is a weakening of a group
in the sense that the requirement of unique inverses does not hold. Similarly, a monoid action is a weakening
of a group action [BY91, Cou06, CLM+18, CLM+18] where the group is replaced by a monoid. We define
these objects somewhat informally below. For a thorough treatment, please see Definitions 3.1 and 3.2 in
Section 3.1.

Definition 2.1 (Monoid). A monoid is defined as a tuple (M,⊕) where M is a set and ⊕ : M ×M →M
is an operation with the following properties:
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• Closure: for all g1, g2 ∈M , we have g1 ⊕ g2 ∈M .

• (Left) Identity: there exists an element e ∈M such that for all g ∈M , we have e⊕ g = g.

• Associativity: for all g1, g2, g3 ∈M , we have (g1 ⊕ g2)⊕ g3 = g1 ⊕ (g2 ⊕ g3).

Finally, a monoid (M,⊕) is said to be commutative (or equivalently, abelian) if for any pair of elements
g1, g2 ∈M , we have g1 ⊕ g2 = g2 ⊕ g1.

Definition 2.2 (Monoid Action). A monoid (M,⊕) (as defined above) is said to act on a set X if there
exists a map ⋆ : M ×X → X that satisfies the following two properties:

1. Identity: If e is the identity element of M , then for any x ∈ X , we have e ⋆ x = x.

2. Compatibility: For any g, h ∈M and any x ∈ X , we have (g ⊕ h) ⋆ x = g ⋆ (h ⋆ x).

We use the notation (M,X, ⋆) to denote a monoid action. Furthermore, we say that a monoid action (M,X, ⋆)
is a commutative monoid action if the monoid M is itself commutative. Moreover, we emphasize that the set
X itself may be extremely unstructured: for instance, it may not be possible to efficiently sample a random
element of X , and it may not even be possible to test if something is a member of X . There may be inputs
(represented as bit strings) to monoid action computation algorithms that “work” in some way that are not set
elements; but we are not concerned (at least from the point of view of the definition) with what happens on
malformed operations.1 We note that [ADMP20] has a thorough discussion on these limitations of sets in the
context of group actions; these discussions also apply to our treatment of monoid actions.

String Concatenation Monoids and Monoid Actions. In our constructions and separations, we will use a
natural class of monoids, called string concatenation monoids. If we let S denote the set of bit strings of
length a multiple of some integer ℓ with a “null string” which we denote ϵ, then we can define a monoid (S, ·)
where · denotes the string concatenation operation. It is straightforward to see that the usual properties of a
monoid hold:

• Identity : ϵ is the identity element.

• Associativity : for a, b, c ∈ S, a · (b · c) = a||b||c = (a · b) · c.

• Closure : If a, b ∈ S, then a · b ∈ S since a · b will have length a multiple of ℓ.

Given a string concatenation monoid, we can also define a string concatenation monoid action, which is
a tuple (M,X, ⋆) consisting of a string concatenation monoid, a set, and the usual mapping.

Further Extensions for Our Proofs. While a monoid action itself is just a manifestation of mathematical
structure, we can endow monoid actions with various cryptographic properties as well: for instance, a monoid
action is one-way if, given randomly chosen set elements x1, x2 ∈ X , it is hard to find an element m ∈M
such that m ⋆ x1 = x2.

1When we consider “cryptographic” monoids and monoid actions, our security definitions will rule out adversaries learning
anything useful from these sorts of malformed inputs.
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We will also utilize what we call call k-commutator string concatenation monoid actions. Suppose
we consider a string concatenation monoid action, but we add the constraint that, for some k > 0, for all
a, b ∈M , and all x ∈ X , we have

(a · b)k ⋆ x = (b · a)k ⋆ x.

We note that such a string concatenation monoid action is still a valid monoid action, since it does not violate
any of the axioms of a monoid action. In fact, when k = 1, it satisfies the standard notion of an abelian
monoid action.

Looking ahead, we will also introduce another very useful constraint: the ability to limit the number of
monoid operations performed. We can add another rule to our monoid (and monoid action) that does this:
if the string in our string concatenation monoid becomes a certain length, we immediately map it to some
terminal element ⊥. Note that this extra rule doesn’t violate the identity, closure, or associativity properties
of the monoid (but it would not work for a group since we would be eliminating unique inverses). This extra
rule will let us restrict the viable computations in monoids and monoid actions, which will be very useful for
both modeling key exchange and arguing separations.

2.1 Key Exchange Is Equivalent to a “Hard” Abelian Monoid Action

We start by proving that two-party non-interactive key exchange (KE) is equivalent to an abelian monoid
action with distributional unpredictability. To our knowledge, this constitutes the first proof that KE inherently
requires algebraic structure, and provides a natural characterization of KE in terms of algebraically structured
primitives.

Building Key Exchange. Group actions [BY91, Cou06] have a long history in cryptography and have
recently seen increased interest due to the fact that secure elliptic curve isogeny-based protocols can of-
ten be modeled as group actions [CLM+18, ADMP20]. Popular isogeny-based KE protocols such as
CSIDH [CLM+18] can be thought of as instantiations of abelian group actions where the group action
computational Diffie-Hellman problem (GA-CDH problem) holds.

In this section, we show that this structure–an abelian group action where the GA-CDH problem holds–is
almost necessary for the existence of KE! We only need to weaken the group (action) to a monoid (action),
which only relaxes the requirement of the existence of unique inverses in the group. The “distributional
unpredictability” requirement of the monoid action could certainly be rephrased as “the monoid action–CDH
problem is hard” except for the fact that the CDH problem typically assumes that a challenge element is
sampled uniformly at random, which may not be possible for certain monoids (the existence of unique inverses
is assumed for many sampling algorithms). Since CDH is, at its heart, a computational unpredictability
problem, we bake an efficient sampling algorithm for the monoid elements into our core requirement for KE
and thus arrive at “computational unpredictability”.

In [ADMP20], the authors define a KE protocol based on a group action,1 and we show in this paper how
to extend this protocol from groups to (abelian) monoid actions. Our protocol works as follows:

• Setup : Output pp = x← X .

• GenA(pp) : Set rA = mA ←M and output sA = mA ⋆ x.

• GenB(pp) : Set rB = mB ←M and output sB = mB ⋆ x.

1Constructing KE from group actions was known before [ADMP20] (and dates to at least 1997 [Cou06]), but we choose to mimic
their presentation here.
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• CombineA(rA, sB) : Output kAB = mA ⋆ sB .

• CombineB(rB, sA) : Output kBA = mB ⋆ sA.

If we simply replaced the monoid M with a group, then we would immediately recover the key exchange
protocol from [ADMP20]. The authors of [ADMP20] focus on regular group actions1, so their protocol and
assumptions can be quite simply stated. Informally speaking, they rely on the group action-CDH assumption
(GA-CDH), which states that, for a group action (G,X, ⋆), g, h← G and x← X , given x, g ⋆ x, and h ⋆ x,
it is hard to construct gh ⋆ x.

As we alluded earlier, using monoids instead of groups introduces some complications around sampling el-
ements. For instance, sampling uniformly from a monoid could be difficult (the leftover hash Lemma [ILL89]
holds over groups but not necessarily all monoids), and, looking ahead a little bit, the distributions over the
monoid induced by KE protocols might also use distributions that aren’t uniform over the monoid. Hence, we
now describe a new primitive that we call a distributional unpredictable monoid action. Informally speaking,
this is a monoid action where the “monoid action CDH problem” holds, but we have to be a little bit careful
in defining this due to the reasons stated in the previous paragraph. More concretely, we take an abelian
monoid action as defined above and endow it with a certain hardness property that we call distributional
unpredictability. We describe this property in more details below.

Let (M,X, ⋆) be a monoid action such that the set X supports efficient representation, and such that
the “action operation” ⋆ is efficiently computable. Also let DM,b for b ∈ {0, 1} and DX denote distributions
over (subsets of) M and X , respectively, such that one can efficiently sample a monoid element g ← DM,0,
a monoid element h ← DM,1 and a set element x ← DX as per the distributions DM,0, DM,1 and DX ,
respectively. We define the following experiment (parameterized by the distributions DM,0, DM,1, and DX )
between a challenger and a probabilistic polynomial-time adversary A:

Experiment ExptDM,0,DM,1,DX
:

1. The challenger samples a pair of group elements (g, h) as g ← DM,0 and h ← DM,1, and a set
element x← DX , and provides the tuple (x, g ⋆ x, h ⋆ x) to the adversary A.

2. The adversary A responds with a set element y ∈ X .

We say that the adversary A wins the experiment if y = (g ⊕ h) ⋆ x.

Definition 2.3 (Distributional Unpredictable Monoid Action (Definition 3.4, restated)). A monoid action
(M,X, ⋆) with an efficiently computable action operation is said to satisfy distributional unpredictability with
respect to the triplet of distributions (DM,0,DM,1,DX) and with respect to some security parameter λ if for
any probabilistic polynomial-time adversaryA, the probability thatA wins the experiment ExptDM,0,DM,1,DX

is negligible in the security parameter λ.

This “distributional” unpredictable monoid action definition can just be thought of as an extension of the
definition of a weak unpredictable group action from [ADMP20]–essentially, as we have suggested before,
a group action where the GA-CDH problem is hard–to monoids, with the added caveat that we are not

1A regular group action is a group action that is free and transitive. Informally there is a (not generally efficiently computable)
isomorphism between the group and the set in a regular group action.
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necessarily sampling uniformly over the monoid. Since we are primarily focused in this section on abelian
monoid actions, we will refer to a distributional unpredictable commutative monoid action as a DUCMA. We
are now in position to show the equivalence between DUCMA and KE.

Theorem 2.4 (DUCMA→ Two-Party NIKE). A two-party NIKE protocol can be built in a black-box
manner from a secure DUCMA as in Definition 2.3.

Proof. Our construction is the KE protocol as described above, where the starting set element x ∈ X is
sampled from DX , and the players A and B use the distributions DM,0 and DM,1 for sampling their monoid
elements, respectively. With this in mind, the proof is almost immediate. Correctness follows from the
commutativity of the monoid action, and the security proof is also simple: any adversary that can break the
KE protocol can be used to break the security of the DUCMA, since the KE is essentially a protocol version
of the DUCMA security experiment.

We offer a more formal version of this proof in Section 3.1. We now prove the reverse statement, which
is substantially more involved.

Theorem 2.5 (Two-Party NIKE→ DUCMA). Any two-party NIKE protocol can be used to build a DUCMA
satisfying Definition 2.3.

Proof. To prove this theorem, we show how to construct a monoid action (M,X, ⋆) that satisfies the definition
for DUCMA (Definition 2.3) with respect to the triplet of distributions (DM,0,DM,1,DX). We assume the
existence of a two-party NIKE protocol consisting of the following algorithms:

• GenA : PP ×RA → SA.

• GenB : PP ×RB → SB .

• CombineA : PP ×RA × SB → K.

• CombineB : PP ×RB × SA → K.

Constructing the Monoid. We begin by describing how to construct the monoid (M,⊕) underlying the
monoid action (M,X, ⋆). Recall that any two-party NIKE protocol in our definition is associated with a
pair of sets RA and RB , denoting the set of secret states for parties A and B, respectively. We define the
following auxiliary sets:

RA,B = {rA||rB : rA ∈ RA, rB ∈ RB}, RB,A = {rB||rA : rB ∈ RB, rA ∈ RA}.

At this point, we define the set M in the monoid (M,⊕) as:

M = RA ∪RB ∪RA,B ∪RB,A ∪ {eM ,⊥M},

where eM is a special “identity” element and ⊥M is a special “terminal” element. Next, we define the
associated monoid operation ⊕ as follows:

• For any rA ∈ RA and any rB ∈ RB , define rA ⊕ rB = rB ⊕ rA := rA∥rB .

• For any α ∈M , define eM ⊕ α = α⊕ eM := α.

11



• For any (α, β) ∈M ×M such that α, β ̸= eM and (α, β) /∈ RA×RB and (α, β) /∈ RB ×RA, define
α⊕ β = ⊥M .

Lemma 2.6. (M,⊕) is a commutative monoid.

Proof. Closure, associativity and commutativity are immediate by construction. Also, eM serves as the
identity element for M .

Remark 2.7. Note that for simplicity of exposition, we assume here that the sets RA and RB support efficient
representations. In case this is not true, we equivalently represent an element rA (resp., rB) sampled according
to the distribution DA (resp., DB) using the random coins input to the sampling algorithm (any element that
cannot be sampled according to these distributions does not appear in the monoid M ).

Constructing the Set. Next, we define the set X as follows:

X = (PP ∪ {⊥X})× (SA ∪ {⊥X})× (SB ∪ {⊥X})× (K ∪ {⊥X})

where PP denotes the set of possible public parameters for the two-party NIKE protocol, SA and SB denote
the set of possible output shares for A and B, respectively, K denotes the set of possible final keys on which
A and B could agree, and ⊥X is a special “terminal” symbol.

At a high level, a set element captures the gradual evolution of the public transcript of messages exchanged
at various stages of the protocol, as well as the final computation of the shared key. In particular:

• A set element of the form (pp,⊥X ,⊥X ,⊥X) represents the transcript of messages from the point of
view of either party A or party B before the start of the protocol.

• A set element of the form (pp,⊥X , sB,⊥X) represents the transcript of “received” messages from the
point of view of party A after the first round of protocol execution.

• A set element of the form (pp, sA,⊥X ,⊥X) represents the transcript of “received” messages from the
point of view of party B after the first round of protocol execution.

• A set element of the form (pp, sA, sB, kAB) represents the transcript of messages and the final secret
key after the completion of the protocol (from the point of view of both parties A and B).

Defining the Action. We define the action ⋆ : M ×X → X . We make use of the functions associated with
any two-party NIKE protocol as defined above to define the action operation ⋆ : M ×X → X as follows:

• For any x = (x0, x1, x2, x3) ∈ X , define
eM ⋆ (x0, x1, x2, x3) := (x0, x1, x2, x3).

• For any rA ∈ RA and pp ∈ PP , define
rA ⋆ (pp,⊥X ,⊥X ,⊥X) := (pp,GenA(pp, rA),⊥X ,⊥X).

• For any rB ∈ RB and pp ∈ PP , define
rB ⋆ (pp,⊥X ,⊥X ,⊥X) := (pp,⊥X ,GenA(pp, rB),⊥X).

• For any rA ∈ RA, any pp ∈ PP , and any sB ∈ SB , define
rA ⋆ (pp,⊥X , sB,⊥X) := (pp,GenA(pp, rA), sB,CombineA(pp, rA, sB)).
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• For any rB ∈ RB , any pp ∈ PP , and any sA ∈ SA, define
rB ⋆ (pp, sA,⊥X ,⊥X) := (pp, sA,GenB(pp, rB),CombineB(pp, rB, sA)).

• For any rA ∈ RA, any rB ∈ RB , and any pp ∈ PP define
(rA∥rb) ⋆ (pp,⊥X ,⊥X ,⊥X) :=

(pp,GenA(pp, rA),GenB(pp, rB),CombineA(pp, rA,GenB(pp, rB))).

• All other action operations output the “terminal” element (⊥X ,⊥X ,⊥X ,⊥X).

Lemma 2.8 (Lemma 3.16, restated). The monoid action (M,X, ⋆) satisfies identity and compatibility if
the two-party NIKE protocol satisfies correctness.

Proof. We defer the detailed proof to Section 3.1 (see proof of Lemma 3.16).

Putting together Lemma 2.6 and Lemma 2.8, we have that the tuple (M,X, ⋆) is indeed a commutative
monoid action. Finally, it follows immediately from the security of the two-party NIKE protocol that the
group action (M,X, ⋆) satisfies distributional unpredictability with respect to the distributions DM,b for
b ∈ {0, 1} and DX defined as DM,0 := DA, DM,1 := DB , and DX := Dpp, where DA, DB and Dpp are the
efficiently sampleable distributions over the sets RA, RB and PP in our definition of two-party NIKE. This
establishes that the group action (M,X, ⋆) indeed satisfies the definition for DUCMA (Definition 2.3), and
completes the proof of Theorem 3.13. □

In Section 3.1, we extend the above result to key exchange for an arbitrary number of rounds using the
following theorem:

Theorem 2.9 (Informal). (2k − 1)-round KE is equivalent to a “hard” monoid action where the k-commutators
of the monoid are equal under black-box reductions.

In addition, we show how to handle non-perfectly correct key exchange protocols and discuss implications
related to cryptography and mathematical structure in Section 3.1.

2.2 Separating KE by Round

2.2.1 Background: The Barak-Mahmoody Proof [BM09].

In [BM09], Barak and Mahmoody show how to improve the seminal result of Impagliazzo and Rudich [IR89],
proving that KE (of any round length) cannot be built in a black-box way from random oracles (and hence,
from one-way functions). Both [IR89] and [BM09] use similar techniques, but for the discussion below, we
prefer to use the more modern presentation, efficiency, and proof techniques of [BM09].

Suppose Alice and Bob want to perform a KE in the presence of an eavesdropper Eve, and all parties
have access to a random oracle. In addition, assume that all parties have access to an NP oracle (an oracle
that can find witnesses for all statements in NP). Informally speaking, this is assumed to ensure that Alice
and Bob cannot use any hardness assumptions other than what is provided by the random oracle. All parties
start with the description of the KE protocol and any setup parameters. Initially, Alice, Bob, and Eve all share
the same amount of information. Alice and Bob can make queries to the random oracle without Eve knowing,
which can potentially give them information that Eve does not have. But what [IR89] and [BM09] show is
that, informally, if Eve queries all of the random oracle queries that Alice and Bob are (individually) likely to
make, then Eve will likely end up querying all of the queries that both Alice and Bob make, which they refer
to as intersection queries. Both sets of authors then show that if Eve queries all of the intersection queries
that Alice and Bob make during the protocol, Eve can efficiently recover the final shared key of Alice and
Bob with reasonable probability.
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2.2.2 Our Techniques.

We now explain how we can apply the core argument of [BM09] to our structural observations on commutative
(or k-commutative) monoid actions in order to separate KE by round. Our proofs rely crucially on generic
oracles based on commutative monoids (or k-commutator monoid actions). As in our prevous results, we will
use string concatenation monoids and monoid actions because they are extremely simple.

A k-commutator String Concatenation Monoid Action Oracle. In order to argue lower bounds on KE,
we use a “generic version” of a k-round KE protocol. To do this, we define what we call a generic string
concatenation monoid action (SCMA) oracle. We note that this “generic oracle technique” is analogous to
previous work [IR89, BM09] where a random oracle was used as a “generic version” of a one-way function
and [Rud92] where a “structured” random oracle was used except for the fact that we directly incorporate
mathematical structure into our oracles (in a way more reminiscent of a generic group proof [FKL18]).

Our k-SCMA oracle will essentially work as a modified random oracle (or, in a more general sense, a
family of random oracles with arbitrary input and output lengths). Let Mκ be a string concatenation monoid
where the “base” strings of the monoid are the empty string and all strings of length κ up to length 2kκ. In
other words, Mκ contains all binary strings of some length t2κ for t ∈ [0, k] and no other strings. We will
also let Xκ be a set defined by strings of length ckκ for some small constant c.

The k-SCMA oracle M is an oracle that allows queries to (all) maps of the form Mκ : Mκ ×Xκ → Xκ.
In other words, we let the k-SCMA (sub-)oracle Mκ (·, ·) take as input a string from the appropriate monoid
Mκ and a “set element” in Xκ, represented by either a previous output from the oracle or a predefined value
for a “base point” x0 given in the description of the oracle (this is analogous to giving out some initial
elements in a generic group algorithm, and this base point will be the same for all of the sub-oracles). For
now, suppose that we have a single base point x0 and that every set element in the action is “reachable” from
x0. These will be assumptions implicit in our proofs.

To evaluate Mκ on input string s ∈Mκ and set element x ∈ Xκ, we first compute (or simulate computing)
the string s′ such that x = s′ ⋆ x0. We then check to make sure that s̃ = s||s′ is not over any limit in terms of
length (ckκ in our case) and if it is, we will map to ⊥. Note that we check that κ divides the length of both s
and s′, unless it is zero, as this is a condition of s being contained in Mκ. Otherwise, in most cases we will
compute the random oracle on s||s′ and return that as the output of the oracle. If s̃ forms a string that has a
“commutator element”–i.e. s̃ can be written as (a∥b)k for some k, then we use some lexicographical metric
on the bits of the element representation to choose one of the equivalent values of s̃ to use as the input to the
random oracle.

Note that we can think of each Mκ as analogous to a single random oracle (i.e. one with a fixed
input/output length) and M itself as analogous to a random oracle with all possible input and output lengths,
allowing us to prove something about a key exchange model analogous to the random oracle model. This is
inspired from the description of the random oracle model in [BM09].

Separating 2k-round and (2k + 1)-round KE. We now provide an abbreviated version of our result
separating 2k-round KE protocol from (2k + 1)-round KE protocol. We also present an analogous result
that separates (2k − 1)-round KE from 2k-round KE, which uses very similar proof arguments, and is not
detailed separately in the main body. Informally, we prove that there exists no relativizing reduction from
2k-round KE to (2k + 1)-round KE. This is captured by the following theorem.

Theorem 2.10 (KE Separation Theorem (Theorem 3.48, restated)). For any fixed k ∈ N, relative to a
k-SCMA oracle M = {Mκ}κ∈N, there exists a secure (2k + 1)-round KE protocol but no secure 2k-round
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KE protocol.

The proof of this theorem follows from Theorems 2.11 and 2.12, stated below.

Theorem 2.11 (KE from SCMA (Theorem 3.49, restated)). Given any fixed k ∈ N and a security param-
eter κ ∈ N, there exists a (2k + 1)-round secure KE protocol relative to a (k + 1)-SCMA sub-oracle
Mκ.

Proof Overview. The proof of this theorem (detailed in Section 3.3) closely follows the proof of Theo-
rem 2.9, which states that there exists a (black-box) construction of multi-round KE from any monoid action
where the k-commutators of the monoid are equal. The main difference between the two proofs is that
the construction of (2k + 1)-round KE from a (k + 1)-SCMA sub-oracle is unconditionally (statistically)
secure as it provably takes a super-polynomially large number of queries to break the corresponding hardness
assumptions over a (k + 1)-SCMA sub-oracle. Therefore, this result should be interpreted along similar to a
line of works on feasibility results based on idealized assumptions [Sho97, FKL18].

We now state our core technical theorem, which (informally) states that there exists no 2k-round KE
protocol relative to a (k + 1)-SCMA oracle. The formal theorem statement is as follows.

Theorem 2.12 (KE Attack Theorem (Theorem 3.56, restated)). For a fixed k ∈ N, let M = {Mκ}κ∈N be
a (k + 1)-SCMA oracle. Let Π be a 2k-round KE protocol between parties Alice and Bob such that: (i) Alice
makes at most nA queries to M, uses randomness rA and outputs sA, and (ii) Bob makes at most nB queries
to M, uses randomness rB , and outputs sB , such that Pr[sA = sB] > ρ, where the probability is taken over
the choice of (rA, rB,M) describing the execution of the protocol. Then for every 0 < δ < ρ, there exists an
attacker Eve that only has access to the public messages exchanged between Alice and Bob, makes at most
O(poly(nA, nB, k)/δ

2) queries to M, and produces an output sE such that Pr[sE = sB] > ρ− δ.

Proof Overview. As mentioned earlier, we essentially prove the impossibility of constructing a 2k-round
KE protocol where Alice and Bob only make queries to a (k + 1)-SCMA oracle. At a high level, we rely
on the observation that, except for the “commutative” queries – in other words, queries that evaluate an
action of the form (a · b)k+1 ⋆ x0 for some a, b ∈ M – the (k + 1)-SCMA oracle is no more powerful
than any ordinary random oracle. Note that whenever Alice and Bob issue a query of the form (monoid
element, set element), where the monoid element is a bit-string, there exists an equivalent execution of the KE
protocol where they arrived at this query by “splitting up” their queries to the maximum extent possible (i.e.,
querying Mκ (a,Mκ (b, x)) instead of Mκ (a · b, x)). In our proof, we will use a special form of a 2k-round
KE protocol where we “force” Alice and Bob to split up their queries in this manner. We argue that if there
does not exist a secure KE protocol of this special form in 2k rounds, then there exists no secure KE protocol
of 2k rounds. We briefly explain why this is the case below.

Given a secure 2k-round KE protocol, we can create a new KE protocol of 2k rounds where Alice and
Bob additionally make the “split-up” versions of their original queries to the (k + 1)-SCMA oracle, and then
simply ignore the outputs of these additional “split-up” queries. We then argue that this only incurs at most a
polynomial blow-up in the number of queries as long as Alice and Bob make at most polynomially many
queries. Additionally, the view of the adversary Eve in this modified protocol is exactly the same as in the
original protocol, as the distribution of the messages exchanged between Alice and Bob remains the same.
This allows us to argue that any 2k-round KE implies a 2k-round KE protocol in the special form.

Observe that the contrapositive of this fact is that if there does not exist a secure KE protocol in 2k rounds
where we split queries, then there does not exist any secure KE protocol of 2k rounds. This enables us to
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solely consider protocols in this special form. At a high level, we use the fact that Alice and Bob necessarily
split their queries to the (k + 1)-SCMA oracle to argue that if Alice and Bob issue a query that results in
the same output, then there must exist a corresponding query made by both Alice and Bob where they used
the same inputs. This reduces all queries where Alice and Bob received the same output to the “traditional”
definition of intersection queries, and we can handle such queries using the [BM09] framework. We expand
on our proof approach below.

Handling “Commutative” Queries. The crux of our proof lies in arguing that for a KE protocol in 2k rounds
where Alice and Bob necessarily “split” their queries, a (k + 1)-commutator oracle does not help Alice
and Bob to ask “commutative” queries that Eve cannot also ask. To see why, recall how a (k + 1)-SCMA
M : Mκ ×Xκ → Xκ would be used to realize a (2k + 1)-round KE.

• Given the base element x0, Alice would sample some a ∈Mκ and obtain Mκ(a, x0), while Bob would
sample some b ∈ Mκ and obtain Mκ(b, x0). Alice and Bob would then exchange their first-round
messages, where Alice sends Mκ(a, x0) to Bob and Bob sends Mκ(b, x0) to Alice.

• In the next round, Alice would obtain Mκ(a · b, x0) = Mκ (a,Mκ (b, x0)), and Bob would obtain
Mκ(b ·a, x0) = Mκ (b,Mκ (a, x0)). Alice and Bob would then exchange their second-round messages,
where Alice sends Mκ(a · b, x0) to Bob and Bob sends Mκ(b · a, x0) to Alice.

Observe that by repeating this process for (2k + 1) rounds and asking a final query to the (k + 1)-SCMA
oracle, Alice and Bob would have obtained Mκ((a · b)k+1 , x0) = Mκ((b · a)k+1 , x0), which they can use
as the final secret key. Note that this computation requires the full (2k + 1) rounds.

Let us now examine what happens if Alice and Bob try to exploit the “commutative” property of the
(k + 1)-SCMA oracle in less than (2k + 1) rounds. They must generate some (effective) query of the form
M((a · b)k+1, x0) – which we call an equivalence query – with less than (2k + 1) rounds of communication.
When “building up” to such an equivalence query that gives Alice and Bob the same final set element via
two different query sequences in less than (2k + 1) rounds, Alice and Bob cannot only issue queries to the
(k + 1)-SCMA where the monoid element is either a or b like in the (2k + 1)-round KE protocol outlined
above. In particular, by the pigeonhole principle, at least one of Alice or Bob must compute a query involving
both the elements a and b, or they must guess a set element which is the output of a query of the form
Mκ (s, x0) where s is a string of the appropriate length consisting entirely of alternating concatenations of as
and bs (i.e. (ab)n for some n < k, for instance).

We will start by considering the first case. Suppose for the purpose of analysis that it is Alice that makes
such a query to the (k+1)-SCMA oracle. In this case, we know that Alice must explicitly know both a and b.
This is where we use the fact that our monoid is string concatenation: if it were some other monoid, it might
be possible that Alice made a query of the form Mκ (a · b, x) or Mκ (b · a, x) without explicitly knowing
a and b. Moreover, in this case Alice and Bob must both have queried some string including b before any
equivalence queries were computed, and since Alice knows both a and b, she would be capable of computing
every possible way to compute Mκ((a · b)k+1, x0) using the oracle Mκ. This is already strong evidence that
the commutativity of the (k + 1)-SCMA oracle is not useful (and thus we can rely on the core arguments of
the [BM09] framework) – the main challenge lies in rigorously formalizing this intuition.

To handle the second case, if Alice and Bob in total make more than ϵ2

k 2
2κ queries for some particular κ,

we just let Eve brute-force all equivalence queries in Mκ. Note that this takes O (k) 22κ queries from Eve,
and Eve does this for at most O (κ log k) sub-oracles, which doesn’t asymptotically change the complexity
of the number of queries of Eve’s attack. To see why this works, first note that if Eve queries all of the
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equivalence queries of any Mκ, then it is no more useful than an ordinary random oracle. Furthermore, the
probability of either Alice or Bob guessing a set element that could be used to “build” an equivalence query is
O (k) 22κ ∗ 2−ckκ. This is because there are O (k) 22κ possible such queries and 2−ckκ possible set elements
in Xκ. Therefore, by a union bound, the probability of Alice or Bob making such a query is at most 1

ϵ2
for

any Mκ and this probability decays exponentially in κ for c large enough.

A Modification to Handle Equivalence Queries. Suppose we further specialize the form of the KE protocol
as follows: if Alice (resp., Bob) computes a query of the form M(s, x) such that s is a string involving
only two elements a and b in some alternating sequence (i.e. ababa), then she (resp., he) uses this as a
“trigger” to additionally compute all possible equivalence queries that could lead to either M((a ·b)k+1, x0) or
M((b · a)k+1, x0). A simple counting argument shows that there are only (4k + 6) such equivalence queries.
We refer to this special form of KE protocol where Alice and Bob necessarily ask these additional queries as
equivalence-complete. As we did before with “splitting” queries, we can now use an analogous contrapositive
argument to show that we only need to consider KE protocols that are equivalence-complete. We rigorously
formalize this thought in Section 3.3 by stating and proving the following two lemmas, which essentially
establish that equivalence queries follow intersection queries unless set elements are luckily guessed.

Lemma 2.13 (Lemma 3.61, restated). Let Q(i)
A and Q

(i)
B be the set of queries issued by Alice and Bob to a

generic (k+1)-SCMA oracle M : M ×X → X until round i of a 2k-round KE protocol with an equivalence
complete query pattern. Suppose that there is an equivalence query pair (qA, qB) = ((sA, xA), (sB, xB)) ∈
Q

(i)
A ×Q

(i)
B such that there exist monoid elements (i.e., strings) s′A, s

′
B ∈M such that

xA = M(s′A, x0), xB = M(s′B, x0), sA · s′A = sA∥s′A = sB∥s′B = sB · s′B.

and that Alice and Bob are only given the base set element x0 at the beginning of the KE protocol. Then there
exists a set intersection queries S ⊂ Q

(i)
A ∩Q

(i)
B such that if Eve asks each query in S, she asks a query that

is equivalent to both the queries qA and qB .

Lemma 2.14 (Lemma 3.62, restated). Let Q(i)
A and Q

(i)
B be the set of queries issued by Alice and Bob to a

generic (k + 1)-SCMA oracle M : M ×X → X till round i of a 2k-round KE protocol with an equivalence
complete query pattern. Suppose that there is an equivalence query pair (qA, qB) ∈ Q

(i)
A ×Q

(i)
B such that

there exist monoid elements (i.e., strings) a, b, s′A, s
′
B ∈M , such that for some κ

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA · s′A = (a · b)k+1, sB · s′B = (b · a)k+1,

and that Alice and Bob are only given the base set element x0 at the beginning of the KE protocol. Then one
of the following must be true: either we must have qA ∈ Q

(i)
A ∩Q

(i)
B or qB ∈ Q

(i)
A ∩Q

(i)
B , or one of Alice

or Bob issues an SCMA oracle query of the form (s∗, x∗) such that x∗ was not the output of any SCMA oracle
query made by either Alice or Bob, but x∗ can be used to potentially build up to an equivalence query (i.e.,
either Alice or Bob guess x∗).

As already argued above, the probability of a random guess decays exponentially in κ. Hence, from the
above lemmas, we know that if any equivalence query of the form M((a · b)k+1 , x0) = M((b · a)k+1 , x0) is
computed by Alice and Bob, one of them (assumed to be Alice) must have computed a query of the form
M(s, x) such that s involves both a and b, and no other element. But this is precisely what we referred to as a
“trigger” query, and by our definition of equivalence-complete KE, Alice necessarily computes all possible
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equivalence queries that could lead to either M((a · b)k+1, x0) or M((b · a)k+1, x0). Now, since Bob must
query one of these equivalence queries to also arrive at M((b·a)k+1, x0), there must exist an intersection query
for Alice and Bob, and if Eve finds this query, she can also compute M((a · b)k+1 , x0) = M((b · a)k+1 , x0).
In other words, for any equivalence-complete KE protocol with 2k rounds, any equivalence query w.r.t.
the (k + 1)-SCMA oracle that can be computed within 2k rounds is also an intersection query. This again
effectively reduces all equivalence queries that rely on the commutative property of the (k+1)-SCMA oracle
to the “traditional” notion of intersection queries, and we can again handle such queries using the [BM09]
framework.

The following auxiliary theorem captures this result, which we prove formally in Section 3.3 (the changes
from Theorem 3.56 are highlighted in red).

Theorem 2.15 (Auxiliary KE Attack Theorem (Theorem 3.65, restated)). For a fixed k ∈ N, let M =
{Mκ}κ∈N be a (k + 1)-SCMA oracle. Let Π be a 2k-round KE protocol between parties Alice and Bob
such that: (i) Alice makes at most nA queries to M, uses randomness rA and outputs sA, and (ii) Bob
makes at most nB queries to M, uses randomness rB , and outputs sB , and (iii) the query pattern for Alice
and Bob is equivalence-complete, such that Pr[sA = sB] > ρ, where the probability is taken over the
choice of (rA, rB,M) describing the execution of the protocol. Then for every 0 < δ < ρ, there exists an
attacker Eve that only has access to the public messages exchanged between Alice and Bob, makes at most
O(poly(nA, nB, k)/δ

2) queries to M, and produces an output sE such that Pr[sE = sB] > ρ− δ.

Combining this with our earlier lemmas (Lemmas 2.13 and 2.14, showing that any general adversary can
be modified into an adversary that only uses equivalence-complete query patterns) allows us to complete
the proof of Theorem 2.12; see Section 3.3 for the full formality. Finally, we point out that an argument
very similar to the one outlined above allows us to separate (2k − 1)-round KE from 2k-round KE. In fact,
the only change that we need to make is to slightly tweak the commutator-property of the (k + 1)-SCMA
oracle so that it allows secure 2k-round KE protocol, but cannot be used to build a secure (2k − 1)-round KE
protocol. We elaborate more on this in Section 3.4.

Comparison to Rudich’s Separation [Rud92]. In his ground-breaking work [Rud92], Rudich separates
k and (k + 1)-round KE by constructing an oracle that enables k + 1-round KE and then shows that it is
black-box impossible to build k-round KE from this oracle. We note that, more precisely, Rudich black-box
separates 3-round KE from 2-round KE, and leaves the extension to arbitrary (k + 1)-round and k-round
KE to the reader. Rudich shows that 2-round protocols built using only his oracle for 3-round KE have
something that he defines as restrictive form. He then shows that an eavesdropper can always break protocols
in restrictive form with constant probability. We also note that, unlike in our protocol, the communication
cost in Rudich’s protocol triples in size every round, which means he proves his result for “inefficient” key
exchange protocols. Our oracle, by definition, also accounts for a public parameter x (which is a fixed,
publicly known set element). Rudich’s oracle does not account for any public parameters. This distinction
has shown to be important in some cases [BMZ19].

To explain the differences between the oracles used in [Rud92] and our proofs, let’s start by comparing
how the oracles used in each case work for the simple case of 3-round KE. In his oracle definition, Rudich
uses two functions, ξ and DH , where ξ is a length-tripling function and DH is a random function, with the
property that, for some bit strings a and b, DH (b, ξ (a||ξ (b))) = DH (a, ξ (b||ξ (a))) where we use “||” to
denote concatenation.

We use an oracle that is essentially a generic monoid action, with the property that, for some monoid
elements a, b and set element x, we have: (aba) ∗ x = (bab) ∗ x. Note that, due to the definition of a monoid
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action, we have that (aba) ∗ x = a ∗ (b ∗ (a ∗ x)). We also note that x is, in fact, a fixed, publicly known set
element, and not sampled randomly each time.

Rudich’s KE Protocol Our KE Protocol
Round 1: Round 1:

Alice: a← 0, 1λ. Sends ξ(a) to Bob. Alice: a←M. Sends a ⋆ x0 to Bob.
Bob: b← 0, 1λ. Sends ξ(b) to Alice. Bob: b←M. Sends b ⋆ x0 to Alice.

Round 2: Round 2:
Alice: sends ξ(a||ξ (b)) to Bob. Alice: sends a ⋆ (b ⋆ x0) to Bob.
Bob: sends ξ(b||ξ (a)) to Alice. Bob: sends b ⋆ (a ⋆ x0) to Alice.

Output Round: Output Round:
Alice: outputs DH(a||ξ (b||ξ (a))). Alice: outputs a ⋆ (b ⋆ (a ⋆ x0)) .
Bob: outputs DH(b||ξ (a||ξ (b))). Bob: outputs b ⋆ (a ⋆ (b ⋆ x0)) .

In other words, if we think of ξ as having some public parameters x0 “hard-coded” into it, let ξ denote
the first two monoid action computations, and treat ξ as though it can take two arguments (like Rudich treats
DH), and, finally, let DH denote the last monoid action computation (the one with commutativity), then we
can essentially write our core key exchange property in terms of Rudich’s language as

DH(a, ξx(b, ξx(a))) = DH(b, ξx(a, ξx(b)))

where we have ξx(a) = a ⋆ x but also ξx(a, y) = a ⋆ y for all y ∈ X .
For 3-round protocols, our approach looks very similar to Rudich’s. The main difference is how we

handle scaling to higher rounds, which Rudich leaves as an exercise to the reader. We use monoid actions
to conveniently represent this scaling (or at least handling it in a way with simple notation), which seems
essential if we want communication to grow polynomially in k in the KE protocols.

2.3 Analyzing 2-PC

2.3.1 Modeling 2-PC as a “Hard” Monoid Action.

Earlier, we noted that (multi-round) KE was essentially just an interactive protocol where two parties sent
messages back and forth and, at the end, managed to compute a shared secret key, which was a random value
computed in two different ways. We modeled this as a monoid action where the only required structure was
the k-commutativity.

If we think in such an abstract way, then 2-PC is not so different. Suppose we consider basic 2-PC: again,
the parties send messages back and forth, and at the end the value of a function on their shared inputs is
computed. This process is very similar to KE except for the fact that we output a function evaluation instead
of a random key (alternatively, we can think of KE as a special case of 2-PC where the “function” outputs
a key based on the parties’ randomness). It turns out we can also model this as a similar kind of “abelian”
monoid action, although with some extra properties. To the best of our knowledge, this is the first “natural”
characterization of the mathematical structure inherent to any 2-PC protocol, and the first explicit proof of
the necessity of mathematical structure for 2-PC.

The basic idea is as follows: to model KE as a monoid action, we used (essentially) random monoid
elements. To model 2-PC, we utilize monoid elements that include randomness, an encoding of a player’s
inputs, and an encoding of the program to be computed. We note that the monoid elements themselves are
never made public (both in KE and 2-PC), so we can use the action to effectively hide them. We explain this
in more detail below.
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The Monoid Structure. Let M be the string concatenation monoid containing the (sub)monoids A and
B, where A := I × F ×R, and B = I × F ×R′, where all of the submonoids have string concatenation
as their rule. We represent the parties’ inputs with the set I , the function with the space F , and the parties’
randomness that they will use for the whole protocol with the sets R and R′.

With this in mind, we can define a four-round 2-PC as an abelian monoid action (M,X, ⋆) for the monoid
M described above and the set X containing, at a minimum, all possible outputs of the functions represented
by some f ∈ F and any public parameters with the property that, for any i1, i2 ∈ I , f ∈ F , r ∈ R, and
r′ ∈ R where a := i1 × f × r and b := i2 × f × r′, and appropriately sampled x ∈ X , the following
holds:(a · b · a · b) ⋆ x = (b · a · b · a) ⋆ x = f (i1, i2). This is only different than what we needed from KE
in the structure of the monoid elements of M and the restrictions on the final output; the “broad picture” is
entirely the same.

Dealing with 2-PC Security Requirements. The trickiest part of extending our KE separations to cover
2-PC is how we handle the security requirements of 2-PC. We note that the structure of the monoid only
helps us to define correctness; security must be described in terms of additional properties. In Section 4.1, we
formally define all relevant notions of security using the standard simulation-based definitions; here we only
have space to sketch out security properties.

Intuitively, our monoid action is secure in the setting of semi-honest corruptions if, given an adversary
that can see a “full run” of the protocol from the perspective of one of the parties, the adversary cannot “learn
anything” about the other party’s input that cannot be guessed from the final output of the protocol. This
turns out to be very similar to the KE notion of security, although the security property here would be closer
to (some analogue of) the discrete log over the monoid action rather than a CDH-style assumption over the
monoid action (which would be the rough approximation of security for KE).

In a malicious setting, a security definition is more complicated. Intuitively, we need that an adversary
that controls Alice and has access to an “oracle” that takes as input a set element and outputs the action
computation of Bob’s secret monoid element on that set element cannot learn anything more about Bob’s
secret monoid element than is implied by the final output of the protocol. Technically speaking, we will
actually prove security in a “malicious with abort” setting because it is impossible to have protocols secure
against fully malicious adversaries in the standard model [Cle86].

Fixing the Security Parameter. An astute reader will note that it is difficult to quantify the security level
of our monoid action defined above: the difficulty of inverting a sub-oracle Mκ depends not just on κ but also
on the complexity of the function and inputs defined in the sets F and I , respectively. More complicated
functions and inputs will make it harder to brute-force invert the monoid action, which is undesirable in a
setting where we wish to have precise control over the security parameter. To solve this, we will give all
parties an additional oracle that takes as input bit strings representing a set element x′ and monoid randomness
element(s) r1, ..., rℓ ∈ R for some ℓ ≤ 2k. If, for some i1, ...iℓ ∈ I and f1, ...fℓ ∈ F , it is the case that

x′ = ((iℓ × fℓ × rℓ) ||...|| (i1 × f1 × ℓ1)) ⋆ x0

then it outputs the tuples (i1 × f1), ... , (iℓ × fℓ). Otherwise, it outputs ⊥. Note that we are using the
“monoid action notation” here rather than what oracle queries to Mκ would actually look like here due to ease
of exposition; for a full, formal definition, please see Section 4.1.

Essentially, this oracle allows Alice, Bob, and Eve to determine the “MPC component” of the monoid
element if they can guess (or know) the “key exchange/randomness component”. This enables us to make the
security of our construction entirely dependent on the length of the bit strings in R (which is just κ), which

20



greatly simplifies our analysis on the entire oracle family (i.e. the set of Mκ for all κ) since Eve does not
have to potentially guess MPC inputs and functionalities.

We note that all notions of standard MPC security still follow even with this additional oracle for the
simple reason that it is not useful to an adversary unless they successfully guess at least one element r ∈ R.
Moreover, as we formalize later, in our separations Alice and Bob cannot use this extra oracle to build
key exchange themselves, because intuitively it functions with our monoid action in a way very similar to
symmetric key encryption, which is no more powerful than a one-way function.

A 2-PC Monoid Action Oracle. We can very naturally extend the ideas behind our generic k-SCMA oracle
into a similarly defined oracle modified for 2-PC, which we call a k-SCMA2-PC oracle. In particular, we
define an oracle M :=

{
Mκ,Mκ

}
for all κ, where Mκ works exactly as in the KE protocol except it uses the

monoid elements for MPC specified above and outputs the function evaluation on an equivalence query rather
than a random string. Mκ serves as the additional oracle from above that takes as input a set element and
the “randomness” components of the monoid element associated with the set element and outputs the input
and function components of the monoid element associated with the provided set element if the randomness
components input are the same as in the set element (when considered acting on the base set element), and
otherwise outputs ⊥.

We defer formalizing these oracles to Section 4.2 but emphasize that it is straightforward to do given the
KE definitions. We emphasize that such a SCMA2-PC oracle implies maliciously secure (with abort) 2-PC: by
definition, the intermediate computations in the oracle are random and thus reveal no extra information about
parties’ queries. Only an extremely lucky random guess would help an adversary. Moreover, it is possible to
extract the “useful” portion of the corrupt party’s input in a security game since, to get an output, it must send
valid inputs to the SCMA2-PC oracle.

2.3.2 Extending the KE Separation to 2-PC.

With our SCMA2-PC oracle defined, we can extend our KE separation to 2-PC. In fact, in our KE separation,
we not only show that Eve can generate the final shared key of Alice and Bob, we also show that she can
find the input monoid element of either Alice or Bob. Intuitively, this is because to make an intersection or
equivalence query–and we show that Eve is likely to make all of these–Eve must know the monoid input
element of either Alice or Bob. We can extend this argument almost immediately from the KE setting to the
2-PC setting.

On the other hand, if there are no equivalence queries, then, in order for the computation to be complete,
one of the parties must have sent “enough” of their input for the other party to be able to evaluate the full
computation on the SCMA2-PC oracle themselves, which also breaks the protocol. This is analogous to the
KE case where Alice and Bob never use the full power of the SCMA oracle.

Note that this is the most for which we can hope: one (insecure) 2-PC protocol that nonetheless satisfies
correctness would be for Alice to send Bob her inputs “in the clear”, and then Bob could do all of Alice’s
computations for her and then return Alice’s output “in the clear” as well. In this case, it is impossible to learn
anything useful about Bob’s secrets. However, this is clearly enough to break all definitions of 2-PC security.

Separating 2k-round and (2k + 1)-round 2-PC. We now provide an abbreviated version of our result
separating 2k-round 2-PC from (2k + 1)-round 2-PC. We also present an analogous result that separates
(2k − 1)-round 2-PC from 2k-round 2-PC, which uses very similar proof arguments, and is not detailed
separately in the main body. Informally, we prove that there exists no relativizing reduction from semi-honest
secure 2k-round 2-PC to maliciously secure (2k + 1)-round 2-PC. This is captured by the following theorem.
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Theorem 2.16 (2-PC Separation Theorem (Theorem 4.9, restated)). For a fixed k ∈ N, relative to a
(k + 1)-SCMA2-PC oracle, there exists a secure (2k + 1)-round 2-PC protocol satisfying malicious security
with abort but no 2k-round 2-PC protocol satisfying semi-honest security.

The proof of this theorem follows from Theorems 2.17 and 2.18, stated below.

Theorem 2.17 (Malicious 2-PC from SCMA2-PC (Theorem 4.11, restated)). Given a fixed k ∈ N, there
exists a construction of (2k + 1)-round 2-PC protocol satisfying malicious security with abort from any
(k + 1)-SCMA2-PC oracle.

Proof Overview. he proof of this lemma is very similar to the proof of Lemma 3.49, except that we need a
way for the simulator to extract the input of the maliciously corrupt party (concretely, the simulator needs to
extract the monoid element representing the input of the corrupt party that is used in the various queries to
the (k + 1)-SCMA2-PC oracle). We refer to Section 4.2 for the detailed proof.

We now state our core technical theorem, which (informally) states that there exists no 2k-round 2-PC
protocol relative to a (k + 1)-SCMA oracle. The formal theorem statement is as follows.

Theorem 2.18 (Main 2-PC Separation Theorem (Theorem 4.14, restated)). For a fixed k ∈ N, let Π be
a 2k-round 2-PC protocol between Alice and Bob computing a function f such that: (i) Alice and Bob have
inputs inA and inB , respectively, (ii) Alice and Bob make at most nA and nB queries to a generic (k + 1)-
SCMA2-PC oracle, and use random tapes rA and rB , respectively, and (iii) Alice and Bob output sA and
sB , respectively, such that Pr[sA = sB = f(inA, inB)] > ρ, where the probability is taken over the choice
of (rA, rB,M) describing the execution of the protocol. Then for every 0 < δ < ρ, there exists an attacker
Eve that corrupts Bob and makes at most O(poly(nA, nB, k)/δ

4) queries to the generic (k + 1)-SCMA2-PC
oracle, corresponding to which, with probability at least ρ − δ, there exists no probabilistic simulator
S that makes at most O(poly(nA, nB, k)/δ

4) queries to the generic (k + 1)-SCMA2-PC oracle such that
SM(·,·) (inB, f(inA, inB))

c
≈ V Π

Eve, where V Π
Eve denotes the view of Eve (consisting of the messages exchanged

by Alice and Bob, Eve’s queries to the (k + 1)-SCMA2-PC oracle, and Eve’s own internal random coins, if
any).

Proof Strategy. Our proof strategy is analogous to that for our KE separation proof, and involves showing
the existence of an attacker Eve that recovers more information about the honest party Alice’s input inA than
is revealed by the knowledge of Bob’s input inB and the function output f(inA, inB). Consequently, an ideal-
world simulator S can never simulate Eve’s view since it can never obtain this additional information about
Alice’s input inA (except with non-negligible probability) given only (inB, f(inA, inB)). Concretely, we prove
the following auxiliary theorem, which in turn implies our main 2-PC separation theorem (Theorem 2.18).

Theorem 2.19 (Auxiliary 2-PC Separation Theorem (Theorem 4.15, restated)). For a fixed k ∈ N, let
Π be a 2k-round 2-PC protocol between Alice and Bob such that: (i) Alice and Bob have inputs inA and inB ,
respectively, (ii) Alice and Bob make at most nA and nB queries, respectively, to a generic (k+1)-SCMA2-PC
oracle, and use random tapes rA and rB , respectively, and (iii) Alice and Bob output sA and sB , respectively,
such that Pr[sA = sB = f(inA, inB)] > ρ, where the probability is taken over the choice of (rA, rB,M)
describing the execution of the protocol. Then for every 0 < δ < ρ, there exists an attacker Eve that corrupts
Bob and makes at most O(poly(nA, nB, k)/δ

4) queries to the generic (k + 1)-SCMA2-PC oracle, such that
Eve recovers, with probability at least (ρ− δ), all queries made by Alice to the (k + 1)-SCMA2-PC oracle
that are either identical to or are “equivalent” to the queries made by Bob to the (k + 1)-SCMA2-PC oracle.
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To prove Theorem 2.19, we construct an attacker Eve that recovers (without loss of generality) the part
of Alice’s input that is relevant to the output of the function (more concretely, the secret monoid element
representing Alice’s input that is used in Alice’s queries to the (k + 1)-SCMA2-PC oracle). The proof is
technically very similar to the proof of Theorem 2.9 used in our KE separation result, and is detailed in
Section 4.2. Note that in our proposed attack strategy, Eve does not recover any parts of Alice’s inputs that
were not used by Alice to query the (k + 1)-SCMA2-PC oracle. In fact, it is impossible in general to recover
any parts of Alice’s input that are (potentially) irrelevant to the output, since Alice can (at least sometimes)
start the interaction by first deleting the irrelevant parts of her input. We note, however, that recovering the
part of Alice’s input that is relevant to her output already constitutes an attack on the security of the 2-PC
protocol since it allows Eve to learn potentially greater information than is leaked by the function output.

Extending to Asymmetric Functionalities. We can extend the above argument to handle 2-PC with
asymmetric functionalities too. To do this, we just redefine F , so that, instead of representing a single
function, it represents two functions F := F1 × F2. We require that each party puts its function first in the
monoid element that it uses in the 2-PC protocol, so Alice’s F will look like FAlice × FBob and Bob’s F will
look like FBob × FAlice. We refer to Section 4.4 for a detailed treatment.

3 Analyzing Key Exchange

In this section, we present the formal details of our first technical contribution (and the starting point of our
approach that revisits Rudich’s black-box separation of KE by rounds), namely the proof that that two-party
non-interactive KE (NIKE) is equivalent to an abelian monoid action with distributional unpredictability. We
then describe formally how we can use the above structural characterization of (multi-round) KE to separate
KE by rounds. As mentioned in the overview, our KE separation result can be thought of as a more general,
simplified, and tighter version of the separation shown by Rudich in [Rud92], with an efficient key exchange
protocol.

3.1 Key Exchange and Commutative Monoid Action

In this section, we prove that any (two-party) non-interactive key exchange protocol is equivalent to the
existence of an abelian monoid action equipped with a natural hardness property, namely (one-time) unpre-
dictability. More generally, we show that any k-round key exchange protocol is essentially equivalent to the
existence of a (one-time) unpredictable monoid action with certain commutator-like properties (we present a
more precise formalization of this property subsequently).

To our knowledge, this is the first formal proof that public-key cryptography (and, more generally
Cryptomania) requires explicit mathematical structure. It also appears to be the first “natural” characterization
of the mathematical structure inherent to any key exchange protocol. We further note here that since public-
key encryption is equivalent to two-round key exchange, our results also imply a characterization of the
mathematical structure inherent to any public-key encryption scheme.

Monoids. We begin by recalling the standard algebraic definition of a monoid. At a high level, a monoid
is a set equipped with an associative binary operation and an identity element. Another way of viewing
a monoid is as a group where each element does not necessarily have a (unique) inverse. For the sake of
completeness, we recall the formal definition below.
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Definition 3.1 (Monoid). A monoid is defined as a tuple (M,⊕) where M is a set and ⊕ : M ×M →M
is an operation with the following properties:

• Closure: for all g1, g2 ∈M , we have g1 ⊕ g2 ∈M .

• (Left) Identity: there exists an element e ∈M such that for all g ∈M , we have e⊕ g = g.

• Associativity: for all g1, g2, g3 ∈M , we have (g1 ⊕ g2)⊕ g3 = g1 ⊕ (g2 ⊕ g3).

Finally, a monoid (M,⊕) is said to be commutative (or equivalently, abelian) if for any pair of elements
g1, g2 ∈M , we have g1 ⊕ g2 = g2 ⊕ g1.

Monoid Action. Having defined a monoid, we now define a monoid action. Informally, a monoid action
is very similar to a group action (a mathematical object that has been previously studied in the context of
cryptography [ADMP20]), except for the fact that the group is replaced by a monoid. We present the formal
algebraic definition of a monoid action below.

Definition 3.2. (Monoid Action.) A monoid (M,⊕) (as defined above) is said to act on a set X if there
exists a map ⋆ : M ×X → X that satisfies the following two properties:

1. Identity: If e is the identity element of M , then for any x ∈ X , we have

e ⋆ x = x.

2. Compatibility: For any g, h ∈M and any x ∈ X , we have

(g ⊕ h) ⋆ x = g ⋆ (h ⋆ x).

We use the notation (M,X, ⋆) to denote a monoid action. Furthermore, we say that a monoid action (M,X, ⋆)
is a commutative monoid action if the monoid M is itself commutative.

Extending Monoid Actions to Monoids. It is a known (and to our knowledge, folklore) result that every
monoid action can be extended to a monoid in a way that respects commutativity. This essentially implies
that a (commutative) monoid action is not a fundamentally different algebraic/category-theoretic object as
compared to a (commutative) monoid; they are, in fact, equivalent. We formalize this result below.

Lemma 3.3. Any (commutative) monoid action (M,X.⋆) can be extended to a (commutative) monoid(
M̂, ⊕̂

)
in a structure-preserving manner.

Proof. Let (M,X, ⋆) be a monoid action where the monoid (M,⊕) acts on the set X . We first consider the
case where (M,⊕) is non-commutative. In this case, the extended monoid (M̂, ⊕̂) is defined as follows:

• The set M̂ is defined as M̂ := M ∪X ∪ {⊥}, where ⊥ is a special “terminal” element.

• The operation ⊕̂ is defined as follows:

– For any g, h ∈M , define g⊕̂h := g ⊕ h.
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– For any g ∈M and x ∈ X , define g⊕̂x := g ⋆ x.

– For any (α, β) ∈ M̂ × M̂ such that (α, β) /∈M ×M and (α, β) /∈M ×X , define α⊕̂β := ⊥.

It is straightforward to see that the tuple (M̂, ⊕̂) satisfies both closure and associativity. At a high level,
this follows from the fact that any operation that is not semantically defined in the original group action maps
to the terminal element ⊥. Additionally, the (left) identity element e for the monoid M also serves as the
(left) identity element for M̂ . Hence, (M̂, ⊕̂) is a monoid, as desired.

We now consider the case where (M,⊕) is commutative. In this case, the extended monoid (M̂, ⊕̂) is
defined in a commutativity-preserving manner as follows (the changes from the non-commutative case are
highlighted in red):

• The set M̂ is again defined as M̂ := M ∪X ∪ {⊥}, where ⊥ is a special “terminal” element.

• The operation ⊕̂ is now defined as follows:

– For any g, h ∈M , define g⊕̂h := g ⊕ h.

– For any g ∈M and x ∈ X , define g⊕̂x := g ⋆ x and x⊕̂g := g ⋆ x.

– For any (α, β) ∈ M̂ ×M̂ such that (α, β) /∈M ×M and (α, β) /∈M ×X and (α, β) /∈ X×M ,
define α⊕̂β := ⊥.

It is again straightforward to see that the tuple (M̂, ⊕̂) satisfies closure. Additionally, the (left) identity
element e for the monoid M still serves as the (left) identity element for M̂ . So, it remains to argue
associativity and commutativity.

To see that associativity is satisfied, observe that since (M,⊕) is commutative, for any g, h ∈ M and
x ∈ X , we have:

1. x⊕̂(g⊕̂h) = (x⊕̂g)⊕̂h, and

2. g⊕̂(x⊕̂h) = (g⊕̂x)⊕̂h.

More concretely, we have

x⊕̂(g⊕̂h) = x⊕̂(g ⊕ h) = (g ⊕ h) ⋆ x = (h⊕ g) ⋆ x = h ⋆ (g ⋆ x) = h ⋆ (x⊕̂g) = (x⊕̂g)⊕̂h.

g⊕̂(x⊕̂h) = g⊕̂(h ⋆ x) = g ⋆ (h ⋆ x) = h ⋆ (g ⋆ x) = h ⋆ (g⊕̂x) = (g⊕̂x)⊕̂h.

Any other operation that is not semantically defined in the original group action still maps to the terminal
element ⊥. Hence, (M̂, ⊕̂) satisfies associativity whenever (M,⊕) is both associative and commutative.

Finally, it is straightforward to see that (M̂, ⊕̂) is commutative whenever (M,⊕) is commutative. Hence,
(M̂, ⊕̂) is a commutative monoid, as desired.
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Experiment ExptDM,0,DM,1,DX
:

1. The challenger samples a pair of group elements (g, h) as g ← DM,0 and h ← DM,1, and a set
element x← DX , and provides the tuple (x, g ⋆ x, h ⋆ x) to the adversary A.

2. The adversary A responds with a set element y ∈ X .

We say that the adversary A wins the experiment if y = (g ⊕ h) ⋆ x.

Figure 1: The Security Definition of a Distributional Unpredictable Monoid Action

3.1.1 Distributional Unpredictable Monoid Action.

We now describe a new primitive that we call a distributional unpredictable monoid action. More concretely,
we take a monoid action as defined above and endow it with a certain hardness property that we call
distributional unpredictability. We describe this property in more details below.

Let (M,X, ⋆) be a monoid action such that the set X supports efficient representation, and such that
the “action operation” ⋆ is efficiently computable. Also let DM,b for b ∈ {0, 1} and DX denote distributions
over (subsets of) M and X , respectively, such that one can efficiently sample a monoid element g ← DM,0,
a monoid element h ← DM,1 and a set element x ← DX as per the distributions DM,0,DM,1 and DX ,
respectively. We define the experiment ExptDM,0,DM,1,DX

(parameterized by the distributions DM,0, DM,1,
and DX ) between a challenger and a probabilistic polynomial-time adversary A as in Figure 1.

Definition 3.4 (Distributional Unpredictable Monoid Action). A monoid action (M,X, ⋆) with an effi-
ciently computable action operation is said to satisfy distributional unpredictability with respect to the triplet
of distributions (DM,0,DM,1,DX) and with respect to some security parameter λ if for any probabilistic
polynomial-time adversary A, the probability that A wins the experiment ExptDM,0,DM,1,DX

is negligible in
the security parameter λ.

Remark 3.5. For simplicity, we abstract out the details of the (efficient) sampling procedures that allow
sampling a monoid element g ← DM,b for b ∈ {0, 1} and a set element x← DX . We simply assume that
these algorithms take as input the security parameter λ and some random coins r, and output elements as per
the desired distributions.

Remark 3.6. Note that we do not necessarily require the distributions DM,b for b ∈ {0, 1} and DX to
be the uniform distributions over M and X , respectively. This distinguishes our notion of distributional
unpredictability from the more standard notion of weak unpredictability in the cryptographic literature, where
these distributions would be necessarily uniform. Our definition can be viewed as a generalization of weak
unpredictability in the context of monoid actions. We note that it is typically much easier to sample uniform
elements in groups (where inverses exist) than in monoids.

Remark 3.7. Note that in the aforementioned definition, we do not assume that the monoid action (M,X, ⋆)
necessarily supports compact representations for elements in the monoid M . For example, in order to
represent a monoid element g sampled according to the distribution DM,0, one could simply use the random
coins input to the sampling algorithm as an equivalent compact representation for g (so long as the action
computation is efficient using this alternative representation).
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3.1.2 Two-Party Non-Interactive Key Exchange (NIKE).

We now formally define a two-party non-interactive key exchange (NIKE) protocol [BS20].

Definition 3.8 (Non-interactive Key Exchange (NIKE)). A NIKE protocol is a tuple of probabilistic polynomial-
time algorithms (Setup,A0,B0,A1,B1) defined as follows:

• Setup takes as input a security parameter λ and outputs the public parameters pp.

• A0 takes as input the public parameters pp, and outputs a secret state rA and a share sA.

• B0 takes as input the public parameters pp, and outputs a secret state rB and a share sB .

• A1 takes as input (pp, rA, sA, sB) to compute the “final key” kAB .

• B1 takes as input (pp, rB, sB, sA) to compute the “final key” kBA.

A NIKE protocol is essentially a single-round protocol between a pair of (non-uniform) probabilistic
polynomial-time algorithms (informally referred to as “parties”) A = (A0,A1) and B = (B0,B1), where the
tuple

τ = (pp, sA, sB)

denotes represents the public transcript of messages exchanged between A and B.

Correctness. A NIKE protocol (Setup,A0,B0,A1,B1) is said to be correct if for any pp← Setup, for any
(rA, sA)← A0(pp) and any (rB, sB)← B0(pp), we have

kAB = kBA,

where kAB = A1(pp, rA, sA, sB) and kBA = B1(pp, rB, sB, sA).

Security. A NIKE protocol (Setup,A0,B0,A1,B1) is said to be secure if for any pp ← Setup, for any
(sA, sA)← A0(pp) and any (sB, sB)← B0(pp), and for any probabilistic polynomial time algorithm A, we
have

Pr[A(pp, sA, sB) = kAB] < negl(λ),

where kAB = A1(pp, rA, sA, sB).

Representing NIKE as a Commutative Square. We now formulate a NIKE protocol as a commutative
square, capturing the core property that two parties can compute the same secret key using two different
sequences of computation. Let PP , R, SA, SB , RA, RB , and K denote sets. More specifically:

• We let PP denote the set of public parameters and R denote the set of possible random coins used by
the setup algorithm to output some public parameters from the set PP .

• We also let SA and SB (resp., RA and RB) denote the set of possible output shares (resp., the set of
possible secret states) for the parties A and B, respectively.
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• Finally, we let K denote the set of possible final keys that the parties A and B could agree on at the
end of the NIKE protocol.

Next, we define the following functions that map between these sets as below:

• Setup : 1λ ×R→ PP .

• GenA : PP ×RA → SA.

• GenB : PP ×RB → SB .

• CombineA : PP ×RA × SB → K.

• CombineB : PP ×RB × SA → K.

Finally, we impose the following correctness requirement on these functions: for any pp ∈ PP , any
rA ∈ RA and any rB ∈ RB , we have

CombineA (pp, rA,GenB (pp, rB)) = CombineB (pp, rB,GenA (pp, rA)) .

Security. Let Dpp,DA and DB denote efficiently sampleable distributions over the sets PP , RA, and RB ,
respectively. Based on the above structural formulation, we say that a NIKE protocol is (Dpp,DA,DB)-secure
if for any pp← Dpp, any rA ← DA and any rB ← DB , and for any probabilistic polynomial time algorithm
A, we have

Pr[A(pp,GenA (pp, rA) ,GenB (pp, rB)) = CombineA (pp, rA,GenB (pp, rB))] < negl(λ).

Remark 3.9. For simplicity, we abstract out the details of the (efficient) sampling procedures that allow
sampling as per the distributions Dpp, DA, and DB . We simply assume that these algorithms take as input
the security parameter λ and some random coins r from the set R, and output elements as per the desired
distributions.

Remark 3.10. One again, note that we do not necessarily require the distributions Dpp, DA, and DB to be
the uniform distributions over the sets PP , RA, and RB , respectively.

Remark 3.11. Note that in the aforementioned definition, we do not assume that the sets RA and RB

necessarily support compact representations. For example, in order to represent an element rA sampled
according to the distribution DA, one could simply use the random coins input to the sampling algorithm as
an equivalent compact representation for rA (so long as all relevant Function computations are efficient using
this alternative representation).

3.1.3 Equivalence of Distributional Unpredictable Commutative Monoid Action and NIKE.

At this point, the astute reader might have already noticed the (almost) exact structural correspondence
between a distributional unpredictable commutative monoid action and the commutative-square depicting a
NIKE protocol. At a high level, one could simply use this “structural” correspondence to informally argue that
these two primitives are, in fact, equivalent. However, formalizing this equivalence is more involved, as we
show subsequently. In what follows, we use the acronym “DUCMA” to denote a distributional unpredictable
commutative monoid action.
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3.1.4 DUCMA implies NIKE.

We first formally prove the easier direction, namely, DUCMA implies NIKE. More concretely, we state and
prove the following theorem:

Theorem 3.12. Any DUCMA satisfying Definition 3.4 implies a NIKE protocol.

Proof. Let (M,X, ⋆) be a DUCMA with respect to the triplet of distributions (DM,0,DM,1,DX) as per
the structural formulation for DUCMA described earlier (Definition 3.4). We describe a construction of
NIKE protocol satisfying the structural formulation for NIKE described earlier. Our protocol bears certain
similarities with existing NIKE protocols based on cryptographic group actions (e.g. in [ADMP20]).

Set definitions: We define the following sets for the NIKE protocol:

• Define PP := X , where X denotes the set in the group action (M,X, ⋆).

• Define the set of secret states for A and B as RA := M and RB := M , respectively, where M denotes
the monoid in the group action (M,X, ⋆).

• Define the set of possible output shares for A and B as SA := X and SB := X , respectively, where X
is again the set in the group action (M,X, ⋆).

• Define the set of possible final keys as K := X , where X is again the set in the group action (M,X, ⋆).

Function definitions: We define the following functions for the NIKE protocol:

• Setup : 1λ ×R→ PP : Sample x← DX and output x.

• GenA : PP ×RA → SA : Sample gA ← DM,0 using random coins rA and output sA = gA ⋆ x.

• GenB : PP ×RB → SB : Sample gB ← DM,1 using random coins rB and output sB = gB ⋆ x.

• CombineA : PP ×RA × SB → K : Re-sample gA ← DM,0 using random coins rA and output the
final key as kAB = gA ⋆ sB .

• CombineB : PP ×RB × SA → K : Re-sample gB ← DM,1 using random coins rB and output the
final key as kBA = gB ⋆ sA.

Correctness and Security. Correctness and security of the NIKE protocol described above are immediate
from the structural formulation for DUCMA described earlier (Definition 3.4). This completes the proof of
Theorem 3.12. □
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NIKE implies DUCMA. We now formally prove the more involved direction, namely, NIKE implies
DUCMA. More concretely, we state and prove the following theorem:

Theorem 3.13. Any NIKE protocol implies a DUCMA satisfying Definition 3.4.

Proof. To prove this theorem, we show how to construct a monoid action (M,X, ⋆) that satisfies the definition
for DUCMA (Definition 3.4) with respect to the triplet of distributions (DM,0,DM,1,DX). We assume the
existence of a NIKE protocol satisfying the structural formulation as outlined above, including all the relevant
sets and functions.

Constructing the Monoid. We begin by describing how to construct the monoid (M,⊕) underlying the
monoid action (M,X, ⋆). Recall that in our structural formulation, any NIKE protocol is associated with a
pair of sets RA and RB , denoting the set of secret states for parties A and B, respectively.

We define the following auxiliary sets:

RA,B = {rA∥rB : rA ∈ RA, rB ∈ RB}, RB,A = {rB∥rA : rB ∈ RB, rA ∈ RA}.

At this point, we define the set M in the monoid (M,⊕) as:

M = RA ∪RB ∪RA,B ∪RB,A ∪ {eM ,⊥M},

where eM is a special “identity” element and ⊥M is a special “terminal” element. Next, we define the
associated monoid operation ⊕ as follows:

• For any rA ∈ RA and any rB ∈ RB , define

rA ⊕ rB = rB ⊕ rA := rA∥rB.

• For any α ∈M , define
eM ⊕ α = α⊕ eM := α.

• For any (α, β) ∈M ×M such that α, β ̸= eM and (α, β) /∈ RA×RB and (α, β) /∈ RB ×RA, define

x⊕ y = ⊥M .

Lemma 3.14. (M,⊕) is a commutative monoid.

Proof. Closure, associativity and commutativity are immediate by construction. Also, eM serves as the
identity element for M .

Remark 3.15. Note that for simplicity of exposition, we assume here that the sets RA and RB support
compact representations. In case this is not true, we equivalently represent an element rA (resp., rB) sampled
according to the distribution DA (resp., DB) using the random coins input to the sampling algorithm (any
element that cannot be sampled according to these distributions does not appear in the monoid M ).
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Constructing the Set. Next, we define the set X as follows:

X = (PP ∪ {⊥X})× (SA ∪ {⊥X})× (SB ∪ {⊥X})× (K ∪ {⊥X})

where:

• PP denotes the set of possible public parameters for the NIKE protocol.

• SA and SB denote the set of possible output shares for the parties A and B, respectively.

• K denotes the set of possible final keys that the parties A and B could agree on.

• ⊥X is a special “terminal” symbol.

At a high level, a set element captures the gradual evolution of the public transcript of messages exchanged
at various stages of the protocol, as well as the final computation of the shared key. In particular:

• A set element of the form (pp,⊥X ,⊥X ,⊥X) represents the transcript of messages from the point of
view of either party A or party B before the start of the protocol.

• A set element of the form (pp,⊥X , sB,⊥X) represents the transcript of “received” messages from the
point of view of party A after the first round of protocol execution.

• A set element of the form (pp, sA,⊥X ,⊥X) represents the transcript of “received” messages from the
point of view of party B after the first round of protocol execution.

• A set element of the form (pp, sA, sB, kAB) represents the transcript of messages and the final secret
key after the completion of the protocol (from the point of view of both parties A and B).

While we allow all other kinds of tuples in the set X from a syntactical point of view, they do not carry any
semantic meaning. We enforce this in the manner in which we define the action operation, as described next.

Defining the Action. Finally, we define the action ⋆ : M × X → X . We make use of the following
functions associated with any NIKE protocol:

• GenA : PP ×RA → SA.

• GenB : PP ×RB → SB .

• CombineA : PP ×RA × SB → K.

• CombineB : PP ×RB × SA → K.

Given these functions, we define the action operation ⋆ : M ×X → X as follows:

• For any x = (x0, x1, x2, x3) ∈ X , define

eM ⋆ (x0, x1, x2, x3) := (x0, x1, x2, x3).
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• For any rA ∈ RA and pp ∈ PP , define

rA ⋆ (pp,⊥X ,⊥X ,⊥X) := (pp,GenA(pp, rA),⊥X ,⊥X).

• For any rB ∈ RB and pp ∈ PP , define

rB ⋆ (pp,⊥X ,⊥X ,⊥X) := (pp,⊥X ,GenA(pp, rB),⊥X).

• For any rA ∈ RA, any pp ∈ PP , and any sB ∈ SB , define

rA ⋆ (pp,⊥X , sB,⊥X) := (pp,GenA(pp, rA), sB,CombineA(pp, rA, sB)).

• For any rB ∈ RA, any pp ∈ PP , and any sA ∈ SA, define

rB ⋆ (pp, sA,⊥X ,⊥X) := (pp, sA,GenB(pp, rB),CombineB(pp, rB, sA)).

• For any rA ∈ RA, any rB ∈ RB , and any pp ∈ PP define

(rA∥rb)⋆(pp,⊥X ,⊥X ,⊥X) := (pp,GenA(pp, rA),GenB(pp, rB),CombineA(pp, rA,GenB(pp, rB))).

• All other action operations output the “terminal” set element (⊥X ,⊥X ,⊥X ,⊥X).

Lemma 3.16. The monoid action (M,X, ⋆) satisfies identity and compatibility if the NIKE protocol satisfies
correctness.

Proof. Identity is again immediate by construction. To prove compatibility, it suffices to prove that for any
rA ∈ RA, any rB ∈ RB , and any pp ∈ PP , we have

(rA ⊕ rB) ⋆ (pp,⊥X ,⊥X ,⊥X) = rA ⋆ (rB ⋆ (pp,⊥X ,⊥X ,⊥X)),

(rB ⊕ rA) ⋆ (pp,⊥X ,⊥X ,⊥X) = rB ⋆ (rA ⋆ (pp,⊥X ,⊥X ,⊥X)).

To see that this is indeed the case, observe that we have

(rA ⊕ rB) ⋆ (pp,⊥X ,⊥X ,⊥X) = (rA∥rB) ⋆ (pp,⊥X ,⊥X ,⊥X)

= (pp,GenA(pp, rA),GenB(pp, rB),CombineA(pp, rA,GenB(pp, rB)))
= rA ⋆ (pp,⊥X ,GenB(pp, rB),⊥X)

= rA ⋆ (rB ⋆ (pp,⊥X ,⊥X ,⊥X)).

Similarly, we have

(rB ⊕ rA) ⋆ (pp,⊥X ,⊥X ,⊥X) = (rA∥rB) ⋆ (pp,⊥X ,⊥X ,⊥X)

= (pp,GenA(pp, rA),GenB(pp, rB),CombineA(pp, rA,GenB(pp, rB)))
= (pp,GenA(pp, rA),GenB(pp, rB),CombineB(pp, rB,GenB(pp, rA)))
= rB ⋆ (pp,GenA(pp, rA),⊥X ,⊥X)

= rB ⋆ (rA ⋆ (pp,⊥X ,⊥X ,⊥X)).

The second identity additionally exploits the following relationship

CombineA(pp, rA,GenB(pp, rB)) = CombineB(pp, rB,GenB(pp, rA)),

which holds whenever the NIKE protocol is correct. Hence, it follows that the monoid action (M,X, ⋆)
satisfies both identity and compatibility. This completes the proof of Lemma 3.16.
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Experiment Exptℓ,DM,0,DM,1,DX
:

1. The challenger samples a pair of group elements (g, h) as g ← DM,0 and h ← DM,1, and a set
element x← DX , and generates the following for each i ∈ [ℓ]:

xi,0 = (g ⊕ h)i−1 ⋆ x, xi,1 = (h⊕ g)i−1 ⋆ x

x′i,0 =
(
g ⊕ (h⊕ g)i−1

)
⋆ x, x′i,1 =

(
h⊕ (g ⊕ h)i−1

)
⋆ x.

It then provides the following tuple to the adversary A:(
x, {xi,0, xi,1, x′i,0, x′i,1}i∈[ℓ]

)
2. The adversary A responds with a set element y ∈ X .

We say that the adversary A wins the experiment if y =
(
(g ⊕ h)ℓ

)
⋆ x.

Figure 2: The Security Definition for a Distributional ℓ-Unpredictable ℓ-Commutative Monoid Action

Putting together Lemma 3.14 and Lemma 3.16, we have that the group action (M,X, ⋆) is indeed a
commutative monoid action. Finally, it follows immediately from the security of the NIKE protocol that
the group action (M,X, ⋆) satisfies distributional unpredictability with respect to the distributions DM,b for
b ∈ {0, 1} and DX defined as follows:

DM,0 := DA, DM,1 := DB, DX := Dpp,

where DA, DB and Dpp are the efficiently sampleable distributions over the sets RA, RB and PP .
This establishes that the group action (M,X, ⋆) indeed satisfies the definition for DUCMA (Defini-

tion 3.4), and completes the proof of Theorem 3.13. □

3.1.5 Generalization to Multi-Round Key Exchange.

In this section, we generalize the aforementioned result to any ℓ-round key exchange protocol for ℓ ≥ 1. In
particular, we show that any ℓ-round key exchange protocol is equivalent to a monoid action that satisfies a
certain ℓ-commutator-like properties as well as a notion of distributional ℓ-unpredictability. For ℓ = 1, these
properties are exactly equivalent to commutativity and distributional unpredictability for monoid actions as
described earlier, while for ℓ > 1, these properties can be viewed as certain “naturally weakened” versions
of commutativity and distributional unpredictability for monoid actions. We call this weakened primitive
an distributional ℓ-unpredictable ℓ-commutative monoid action (abbreviated as ℓ-DUCMA in the rest of the
section).

3.1.6 Distributional ℓ-Unpredictable ℓ-Commutative Monoid Action (ℓ-DUCMA).

Let (M,X, ⋆) be a monoid action such that the set X supports efficient representation, and such that the
“action operation” ⋆ is efficiently computable. Also let DM,b for b ∈ {0, 1} and DX denote distributions
over (subsets of) M and X , respectively, such that one can efficiently sample a monoid element g ← DM,0,
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a monoid element h ← DM,1 and a set element x ← DX as per the distributions DM,0,DM,1 and DX ,
respectively.

Additionally, for any g, h ∈M and any i ≥ 1, we define (g ⊕ h)i as:

(g ⊕ h)i := (g ⊕ h)⊕ (g ⊕ h)⊕ . . .⊕ (g ⊕ h)︸ ︷︷ ︸
i-times

.

Note that when the monoid is not commutative, (g ⊕ h)i and (h⊕ g)i can be distinct monoid elements. We
additionally define (g ⊕ h)0 as:

(g ⊕ h)0 := eM ,

where eM is the identity element for the monoid.
We now define the experiment Exptℓ,DM,0,DM,1,DX

(parameterized by ℓ ≥ 1 as well as the distributions
DM,0, DM,1, and DX ) between a challenger and a probabilistic polynomial-time adversary A as in Figure 2.

Definition 3.17 (ℓ-DUCMA). A monoid action (M,X, ⋆) with an efficiently computable action operation
is said to be an ℓ-DUCMA with respect to the triplet of distributions (DM,0,DM,1,DX) and with respect to
some security parameter λ if the following conditions are satisfied simultaneously:

• ℓ-Commutativity: For any g, h ∈M and any x ∈ X , we have(
(g ⊕ h)ℓ

)
⋆ x =

(
(h⊕ g)ℓ

)
⋆ x.

• Distributional ℓ-Unpredictability: For any probabilistic polynomial-time adversaryA, the probability
that A wins the experiment Exptℓ,DM,0,DM,1,DX

is negligible in the security parameter λ.

Remark 3.18. As in the original definition of DUCMA, we again abstract out the details of the (efficient)
sampling procedures that allow sampling a monoid element g ← DM,b for b ∈ {0, 1} and a set element
x← DX . We simply assume that these algorithms take as input the security parameter λ and some random
coins r, and output elements as per the desired distributions.

Remark 3.19. As in the original definition of DUCMA, we do not necessarily require the distributions DM,b

for b ∈ {0, 1} and DX to be the uniform distributions over M and X , respectively.

Remark 3.20. As in the original definition of DUCMA, we do not assume that the monoid action (M,X, ⋆)
necessarily supports compact representations for elements in the monoid M . In particular, in order to
represent a monoid element g sampled according to the distribution DM,0, one could simply use the random
coins input to the sampling algorithm as an equivalent compact representation for g (so long as the action
computation is efficient using this alternative representation).

3.1.7 ℓ-Round Key Exchange.

We now define an ℓ-round key exchange (KE) protocol for ℓ ≥ 1. In the same vein as the NIKE definition, we
define ℓ-round KE as a two-party protocol involving a pair of (non-uniform) probabilistic polynomial-time
algorithms A = {Ai}i∈[0,ℓ] and B = {Bi}i∈[0,ℓ], where each individual algorithm Ai and Bi is formalized
subsequently.

Before presenting the definition, we fix some notation. Let pp be the public parameters and let si,A and
si,B be the message shares output by A and B, respectively, in round-i of the protocol (for each i ∈ [ℓ]).
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We define a sequence of “transcript” variables (τ0, τ1, . . . , τℓ) to maintain track of the messages exchanged
between A, B, where for each i ∈ [0, ℓ], τi denotes the transcript of messages exchanged between parties A
and B up until round-i. Formally, τi is defined as follows:

τi = (pp, s1,A, s1,B, s2,A, s2,B, . . . , si,A, si,B).

Definition 3.21 (ℓ-Round Key Exchange). An ℓ-round KE protocol is a tuple of probabilistic polynomial-
time algorithms

(
Setup, {Ai,Bi}i∈[0,ℓ]

)
defined as follows:

• Setup takes as input a security parameter λ and output the public parameters pp.

• For each i ∈ [0, ℓ− 1], Ai takes as input the public parameters pp, a secret state ri,A, and a transcript
τi of the messages exchanged between parties A and B up until round-i, and outputs an updated secret
state ri+1,A and a share si+1,A.

• For each i ∈ [0, ℓ− 1], Bi takes as input the public parameters pp, a secret state ri,B , and a transcript
τi of the messages exchanged between parties A and B up until round-i, and outputs an updated secret
state ri+1,B and a share si+1,B .

• Aℓ takes as input the public parameters pp, a secret state rℓ,A, and a transcript τℓ of the messages
exchanged between parties A and B up until round-ℓ, and outputs the “final” key kAB .

• Bℓ takes as input the public parameters pp, a secret state rℓ,B , and a transcript τℓ of the messages
exchanged between parties A and B up until round-ℓ, and outputs the “final” key kBA.

Correctness. An ℓ-round KE protocol
(
Setup, {Ai,Bi}i∈[0,ℓ]

)
is said to be correct if for any pp← Setup,

and for any
(ri+1,A, si+1,A) = Ai(pp, ri,A, τi), (ri+1,B, si+1,B) = Bi(pp, ri,B, τi),

for each i ∈ [0, ℓ− 1], we have
kAB = kBA,

where kAB = Aℓ(pp, rℓ,A, τℓ) and kBA = Bℓ(pp, rℓ,A, τℓ), and where for each i ∈ [0, ℓ], the transcript τi is
as defined earlier, namely:

τi = (pp, s1,A, s1,B, s2,A, s2,B, . . . , si,A, si,B).

Security. An ℓ-round KE protocol
(
Setup, {Ai,Bi}i∈[0,ℓ]

)
is said to be secure if for any pp← Setup, and

for any
(ri+1,A, si+1,A) = Ai(pp, ri,A, τi), (ri+1,B, si+1,B) = Bi(pp, ri,B, τi),

for each i ∈ [0, ℓ− 1], and for any probabilistic polynomial time algorithm A, we have

Pr[A(pp, τℓ) = kAB] < negl(λ),

where kAB = Aℓ(pp, rℓ,A, τℓ) and where the transcript τℓ is as defined earlier, namely:

τℓ = (pp, s1,A, s1,B, s2,A, s2,B, . . . , sℓ,A, sℓ,B).
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Structural Formulation. We now formulate an ℓ-round KE protocol using a structural formulation that is
again geared towards capturing the core property that two parties can compute the same secret key using two
different sequences of computation across ℓ rounds of communication.

For ease of exposition, we make a (minor) alteration to our structural formulation for an ℓ-round KE
protocol from the standard cryptographic definition presented earlier. In the structural formulation, we assume
that the parties A and B commit to “some” random coins rA and rB at the beginning of the protocol, and
then re-use these coins to generate their messages throughout the protocol. We note, however, this definition
is essentially equivalent to the “lazy” randomness sampling strategy in the standard definition presented
earlier; indeed, we can assume that the parties commit to some “master” random coins at the beginning of the
protocol, and use these to derive the individual random coins to be used in each round (depending on the
transcript of messages exchanged up until that round).

It turns out that this alternative definition (where the parties commit to some “master” random coins at the
beginning of the protocol and re-use the same to generate messages throughout the protocol) makes it easier
to capture the “natural” mathematical structure inherent to an ℓ-round KE protocol. Although this would
result in “less practical” key exchanges and monoid actions, it allows us to only have to define two sampling
distributions (one for each player) rather than 2ℓ (one for each player in each round) and lets us considerably
simplify our proofs of equivalence later in this section. We illustrate this in more details subsequently.

Definition 3.22 (ℓ-Round KE (Structural Formulation)). Let PP , R, {Si,A, Si,B}i∈[ℓ], {Γi}i∈[0,ℓ], RA,
RB , and K denote sets. More specifically:

• We let PP denote the set of public parameters and R denote the set of possible random coins used by
the setup algorithm to output some public parameters from the set PP .

• For each i ∈ [ℓ], we let Si,A and Si,B denote the set of possible output shares in round-i for the parties
A and B, respectively.

• For each i ∈ [0, ℓ], we let Γi denote the set of all possible transcripts of messages exchanged between
the parties A and B until round i.

• We also let RA and RB denote the set of possible secret states for the parties A and B, respectively.

• Finally, we let K denote the set of possible final keys that the parties A and B could agree on at the
end of the ℓ-round KE protocol.

Next, we define the following functions that map between these sets as below:

• Setup : 1λ ×R→ PP .

• {Geni,A : PP ×RA × Γi → Si+1,A}i∈[0,ℓ−1].

• {Geni,B : PP ×RB × Γi → Si+1,B}i∈[0,ℓ−1].

• CombineA : PP ×RA × Γℓ → K.

• CombineB : PP ×RB × Γℓ → K.
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Finally, we impose the following correctness requirement on these functions: for any pp ∈ PP , any
rA ∈ RA and any rB ∈ RB , letting

si+1,A = Geni,A(pp, rA, τi), (si+1, B) = Geni,B(pp, rB, τi),

for each i ∈ [0, ℓ− 1], where τi = (pp, s1,A, s1,B, . . . , si,A, si,B), we have

CombineA (pp, rA, τℓ) = CombineB (pp, rB, τℓ) ,

where we again have τℓ = (pp, s1,A, s1,B, . . . , sℓ,A, sℓ,B).

Security. Let Dpp,DA and DB denote efficiently sampleable distributions over the sets PP , RA, and RB ,
respectively. Based on the above structural formulation, we say that a ℓ-round KE protocol is (Dpp,DA,DB)-
secure if for any pp← Dpp, any rA ← DA and any rB ← DB , and for any probabilistic polynomial time
algorithm A, letting

si+1,A = Geni,A(pp, rA, τi), (si+1, B) = Geni,B(pp, rB, τi),

for each i ∈ [0, ℓ− 1], where τi = (pp, s1,A, s1,B, . . . , si,A, si,B), we have

Pr[A(pp, τℓ) = CombineA (pp, rA, τℓ)] < negl(λ),

where we again have τℓ = (pp, s1,A, s1,B, . . . , sℓ,A, sℓ,B).

Remark 3.23. As in the structural formulation for NIKE, we abstract out the details of the (efficient) sampling
procedures that allow sampling as per the distributions Dpp, DA, and DB . We simply assume that these
algorithms take as input the security parameter λ and some random coins r from the set R, and output
elements as per the desired distributions.

Remark 3.24. As in the structural formulation for NIKE, we do not necessarily require the distributions Dpp,
DA, and DB to be the uniform distributions over the sets PP , RA, and RB , respectively.

Remark 3.25. As in the structural formulation for NIKE, we do not assume that the sets RA and RB

necessarily support compact representations. Once again, in order to represent an element rA sampled
according to the distribution DA, one could simply use the random coins input to the sampling algorithm as
an equivalent compact representation for rA (so long as all relevant Function computations are efficient using
this alternative representation).

Equivalence of ℓ-DUCMA and ℓ-round KE. We now formalize the equivalence of ℓ-DUCMA and ℓ-round
KE. More concretely, we formally prove the more involved direction, namely, ℓ-round KE implies ℓ-DUCMA.
The other direction (namely, ℓ-DUCMA implies ℓ-round KE) is relatively straightforward to show and
essentially follows the same template as the construction of NIKE from DUCMA. Hence, we avoid detailing
it.

ℓ-round KE implies ℓ-DUCMA. We state and prove the following theorem:

Theorem 3.26. Any ℓ-round KE protocol satisfying Definition 3.22 implies an ℓ-DUCMA satisfying Defini-
tion 3.17.

Proof. To prove this theorem, we show how to construct a group action (M,X, ⋆) that satisfies the structural
formulation for ℓ-DUCMA (Definition 3.17) with respect to the triplet of distributions (DM,0,DM,1,DX).
We assume the existence of an ℓ-round KE protocol satisfying the corresponding structural formulation (Defi-
nition 3.22), including all the relevant sets and functions.
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Constructing the Monoid. We begin by describing how to construct the monoid (M,⊕) underlying the
monoid action (M,X, ⋆). Recall that any ℓ-round KE protocol satisfying Definition 3.22 is associated with a
pair of sets RA and RB , denoting the set of possible secret states for parties A and B, respectively. For any
rA ∈ RA and rB ∈ RB , define the following:

(rA∥rB)i := rA∥rB∥rA∥rB∥ . . . ∥rA∥rB︸ ︷︷ ︸
i-times

,

(rB∥rA)i := rB∥rA∥rB∥rA∥ . . . ∥rB∥rA︸ ︷︷ ︸
i-times

.

Additionally, for any rA ∈ RA and rB ∈ RB , define the following:

(rA∥rB)0 = (rB∥rA)0 := eM ,

where eM is the special “identity” element. Next, we define the following auxiliary sets for each i ∈ [ℓ]:

RA,B,i = {(rA∥rB)i : rA ∈ RA, rB ∈ RB}, RB,A,i = {(rB∥rA)i : rB ∈ RB, rA ∈ RA}.

We also define the following auxiliary sets for each i ∈ [ℓ− 1]:

R′A,B,i = {rA∥(rB∥rA)i : rA ∈ RA, rB ∈ RB}, R′B,A,i = {rB∥(rA∥rB)i : rB ∈ RB, rA ∈ RA}.

At this point, we define the set M in the monoid (M,⊕) as:

M = RA ∪RB ∪

⋃
i∈[ℓ]

RA,B,i ∪RB,A,i

 ∪
 ⋃

i∈[ℓ−1]

R′A,B,i ∪R′B,A,i

 ∪ {eM ,⊥M},

where eM is the special “identity” element and ⊥M is a special “terminal” element.
Next, we define the associated monoid operation ⊕ as follows:

• For any rA ∈ RA and any y such that y ∈ RB,A,i for i ∈ [ℓ− 1] or y ∈ RB,A,i for i ∈ [ℓ− 1], define

rA ⊕ y := rA∥y.

• For any rB ∈ RB and any y such that y ∈ RA,B,i for i ∈ [ℓ− 1] or y ∈ R′A,B,i for i ∈ [ℓ− 1], define

rB ⊕ y := rB∥y.

• For any α ∈M , define eM ⊕ α := α.

• Any other possible monoid operation maps to the terminal element ⊥M .

Lemma 3.27. (M,⊕) is a monoid.

Proof. Closure and associativity are immediate by construction. Also, eM serves as the (left) identity element
for M .

Remark 3.28. For ℓ = 1, (M,⊕) is essentially a non-commutative version of same monoid that we con-
structed when proving that NIKE implies CUDMA.

Remark 3.29. Note that once again, for simplicity of exposition, we assume here that the sets RA and RB

support compact representations. In case this is not true, we equivalently represent an element rA (resp.,
rB) sampled according to the distribution DA (resp., DB) using the random coins input to the sampling
algorithm (any element that cannot be sampled according to these distributions does not appear in the monoid
M ).
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Constructing the Set. Next, we define the set X as follows:

X = (PP∪{⊥X})×(SA,1∪{⊥X})×(SB,1∪{⊥X})×. . .×(SA,ℓ∪{⊥X})×(SB,ℓ∪{⊥X})×(K∪{⊥X}).

where:

• PP denotes the set of possible public parameters for the NIKE protocol.

• For each i ∈ [ℓ], Si,A and Si,B denote the set of possible round-i output shares for the parties A and B,
respectively.

• K denotes the set of possible final keys that the parties A and B could agree on.

• ⊥X is a special “terminal” symbol.

As in the proof of NIKE implies DUCMA, a set element captures the gradual evolution of the public transcript
of messages exchanged at various stages of the protocol, as well as the final computation of the shared key.
In particular:

• A set element of the form (pp,⊥X ,⊥X , . . . ,⊥X ,⊥X ,⊥X) represents the transcript of messages from
the point of view of either party A or party B before the start of the protocol.

• A set element of the form

(pp, s1,A, s1,B, s2,A, s2,B, . . . , si,A, si,B,⊥X ,⊥X , . . . ,⊥X ,⊥X ,⊥X)

represents the transcript of exchanged messages after round-i of protocol execution (from the point of
view of both parties A and B).

• A set element of the form

(pp, s1,A, s1,B, s2,A, s2,B, . . . , sℓ,A, sℓ,B, kAB)

represents the transcript of messages and the final secret key after the completion of the protocol (from
the point of view of both parties A and B).

While we allow all other kinds of tuples in the set X from a syntactical point of view, they do not carry any
semantic meaning. We enforce this in the manner in which we define the action operation, as described next.

Defining the Action. Finally, we define the action ⋆ : M × X → X . We make use of the following
functions associated with any ℓ-round protocol as per Definition 3.22:

• {Geni,A : PP ×RA × Γi → Si+1,A}i∈[0,ℓ−1].

• {Geni,B : PP ×RB × Γi → Si+1,B}i∈[0,ℓ−1].

• CombineA : PP ×RA × Γℓ → K.
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• CombineB : PP ×RB × Γℓ → K.

Given these functions, we define the action operation ⋆ : M ×X → X . We divide the operations into two
types: base actions and recursive actions. We begin by defining the base action operations.

Base Action Operations:

• For any x = (x0, x1, x2, . . . , x2ℓ+1) ∈ X , define

eM ⋆ (x0, x1, x2, . . . , x2ℓ+1) := (x0, x1, x2, . . . , x2ℓ+1).

• For any rA ∈ RA and any pp ∈ PP , define

rA ⋆ (pp,⊥X ,⊥X ,⊥X , . . . ,⊥X) := (pp, s1,A,⊥X ,⊥X , . . . ,⊥X).

where s1,A = Gen0,A(pp, rA).

• For any rB ∈ RB and any pp ∈ PP , define

rB ⋆ (pp,⊥X ,⊥X ,⊥X , . . . ,⊥X) := (pp,⊥X , s1,B,⊥X , . . . ,⊥X).

where s1,B = Gen0,B(pp, rB).

• For any i ∈ [ℓ− 1], any rA ∈ RA, any pp ∈ PP , and any

{sj,A ∈ Sj,A, sj,B ∈ Sj,B}j∈[i−1], si,B ∈ Si,B,

define

rA ⋆ (pp, {sj,A, sj,B}j∈[i−1],⊥X , si,B,⊥X , . . . ,⊥X)

:= (pp, {sj,A, sj,B}j∈[i−1], si,A, si,B, si+1,A,⊥X ,⊥X , . . . ,⊥X),

where
si,A = Geni−1,A(pp, rA, τi−1), si+1,A = Geni,A(pp, rA, τi),

where, as before, we have the transcript variables defined as

τi−1 = (pp, s1,A, s1,B, . . . , si−1,A, si−1,B), τi = (pp, s1,A, s1,B, . . . , si,A, si,B).

• For any i ∈ [ℓ− 1], any rB ∈ RB , any pp ∈ PP , and any

{sj,A ∈ Sj,A, sj,B ∈ Sj,B}j∈[i−1], si,A ∈ Si,A,

define

rB ⋆ (pp, {sj,A, sj,B}j∈[i−1], si,A,⊥X ,⊥X , . . . ,⊥X)

:= (pp, {sj,A, sj,B}j∈[i−1], si,A, si,B,⊥X , si+1,B,⊥X , . . . ,⊥X),

where
si,B = Geni−1,B(pp, rB, τi−1), si+1,B = Geni,B(pp, rB, τi),

where we again have the transcript variables τi−1 and τi defined as before.
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• For any rA ∈ RA, any pp ∈ PP , and any

{sj,A ∈ Sj,A, sj,B ∈ Sj,B}j∈[ℓ−1], sℓ,B ∈ Si,B,

define

rA ⋆ (pp, {sj,A, sj,B}j∈[ℓ−1],⊥X , sℓ,B,⊥X) := (pp, {sj,A, sj,B}j∈[ℓ−1], sℓ,A, sℓ,B, kA,B),

where
sℓ,A = Genℓ−1,A(pp, rA, τℓ−1), kA,B = CombineA(pp, rA, τℓ),

where, as before, we have the transcript variables defined as

τℓ−1 = (pp, s1,A, s1,B, . . . , sℓ−1,A, sℓ−1,B), τℓ = (pp, s1,A, s1,B, . . . , sℓ,A, sℓ,B).

• For any rB ∈ RB , any pp ∈ PP , and any

{sj,A ∈ Sj,A, sj,B ∈ Sj,B}j∈[ℓ−1], sℓ,A ∈ Si,A,

define

rB ⋆ (pp, {sj,A, sj,B}j∈[ℓ−1], sℓ,A,⊥X ,⊥X) := (pp, {sj,A, sj,B}j∈[ℓ−1], sℓ,A, sℓ,B, kB,A),

where
sℓ,B = Genℓ−1,B(pp, rB, τℓ−1), kB,A = CombineB(pp, rB, τℓ),

where we again have the transcript variables τℓ−1 and τℓ defined as before.

• All other base action operations of the form rA ⋆ x for any rA ∈ RA and any x ∈ X output the
“terminal” set element (⊥X ,⊥X , . . . ,⊥X ,⊥X).

• Similarly, all other base action operations of the form rB ⋆ x for any rB ∈ RB and any x ∈ X output
the “terminal” set element (⊥X ,⊥X , . . . ,⊥X ,⊥X).

Recursive Action Operations:

• For any i ∈ [ℓ], any rA ∈ RA, any rB ∈ RB , and any set element x ∈ X , define

((rA∥rB)i) ⋆ x := rA ⋆ (rB ⋆ (. . . rA ⋆ (rB ⋆ x)))︸ ︷︷ ︸
i−times

,

((rB∥rA)i) ⋆ x := rB ⋆ (rA ⋆ (. . . rB ⋆ (rA ⋆ x)))︸ ︷︷ ︸
i−times

.

• For any i ∈ [0, ℓ− 1], any rA ∈ RA, any rB ∈ RB , and any set element x ∈ X , define

(rA∥(rB∥rA)i) ⋆ x := rA ⋆

rB ⋆ (rA ⋆ (. . . rB ⋆ (rA ⋆ x)))︸ ︷︷ ︸
i−times

 ,

(rB∥(rA∥rB)i) ⋆ x := rB ⋆

rA ⋆ (rB ⋆ (. . . rA ⋆ (rB ⋆ x)))︸ ︷︷ ︸
i−times

 .
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Lemma 3.30. The monoid action (M,X, ⋆) satisfies identity and compatibility if the NIKE protocol satisfies
correctness.

Proof. Identity and compatibility are again immediate by construction.

Lemma 3.31. The monoid action (M,X, ⋆) satisfies ℓ-commutativity if the NIKE protocol satisfies correct-
ness.

Proof. To prove this, it suffices to show that for any rA ∈ RA, any rB ∈ RB , and any pp ∈ PP , we have

((rA∥rB)ℓ) ⋆ (pp,⊥X , . . . ,⊥X) = ((rB∥rA)ℓ) ⋆ (pp,⊥X , . . . ,⊥X),

because any other ℓ-commutator-style expression maps to the all-⊥X terminal set element. Now, observe that
we have the following by construction:

((rA∥rB)ℓ) ⋆ (pp,⊥X , . . . ,⊥X) = (pp, s1,A, s1,B, . . . , sℓ,A, sℓ,B, kA,B),

((rB∥rA)ℓ) ⋆ (pp,⊥X , . . . ,⊥X) = (pp, s1,A, s1,B, . . . , sℓ,A, sℓ,B, kB,A),

where
si+1,A = Geni,A(pp, rA, τi), (si+1, B) = Geni,B(pp, rB, τi),

for each i ∈ [0, ℓ− 1], where τi = (pp, s1,A, s1,B, . . . , si,A, si,B). Also, we have

kA,B = CombineA (pp, rA, τℓ) , kB,ACombineB (pp, rB, τℓ) ,

where we again have τℓ = (pp, s1,A, s1,B, . . . , sℓ,A, sℓ,B). Now, by the correctness of the NIKE protocol, we
have

kA,B = kB,A.

This completes the proof of Lemma 3.31.

Lemma 3.32. The monoid action (M,X, ⋆) satisfies distributional ℓ-unpredictability if the NIKE protocol is
secure.

Proof. It follows immediately from the security of the NIKE protocol that the group action (M,X, ⋆) satisfies
distributional ℓ-unpredictability with respect to the distributions DM,b for b ∈ {0, 1} and DX defined as
follows:

DM,0 := DA, DM,1 := DB, DX := Dpp,

where DA, DB and Dpp are the efficiently sampleable distributions over the sets RA, RB and PP in the
structural formulation of NIKE.

Putting together Lemma 3.27, Lemma 3.30, Lemma 3.31, and Lemma 3.32 establishes that the group
action (M,X, ⋆) indeed satisfies the structural formulation for ℓ-DUCMA (Definition 3.4) whenever the
ℓ-round KE satisfies the corresponding structural formulation (Definition 3.22). This completes the proof of
Theorem 3.26. □
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Remark 3.33. We remark that a key exchange protocol (by definition) does not guarantee any security
in presence of malicious parties, and it only considers the honest setting. Thus, for the aforementioned
equivalence of key exchange protocol and unpredictable monoid action we do not need to consider the cases
in which one (or more) parties do not follow the protocol (e.g., by sending an improperly formatted message
to other parties). As a side note, this issues does not arise in case of a noninteractive key exchange since
there is no interaction. We refer the reader to [FHKP13] for more details on the security models for NIKE.
This makes it substantially easier for us to guarantee a correct monoid action, since we never come across
circumstances where it is difficult to decide whether an operation should map to the terminal element or not
(which would be the case if, for instance, we had to test set membership due to a malicious player).

Remark 3.34. We note that our results also hold in a natural sense for key exchange protocols that are not
perfectly correct but satisfy overwhelming success probability (e.g., protocols based on Learning With
Rounding [BPR12]). For these protocols, one can define an algebraic notion of “approximate equality” of set
elements (see [AMPR19, AMP19] for more details) and prove an almost identical result to that of perfectly
correct key exchange protocols. In other words, for these key exchange protocols, we form squares that
“almost always commute.” However, we chose to present our formal results based on key exchange protocols
with perfect correctness for the ease of exposition.

3.2 String-Concatenation Monoid Action Oracles

We now define an unconditional variant of DUCMA, which we refer to as generic string concatenation
monoid action (SCMA) oracle. Informally speaking, an SCMA oracle (with certain restrictions as outlined
subsequently) is a DUCMA in the strongest possible sense, much like how a random oracle is one-way in the
strongest possible sense (see [IR89] for a detailed exposition on the latter).

Definition 3.35 (Generic SCMA Oracle). A generic string concatenation monoid action (SCMA) oracle
M is a family of SCMA sub-oracles of the form M = {Mκ(·, ·)}κ∈N, where each SCMA sub-oracle Mκ is
defined over the set of strings Σκ ⊆ {0, 1}κ. Concretely, each SCMA sub-oracle Mκ is an independently
distributed random variable such that its values are functions of the form Mκ : Σ∗κ × {0, 1}∗ → {0, 1}∗
satisfying the following conditions:

1. For any s ∈ Σκ and any x ∈ {0, 1}∗, Mκ(s, x) is distributed independently of both Mκ(Σ
∗
κ \

{s}, {0, 1}∗) and Mκ(Σ
∗
κ, {0, 1}∗ \ {x}), subject to the restrictions that:

(a) For any x ∈ {0, 1}∗, we have Mκ(ϕ, x) = x, where ϕ denotes the empty string element in Σ∗κ.

(b) For any a ∈ Σκ, any s ∈ Σ∗κ, and any x ∈ {0, 1}∗, we have

Mκ(a∥s, x) = Mκ(a,Mκ(s, x)).

2. For any s ∈ Σ∗κ and any x, y ∈ {0, 1}∗, Pr[Mκ(s, x) = y] is a rational number.

Remark 3.36. We stress that each SCMA sub-oracle Mκ in the above definition is independently distributed.
As a toy example, let a = a0∥a1 be a bit-string of length 2ℓ, such that a0 and a1 are strings of length ℓ
each. Then, for some set element x ∈ {0, 1}∗, the distribution of the output element yℓ = Mℓ(a0∥a1, x)
is independent of distribution of the output element y2ℓ = M2ℓ(a, x), where the distributions are over the
random coins used to sample the values (equivalently, functions) for the random variables Mℓ and M2ℓ.
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SCMA Oracles with Commutator-like Properties. In this paper, we consider (sub-)SCMA oracles that
additionally satisfy certain commutative (or commutator-like) properties.

Definition 3.37 (Commutative SCMA Oracle). A generic SCMA oracle M = {Mκ(·, ·)}κ∈N is said to be
commutative if for any κ ∈ N, any a, b ∈ Σκ, and any x ∈ {0, 1}∗, we have

Mκ(ab, x) = Mκ(ba, x).

Definition 3.38 (k-Commutator SCMA Oracle). A generic SCMA oracle M = {Mκ(·, ·)}κ∈N is said to
be a k-commutator (for k ≥ 1) for any κ ∈ N, any a, b ∈ Σκ, and any x ∈ {0, 1}∗, we have

Mκ((ab)
k, x) = Mκ((ba)

k, x).

Restricted SCMA Oracles. We now introduce some restrictions of a generic SCMA oracle as defined
above. We begin by defining a special set element, which we call the “initial” set element. In the rest of
the paper, we slightly abuse notation by using |s| for any κ ∈ N and any s ∈ Σ∗κ to denote the number of
symbols/elements in Σκ that s contains, rather than the length of the bit-representation of s (which would be
κ|s| as per our notation).

Definition 3.39 (Base Set Element). Let Mκ(·, ·) be a generic SCMA sub-oracle as defined above. The
k-base set element x0 ∈ {0, 1}∗ for Mκ(·, ·) is a special set element such that any s0, s1 ∈ Σ∗κ, we must have

(|s0| < 2k ∧ |s1| < 2k ∧Mκ(s0, x0) = Mκ(s1, x0)) =⇒ s0 = s1.

In other words, Σκ(·, x0) is an injective function on input strings of bit-length less than 2kκ (i.e., input strings
with fewer than 2k symbols from Σκ).

Definition 3.40 (Level of a Set Element). Let Mκ(·, ·) be a generic SCMA sub-oracle as defined above, and
let x0 be a k-base set element for Mκ as defined above for some k ≥ 1. We define a corresponding “level”
function Levelκ,k : {0, 1}∗ → Z as follows:

Levelκ,k(x) =

{
ℓ if ∃s ∈ Σℓ

κ : ℓ < 2k ∧Mκ(s, x0) = x,

−1 otherwise.

Remark 3.41. The level of any set element x ∈ {0, 1}∗ is unique for each (κ, k)-pair by the above definition,
and hence the function Levelκ,k is well-defined.

Remark 3.42. The level of the base set element x0 is zero.

Generic 1-restricted SCMA Oracle. We now introduce a “two-layered” restriction of a generic SCMA
oracle, which we call a generic 1-restricted SCMA oracle. Informally, we introduce the following restrictions:

• Each SCMA sub-oracle Mκ is now an independently distributed random variable such that its values
are functions of the form Mκ : Σ∗κ × {0, 1}cκ → {0, 1}cκ for some constant c > 2 (i.e., we restrict the
set elements to be bit-strings of fixed size cκ).

• There exists a 1-base set element xκ,0 ∈ {0, 1}cκ for each SCMA sub-oracle Mκ. Unless otherwise
specified, we drop the subscript κ from xκ,0 and simply write x0, where the value of κ is implicit from
the SCMA sub-oracle Mκ that takes as input x0.
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• The action of a monoid element s ∈ Σ∗κ on any set element x ∈ {0, 1}cκ is defined if and only if
Levelκ,1(x) ≥ 0, i.e., there exists some s′ ∈ Σ∗κ such that Mκ(s

′, x0) = x. Any action computation on
a set element x such that Levelκ,1(x) = −1 yields the symbol ⊥.

• The action of a monoid element s ∈ Σ∗κ on the base set element x0 is allowed if and only if s ∈ Σℓ
κ for

ℓ ≤ 2, i.e. s is either the empty string (which represents the identity element of the string concatenation
monoid), or s is of the form s = a or s = ab for a, b ∈ Σ. In other words, we only allow at most
two “layers” of action computation on x0; any action computation that involves more layers yields the
symbol ⊥.

We call this a 1-restricted SCMA oracle, and define it formally below.

Definition 3.43 (Generic 1-Restricted SCMA Oracle). A generic 1-restricted SCMA oracle M is a family
of 1-restricted SCMA sub-oracles of the form M = {Mκ(·, ·)}κ∈N, where each 1-restricted SCMA sub-
oracle Mκ is an independently distributed random variable such that its values are functions of the form
Mκ : Σ∗κ × {0, 1}cκ → {0, 1}cκ for some constant c (looking ahead, we need c > 12 for our proofs to hold),
satisfying all of the properties of a generic SCMA sub-oracle, with the following additional constraints:

1. Mκ has a 1-base set element x0.

2. For any s ∈ Σ∗κ, we have Mκ(s,⊥) = ⊥.

3. For any s ∈ Σ∗κ and any x ∈ {0, 1}cκ, we have Mκ(s, x) = ⊥ if either of the following conditions
holds:

• Either Level1(x) = −1.

• Or |s|+ Level1(x) > 2 (where |s| denotes the number of elements from Σκ in s).

Generic k-restricted SCMA Oracle. We now formally define a more general version of a generic 1-
restricted SCMA oracle, which we call a generic k-restricted SCMA oracle.

Definition 3.44 (Generic k-restricted SCMA Oracle). A generic k-restricted SCMA oracle M is a family
of k-restricted SCMA sub-oracles of the form M = {Mκ(·, ·)}κ∈N, where each k-restricted SCMA sub-
oracle Mκ is an independently distributed random variable such that its values are functions of the form
Mκ : Σ∗κ×{0, 1}cκk → {0, 1}cκk for some constant c (looking ahead, we again need c > 12 for our proofs to
hold), satisfying all of the properties of a generic SCMA sub-oracle, with the following additional constraints:

1. Mκ has a k-base set element x0.

2. For any s ∈ Σ∗κ, we have Mκ(s,⊥) = ⊥.

3. For any s ∈ Σ∗κ and any x ∈ {0, 1}cκk, we have Mκ(s, x) = ⊥ if either of the following conditions
holds:

• Either Levelk(x) = −1.

• Or |s|+ Levelk(x) > 2k (where |s| denotes the number of elements from Σκ in s).

In this paper, we consider k-restricted SCMA sub-oracles that additionally satisfy certain commutator-like
properties, defined formally below.

45



Definition 3.45 (k′-Commutator k-restricted SCMA Sub-Oracle). A generic k-restricted SCMA sub-oracle
with k-base element x0 ∈ {0, 1}cκk is said to be a k′-commutator (for k′ ∈ [1, k]) if for any a, b ∈ Σκ, we
have

Mκ

(
(ab)k

′
, x0

)
= Mκ

(
(ba)k

′
, x0

)
.

Definition 3.46 (k′-Commutator k-restricted SCMA Sub-Oracle). A generic k-restricted SCMA oracle
M = {Mκ(·, ·)}κ∈N is said to be k′-commutator (for k′ ∈ [1, k]) if each k-restricted SCMA sub-oracle Mκ

is k′-commutator.

In particular, we use k-restricted SCMA (sub-)oracles that are also k-commutator. In the rest of the paper,
when we refer to k-restricted SCMA (sub-)oracles, we assume that they are additionally k-commutator by
default (unless specified otherwise); hence, we do not explicitly specify the k-commutator property.

Remark 3.47. Our definition of a commutative SCMA sub-oracle says that for monoid elements a, b ∈ Σκ,
and for a set element x ∈ {0, 1}cκk, we have: Mκ ((ab), x0) = Mκ ((ba), x0). However, this does not
necessarily imply that ab = ba, which is a significantly stronger requirement. In our definition, the monoid
elements ab and ba are allowed to be distinct (and hence, a and b are allowed to be distinct), with the
only requirement being that their action on the same set element x produces the same set element y. The
same holds for our general definition of k-commutator SCMA sub-oracles, where we have Mκ

(
(ab)k, x

)
=

Mκ

(
(ba)k, x

)
, but do not enforce that (ab)k = (ba)k. In other words, we do not enforce that for any pair of

set elements (x, y) ∈ {0, 1}cκk × {0, 1}cκk, there exists a unique monoid element that maps x to y. Since
we do not enforce the monoid elements themselves to be identical but only the output of their actions to be
identical, there can be exponentially many monoid elements at each level of the generic string concatenation
monoid.

3.3 Separating 2k-round Key Exchange from (2k + 1)-round Key Exchange

Our (informal) goal is to black-box separate any 2k-round KE protocol from any (2k+1)-round KE protocol.
Subsequently, in Section 3.4, we show that the separation of (2k + 1)-round KE from any (2k + 2)-round
KE follows analogously.

Informally, we prove that there exists no relativizing reduction from 2k-round KE to (2k + 1)-round KE.
This is captured by the following theorem.

Theorem 3.48 (KE Separation Theorem). For a fixed k ∈ N, relative to a k-SCMA oracle M = {Mκ}κ∈N,
there exists a secure (2k + 1)-round KE protocol but no secure 2k-round KE protocol.

Proof Overview. The proof of this theorem is divided into two parts, as summarized below:

• We first show that, relative to a k-SCMA oracle M = {Mκ(·, ·)}κ∈N, there exists a secure (2k + 1)-
round KE protocol.

• We then show that, relative to a k-SCMA oracle M = {Mκ(·, ·)}κ∈N, there does not exist a secure
2k-round KE protocol.

The rest of this subsection formalizes these two results.
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(2k + 1)-round KE from (k + 1)-SCMA. We state the following theorem.

Theorem 3.49. Given a fixed k ∈ N and a security parameter κ ∈ N, there exists a (2k + 1)-round secure
KE protocol relative to a (k + 1)-SCMA sub-oracle Mκ(·, ·).

Proof. The proof follows essentially immediately from the equivalence of NIKE and DUCMA described
earlier. We describe it here for completeness. In the initial phase of the protocol we assume that two parties
(Alice and Bob) have access to a base set element x0. In addition, we assume that Alice (respectively Bob)
has a random “private” monoid element a ∈ {0, 1}κ (respectively b ∈ {0, 1}κ), chosen randomly from Σκ.

Our protocol proceeds as follows. For each round i ∈ [2k − 1], we first describe how Alice computes her
message and then we explain what Bob does in the ith round of the protocol.

• If i = 1, Alice queries the oracle on the input (a, x0) and she receives a response Mκ(a, x0). She then
sets m(1)

AB = Mκ(a, x0) and sends it to Bob.

• If i = 1, Bob queries the oracle on the input (b, x0) and he receives a response Mκ(b, x0). He then sets
m(1)

BA = Mκ(b, x0) and sends it to Alice.

• If i > 1 is odd where i = 2t+ 1, Alice queries the oracle on the input (a,m(2t)
BA) and she receives a

response Mκ(a,m
(2t)
BA). Observe that by construction we have

m(2t)
BA = Mκ((ba)

t, x0).

She then sets m(i)
AB = Mκ(a,m

(2t)
BA) and sends m(i)

AB to Bob.

• If i > 1 is odd where i = 2t + 1, Bob queries the oracle on the input (b,m(2t)
AB ) and he receives a

response Mκ(b,m
(2t)
AB ). Observe that by construction we have

m(2t)
AB = Mκ((ab)

t, x0).

He then sets m(i)
BA = Mκ(b,m

(2t)
AB ) and sends m(i)

BA to Alice.

• If i > 1 is even where i = 2t, Alice queries the oracle on the input (a,m(2t−1)
BA ) and she receives a

response Mκ(a,m
(2t−1)
BA ). Observe that by construction we have

m(2t−1)
BA = Mκ(b(ab)

t−1, x0).

She then sets m(i)
AB = Mκ(a,m

(2t−1)
BA ) and sends m(i)

AB to Bob.

• If i > 1 is even where i = 2t, Bob queries the oracle on the input (b,m(2t−1)
AB ) and he receives a

response Mκ(b,m
(2t−1)
AB ). Observe that by construction we have

m(2t−1)
AB = Mκ(a(ba)

t−1, x0).

He then sets m(i)
BA = Mκ(b,m

(2t−1)
AB ) and sends m(i)

BA to Bob.
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Finally, Alice and Bob can compute the final shared secret as follows:

• Alice computes the final shared secret as SA = Mκ(a,m
(2k−1)
BA ).

• Bob computes the final shared secret as SB = Mκ(b,m
(2k−1)
AB ).

To argue correctness, observe that based on the description of the protocol above, we have

m(2k−1)
AB = Mκ(a(ba)

k−1, x0), m(2k−1)
BA = Mκ(b(ab)

k−1, x0).

It follows that
SA = Mκ((ab)

k, x0) = Mκ((ba)
k, x0) = SB,

where we used the k-commutator property of the k-SCMA. Thus, Alice and Bob arrive at the same value
after following the protocol.

We now sketch a proof of security of the protocol for k = 1. Our proof is similar to that of protocols in the
generic group model. First observe that since the output of Mκ is random subject to monoid axioms, it follows
for any adversary that makes at most polynomially many queries to the oracle, i.e., at most poly(log(|Σκ|))
many queries, we have

(x0,Mκ(a, x0),Mκ(b, x0),Mκ(ab, x0))
s
≈ (x0,Mκ(a, x0),Mκ(b, x0),Mκ(u, x0)),

where u is a randomly chosen element from Σκ. To argue statistical security for the general case k > 1,
first note that the messages sent by Alice/Bob have the form

m(i)
AB = Mκ(a(ba)

t, x0), i = 2t+ 1

m(i)
AB = Mκ(b(ab)

t−1, x0), i = 2t

m(i)
BA = Mκ(b(ab)

t, x0), i = 2t+ 1

m(i)
BA = Mκ(a(ba)

t−1, x0), i = 2t.

In addition, since for a random (generic) k-restricted SCMA, the k′-commutator property does not hold if
k′ < k (unless with negligible probability), one can argue that a strong form of DDH-like property holds, i.e.,

(x0,Mκ(a, x0),Mκ(b, x0),Mκ(ab, x0),Mκ(ba, x0))
s
≈

(x0,Mκ(a, x0),Mκ(b, x0),Mκ(u, x0),Mκ(u
′, x0)),

where both u and u′ are chosen randomly from Σκ. By relying on this property, we can replace ab and ba
with u and v in the tuples of messages sent by Alice and Bob, as shown above. It follows that

m(i)
AB

s
≈Mκ(a(v)

t, x0), i = 2t+ 1

m(i)
AB

s
≈Mκ(b(u)

t−1, x0), i = 2t

m(i)
BA

s
≈Mκ(b(u)

t, x0), i = 2t+ 1

m(i)
BA

s
≈Mκ(a(v)

t−1, x0), i = 2t.

By setting x0 = Mκ(u
t−1, x0) and x1 = Mκ(v

t−1, x0), and relying once again on the DDH-like property
it follows that the final secret is unpredictable for an eavesdropper, as required.
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Remark 3.50. We remark that in the last step of the protocol, Alice and Bob only make a single query to the
oracle in order to compute the final shared secret, and they do not exchange any messages. Therefore, we do
not need to count the last step as an extra “round.”

Remark 3.51. We note that each round consists of three sub-rounds as defined earlier. In the first two sub-
round Alice and Bob query the oracle on their inputs respectively. Finally, in the last sub-round, Alice/Bob
sends a message to the other party. We also remark that the protocol above works for semi-honest parties
where the parties honestly follow the protocol. Since in each round there is no “illegal” query to the oracle,
no party would send ⊥ to the other party.

Remark 3.52. We note that in the construction of key exchange protocol above the results holds uncondi-
tionally (statistically) as there is no computational assumption over the k-restricted string concatenation
monoid (SCMA). Therefore, this result should be interpreted along similar to a line of works on feasibility
results based on idealized assumptions. For instance, one can easily show that certain idealized models such
as generic group model (GGM) [Sho97] or algebraic group model (AGM) [FKL18] imply a key exchange
protocol, and these results hold unconditionally. On the same vein, it has long been known how to construct
noninteractive zero-knowledge proof from an interactive zero-knowledge protocol in the random oracle
model (ROM) [FS87].

Impossibility of 2k-round KE relative to (k + 1)-SCMA. We now establish the impossibility of a secure
2k-round KE protocol where the participants Alice and Bob only make queries to a generic (k+1)-restricted
SCMA oracle. Note that this immediately (black-box) separates 2k-round KE from any (2k + 1)-round KE
protocol. In particular, we wish to establish that for any 2k-round KE protocol where the participants Alice
and Bob only make queries to a (k + 1)-restricted SCMA oracle, there exists an attacker Eve that, given
access access to the generic (k + 1)-restricted SCMA oracle and to the the messages exchanged publicly
between Alice and Bob during the protocol, also finds the final secret key that Alice and Bob agree on with
non-negligible probability.

Before we formalize this goal, we introduce several notations for executions and probability distributions
associated with a 2k-round key exchange. In the rest of the section, when we refer to a generic (k + 1)-
restricted SCMA, we assume that it is (k + 1)-commutator by default.

3.3.1 Round-Based Definition of 2k-round Key Exchange.

We begin by formally defining a 2k-round key exchange protocol where the participants are Alice and Bob,
and Eve is the adversary, all of whom have access to a (k + 1)-restricted SCMA oracle. We assume w.l.o.g.
that Alice, Bob, and Eve will never issue the same (k + 1)-restricted SCMA oracle query twice. Also, we
assume that Alice (resp., Bob) issues at most nA (resp., nB) (k+ 1)-restricted SCMA oracle queries. Finally,
we use the notation Mκ to denote a generic SCMA sub-oracle acting on input strings in Σκ, where the
parameter κ is implicit from the length of the input (note that none of Alice, Bob, or Eve are allowed to query
Mκ on an inputs whose length is not a multiple of κ). However, we do note that all of the parties can query
Mκ for any κ that they so desire. We let M = {Mκ} represent the family of all oracles.

Rounds and Sub-Rounds. Each round i (for i ≥ 1) consists of a message m(i)
AB sent from Alice to Bob and

a message m(i)
BA sent from Bob to Alice. Each round i consists of several sub-rounds (i, j) for j ∈ [ni + 1]

defined as follows:
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• Each sub-round (i, j) for j ∈ [ni] begins with either Alice or Bob issuing a single (new) (k + 1)-
restricted SCMA oracle query, and ends with with Eve issuing her (new) oracle queries based on the
set of messages exchanged between Alice and Bob so far, defined as

m[i−1] =
{

m(1)
AB,m

(1)
BA, . . . ,m

(i−1)
AB ,m(i−1)

BA

}
.

In these sub-rounds, Alice and Bob do not exchange any messages.

Remark 3.53. The astute reader may observe that this restriction of a single oracle query by Alice or
Bob in each sub-round matches the notion of “semi-normal form” for a key exchange protocol defined
originally in [BM09], with the only difference being that [BM09] defined each round to involve a
single query from either Alice or Bob, whereas we apply this restriction to each sub-round. This is
because the analysis of [BM09] is agnostic of the number of rounds (indeed, their separation result
holds for key exchange protocols with any polynomially many rounds), while our analysis crucially
relies on the number of rounds (and is agnostic of the number of sub-rounds).

• Sub-round (ni + 1) involves the following steps that happen simultaneously:

– Alice computes her message m(i)
AB and sends it to Bob.

– Simultaneously, Bob computes his message mBA and sends it to Alice.

While computing the above messages, both Alice and Bob only use their own oracle queries till round
(i− 1), and the set of messages exchanged between Alice and Bob till round (i− 1), defined as

m[i−1] =
{

m(1)
AB,m

(1)
BA, . . . ,m

(i−1)
AB ,m(i−1)

BA

}
.

We define the sub-rounds as above for ease of exposition, and for simplifying the attack analysis presented
subsequently.

3.3.2 Queries and Views.

We use the following notations to denote the queries and views of Alice, Bob, and Eve at the end of various
sub-rounds:

• Q
(i,j)
A (resp., Q(i,j)

B and Q
(i,j)
E ): denotes the set of (k + 1)-restricted SCMA oracle queries issued by

Alice (resp., Bob and Eve) by the end of sub-round (i, j).

• P
(i,j)
A (resp., P (i,j)

B and P
(i,j)
E ): denotes the set of query-response pairs corresponding to the (k + 1)-

restricted SCMA oracle queries issued by Alice (resp., Bob and Eve) by the end of sub-round (i, j).
More formally, for α ∈ {A,B,E}, we have

P (i,j)
α =

{
(s, x, y = {Mκ(s, x)}κ) : (s, x) ∈ Q(i,j)

α

}
.

Note that in the above expression, we assume (without loss of generality) that the view of each party
includes the response of all possible SCMA sub-oracles on any given query (where the response of
a given SCMA sub-oracle Mκ(·, ·) on an invalid input (s, x), i.e., on input (s, x) /∈ Σκ × {0, 1}cκk,
is simply set to ⊥). Note that in a real execution of the KE protocol, a party may avoid making such
invalid queries, however, this essentially does not change its view from the expression above.
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• V
(i,j)
A (resp., V (i,j)

B and V
(i,j)
E ): denotes the views of Alice (resp., Bob and Eve) by the end of sub-round

(i, j). More formally, for α ∈ {A,B}, we have

V (i,j)
α =

(
rα,m(i,j), P (i,j)

α

)
,

where rA (resp., rB) denotes the internal randomness of Alice (resp., Bob). In addition, we have

V
(i,j)
E =

(
m(i,j), P

(i,j)
E

)
.

In particular, the view of Eve does not have any randomness since Eve does not use any randomness.

We adopt the notationQ(·) from [BM09] to denote an operator that extracts the set of queries from any set of
(k + 1)-restricted SCMA oracle query-answer pairs or views; namely, for any set of query-response pairs P
and any view V = (r,m, P ), we have

Q(P ) = Q(V = (r,m, P )) = {q = (s, x) : ∃y, (s, x, y) ∈ P} .

Finally, we analogously use the notations Q
(i)
A (resp,. Q

(i)
B and Q

(i)
E ), P (i)

A (resp,. P
(i)
B and P

(i)
E ) and

V
(i)
A (resp,. V

(i)
B and V

(i)
E ) to denote the set of queries asked by Alice (resp., Bob and Eve), the set of

query-response pairs corresponding to the queries asked by Alice (resp., Bob and Eve), and the view of
Alice (resp., Bob and Eve) at the end of all sub-rounds of round i in the KE protocol.

3.3.3 Executions and Distributions.

A (full) execution of Alice, Bob, and Eve can be described by a tuple (rA, rB,M = {Mκ}), where rA
denotes Alice’s random tape, rB denotes Bob’s random tape, and M = {Mκ} denotes the generic (k + 1)-
restricted SCMA (note that Eve is deterministic). We denote by E the distribution over (full) executions,
obtained by running the algorithms for Alice, Bob and Eve with uniformly chosen random tapes rA, rB ,
and a uniformly sampled generic (k + 1)-restricted SCMA M = {Mκ}. We denote by PrE [P

(i,j)
A ] (resp.,

PrE [P
(i,j)
B ] and PrE [P

(i,j)
E ]) the probability that P (i,j)

A (resp., P (i,j)
B and P

(i,j)
E ) is the set of query-response

pairs corresponding to the (k + 1)-restricted SCMA oracle queries issued by Alice (resp., Bob and Eve) by
the end of sub-round (i, j) during the execution.

For any (i, j), for any sequence of exchanged messages m(i,j), and for any set of (k + 1)-restricted
SCMA oracle query-answer pairs P (i,j)

E , we denote by V
(

m(i,j), P
(i,j)
E

)
the joint distribution over the views(

V
(i,j)
A , V

(i,j)
B

)
of Alice and Bob in their own (partial) executions up to just before the sub-round (i, j),

conditioned on the event that:

1. the transcript of messages exchanged between Alice and Bob until this point being equal to m(i,j), and

2. the set of all (k + 1)-restricted SCMA oracle query-answer pairs corresponding to the queries issued
by Eve until this point being equal to P

(i,j)
E .

We denote the probability of the aforementioned event by PrE [m(i,j), P
(i,j)
E ]. Similar to in [BM09], we use

the distribution V(m(i,j)) to essentially capture the conditional distribution of Alice’s and Bob’s views in the
eyes of the attacker Eve who knows the public messages exchanged between Alice and Bob, and has learned
all (k + 1)-restricted SCMA oracle query-answer pairs described in P

(i,j)
E .
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3.3.4 Intersection Queries and Equivalence Queries.

We now formally define intersection and equivalence queries. Recall that for any (i, j), Q(i,j)
A (resp., Q(i,j)

B )
denotes the set of (k + 1)-restricted SCMA oracle queries issued by Alice (resp., Bob and Eve) by the end of
sub-round (i, j).

Intersection Queries. We define the set of intersection queries

Q
(i,j)
A∩B = Q

(i,j)
A ∩Q

(i,j)
B ,

to be the set of common (k + 1)-restricted SCMA oracle queries issued by both Alice and Bob until
sub-round-(i, j).

Equivalence Queries. We now define the concept of equivalence queries with respect to the (k + 1)-
restricted SCMA oracle queries issued by Alice and Bob.

Definition 3.54 (Equivalence Queries). Let qA = (sA, xA) and qB = (sB, xB) be two queries issued by
Alice and Bob to the (k + 1)-restricted SCMA oracle. We say that qA and qB are equivalent queries if the
following conditions hold simultaneously for some κ:

• (sA, xA) ̸= (sB, xB), Mκ(sA, xA) ̸= ⊥, Mκ(sB, xB) ̸= ⊥.

• One of the following two cases must be true (x0 being the (k + 1)-base set element for the (k + 1)-
restricted SCMA sub-oracle Mκ):

– Either there exist s′A, s
′
B ∈ Σ∗ such that

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = sB∥s′B.

– Or there exist a, b ∈ Σ, and s′A, s
′
B ∈ Σ∗, such that

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = (ab)k+1, sB∥s′B = (ba)k+1.

Note that the first condition immediately implies that Mκ(sA, xA) = Mκ(sB, xB). Additionally, the second
condition also implies that

Mκ(sA, xA) = Mκ(sA∥s′A, x) = Mκ((ab)
k+1, x)

= Mκ((ba)
k+1, x) = Mκ(sB∥s′B, x) = Mκ(sB, xB).

In other words, equivalence queries essentially depict two different sequences of queries to the (k + 1)-
restricted SCMA oracle leading to the same (valid) output, and the two possibilities mentioned above depict
the only scenarios that could lead to such a “collision” between two different sequence of queries with
non-negligible probability (this follows immediately from statistical independence properties of the outputs
of a (k + 1)-restricted SCMA oracle on uncorrelated inputs).

Remark 3.55. We remark here that we could also have some additional classes of equivalence queries that
are essentially combinations of the above two cases. However, we avoid explicitly enumerating them since
we do not need them for our eventual separation proof.
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Next, we define the equivalence relationRA≡B as follows:

RA≡B =

{
1 if and only if qA and qB are equivalent,
0 otherwise.

Finally, we define the set of equivalence queries

Q
(i,j)
A≡B =

{
(qA, qB ∈ Q

(i,j)
A ×Q

(i,j)
B : RA≡B(qA, qB) = 1},

to be the set of equivalence query-pairs (where each pair consists of a query issued by Alice and a query
issued by Bob) until sub-round-(i, j).

3.3.5 Good Events.

For any (i, j), for any sequence of exchanged messages m(i,j), and for any set of (k + 1)-restricted SCMA
oracle query-answer pairs P (i,j)

E (corresponding to queries issued by Eve) such that PrE [m(i,j), P
(i,j)
E ] > 0,

we define the following:

• The event Good0
(

m(i,j), P
(i,j)
E

)
is defined over the distribution V

(
m(i,j), P

(i,j)
E

)
and is said to hold

if and only if:
Q

(i,j)
A∩B ⊆ Q(P

(i,j)
E ),

where Q(i,j)
A∩B and Q

(i,j)
A≡B are determined by Q

(i,j)
A and Q

(i,j)
B , which are in turn determined by sampling

the views of Alice and Bob as (
V

(i,j)
A , V

(i,j)
B

)
← V

(
m(i,j), P

(i,j)
E

)
.

• The event Good1
(

m(i,j), P
(i,j)
E

)
is defined over the distribution V

(
m(i,j), P

(i,j)
E

)
and is said to hold

if and only if:

Q
(i,j)
A∩B ⊆ Q(P

(i,j)
E ) and ∀(qA, qB) ∈ Q

(i,j)
A≡B, qA ∈ Q(P

(i,j)
E ) ∨ qbQ(P

(i,j)
E ),

where Q(i,j)
A∩B and Q

(i,j)
A≡B are again determined by Q

(i,j)
A and Q

(i,j)
B , which are in turn again determined

by sampling the views of Alice and Bob as(
V

(i,j)
A , V

(i,j)
B

)
← V

(
m(i,j), P

(i,j)
E

)
.

Intuitively, the event Good0
(

m(i,j), P
(i,j)
E

)
indicates that Eve has issued all queries that have been issued

by both both Alice and Bob, while the event Good1
(

m(i,j), P
(i,j)
E

)
indicates that Eve has not only issued

all queries that have been issued by both both Alice and Bob, but also at least one query from each pair of
equivalence queries issued by Alice and Bob.

Finally, we denote by GV0
(

m(i,j), P
(i,j)
E

)
and GV1

(
m(i,j), P

(i,j)
E

)
the distributions obtained by condi-

tioning the distribution V
(

m(i,j), P
(i,j)
E

)
on the events Good0

(
m(i,j), P

(i,j)
E

)
and Good1

(
m(i,j), P

(i,j)
E

)
,

respectively.
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3.3.6 The Main Attack Theorem for KE.

Our goal is to prove the following main theorem.

Theorem 3.56 (Main Attack Theorem for KE). For a fixed k ∈ N, let M = {Mκ(·, ·)}κ∈N be a (k + 1)-
restricted SCMA oracle. Let Π be a 2k-round KE protocol between parties Alice and Bob such that:

• Alice makes at most nA queries to M, uses randomness rA and outputs sA.

• Bob makes at most nB queries to M, uses randomness rB , and outputs sB .

• Pr[sA = sB] > ρ, where the probability is taken over the choice of (rA, rB,M) describing the
execution of the protocol.

Then for every 0 < δ < ρ, there exists an attacker Eve that only has access to the public messages exchanged
between Alice and Bob, makes at most O(poly(nA, nB, k)/δ

2) queries to M, and produces an output sE
such that

Pr[sE = sB] > ρ− δ.

Before describing Eve’s attack algorithm, we introduce a special form of 2k-round KE (the existence of
which is implied by any 2k-round KE protocol). The special form of 2k-round KE is introduced purely to
make our attack analysis easier; our attack applies to any 2k-round KE protocol.

3.3.7 KE with Equivalence Complete Query Pattern.

We now introduce what we call an equivalence complete query pattern for Alice and Bob during an execution
of a 2k-round KE protocol, which essentially depicts a sequence of queries issued by Alice and Bob to the
(k + 1)-restricted SCMA oracle, albeit subject to certain constraints as described subsequently.

Definition 3.57 (Query Length). Let Mκ (·, ·) be a generic (k + 1)-restricted SCMA sub-oracle, and let
(s, x) be a query to Mκ. Let s = s1∥ . . . ∥sℓ be a “decomposition” of s such that each si ∈ Σ∗ for i ∈ [ℓ].
We say that the “length” of the query (for this decomposition) is ℓ. Observe that, by the associative properties
of the (k + 1)-restricted SCMA sub-oracle, we must have

Mκ(s, x) = Mκ(s1,Mκ(s2, . . . ,Mκ(sℓ, x) . . .)).

Remark 3.58. Note that the length of the query may vary depending on the decomposition of the string s,
and may be different from the unique number of symbols from Σκ in the string s.

Definition 3.59 (Equivalence Complete Query Pattern). Let Q be any set of queries to a (k+1)-restricted
SCMA oracle, such that each query q ∈ Q is of the form q = (s, x) ∈ Σ∗κ × {0, 1}cκ(k+1) for some κ (note
that each query may be issued to a different Mκ). We say that Q is equivalence complete if the following
conditions are satisfied (we use x0 to denote the (k + 1)-base set element of the corresponding generic
(k + 1)-SCMA sub-oracle):

• Informally, for any query q ∈ Q, the query set Q also contains all the “split” versions of this query.
Formally, for each q = (s, x) ∈ Q such that x = Mκ(s

′, x0) and such that s∥s′ = a1 . . . aℓ for
ℓ > 1 (where for each j ∈ [ℓ], we have aj ∈ Σ), there exists a subset of “single-element” queries
S ⊂ Q of the form

S = {q1 = (s1, x1), . . . , qℓ = (sℓ, xℓ)},

54



such that for each j ∈ [ℓ], we

sj = aj , xj = Mκ(aj+1,Mκ(aj+2, . . . ,Mκ(aℓ, x0) . . .)).

• Informally, for any query q ∈ Q that is a substring of either (ab)k+1 or (ba)k+1, and which potentially
“triggers” a build-up to an equivalence query of the form Mκ

(
(ab)k+1, x0

)
= Mκ

(
(ba)k+1, x0

)
, the

query set Q also contains all the possible ways to compute this equivalence query. Formally, for any
q = (s, x) ∈ Q such that x = Mκ(s

′, x0) and such that there exist distinct elements a, b ∈ Σ such that

|s∥s′| > 2, s∥s′ ∈ SUBSTRING
(
(ab)k+1

)
∪ SUBSTRING

(
(ba)k+1

)
,

where SUBSTRING
(
(ab)k+1

)
and SUBSTRING

(
(ba)k+1

)
denote the sets of all possible substrings

of (ab)k+1 and (ba)k+1, respectively, we must have

S0 ⊂ Q ∧ S1 ⊂ Q,

where the query subsets S0 and S1 are defined as:

S0 =
{
q̃ = (s̃, x0) : s̃ ∈ SUBSTRING

(
(ab)k+1

)}
,

S1 =
{
q̃ = (s̃, x0) : s̃ ∈ SUBSTRING

(
(ba)k+1

)}
.

Definition 3.60 (KE Protocol with Equivalence Complete Query Pattern). Let Π be any key exchange
protocol as defined in Section 3.3.1. KE is said to have equivalence complete query pattern if for any round i,
letting Q

(i)
A and Q

(i)
B denote the set of queried asked by Alice and Bob to the (k + 1)-SCMA oracle, we have

that Q(i)
A and Q

(i)
B are both equivalence complete query patterns as per Definition 3.59.

Equivalence Queries Follow Intersection Queries. We now state and prove that for any 2k-round KE
protocol with equivalence complete query pattern where Alice and Bob make queries to a (k + 1)-restricted
SCMA oracle, for each equivalence query, one of the two must be true: (i) there either exists a corresponding
intersection query such that if Eve makes this intersection query, she makes a query that is either identical to
or equivalent to the original equivalence query, or (ii) one of Alice or Bob must issue at least one SCMA
oracle query involving a set element x∗ such that x∗ was not the output of any SCMA oracle query made
by either Alice or Bob, but x∗ can be used to potentially build up to an equivalence query. We then prove
that the probability of event (ii) can be upper-bounded such that Eve can decide if the probability of this
event is negligible or non-negligible, and choose to follow a corresponding attack strategy. It is this special
property of a KE protocol with equivalence complete query pattern that makes our subsequent attack analysis
significantly simpler.

We note here that this step constitutes the core novelty of our attack analysis, and is necessitated by the
additional algebraic structure that is inherent to a (k + 1)-restricted SCMA oracle over and above a plain
random oracle. In particular, the proofs of [IR89, BM09] do not require this additional analysis since any
equivalence query is, by definition, an intersection query by default for a plain random oracle. However,
since this is not the case for a (k + 1)-restricted SCMA oracle, we additionally need to establish that Eve can
“cover” all equivalence queries by identifying only the intersection queries (unless Alice or Bob manage to
perform a random guess on a set element as mentioned above). We formally prove this via Lemmas 3.61
and 3.62, that we state and prove below.
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Lemma 3.61 (Equivalence Queries Follow Intersection Queries-1). Let Q(i)
A and Q(i)

B be the set of queries
issued by Alice and Bob till round i of a 2k-round KE protocol with an equivalence complete query pattern.
Suppose that there is an equivalence query pair (qA, qB) = ((sA, xA), (sB, xB)) ∈ Q

(i)
A × Q

(i)
B such that

there exist s′A, s
′
B ∈ Σ∗ such that for some κ we have

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = sB∥s′B.

and that Alice and Bob are only given the base set element x0 at the beginning of the KE protocol. Then there
exists a set intersection queries

S = {q1, . . . , qℓ} ⊂ Q
(i)
A ∩Q

(i)
B ,

such that if Eve asks each query in S, she asks a query that is equivalent to both the queries qA and qB .

Proof. Since Alice and Bob are only given the initial set-element x0, they must have each issued a sequence
of queries building up to the queries (s′A, x0) and (s′B, x0), respectively. By the definition of equivalence
complete query pattern, they (collectively) also issue all possible singleton queries leading up to these queries.
In addition, they also issued all possible singleton queries building up to the queries (sA, xA) and (sB, xB),
respectively. Suppose

sA∥s′A = sB∥s′B = a1a2 . . . aℓ,

where for each j ∈ [ℓ], we have aj ∈ Σ. Then, by definition of equivalence complete query pattern, there
exists a set of queries of the form

S = {q1 = (s1, x1), . . . , qℓ = (sℓ, xℓ)},

such that for each j ∈ [ℓ], we

sj = aj , xj = Mκ(aj+1,Mκ(aj+2, . . . ,Mκ(aℓ, x0) . . .)),

such that S ⊂ Q
(i)
A ∩ Q

(i)
B , and such that q1 is equivalent to both qA and qB . This completes the proof of

Lemma 3.61.

Lemma 3.62 (Equivalence Queries Follow Intersection Queries-2). Let Q(i)
A and Q(i)

B be the set of queries
issued by Alice and Bob till round i of a 2k-round KE protocol with an equivalence complete query pattern.
Suppose that there is an equivalence query pair (qA, qB) ∈ Q

(i)
A ×Q

(i)
B such that there exist a, b ∈ Σ, and

s′A, s
′
B ∈ Σ∗, such that for some κ, we have

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = (ab)k+1, sB∥s′B = (ba)k+1,

and that Alice and Bob are only given the base set element x0 at the beginning of the KE protocol. Then one
of the following must be true:

• Either we must have
qA ∈ Q

(i)
A ∩Q

(i)
B or qB ∈ Q

(i)
A ∩Q

(i)
B ,

• Or one of Alice or Bob issues at least one SCMA oracle query of the form (s∗, x∗) (where s∗ ∈ Σκ and
x∗ ∈ {0, 1}cκ(k+1) for some κ) such that both of the following are true:

1. There exists α < k + 1 such that

x∗ ∈ {Mκ((ab)
α, x0),Mκ((ba)

α, x0),Mκ(b(ab)
α, x0),Mκ(a(ba)

α, x0)}.
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2. There exists no query q̂ = (ŝ, x̂) ∈ Q
(i)
A ∪Q

(i)
B satisfying Mκ(ŝ, x̂) = x∗.

Proof. We will show that if Alice and Bob compute an equivalence query of the aforementioned form in at
most 2k rounds, then either Alice or Bob must have computed a query that triggered the equivalence complete
query pattern. Therefore, (at least) one of Alice and Bob will have computed the equivalence query in all
possible ways, implying the existence of a corresponding intersection query by definition.

Based on the definition of equivalence query as outlined in Definition 3.54, in this scenario, Alice and
Bob effectively compute an equivalence query of the form

Mκ

(
(ab)k+1 , x0

)
= Mκ

(
(ba)k+1 , x0

)
,

given only the base set element x0. To do this, they each must make queries of the form Mκ (t1, t2 ⋆ x) where
t1||t2 is a right substring of either (ab)k+1 or (ba)k+1 and send these back and forth between one another,
constantly building t2. Suppose we assume that if either Alice or Bob makes multiple queries of the above
form in the same round that build upon one another, we replace them with a single query. Note that this will
not change the final equivalence query or whether or not we have triggered an equivalence complete query
pattern.

With this assumption, we may assume that Alice and Bob make no more than 2k queries of the form
qi = Mκ (si, qi−1) for i ∈ [2k] such that

s1∥ . . . ∥s2k = (ab)k+1 or s1∥ . . . ∥s2k = (ba)k+1 .

If less than 2k queries are used by either Alice or Bob (or both), we simply assume that the extra si strings
are empty strings. By the pigeonhole principle, one of the following much be true:

• Either at least one of the si strings must contain a string concatenation of both a and b. In this case, by
the definition of equivalence complete query pattern (Definition 3.59), at least one of Alice and Bob
must have computed all possible ways to compute that particular equivalence query, and hence made
the corresponding queries to the (k + 1)-restricted SCMA oracle. At least one of these queries must
have therefore been the same as a query of the other party, meaning that an intersection query occurred.

• Or one of Alice or Bob issues an SCMA oracle query of the form (s∗, x∗) such that x∗ can be used to
build up to the equivalence query (i.e., x∗ must be a set element that is obtained by querying Mκ on
some valid substring of either (ab)k+1 or (ba)k+1), but this element is not the response to any of the
queries issued by Alice or Bob (i.e., one of them must have guessed this set element without receiving
it as the output of an SCMA sub-oracle query).

This completes the proof of Lemma 3.62.

Finally, we state the following lemma.

Lemma 3.63. Let Q(i)
A and Q

(i)
B be the set of queries issued by Alice and Bob till round i of a 2k-round

KE protocol with an equivalence complete query pattern, and let nA = |Q(i)
A | and nB = |Q(i)

B |. Let p∗ the
probability that either Alice or Bob issues a query of the form (s∗, x∗) (where s∗ ∈ Σκ and x∗ ∈ {0, 1}cκ(k+1)

for some κ) such that both of the following are true:

1. There exists α < k + 1 such that

x∗ ∈ {Mκ((ab)
α, x0),Mκ((ba)

α, x0),Mκ(b(ab)
α, x0),Mκ(a(ba)

α, x0)}.
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2. There exists no query q̂ = (ŝ, x̂) ∈ Q
(i)
A ∪Q

(i)
B satisfying Mκ(ŝ, x̂) = x∗.

Then we have

p∗ ≤ (nA + nB)O(k)
∑
κ

22κ

2cκk
= (nA + nB)O(k)

∑
κ

2−(ck−2)κ.

Proof. Note that for a fixed κ, the total number of set elements is 2cκk, while the total number of set elements
that can possibly build up to the output of an equivalence query is (4k + 12)22κ. Hence the probability that a
randomly sampled set element is, in fact, the output of an equivalence query for a fixed κ is

p∗κ ≤
(4k + 12)22κ

2cκk
.

Taking union bound over all possible κ and the total number of queries (nA + nB), we observe that

p∗ ≤ (nA + nB)
∑
κ

p∗κ ≤ (nA + nB)
∑
κ

(4k + 12)22κ

2cκk
= (nA + nB)(4k + 12)

∑
κ

2−(ck−2)κ,

which completes the proof.

From any KE to KE with Equivalence Complete Query Pattern. Next, we show that any 2k-round KE
protocol implies the existence of a 2k-round KE protocol while incurring only a polynomial blow-up in the
number of queries issued to the (k + 1)-restricted SCMA oracle by Alice and Bob (assuming that Alice and
Bob make at most polynomially many queries to the (k+1)-restricted SCMA oracle in the original 2k-round
KE protocol). More formally, we state and prove the following lemma.

Lemma 3.64. Assuming the existence of any secure 2k-round KE protocol between Alice and Bob with
correctness probability ρ such that Alice and Bob make at most nA and nB queries, respectively, to a generic
(k + 1)-restricted SCMA oracle such that nA and nB are at most polynomially large, there exists a secure
2k-round KE protocol between Alice and Bob with correctness probability ρ such that the query pattern
for Alice and Bob is equivalence complete, and such that Alice and Bob make at most poly(k, nA) and
poly(k, nB) queries to a generic (k + 1)-restricted SCMA oracle.

Proof. Given any 2k-round KE, we can immediately construct a 2k-round KE with equivalence complete
query pattern as follows: we allow Alice and Bob to behave exactly as in the original 2k-round KE except
that they additionally ask the extra queries entailed by the definition of equivalence complete query pattern,
and ignore the corresponding responses of the (k + 1)-restricted SCMA oracle to these additional queries.
Since both Alice and Bob are PPT algorithms, the lengths of their queries are also poly-bounded. Hence, the
blow-ups in the number of queries issued by Alice and Bob are at most O(k)nA and O(k)nB , respectively.
Note that neither changes the transcript of messages exchanged by Alice and Bob, nor does it change the
view of Eve. This immediately implies that the following must hold:

• If the original 2k-round KE is correct with probability ρ, then the new 2k-round KE protocol with
equivalence complete query pattern is also correct with the same probability ρ.

• If the original 2k-round KE is secure against any PPT adversary Eve, then the new 2k-round KE
protocol with equivalence complete query pattern is also secure against any PPT adversary EVE.

This completes the proof of Lemma 3.64.
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Attacking KE with Equivalence Complete Query Pattern. At this point, we shift focus from the main
theorem to the following auxiliary theorem.

Theorem 3.65 (Auxiliary Attack Theorem for KE). For a fixed k ∈ N, let M = {Mκ(·, ·)}κ∈N be a
(k + 1)-restricted SCMA oracle. Let Π be a 2k-round KE protocol between parties Alice and Bob such that:

• Alice makes at most nA queries to M, uses randomness rA and outputs sA.

• Bob makes at most nB queries to M, uses randomness rB , and outputs sB .

• Π has an equivalence complete query pattern per Definition 3.59.

• Pr[sA = sB] > ρ, where the probability is taken over the choice of (rA, rB,M) describing the
execution of the protocol.

Then for every 0 < δ < ρ, there exists an attacker Eve that only has access to the public messages exchanged
between Alice and Bob, makes at most O(poly(nA, nB, k)/δ

2) queries to M, and produces an output sE
such that

Pr[sE = sB] > ρ− δ.

We note that Theorem 3.65, together with Lemma 3.64, immediately implies Theorem 3.56, which is the
main theorem that we originally set out to prove1. Hence, in the rest of the paper, we focus purely on proving
Theorem 3.65 in the context of a 2k-round KE with equivalence complete query pattern.

3.3.8 The Attack Algorithm.

We now describe the algorithm that the attacker Eve uses to break any 2k-round KE protocol with equivalence
complete query pattern. We follow essentially the same attack strategy as used in [BM09] with an additional
preprocessing step in case 1 below; the main difference lies in actually analyzing the attack algorithm in
our setting, as presented subsequently. However, we summarize the attack strategy here for the sake of
completeness.

The attack algorithm is parameterized by some constant ϵ > 0, which we assume is smaller than 1/10.
Let (i, j) denote some sub-round of the KE protocol, let m(i,j) denote the corresponding set of messages
between Alice and Bob until sub-round (i, j), and let P (i,j)

E denote the set of (k+ 1)-restricted SCMA oracle
query-answer pairs until sub-round (i, j) asked by Eve. Eve proceeds as follows:

• Attack Case-1: If (nA + nB) > 22κϵ2/(4k + 12), Eve queries all possible equivalence queries over
the SCMA oracle {Mκ}. Note that this is the case for Mκ with small κ where Alice and Bob may
make enough queries to have a potentially non-negligible (in κ) probability of guessing a set element
that potentially builds up to an equivalence query (see Lemmas 3.62 and 3.63 for the detailed analyses).
In this case, Eve simply sets this set of all possible equivalence queries as P (2k)

E , and directly proceeds
to the last step of the attack description.

• Attack Case-2: Otherwise, Eve proceeds as follows during sub-round (i, j):

1Note that the number of queries made by Eve when attacking the KE protocol with equivalence complete query pattern is
actually independent of k; the factor of poly(k) blowup in the number of queries over and above any KE protocol (as in the statement
of Theorem 3.56) is already implicit in the number of queries nA and nB in the statement of Theorem 3.65.
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– If PrE [m(i,j), P
(i,j)
E ] = 0, Eve aborts.

– As long as there is a query q = (s, x) such that

Pr(
V

(i,j)
A ,V

(i,j)
B

)
←V

(
m(i,j),P

(i,j)
E

)[q ∈ Q(V (i,j)
A )] >

ϵ

nB
,

or
Pr(

V
(i,j)
A ,V

(i,j)
B

)
←V

(
m(i,j),P

(i,j)
E

)[q ∈ Q(V (i,j)
B )] >

ϵ

nA
,

Eve issues the lexicographically first such query q to the (k + 1)-restricted SCMA oracle and
adds the query-response pair (q,M(q)) to P

(i,j)
E .

– Eve continues in this way until there remains no additional query that Eve can ask, at which point
she stops and waits for the next sub-round to commence.

• Eventually, at the end of all sub-rounds of the final round 2k (when Eve is also done with asking her
oracle queries), Eve samples (

V
(2k)
A , V

(2k)
B

)
← V

(
m(2k), P

(2k)
E

)
,

computes Alice’s final output sA determined by V
(2k)
A , and outputs sE = sA as its own output.

Remark 3.66. As in the case of the attack algorithm of [BM09], our attacking algorithm above is not
computationally efficient, as in general computing the probability distribution V

(
mk, P

(k)
E

)
could be a

hard problem since it involves “inverting” the algorithms of Alice and Bob to a certain extent. But because
computing these probabilities is in #P we can use known techniques to approximate them with arbitrarily
good precision using an NP-oracle. In particular this means that our attacker (as was the case in previous
works) is computationally efficient in a relativized world in which P = NP, and hence our result rules out
relativizing reductions from 2k-round KE to (k + 1)-restricted SCMA (and hence, rules out relativizing
reductions from 2k-round KE to (2k + 1)-round KE).

Analyzing Attack Case-1. We first analyze case-1 of Eve’s attack strategy. Note that the attack step
corresponding to case-1, if taken, would require (4k + 12)22κ

′
queries from Eve for a given sub-oracle

Mκ′ (concretely, this is the total number of equivalence queries possible over a single sub-oracle Mκ′), and it
suffices for Eve to do this for at most 10κ log k sub-oracles (taking a conservative estimate). So the overall
number of queries issued by Eve (estimated conservatively) is at most nE , where

nE ≤ 10(4k + 12) log k
∑
κ′≤κ

κ′22κ
′

≤ 20κ22κ(4k + 12) log k

≤ 10 log(nA + nB)
(
(nA + nB)/ϵ

2
)
(4k + 12)2 log k

= O
(
poly(k, nA, nB)/ϵ

2
)
,

which satisfies the efficiency bounds specified in Theorem 3.65. This proves that, in case-1, Eve’s attack
is efficient as claimed in Theorem 3.65. We also note that if Eve queries all possible equivalence queries
between Alice and Bob, then the SCMA oracle is essentially no more useful to Alice and Bob than a generic,
unstructured random oracle, and since there can be no equivalence queries that Alice and Bob make that Eve
does not by definition, our lemmas for equivalence queries follow trivially.
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Analyzing Attack Case-2. The rest of our analysis focuses on proving that case-2 of Eve’s attack strategy
also satisfies the efficiency bounds and success probability bounds specified in Theorem 3.65. To do so, we
first analyze some events for any 2k-round KE protocol with equivalence complete query pattern. Recall that
the event Good0 holds if Eve has found all of the intersection queries, while event Good1 holds if Eve has
found all of the intersection and equivalence queries.

We define an additional event Bad∗. Informally speaking, Bad∗ is the event where, for some small κ,
Alice and Bob make enough queries to have a potentially non-negligible (in κ) probability of guessing a set
element that potentially builds up to an equivalence query w.r.t. the sub-oracle Mκ. The formal definition
is as follows: let Q(i)

A and Q
(i)
B be the set of queries issued by Alice and Bob till round i of a 2k-round KE

protocol with an equivalence complete query pattern. We say that the event Bad∗ occurs if either Alice or
Bob issues a query of the form (s∗, x∗) (where s∗ ∈ Σκ and x∗ ∈ {0, 1}cκ(k+1) for some κ) such that both
of the following are true:

1. There exists α < k + 1 such that

x∗ ∈ {Mκ((ab)
α, x0),Mκ((ba)

α, x0),Mκ(b(ab)
α, x0),Mκ(a(ba)

α, x0)}.

2. There exists no query q̂ = (ŝ, x̂) ∈ Q
(i)
A ∪Q

(i)
B satisfying Mκ(ŝ, x̂) = x∗.

We now state and prove the following lemma.

Lemma 3.67 (Good0 ∧ ¬Bad∗ =⇒ Good1 (Informal)). For any KE protocol with equivalence complete
query pattern as described above, the event Good1 holds if the event Good0 holds and the event Bad∗ does
not hold. In other words, if Eve finds all of the intersection queries during an execution of the KE protocol,
and neither Alice nor Bob manages to guess a set element that can be used to build up to an equivalence
query, then Eve also finds all of the equivalence queries during the same execution of the KE protocol.

More formally, we state and prove the following.

Lemma 3.68 (Good0 ∧ ¬Bad∗ =⇒ Good1 (Formal)). Given any KE protocol with equivalence complete
query pattern as described above, let (i, j) denote some sub-round, let m(i,j) denote the corresponding set of
exchanged messages until sub-round (i, j), and let P (i,j)

E denote some sequence of (k + 1)-restricted SCMA
oracle query-answer pairs until sub-round (i, j), such that we have PrE [m(i,j), P

(i,j)
E ] > 0. Then, we have

Pr
E
[Good1

(
m(i,j), P

(i,j)
E

)
|Good0

(
m(i,j), P

(i,j)
E

)
] = 1− Pr[Bad∗].

Let V(m(i,j)) denote the conditional distribution of Alice’s and Bob’s views in the eyes of the attacker
Eve who knows the public messages exchanged between Alice and Bob, and has learned all (k + 1)-
restricted SCMA oracle query-answer pairs described in P

(i,j)
E . Finally, let GV0

(
m(i,j), P

(i,j)
E

)
and

GV1
(

m(i,j), P
(i,j)
E

)
denote the distributions obtained by conditioning the distribution V

(
m(i,j), P

(i,j)
E

)
on the events (Good0 ∧ ¬Bad∗)

(
m(i,j), P

(i,j)
E

)
and Good1

(
m(i,j), P

(i,j)
E

)
, respectively. Then, assuming

Lemma 3.68, we also immediately obtain the following corollary.

Corollary 3.69. GV0
(

m(i,j), P
(i,j)
E

)
and GV1

(
m(i,j), P

(i,j)
E

)
are identical.

Proof. Lemma 3.68 follows immediately from Lemmas 3.61 and 3.62.

We define two additional events, which we call fail event and long event.
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Fail Event. Given any 2k-round KE protocol with equivalence complete query pattern, let (i, j) denote
some sub-round, let m(i,j) denote the corresponding set of exchanged messages until sub-round (i, j), and
let P (i,j)

E denote the sequence of (k + 1)-restricted SCMA oracle query-answer pairs made by Eve until
sub-round (i, j), such that we have PrE [m(i,j), P

(i,j)
E ] > 0. We define the event Fail(i,j) to be the event that:

• EITHER the query (made by Alice or Bob) to the (k+1)-restricted SCMA oracle after this sub-round
causes the event Bad∗ to hold.

• OR one of the following holds:

– EITHER the query (made by Alice or Bob) to the (k + 1)-restricted SCMA oracle after this
sub-round is an intersection query but is not contained in P

(i,j)
E .

– OR the query (made by Alice or Bob) to the (k + 1)-restricted SCMA oracle after this sub-round
is an equivalence query w.r.t. some query issued earlier by the other party, but P (i,j)

E does not
contain a query that is either identical or equivalent to this query,

and this is the first instance of Eve missing either an intersection query or an equivalence query. Let
the event Fail =

∨
(i,j) Fail

(i,j) be the event that at some point during the 2k-round KE protocol with
equivalence query pattern, an intersection query is missed by Eve.

Long Event. We also denote by Long the event that Eve makes more than O(nAnB/ϵ
2) queries when

attacking any 2k-round KE protocol with equivalence complete query pattern.
Theorem 3.65 immediately follows from the following lemmas.

Lemma 3.70 (Attack is successful). For any sub-round (i, j) of the KE protocol with equivalence complete
query pattern, we have

Pr
E
[Fail(i,j)] = O

(
ϵ

(nA + nB)

)
.

Hence, by union bound, we have PrE [Fail] = O(ϵ).

Lemma 3.71 (Attack is efficient). We have PrE [Long] = O(ϵ).

3.3.9 Proof of Lemma 3.70: The Attack is Successful.

We prove Lemma 3.70 by proving the following stronger result.

Lemma 3.72. For any sub-round (i, j) of the KE protocol with equivalence complete query pattern, let m(i,j)

denote the corresponding set of exchanged messages until sub-round (i, j), and let P (i,j)
E denote the sequence

of (k + 1)-restricted SCMA oracle query-answer pairs made by Eve until sub-round (i, j), such that we have
PrE [m(i,j), P

(i,j)
E ] > 0. Then we have

Pr
E

[
Fail(i,j)|Good1

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

(nA + nB)

)
.

To see why Lemma 3.72 implies Lemma 3.70, observe that Fail(i,j) is the event that either the event
Fail∗ occurs for the first time, or Eve fails to query an intersection query or an equivalence query for the first
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time in sub-round (i, j), and hence, Eve found all intersection queries and equivalence queries during the
execution up until sub-round (i, j), meaning that Good1

(
m(i,j), P

(i,j)
E

)
holds. Hence, we must have

Pr
E
[Fail(i,j)] ≤ Pr

E

[
Fail(i,j)|Good1

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

(nA + nB)

)
,

which is precisely the statement of Lemma 3.70.
In what follows, we prove Lemma 3.72 by using a product characterization of the distribution GV1.

Product Characterization of GV1. Given any KE protocol with equivalence complete query pattern as
described above, let (i, j) denote some sub-round, let m(i,j) denote the corresponding set of exchanged
messages until sub-round (i, j), and let P (i,j)

E denote the set of (k+1)-restricted SCMA oracle query-answer
pairs until sub-round (i, j) asked by Eve, such that we have PrE [m(i,j), P

(i,j)
E ] > 0. Also, let V(m(i,j))

denote the conditional distribution of Alice’s and Bob’s views in the eyes of the attacker Eve who knows
the public messages exchanged between Alice and Bob, and has learned all (k + 1)-restricted SCMA
oracle query-answer pairs described in P

(i,j)
E , and let GV0

(
m(i,j), P

(i,j)
E

)
and GV1

(
m(i,j), P

(i,j)
E

)
be the

distributions obtained by conditioning the distribution V
(

m(i,j), P
(i,j)
E

)
on the events Good1

(
m(i,j), P

(i,j)
E

)
and Good1

(
m(i,j), P

(i,j)
E

)
, respectively.

We now show that the distribution GV1
(

m(i,j), P
(i,j)
E

)
is equal to the distribution obtained by taking

some product distribution A× B and conditioning it on the event Good1
(

m(i,j), P
(i,j)
E

)
. More formally, we

state and prove the following lemma.

Lemma 3.73 (Product Characterization of GV1). There exists a distribution A (resp., a distribution B)
over Alice’s view (resp., Bob’s view) upto sub-round (i, j) such that

GV1
(

m(i,j), P
(i,j)
E

)
= (A× B)|Good1

(
m(i,j), P

(i,j)
E

)
.

Proof. We defer the proof of this lemma to later in Section 3.3.10. Our proof here follows very closely the
proof of graph characterization (Lemma 4.5) of [BM09], except for some additional analysis with respect to
equivalence queries at the very end of the proof.

Having established the product characterization of GV1, we now turn to analyzing the distribution
GV0, which is the distribution obtained by conditioning the distribution V

(
m(i,j), P

(i,j)
E

)
on the event

(Good0 ∧ ¬Fail∗)
(

m(i,j), P
(i,j)
E

)
(the event in which Eve queries all intersection queries for Alice and Bob,

and neither Alice nor Bob manages to guess a set element x∗ that is not a response to any of their prior
queries, but could potentially build up to an equivalence query).

Product Characterization of GV0. The corollary below follows immediately from Lemma 3.73 and
Corollary 3.69.

Corollary 3.74 (Product Characterization of GV0). There exists a distribution A (resp., a distribution B)
over Alice’s view (resp., Bob’s view) upto sub-round (i, j) such that

GV0
(

m(i,j), P
(i,j)
E

)
= (A× B)|(Good0 ∧ ¬Fail∗)

(
m(i,j), P

(i,j)
E

)
.
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Graph Characterization of GV0. The above product characterization implies that we can think of GV0
as a distribution over random edges of some bipartite graph G. Using an analysis very similar to that used
in [BM09], we will show that every vertex in G is connected to most of the vertices on the other side.

Constructing the Graph. Given any KE protocol with equivalence complete query pattern as described
above, let (i, j) denote some sub-round, let m(i,j) denote the corresponding set of exchanged messages until
sub-round (i, j), and let P (i,j)

E denote the set of (k + 1)-restricted SCMA oracle query-answer pairs until
sub-round (i, j) asked by Eve, such that we have PrE [m(i,j), P

(i,j)
E ] > 0. We construct a bipartite graph

G(i,j) with vertex-sets (U (i,j)
A ,U (i,j)

B ) and edge-set E(i,j) as follows:

• Every node u ∈ U (i,j)
A corresponds to a view Au of Alice (until sub-round (i, j)) that is in the support

of the distribution A obtained from Lemma 3.73. We let the number of nodes corresponding to the
view Au to be proportional to PrA[Au], meaning that the distribution A corresponds to the uniform
distribution over the vertices in the partition U (i,j)

A .

• Every node v ∈ U (i,j)
B similarly corresponds to a view Bv of Bob (until sub-round (i, j)) that is in the

support of the distribution B obtained from Lemma 3.73. We again let the number of nodes correspond-
ing to the view Bv to be proportional to PrB[Bv], meaning that the distribution B corresponds to the
uniform distribution over the vertices in the partition U (i,j)

B .

• We define Qu = Q(Au) \ Q
(
P

(i,j)
E

)
for u ∈ U (i,j)

A to be the set of queries outside of those in P
(i,j)
E

that were asked by Alice in the view Au.

• Similarly, we define Qv = Q(Bv) \ Q
(
P

(i,j)
E

)
for v ∈ U (i,j)

B to be the set of queries outside of those

in P
(i,j)
E that were asked by Bob in the view Bv.

• We put an edge between a pair of nodes (u, v) (denoted by u ∼ v) if and only if Qu ∩Qv = ϕ.

Analyzing the Graph. We first state the following immediate corollary of Lemma 3.73 and Corollary 3.74.

Corollary 3.75. Let
(
V

(i,j)
A , V

(i,j)
B

)
be sampled uniformly from the probability space GV0

(
m(i,j), P

(i,j)
E

)
.

Then the distribution of
(
V

(i,j)
A , V

(i,j)
B

)
is identical to the distribution of (Au, Bv) sampled by picking a

random edge (u, v) in the graph G(i,j) constructed as above, and letting Au and Bv be the views of Alice
and Bob associated with u and v, respectively.

Next, we argue that the graph G(i,j) constructed as above is dense. More formally, we state and prove the
following lemma:

Lemma 3.76. Let G(i,j) = (U (i,j)
A ,U (i,j)

B , E(i,j)) be the graph constructed as above. Also, for any vertex
w ∈ (U (i,j)

A ∪U (i,j)
B ), let deg(w) denote the degree of the vertex w. Then, for each vertex u ∈ U (i,j)

A and each
vertex v ∈ U (i,j)

B , we have

deg(u) ≥ (1− 2ϵ)|U (i,j)
B |, deg(v) ≥ (1− 2ϵ)|U (i,j)

A |.

Proof. We defer the detailed proof of this lemma to later in Section 3.3.11.
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Finishing Proof of Lemma 3.72. Finally, we use the product characterization of GV1 and the graph
characterization of GV0 to finish the proof of Lemma 3.72, and hence finish the proof of Lemma 3.70. We
defer the detailed proof to later in Section 3.3.12.

Remaining Proofs. It remains to prove that Eve’s attack is efficient, and that Eve eventually finds the secret
key exchanged between Alice and Bob with noticeable probability. The first result follows from Lemma 3.71,
and we present the detailed proof subsequently. We then prove formally that Eve finds the secret key with
noticeable probability.

3.3.10 Proof of Lemma 3.73.

We will show that for every pair of Alice’s/Bob’s views
(
V

(i,j)
A , V

(i,j)
B

)
in the probability space GV1

(
m(i,j), P

(i,j)
E

)
that satisfy the event Good1

(
m(i,j), P

(i,j)
E

)
, the following holds:

Pr
GV1

(
m(i,j),P

(i,j)
E

) [V (i,j)
A , V

(i,j)
B

]
= α

(
m(i,j), P

(i,j)
E

)
αAαB,

where αA depends only on Alice’s view V
(i,j)
A , and αB only depends on Bob’s view V

(i,j)
B . Hence, if we let

A be the distribution such that PrA[V
(i,j)
A ] is proportional to αA, and if we let B be the distribution such

that PrB[V
(i,j)
B ] is proportional to αB , then GV1

(
m(i,j), P

(i,j)
E

)
is proportional (and hence equal to) the

distribution (A× B)|Good1
(

m(i,j), P
(i,j)
E

)
.

Analysis Step-1. Note that the tuple
(
V

(i,j)
A , V

(i,j)
B

)
lies in the support of the probability space GV1

(
m(i,j), P

(i,j)
E

)
,i.e.

we have (
V

(i,j)
A , V

(i,j)
B

)
∈ SUPPORT

(
GV1

(
m(i,j), P

(i,j)
E

))
.

Hence, if the views of Alice and Bob are indeed V (i,j)
A and V (i,j)

B respectively, then the event Good1
(

m(i,j), P
(i,j)
E

)
must hold. In other words, we have

Pr
V
(

m(i,j),P
(i,j)
E

) [V (i,j)
A , V

(i,j)
B

]
=

Pr
GV1

(
m(i,j),P

(i,j)
E

) [V (i,j)
A , V

(i,j)
B

]
Pr

V
(

m(i,j),P
(i,j)
E

) [Good1 (m(i,j), P
(i,j)
E

)]
.

Also, by definition, we have

Pr
V
(

m(i,j),P
(i,j)
E

) [V (i,j)
A , V

(i,j)
B

]
=

PrE(V
(i,j)
A , V

(i,j)
B ,m(i,j), P

(i,j)
E )

PrE

(
m(i,j), P

(i,j)
E

) .
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Hence, we have

Pr
GV1

(
m(i,j),P

(i,j)
E

) [V (i,j)
A , V

(i,j)
B

]
=

PrE(V
(i,j)
A , V

(i,j)
B ,m(i,j), P

(i,j)
E )

PrV
(

m(i,j),P
(i,j)
E

) [Good1 (m(i,j), P
(i,j)
E

)]
PrE

(
m(i,j), P

(i,j)
E

) .
Analysis Step-2: Analyzing the Denominator. The denominator of the expression on the right hand side
is a function of only

(
m(i,j), P

(i,j)
E

)
, and so, we can define the function

β
(

m(i,j), P
(i,j)
E

)
= Pr
V
(

m(i,j),P
(i,j)
E

) [Good1 (m(i,j), P
(i,j)
E

)]
Pr
E

(
m(i,j), P

(i,j)
E

)
.

In what follows, we analyze the numerator of the expression on the right hand side.

Analysis Step-3: Analyzing the Numerator. Let P (i,j)
A and P

(i,j)
B be the oracle query-answer pairs in the

views of Alice and Bob, namely V
(i,j)
A and V

(i,j)
B , respectively. Then, we claim that the numerator is given by

Pr
E

(
V

(i,j)
A , V

(i,j)
B ,m(i,j), P

(i,j)
E

)
= 2−|rA|2−|rB | Pr

E

(
P

(i,j)
A ∪ P

(i,j)
B ∪ P

(i,j)
E

)
,

where rA and rB are the random strings used by Alice and Bob, respectively, P (i,j)
A and P

(i,j)
B denote the set of

query-response pairs in the views V (i,j)
A and V (i,j)

B of Alice and Bob, respectively, and PrE
(
P

(i,j)
A ∪ P

(i,j)
B ∪ P

(i,j)
E

)
denotes the probability that during an execution E = (rA, rB,M), M is consistent with the set of query-
response pairs in the set P (i,j)

A ∪ P
(i,j)
B ∪ P (i,j)E . We justify next why our claim is correct.

Observe that the necessary and sufficient condition that

V
(i,j)
A =

(
rA,m(i,j), P

(i,j)
A

)
, V

(i,j)
B =

(
rB,m(i,j), P

(i,j)
B

)
,

only happens if we sample a uniformly random execution (r′A, r
′
B,M) such that all of the following hold

simultaneously:

• r′A = rA (which happens with probability 2−|rA|), and

• r′B = rB (which happens with probability 2−|rB |), and

• M is consistent with the set of query-response pairs in the set
(
P

(i,j)
A ∪ P

(i,j)
B ∪ P

(i,j)
E

)
(we analyze

this probability subsequently).

Note that all of these conditions holding simultaneously ensures that Alice and Bob will indeed produce the
transcript of messages m(i,j).
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Analyzing the Consistency Probability. We now analyze the probability that M is consistent with the
set of query-response pairs in the set

(
P

(i,j)
A ∪ P

(i,j)
B ∪ P

(i,j)
E

)
. More formally, we analyze the probability

expression
Pr
E

[
P

(i,j)
A ∪ P

(i,j)
B ∪ P

(i,j)
E

]
.

By the definition of event Good1, Eve queries all intersection and equivalence queries, i.e., we have

P
(i,j)
A∩B ⊆ P

(i,j)
E , P

(i,j)
A≡B ⊆ P

(i,j)
E .

It now follows from the definition of the generic (k + 1)-restricted SCMA oracle M that the responses of M
corresponding to the queries in the sets Q

(
P

(i,j)
A \ P (i,j)

E

)
and Q

(
P

(i,j)
A \ P (i,j)

E

)
are uniformly random

and independent of the query-response pairs in the set P (i,j)
E , since:

• Let q1 ∈ Q
(
P

(i,j)
A \ P (i,j)

E

)
and q2 ∈ Q

(
P

(i,j)
E

)
. Then, q1 and q2 are neither identical nor equivalent,

and hence, the responses of M on q1 and q2 are independent.

• Similarly, let q′1 ∈ Q
(
P

(i,j)
B \ P (i,j)

E

)
and q′2 ∈ Q

(
P

(i,j)
E

)
. Then, q′1 and q′2 are neither identical nor

equivalent, and hence, the responses of M on q′1 and q′2 are independent.

• Finally, let q′′1 ∈ Q
(
P

(i,j)
A \ P (i,j)

E

)
and q′′2 ∈ Q

(
P

(i,j)
B \ P (i,j)

E

)
. Then, q′′1 and q′′2 are neither

identical nor equivalent, and hence, the responses of M on q′′1 and q′′2 are independent.

This in turn implies that we have

Pr
E

[
P

(i,j)
A ∪ P

(i,j)
B ∪ P

(i,j)
E

]
= Pr
E

[
P

(i,j)
E

]
· Pr
E

[
P

(i,j)
A \ P (i,j)

E

]
Pr
E

[
P

(i,j)
B \ P (i,j)

E

]
.

Analysis Step-4: Putting Everything Together. Finally, by setting

αA = 2−|rA| Pr
E
[P

(i,j)
A \ P (i,j)

E ], αB = 2−|rB | Pr
E
[P

(i,j)
B \ P (i,j)

E ]

and by setting

α
(

m(i,j), P
(i,j)
E

)
=

PrE [P
(i,j)
E ]

β
(

m(i,j), P
(i,j)
E

) ,
we have

Pr
GV1

(
m(i,j),P

(i,j)
E

) [V (i,j)
A , V

(i,j)
B

]
= α

(
m(i,j), P

(i,j)
E

)
αAαB.

This completes the proof of Lemma 3.73.

3.3.11 Proof of Lemma 3.76.

The proof of Lemma 3.76 follows from the proofs of the following claims:
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Claim 3.77. Let G(i,j) = (U (i,j)
A ,U (i,j)

B , E(i,j)) be the graph constructed as above. Then, for each vertex
u ∈ U (i,j)

A and each vertex v ∈ U (i,j)
B , we have∑

w∈U(i,j)
B ,w ̸∼u

deg(w) ≤ ϵ|E(i,j)|,
∑

w′∈U(i,j)
A ,w′ ̸∼v

deg(w′) ≤ ϵ|E(i,j)|.

Claim 3.78. Let G(i,j) = (U (i,j)
A ,U (i,j)

B , E(i,j)) be the graph constructed as above. For any vertex w ∈
(U (i,j)

A ∪ U (i,j)
B ), define the set of edges

E ̸∼(w) = {(u, v) ∈ E(i,j) : u ̸∼ w ∧ v ̸∼ w},

to be the set of edges that are not adjacent to any immediate neighbors of the vertex w in G(i,j). Then, for
any vertex w ∈ (U (i,j)

A ∪ U (i,j)
B ), we have ∣∣∣E ̸∼(w)∣∣∣ ≤ ϵ|E|.

Claim 3.79. Let G(i,j) = (U (i,j)
A ,U (i,j)

B , E(i,j)) be any non-empty bipartite graph such that for each vertex
w ∈ (U (i,j)

A ∪ U (i,j)
B ), we have

∣∣E ̸∼(w)∣∣ ≤ ϵ|E| for some ϵ < 1/2. Then, for each vertex u ∈ U (i,j)
A and each

vertex v ∈ U (i,j)
B , we have

deg(u) ≥ (1− 2ϵ)|U (i,j)
B |, deg(v) ≥ (1− 2ϵ)|U (i,j)

A |.

Proof of Claim 3.77. The probability that we choose a vertex w when we choose a random edge from
E(i,j) is given by deg(w)

|E(i,j)| . Now, suppose that for some vertex u ∈ U (i,j)
A , we have∑

w∈U(i,j)
B ,w ̸∼u

deg(w) > ϵ|E(i,j)|.

Then we have
Pr

(u,w)←E(i,j)
[|Qu ∩Qw| ≠ ϕ] > ϵ.

Suppose that Alice issues at most nA (k + 1)-restricted SCMA oracle queries, i.e., we have |Qu| ≤ nA.
Hence, by the pigeonhole principle, there must exist q ∈ Qu such that

Pr[q ∈ Qv] > ϵ/nA.

But this is a contradiction, since then, by the definition of the attacker Eve, q must be in the set of queries
corresponding to P

(i,j)
E , and hence, by definition, cannot be in the set Qu. Hence, for each vertex u ∈ U (i,j)

A ,
we must have ∑

w∈U(i,j)
B ,w ̸∼u

deg(w) ≤ ϵ|E(i,j)|.

By a similar argument, it follows that for any vertex v ∈ U (i,j)
B , we must have∑

w′∈U(i,j)
A ,w′ ̸∼v

deg(w′) ≤ ϵ|E(i,j)|.

This completes the proof of Claim 3.77.
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Proof of Claim 3.78. Let w ∈ (U (i,j)
A ∪ U (i,j)

B ) be any vertex. Suppose that w ∈ U (i,j)
A . Then, we have∣∣∣E ̸∼(w)∣∣∣ = ∑

w′∈U(i,j)
B ,w′ ̸∼w

deg(w′) ≤ ϵ|E|.

Alternatively, suppose that w ∈ U (i,j)
B . Then, we have∣∣∣E ̸∼(w)∣∣∣ = ∑

w′′∈U(i,j)
A ,w′′ ̸∼w

deg(w′′) ≤ ϵ|E|.

This completes the proof of Claim 3.78.

Proof of Claim 3.79. To begin with, we define

degA = min{deg(u) : u ∈ U (i,j)
A }, degB = min{deg(v) : v ∈ U (i,j)

B }.

Assume w.l.o.g. that
degA

|U (i,j)
B |

≤ degB

|U (i,j)
A |

.

Hence, it suffices to prove that degA

|U(i,j)
B |

≥ (1− 2ϵ). Suppose that degA

|U(i,j)
B |

< (1− 2ϵ), and let u ∈ U (i,j)
A be the

vertex such that deg(u) = degA < (1 − 2ϵ)|U (i,j)
B |. Since for each v ∈ U (i,j)

B , we have deg(v) ≤ |U (i,j)
A |,

we must have
|E(i,j) \ E ̸∼(u)| ≤ deg(u)|U (i,j)

A | = degA |U
(i,j)
A | ≤ degB |U

(i,j)
B |.

On the other hand, since deg(u) < (1− 2ϵ)|U (i,j)
B |, we must have

|E ̸∼(u)| > 2ϵdegB |U
(i,j)
B | ≥ 2ϵ|E(i,j) \ E ̸∼(u)|.

Now, we have

|E ̸∼(u)| ≤ ϵ|E(i,j)| = ϵ
(
|E ̸∼(u)|+ |E(i,j) \ E ̸∼(u)|

)
< (ϵ+ 1/2)|E ̸∼(u)|,

which is a contradiction for any ϵ < 1/2 because the graph G(i,j) is non-empty. This completes the proof of
Claim 3.79.

3.3.12 Finishing the Proof of Lemma 3.72.

To finish the proof of Lemma 3.72, we first define an auxiliary fail event Fail′i,j to be the event that the
query (made by Alice or Bob) to the (k + 1)-restricted SCMA oracle after this sub-round is an intersection
query but is not contained in P

(i,j)
E . It is easy to see that, given Lemma 3.68, for any sub-round (i, j) of the

KE protocol with equivalence complete query pattern, we have

Pr
E

[
Fail(i,j)|Good1

(
m(i,j), P

(i,j)
E

)]
≤ Pr
E

[
Fail′(i,j)|(Good0 ∧ ¬Fail∗)

(
m(i,j), P

(i,j)
E

)]
.

This follows immediately from the fact that the first time Eve fails to find an intersection query or an equiva-
lence query is either the first time Eve fails to find an intersection query or an equivalence query (since each
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equivalence query if preceded by a corresponding intersection query), and that the event Good0
(

m(i,j), P
(i,j)
E

)
holds if and only if the event Good1

(
m(i,j), P

(i,j)
E

)
holds. Hence, to prove Lemma 3.72, it suffices to show

that for any sub-round (i, j) of the KE protocol with equivalence complete query pattern,

Pr
E

[
Fail′(i,j)|(Good0 ∧ ¬Fail∗)

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

(nA + nB)

)
.

Again, given any KE protocol with equivalence complete query pattern as described above, let (i, j)
denote some sub-round, let m(i,j) denote the corresponding set of exchanged messages until sub-round (i, j),
and let P (i,j)

E denote the set of (k + 1)-restricted SCMA oracle query-answer pairs until sub-round (i, j)

asked by Eve, such that we have PrE [m(i,j), P
(i,j)
E ] > 0. Assume without loss of generality that Bob issues

a query q in sub-round (i, j), and let V (i,j)
B denote Bob’s view up until sub-round (i, j). Now observe the

following:

• By Lemma 3.74, the distribution GV0
(

m(i,j), P
(i,j)
E

)
conditioned on getting V

(i,j)
B as Bob’s view is

the same as the product distribution (A × B) conditioned on the events Good0
(

m(i,j), P
(i,j)
E

)
and

getting V
(i,j)
B as Bob’s view, simultaneously. By the graph characterization of GV0 (Lemma 3.76),

letting G(i,j) = (U (i,j)
A ,U (i,j)

B , E(i,j)) be the graph constructed above, this is the same as randomly
choosing an edge (u, v) ← E(i,j) conditioned on getting V

(i,j)
B as Bob’s view, and then choosing

(Au, Bv).

• It then follows that, conditioned on v such that Bv = V
(i,j)
B , the distribution of Alice’s view is the

same as choosing u← N(v) to be a random neighbor of v (here N(v) denotes the set of all immediate
neighbors of v), and then choosing Au. Define the set S as:

S = {u ∈ U (i,j)
A : q ∈ Au}.

Then we have the following:

Pr
u←N(v)

[q ∈ Au] ≤
|S|

deg(v)
≤ |S|

(1− 2ϵ)|U (i,j)
A |

≤
|S||U (i,j)

B |
(1− 2ϵ)|E(i,j)|

≤
∑

u∈S deg(u)

(1− 2ϵ)2|E(i,j)|

The second and fourth inequalities are because of Lemma 3.76. The third one is because |E(i,j)| ≤∣∣∣U (i,j)
A

∣∣∣ ∣∣∣U (i,j)
B

∣∣∣.
• By the definition of the attack algorithm of Eve, the only queries asked by Eve are queries with

probability of occurrence (in Bob’s view) greater than ϵ/nB . Hence, we must have∑
u∈S deg(u)

|E(i,j)|
≤ ϵ

nB
,

which in turn implies that we have

Pr
u←N(v)

[q ∈ Au] ≤
ϵ

(1− 2ϵ)2nB
,

which is O
(

ϵ
nB

)
for ϵ < 1/10.
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Thus, we have

Pr
E

[
Fail′(i,j)|(Good0 ∧ ¬Fail∗)

(
m(i,j), P

(i,j)
E

)
∧ B
]
= O

(
ϵ

nB

)
,

where B denotes the event that Bob issues the query in sub-round (i, j). Similarly, an analogous argument
can be used to prove that

Pr
E

[
Fail′(i,j)|(Good0 ∧ ¬Fail∗)

(
m(i,j), P

(i,j)
E

)
∧ A
]
= O

(
ϵ

nA

)
,

where A denotes the event that Alice issues the query in sub-round (i, j). Hence, we have

Pr
E

[
Fail′(i,j)|(Good0 ∧ ¬Fail∗)

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

nA
· nA

nA + nB
+

ϵ

nB
· ϵ

nA + nB

)
= O

(
ϵ

nA + nB

)
.

This completes the proof of Lemma 3.72, and hence, the proof of Lemma 3.70.

3.3.13 Proof of Lemma 3.71: The Attack is Efficient.

We now present the proof of Lemma 3.71, which establishes that the attack is efficient.

Proof Overview. We follow a strategy similar to [BM09] to prove that the attack is efficient by crucially
relying on the fact that the attack is successful. Recall that in her algorithm, Eve follows the following
strategy: at any given sub-round of the protocol, Eve keeps making the lexicographically first query q
that has “significant” probability of appearing in either Alice’s query set or Bob’s query set, until all such
queries are exhausted. Also recall that this probability is based on the distribution V

(
m(i,j), P

(i,j)
E

)
(where

m(i,j) denotes the set of messages exchanged between Alice and Bob until sub-round (i, j), and P
(i,j)
E

denotes the set of (k + 1)-restricted SCMA oracle query-answer pairs until sub-round (i, j) asked by
Eve), conditioned on the event that Eve has not missed any intersection or equivalence queries up until
this point (i.e. the event Good1). Now, since we have proven that the event Good1 happens with high
probability (Lemma 3.68), this implies that queries with a significant probability of occurrence according the
distribution V

(
m(i,j), P

(i,j)
E

)
conditioned on Good1 also have a significant probability of occurrence under

the real distribution V
(

m(i,j), P
(i,j)
E

)
. Intuitively, we use this to bound the number of queries that Eve has

to make by arguing that each query that Eve makes decreases the (nonzero) expected number of unknown
queries. The formal proof is detailed below.

A Bad Event. For the formal proof, we begin by defining an additional event, which we refer to as a
“bad” event. Let (i, j) denote some sub-round of the KE protocol, let m(i,j) denote the corresponding set
of messages between Alice and Bob until sub-round (i, j), and let P (i,j)

E denote some sequence of (k + 1)-
restricted SCMA oracle query-answer pairs until sub-round (i, j) learned by Eve. We use Bad(i,j) to denote
the event that

Pr
V
(

m(i,j),P
(i,j)
E

) [¬Good1 (m(i,j), P
(i,j)
E

)]
>

1

2
.
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We also define the probability space Ê to denote the same execution probability space as E with the difference
that for any sub-round (i, j), Eve stops asking more queries at sub-round (i, j) if the event Bad(i,j) occurs (the
behavior of Alice and Bob remains unchanged). Note that E and Ê are identical as long as Bad(i,j) does not
happen, and so we have

Pr
E
[Bad] = Pr

Ê
[Bad].

More generally speaking, for any event D whose definition depends on the behavior of Eve, we have

Pr
E
[Bad ∨ D] = Pr

Ê
[Bad ∨ D].

The proof of Lemma 3.71 follows from the following steps:

• Step-1: We first show the following:

Pr
E
[Fail] = O(ϵ) =⇒ Pr

E
[Bad] = Pr

Ê
[Bad] = O(ϵ).

Since our analysis of the success probability of the attack already established that PrE [Fail] =
O(ϵ) (Lemma 3.70), we have

Pr
E
[Bad] = Pr

Ê
[Bad] = O(ϵ).

• Step-2: We then show the following: PrÊ [Long] = O(ϵ).

Observe that

Pr
E
[Long] ≤ Pr

E
[Long ∨ Bad] = Pr

Ê
[Long ∨ Bad] ≤ Pr

Ê
[Long] + Pr

Ê
[Bad].

Hence, we have PrE [Long] = O(ϵ), which is precisely the statement of Lemma 3.71.

Step-1: Bounding PrE [Bad]. We state and prove the following lemma.

Lemma 3.80. If PrE [Fail] = O(ϵ) then we must have PrE [Bad] = PrÊ [Bad] = O(ϵ).

Proof. We present a proof by contradiction, which follows closely the proof of Lemma 6.4 in [IR89] and the
proof of Lemma 4.7 in [BM09]. We present the proof in the context of our attack for the sake of completeness.

Assume that PrE [Bad] = Ω(ϵ). We will show that this implies PrE [Fail] = Ω(ϵ). When we run the attack,
instead of sampling the whole randomness (rA, rB,M)← E (for Alice, Bob, and the oracle) at the beginning,
we can choose some parts of the system first (according to their final distribution), and then choose the rest of
the system from their distribution conditioned on the chosen parts (this can be viewed as a generalization of
the popular “lazy oracle sampling” method). In particular, we proceed as follows:

• Run the execution of the key exchange protocol as well as the attack algorithm for Eve till an arbitrary
sub-round (i, j) such that m(i,j) is the set of messages exchanged between Alice and Bob until sub-
round (i, j), and P

(i,j)
E is the set of (k+1)-restricted SCMA oracle query-answer pairs until sub-round

(i, j) asked by Eve. Pretend that at this point, we have sampled
(

m(i,j), P
(i,j)
E

)
, and the rest of the

description of the execution is not chosen yet.
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• Sample
(
V

(i,j)
A , V

(i,j)
B

)
← V

(
m(i,j), P

(i,j)
E

)
, and set V (i,j)

A and V
(i,j)
B to be the “real” views of Alice

and Bob until sub-round (i, j).

• Continue running the execution of the key exchange protocol as well as the attack algorithm for Eve
from this point onwards conditioned on

(
V

(i,j)
A , V

(i,j)
B

)
(the views of Alice and Bob so far), and(

m(i,j), P
(i,j)
E

)
(the view of Eve so far).

Observe that the choice of (i, j) in the aforementioned simulation can be chosen arbitrarily. In particular, we
could set it to the particular sub-round (i, j) where the event Bad happens for the first time. If the event Bad
never happens, then we sample the views of Alice and Bob at the very end of the protocol execution. Now
recall that Bad happens when

Pr
V
(

m(i,j),P
(i,j)
E

) [¬Good1 (m(i,j), P
(i,j)
E

)]
<

1

2
.

Since ¬Good1 ⊂ Fail, we have
Pr
E
[Fail|¬Good1] = 1.

So if Bad happens for the first time at sub-round (i, j), and we choose the views of Alice and Bob from
V
(

m(i,j), P
(i,j)
E

)
, it must be the case that Fail will hold for this particular execution of the system with

probability at least 1/2. So we have

Pr
E
[Fail] ≥ 1

2
Pr
E
[Bad] = Ω(ϵ),

as desired. This completes the proof of Lemma 3.80.

Since our analysis of the success probability of the attack already established that PrE [Fail] = O(ϵ) (Lemma 3.70),
we have the following corollary.

Corollary 3.81. We have PrE [Bad] = PrÊ [Bad] = O(ϵ).

Step-2: Bounding PrÊ [Long]. We state and prove the following lemma.

Lemma 3.82. We have PrÊ [Long] = O(ϵ).

Proof. We prove that the expected number of queries asked by Eve in an execution sampled from the
distribution Ê is O(nAnB/ϵ). Our proof follows closely the proof of Lemma 4.8 in [BM09]. We present the
proof in the context of our attack for the sake of completeness.

By definition, in any sub-round (i, j), as long as there is a query q = (s, x) for s ∈ Σk+1 and x such that
Level(x) ̸= −1 such that

Pr(
V

(i,j)
A ,V

(i,j)
B

)
←V

(
m(i,j),P

(i,j)
E

)[q ∈ Q(V (i,j)
A )] >

ϵ

nB
,

or
Pr(

V
(i,j)
A ,V

(i,j)
B

)
←V

(
m(i,j),P

(i,j)
E

)[q ∈ Q(V (i,j)
B )] >

ϵ

nA
,
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Eve issues the lexicographically first such query q to the (k + 1)-restricted SCMA oracle and adds the
query-response pair (q,M(q)) to P

(i,j)
E . Also, as long as Eve does not stop asking queries, we have

Pr
Ê

[
Good1

(
m(i,j), P

(i,j)
E

)]
>

1

2
.

Hence, if Eve asks a query q in sub-round (i, j) conditioned on
(

m(i,j), P
(i,j)
E

)
, we must have

Pr(
V

(i,j)
A ,V

(i,j)
B

)
←V̂

(
m(i,j),P

(i,j)
E

) [q ∈ Q(V (i,j)
A ) ∪Q(V (i,j)

B )
]

≥ Pr
Ê

[
Good1

(
m(i,j), P

(i,j)
E

)]
·

Pr(
V

(i,j)
A ,V

(i,j)
B

)
←ĜV1

(
m(i,j),P

(i,j)
E

) [q ∈ Q(V (i,j)
A ) ∪Q(V (i,j)

B )
]

= Ω

(
ϵ(nA + nB)

nAnB

)
,

where V̂ and ĜV1 are defined analogously to V and GV1, albeit with respect to the modified probability
distribution Ê .

Now, define the random variable Yℓ to be 1 if Eve asks at least ℓ queries and the ℓ-th query that she makes
was asked before by either Alice or Bob. It is easy to see that

∑
ℓ Yℓ ≤ (nA + nB) since Alice and Bob make

at most nA and nB queries, respectively. Hence,∑
ℓ

E(Yℓ) = E

(∑
ℓ

Yℓ

)
≤ (nA + nB).

Claim 3.83. Let pℓ be the probability that Eve asks the ℓ-th query. Then we have

pℓ = O

(
nAnB E(Yℓ)
ϵ(nA + nB)

)
.

Since
∑

ℓ pℓ is the expected number of queries asked by Eve, assuming the aforementioned claim is true, we
have ∑

ℓ

pℓ = O

(
nAnB

∑
ℓ E(Yℓ)

ϵ(nA + nB)

)
= O

(nAnB

ϵ

)
,

which proves Lemma 3.82. Hence, it only remains to prove the above claim.

Proof of Claim. Define the random variable Y q
ℓ to be 1 if the ℓ-th query that Eve asks is q and q was

asked before by either Alice or Bob. Then E[Yℓ] =
∑

q E[Y
q
ℓ ]. Suppose that the ℓ-th query was issued in the

(i, j)-th sub-round. We have

E[Y q
ℓ ] =

∑
(

m(i,j),P
(i,j)
E

)Pr
[
V

(i,j)
E =

(
m(i,j), P

(i,j)
E

)]
·

Pr
[
q ∈ Q

(i,j)
A ∪Q

(i,j)
B |V (i,j)

E =
(

m(i,j), P
(i,j)
E

)]
= γ

∑
(

m(i,j),P
(i,j)
E

)Pr
[
V

(i,j)
E =

(
m(i,j), P

(i,j)
E

)]
,
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where γ = Ω
(
ϵ(nA+nB)

nAnB

)
. Hence, we have

E[Yℓ] =
∑
q

E[Y q
ℓ ]

= γ ·
∑

(
m(i,j),P

(i,j)
E

)Pr
[
Eve queries some q as its ℓ-th query|V (i,j)

E =
(

m(i,j), P
(i,j)
E

)]
·

Pr
[
V

(i,j)
E =

(
m(i,j), P

(i,j)
E

)]
= γpℓ

= Ω

(
pjϵ(nA + nB)

nAnB

)
.

which in turn implies that

pj = O

(
nAnB E[Yℓ]
ϵ(nA + nB)

)
,

as desired. This completes the proof of our claim and, hence, the proof of Lemma 3.82.

Finally, together with Lemma 3.80 and Corollary 3.81, the proof of Lemma 3.82 completes the proof of
Lemma 3.71.

3.3.14 Finishing the Attack: Eve finds the Key.

Finally, we formally prove that Eve actually finds the secret key exchanged by Alice and Bob. The proof is
very similar to the proof of Theorem 6.2 in [IR89] and the proof of Theorem 5.2 in [BM09]. We present the
proof in the context of our attack on any 2k-round KE with equivalence complete query pattern for the sake
of completeness.

We assume in the last round of the 2k-round KE with equivalence complete query pattern, Alice sends a
special message LAST to Bob. Let the random variables V (2k)

A , V (2k)
B and V

(2k)
E be the distributions of the

views of Alice, Bob, and Eve at the end of the execution, where

V
(2k)
E =

(
m(2k), P

(2k)
E

)
.

In order to find the secret Eve runs the attack of Section 3.3.8 and at the end of round 2k (when Alice has
sent the message LAST to Bob, and Eve has asked her queries from the oracle), Eve samples(

V̂
(2k)
A , V̂

(2k)
B

)
← V

(
m(2k), P

(2k)
E

)
,

computes Alice’s final output sA = s
(
V̂

(2k)
A

)
, and outputs sE = sA as its own output. We need to prove that

Pr[sE = sB] > ρ− δ,

for some δ = O(ϵ). Let V̂ be the random variable generated by sampling(
V̂

(2k)
A , V̂

(2k)
B

)
← V

(
m(2k), P

(2k)
E

)
,
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and choosing V̂
(2k)
A from it. We will show that

SD
((

V
(2k)
A , V

(2k)
B , V

(2k)
E

)
,
(
V̂ , V

(2k)
B , V

(2k)
E

))
= O(ϵ),

which in turn implies that∣∣∣Pr [s(V (2k)
A

)
= s

(
V

(2k)
B

)]
− Pr

[
s
(
V̂
)
= s

(
V

(2k)
B

)]∣∣∣ = O(ϵ).

For any triple of the form (VA, VB, VE), we say that:

• the event Good0 (VA, VB, VE) holds if Q (VA) and Q (VB) have no intersection query that does not
also appear in VE , and

• the event Good1 (VA, VB, VE) holds if Q (VA) and Q (VB) have no intersection query that does not
appear in VE and no equivalence query-pair such that VE does not have a corresponding query
equivalent to this pair.

The proof of the fact that Eve finds the key now follows from the following claims.

Claim 3.84. We claim that Pr[¬Good0
(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
] = O(ϵ).

Proof. The proof of this claim follows immediately from the proofs of Lemmas 3.70 and 3.71.

Claim 3.85. We claim that Pr[¬Good1
(
V̂ , V

(2k)
B , V

(2k)
E

)
] = O(ϵ).

Proof. We argue this claim as follows. It follows from Lemmas 3.61 and 3.62 that for any 2k-round KE
protocol with equivalence complete query pattern,

Pr
[
¬(Good0 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

) ∣∣∣¬Good1 (V̂ , V
(2k)
B , V

(2k)
E

)]
= 1,

and hence

Pr
[
¬(Good0 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

)]
= Pr

[
¬Good1

(
V̂ , V

(2k)
B , V

(2k)
E

)]
.

In other words, we have

Pr
[
¬(Good0 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

)]
= Pr

[
¬Good1

(
V̂ , V

(2k)
B , V

(2k)
E

)]
,

and hence

Pr
[
¬(Good1 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

)]
≤ Pr

[
¬Good0

(
V̂ , V

(2k)
B , V

(2k)
E

)]
+Pr

[
Fail∗

(
V̂ , V

(2k)
B , V

(2k)
E

)]
.

Now suppose we fix V
(2k)
E =

(
m(2k), P

(2k)
E

)
and sample V̂ as above. Then V̂ is independent of V (2k)

B , and

hence, any query q such that q ∈ Q
(
V

(2k)
B

)
and q /∈ Q

(
V

(2k)
E

)
has probability at most ϵ/nB of appearing

in Q
(
V̂
)

(this follows from Eve’s strategy of choosing queries in the attack). Hence, we must have

Pr[¬Good0
(
V̂ , V

(2k)
B , V

(2k)
E

)
] = O(ϵ)− Pr

[
Fail∗

(
V̂ , V

(2k)
B , V

(2k)
E

)]
,
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From Lemma 3.63, we get

Pr[¬Good1
(
V̂ , V

(2k)
B , V

(2k)
E

)
] ≤ O(ϵ) + (nA + nB)O(k)

∑
κ

2−(ck−2)κ,

where the second term is exponentially small in κ. This completes the proof of this claim.

Finally, we make the following claim.

Claim 3.86. We claim that

SD
((

V
(2k)
A , V

(2k)
B , V

(2k)
E

)
|Good1

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
,(

V̂ , V
(2k)
B , V

(2k)
E

)
|Good1

(
V̂ , V

(2k)
B , V

(2k)
E

))
= O(ϵ).

Proof. We argue this claim based on Lemma 3.76. Let G(2k) = (U (2k)
A ,U (2k)

B , E(2k)) be the graph character-

ization of GV0
(

m(2k), P
(2k)
E

)
. Then we have the following:

• The distribution of V (2k)
A in

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
conditioned on the event (Good0 ∧ ¬Fail∗)

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
is the same as Au sampled as follows: choose a vertex v ∈ U (2k)

B conditioned on Bv = V
(2k)
B , then

choose a uniformly random neighbor of v as u← N(v), and output Au.

• Similarly, the distribution of V̂ in
(
V̂ , V

(2k)
B , V

(2k)
E

)
conditioned on the event (Good0 ∧ ¬Fail∗)

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
is the same as Au sampled as follows: choose a vertex v ∈ U (2k)

B conditioned on Bv = V
(2k)
B , then

choose a random edge (u, v′)← E(2k) conditioned on v′ = v, and then output Au (this is the same as
randomly choosing neighbor of v as u ∈ N(v) such that the choosing probability is proportional to
deg(u), and then outputting Au).

• By Lemma 3.76, we have for each u ∈ U (2k)
A

(1− 2ϵ)
∣∣∣V (2k)

B

∣∣∣ ≤ deg(u) ≤
∣∣∣V (2k)

B

∣∣∣ ,
and hence, since ϵ < 1/10, using techniques similar to those used in the proof of Theorem 5.2
in [BM09], one can show that

SD
((

V
(2k)
A , V

(2k)
B , V

(2k)
E

)
| (Good0 ∧ ¬Fail∗)

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
,(

V̂ , V
(2k)
B , V

(2k)
E

)
| (Good0 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

))
≤ 2ϵ.

Finally, it again follows from Lemmas 3.61 and 3.62 that for any 2k-round KE protocol with equivalence
complete query pattern,(

V
(2k)
A , V

(2k)
B , V

(2k)
E

)
|Good1

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
=(

V
(2k)
A , V

(2k)
B , V

(2k)
E

)
| (Good0 ∧ ¬Fail∗)

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
,

77



and (
V̂ , V

(2k)
B , V

(2k)
E

)
|Good1

(
V̂ , V

(2k)
B , V

(2k)
E

)
=(

V̂ , V
(2k)
B , V

(2k)
E

)
| (Good0 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

)
,

and hence, we have

SD
((

V
(2k)
A , V

(2k)
B , V

(2k)
E

)
|Good1

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
,(

V̂ , V
(2k)
B , V

(2k)
E

)
|Good1

(
V̂ , V

(2k)
B , V

(2k)
E

))
≤ 2ϵ.

This completes the proof of the claim, and hence the proof of successful key-recovery by Eve.

3.4 Separating (2k − 1)-round Key Exchange from 2k-round Key Exchange

In this section, we argue that we can also black-box separate (2k − 1)-round key exchange from 2k-round
key exchange. The argument is almost identical to the separation of 2k-round Key Exchange from (2k + 1)-
round key exchange, with the exception of some minor tweaks to the (k + 1)-commutator property of a
(k + 1)-restricted SCMA oracle, and our core argument that for any KE protocol with equivalence complete
query pattern, each equivalence query is also essentially an intersection query. The rest of the proof structure
as well as the arguments surrounding attack success (detailed in Section 3.3.9, and Sections 3.3.10, 3.3.11,
and 3.3.12), attack efficiency (detailed in Section 3.3.13), and the final key-finding probability (detailed in
Section 3.3.14) remain essentially unchanged.

Changing the k-Commutator Property Slightly. For k ≥ 1, suppose that we tweak the k-commutator
property of a (k+1)-commutator oracle Mκ(·, ·) slightly as follows: instead of requiring that Mκ((ab)

k+1, x0) =
Mκ((ba)

k+1, x0) (x0 being the base set element), we now require that

Mκ(b∥(ab)k, x0) = Mκ(a∥(ba)k, x0)

It is easy to see that in this case, a (k + 1)-commutator oracle implies a 2k-round key exchange as follows:

• Given a base element x0, Alice would sample some a ∈ Σλ and obtain Mκ(a, x0), while Bob would
sample some b ∈ Σλ and obtain Mκ(b, x0). Alice and Bob would then exchange their first-round
messages, where Alice sends Mκ(a, x0) to Bob and Bob sends Mκ(b, x0) to Alice.

• In the next round, Alice would obtain Mκ(ab, x0) = Mκ (a,Mκ (b, x0)), and Bob would obtain
Mκ(ba, x0) = Mκ (b,Mκ (a, x0)). Alice and Bob would then exchange their second-round messages,
where Alice sends Mκ(ab, x0) to Bob and Bob sends Mκ(ba, x0) to Alice.

Observe that by repeating this process for 2k rounds and asking a final query to the (k + 1)-SCMA oracle,
Alice and Bob would have obtained Mκ(a∥ (ba)k , x0) = Mκ(b∥ (ab)k , x0), which they can use as the final
secret key. Note that this computation requires the full 2k rounds1.

1We again note that if M is a countably infinite set, then a uniform distribution over Σλ is not well-defined; in this case, we
restrict to those distributions for which the set of all strings consisting of more than 2k elements has negligible density in the sample
space.
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Arguing Impossibility of (2k − 1)-round Key Exchange. Now let’s look at what happens if Alice and
Bob try to exploit the “commutative” property of the (k + 1)-SCMA oracle in less than 2k rounds. Again,
they must generate some equivalence query-pair of the form Mκ(a∥(ba)k, x0) = Mκ(b∥(ab)k, x0) with less
than 2k rounds of communication. Once again, note that when “building up” to such an equivalence query
that gives Alice and Bob the same final set element via two different query sequences in less than 2k rounds,
Alice and Bob cannot only issue queries to the (k + 1)-SCMA where the monoid element is either a or b like
in the 2k-round key exchange protocol outlined above. In particular, by the pigeonhole principle, at least one
of Alice or Bob must compute a query involving both the elements a and b.

At this point, we can the same core argument as in the separation of 2k-round key exchange from
(2k + 1)-round key exchange to establish that even in this case, as long as the (2k − 1)-round key exchange
protocol is in a special form that “forces” Alice and Bob to make all “split” versions of their queries and at
least one of Alice or Bob to compute all possible ways of computing an equivalence query as soon as there is
a “trigger” query where the monoid element is a substring of either (ab)k or (ba)k, any equivalence query
w.r.t. the (k + 1)-SCMA oracle that can be computed within (2k − 1) rounds is also an intersection query.

This again effectively reduces all equivalence queries that rely on the (modified) commutative property of
the (k + 1)-SCMA oracle to the “traditional” notion of intersection queries, and we can again handle such
queries using the [BM09] framework, as detailed in Section 3.3.

4 Analyzing Malicious Two-Party Computation by Rounds

In this section, we present the formal details of our main novel black-box separation result, namely separating
maliciously secure two-party computation (2-PC) by rounds. We begin with the formal details of our proof
that maliciously (abort) secure 2-PC is equivalent to a monoid action that have certain commutator-like
properties and satisfy certain hardness assumptions. We then describe formally how we can use the above
structural characterization of 2-PC to separate 2-PC by rounds.

4.1 Two-Party Computation and Commutative Monoid Action

In this section, we prove that any ℓ-round (two-party) computation protocol (for deterministic functions)
is equivalent to an ℓ-distributional commutative monoid action equipped with certain additional structural
properties and a stronger security notion as compared to the distributional unpredictability security notion
satisfied by any ℓ-DUCMA. We refer to this specially structured ℓ-DUCMA with stronger security notions
as an ℓ-DCMA2-PC. Before defining ℓ-DCMA2-PC, we first formally define an ℓ-round 2-PC protocol. For
simplicity, we first focus on 2-PC protocols for symmetric functionalities (i.e., where both parties receive the
same output). Subsequently, in Section 4.4, we show a generalization of our approach to the case of 2-PC
protocols for asymmetric functionalities (i.e., where both parties receive potentially different outputs).

We note that the proofs in this section are very similar if not almost identical to those for key exchange,
so we frequently defer details to that section.

Defining an ℓ-Round 2-PC Protocol. We now define an ℓ-round 2-PC protocol for ℓ ≥ 1. In the same
vein as our KE definition, we define ℓ-round 2-PC as a two-party protocol involving a pair of (non-uniform)
probabilistic polynomial-time algorithms A = {Ai}i∈[0,ℓ] and B = {Bi}i∈[0,ℓ], where each individual
algorithm Ai and Bi is formalized subsequently.

Before presenting the definition, we fix some notation. Let I denote the set of all possible inputs for
parties A and B in a 2-PC protocol, and let F denote the set of all possible functions f computable by the
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protocol. Finally, let RA and RB denote the set of all possible random coins used by parties A and B.

Definition 4.1 (ℓ-Round 2-PC). An ℓ-round 2-PC protocol is a tuple of probabilistic polynomial-time algo-
rithms Π =

(
Setup, {Ai,Bi}i∈[0,ℓ]

)
defined as follows:

• Setup takes as input a security parameter λ and output the public parameters pp.

• For each i ∈ [0, ℓ − 1], Ai takes as input the public parameters pp, the private input inA ∈ I , the
function f ∈ F , a secret state ri,A ∈ RA, and a transcript τi of the messages exchanged between
parties A and B up until round-i, and outputs an updated secret state ri+1,A and a message si+1,A.

• For each i ∈ [0, ℓ − 1], Bi takes as input the public parameters pp, the private input inB ∈ I , the
function f ∈ F , a secret state ri,B , and a transcript τi of the messages exchanged between parties A
and B up until round-i, and outputs an updated secret state ri+1,B and a message si+1,B .

• Aℓ takes as input the public parameters pp, the private input inA ∈ I , the function f ∈ F , a secret state
rℓ,A, and a transcript τℓ of the messages exchanged between parties A and B up until round-ℓ, and
outputs the “final” output yAB .

• Bℓ takes as input the public parameters pp, the private input inB ∈ I , the function f ∈ F , a secret state
rℓ,B , and a transcript τℓ of the messages exchanged between parties A and B up until round-ℓ, and
outputs the “final” output yBA.

Correctness. An ℓ-round 2-PC protocol Π =
(
Setup, {Ai,Bi}i∈[0,ℓ]

)
is said to be correct if for any

pp← Setup, any pair of inputs inA, inB ∈ I , any function f ∈ F , and any

(ri+1,A, si+1,A) = Ai(pp, inA, f, ri,A, τi), (ri+1,B, si+1,B) = Bi(pp, inA, f, ri,B, τi),

for each i ∈ [0, ℓ− 1], we have
yAB = yBA = f(inA, inB),

where yAB = Aℓ(pp, inA, f, rℓ,A, τℓ) and yBA = Bℓ(pp, inA, f, rℓ,A, τℓ), and where for each i ∈ [0, ℓ], the
transcript τi is defined as:

τi = (pp, f, s1,A, s1,B, s2,A, s2,B, . . . , si,A, si,B).

Semi-Honest Security. An ℓ-round 2-PC protocol Π =
(
Setup, {Ai,Bi}i∈[0,ℓ]

)
is said to be computation-

ally secure against static semi-honest adversaries if there exist PPT simulators SA and SB such that for any
security parameter λ ∈ N, any pp← Setup, any pair of inputs inA, inB ∈ I , any function f ∈ F , we have

SA
(
1λ,pp, inA, f(inA, inB)

)
c
≈
(
V Π
A (1λ,pp, inA, inB),outΠA(1

λ,pp, inA, inB)
)
,

SB
(
1λ,pp, inB, f(inA, inB)

)
c
≈
(
V Π
B (1λ,pp, inA, inB),outΠB(1

λ,pp, inA, inB)
)
,

where V Π
A (resp., V Π

B ) denotes the view of party A (resp., party B) and outΠA (resp., outΠA) denotes the output
of protocol Π for party A (resp., party B), with the views of parties A and B being defined as

V Π
A (1λ,pp, inA, inB) =

(
{ri,A}i∈[ℓ], τℓ

)
, V Π

B (1λ,pp, inA, inB) =
(
{ri,B}i∈[ℓ], τℓ

)
.
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Malicious Security. An ℓ-round 2-PC protocol Π =
(
Setup, {Ai,Bi}i∈[0,ℓ]

)
is said to be computationally

secure against static malicious adversaries if for any PPT static malicious adversary A corrupting party
B (without loss of generality), there exists a PPT simulator S such that for any security parameter λ ∈ N,
any pp← Setup, any input inA ∈ I , and any function f ∈ F , we have

realΠ,A(λ,pp; inA)
c
≈ idealf,S(λ,pp; inA),

where the distributions are defined via the following experiments:

• realΠ,A(λ,pp; inA): Run the protocol Π on the security parameter λ, where party A runs the protocol
honestly using its input inA, and the messages of the corrupt party B are chosen by the adversary A.
Let y denote the output of party A, and let V denote the view of the adversary. Output (V, y).

• idealf,S(λ,pp; inA): Run the simulator S until it outputs an input inB for the corrupt party B. Compute
y = f(inA, inB) and provide y to S . Let V ∗ denote the final output of the simulator S . Output (V ∗, y).

Malicious Security with Abort. An ℓ-round 2-PC protocol Π =
(
Setup, {Ai,Bi}i∈[0,ℓ]

)
is said to satisfy

security with abort against static malicious adversaries if for any PPT static malicious adversaryA corrupting
party B (without loss of generality), there exists a PPT simulator S such that for any security parameter
λ ∈ N, any pp← Setup, any input inA ∈ I , and any function f ∈ F , we have

realΠ,A(λ,pp; inA)
c
≈ idealabort

f,S (λ,pp; inA),

where the distributions are defined via the following experiments:

• realΠ,A(λ,pp; inA): Run the protocol Π on the security parameter λ, where party A runs the protocol
honestly using its input inA, and the messages of the corrupt party B are chosen by the adversary A.
Let y denote the output of party A, and let V denote the view of the adversary. Output (V, y).

• idealabort
f,S (λ,pp; inA): Run the simulator S until it outputs an input inB for the corrupt party B.

Compute y = f(inA, inB) and provide y to S. If the simulator S chooses to abort, set y∗ = ⊥. Else,
set y∗ = y. Let V ∗ denote the final output of the simulator S. Output (V ∗, y∗).

Structural Formulation. We now formulate an ℓ-round 2-PC protocol using a structural formulation that
is geared towards capturing the core property that two parties can compute the same function output using
two different sequences of computation across ℓ rounds of communication.

For ease of exposition, we make a (minor) alteration to our structural formulation for an ℓ-round 2-PC
protocol from the standard cryptographic definition presented earlier. In the structural formulation, we assume
that the parties A and B commit to “some” random coins rA and rB at the beginning of the protocol, and
then re-use these coins to generate their messages throughout the protocol. We note, however, this definition
is essentially equivalent to the “lazy” randomness sampling strategy in the standard definition presented
earlier; indeed, we can assume that the parties commit to some “master” random coins at the beginning of
the protocol, and use these to derive the individual random coins to be used in each round (depending on
the transcript of messages exchanged up until that round). We emphasize that we do not need to assume
any computational assumptions here: the “master” random coins could just be enough random coins to last
through the whole protocol.

Similar to our alternative structural formulation of 2-party NIKE, it turns out that this alternative
definition (where the parties commit to some “master” random coins at the beginning of the protocol and
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re-use the same to generate messages throughout the protocol) makes it easier to capture the “natural”
mathematical structure inherent to an ℓ-round 2-PC protocol. Although this would result in “less practical”
2-PC protocols, it allows us to only have to define two sampling distributions (one for each player) rather
than 2ℓ (one for each player in each round) and lets us considerably simplify our proofs of equivalence later
in this section. We illustrate this in more details subsequently.

Definition 4.2 (ℓ-Round 2-PC (Structural Formulation)). Let PP , R, I , F , {Si,A, Si,B}i∈[ℓ], {Γi}i∈[0,ℓ],
RA, RB , and Y denote sets. More specifically:

• We let PP denote the set of public parameters and RA and RB denote the set of possible random coins
used by the setup algorithm to output some public parameters from the set PP .

• Let I and F denote the set of all possible inputs and the set of all possible functions, as defined earlier.

• For each i ∈ [ℓ], we let Si,A and Si,B denote the set of possible round-messages output in round-i by
the parties A and B, respectively.

• For each i ∈ [0, ℓ], we let Γi denote the set of all possible transcripts of messages exchanged between
the parties A and B until round i.

• We also let RA and RB denote the set of possible secret states for the parties A and B, respectively.

• Finally, we let Y denote the set of possible final outputs for the parties A and B at the end of the
ℓ-round 2-PC protocol.

Next, we define the following functions that map between these sets as below:

• Setup : 1λ ×R→ PP .

• {Geni,A : PP × I × F ×RA × Γi × Si,A → Si+1,A}i∈[0,ℓ−1].

• {Geni,B : PP × I × F ×RB × Γi ××Si,B → Si+1,B}i∈[0,ℓ−1].

• CombineA : PP × I × F ×RA × Γℓ → Y .

• CombineB : PP × I × F ×RB × Γℓ → Y .

Correctness, semi-honest simulation-based security and malicious security (with and without abort) are as
defined analogously to the cryptographic definitions presented earlier.

Distributional Simulation-Secure CMA for 2-PC (ℓ-DCMA2-PC). We now define an ℓ-DCMA2-PC as
follows.

Definition 4.3 (ℓ-DCMA2-PC). A monoid action (M,X, ⋆) is an ℓ-DCMA2-PC if it satisfies following addi-
tional structural properties and security properties:
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• Structural properties:

– The monoid (M,⊕) is a string concatenation monoid structured as M = MA ∪MB where

MA = I × F ×RA, MB = I × F ×RB,

such that both of the sub-monoids MA and MB are individually string concatenation monoids
themselves.

– The set X is structured as

X = PP ×

⋃
i∈[ℓ]

Si,A ∪
⋃
i∈[ℓ]

Si,B ∪ {⊥}

× (Y ∪ {⊥}) .

– For any public parameters pp ∈ PP , any pair of inputs inA, inB ∈ I , any function f ∈ F , and
any pair of randomnesses (rA, rB) ∈ RA ×RB , letting

g = (inA, f, rA) ∈MA , h = (inB, f, rB) ∈MB,

x = (pp,⊥,⊥) ∈ X , y = (pp,⊥, f(inA, inB)) ∈ X.

we have
(g ⊕ h)ℓ ⋆ x = (h⊕ g)ℓ ⋆ x = y = f(inA, inB).

• Distributional simulation security:

An ℓ-DCMA2-PC is said to satisfy distributional simulation security with respect to the triplet of distri-
butions (DM,0,DM,1,DX) (where DM,0 and DM,1 are distributions over M and DX is a distribution
over the set X) if there exist PPT simulators SA and SB such that for any security parameter λ ∈ N,
any g ← DM,0, any h← DM,1, and any x← DX , letting

xi,0 = (g ⊕ h)i−1 ⋆ x, xi,1 = (h⊕ g)i−1 ⋆ x,

x′i,0 =
(
g ⊕ (h⊕ g)i−1

)
⋆ x, x′i,1 =

(
h⊕ (g ⊕ h)i−1

)
⋆ x,

for each i ∈ [ℓ], and letting
y = (g ⊕ h)ℓ ⋆ x = (h⊕ g)ℓ ⋆ x,

we have
SA
(
1λ, x, g, y

)
c
≈ SB

(
1λ, x, h, y

)
c
≈
(
x, {xi,0, xi,1, x′i,0, x′i,1}i∈[ℓ], y

)
.

ℓ-DCMA2-PC and ℓ-round 2-PC are Equivalent. We state the following theorem:

Theorem 4.4. Any ℓ-round 2-PC protocol satisfying Definition 4.2 implies an ℓ-DCMA2-PC satisfying Defi-
nition 4.3, and vice versa.

The construction of ℓ-round 2-PC given an ℓ-DCMA2-PC is reasonably straightforward and follows the
template of the construction of (ℓ-round) KE given an (ℓ-)DUCMA. The construction of ℓ-DCMA2-PC given
an ℓ-round 2-PC is more involved, but again follows the template of the construction of ℓ-DUCMA given any
ℓ-round KE protocol, as outlined in the proof of Theorem 3.26. Hence, we do not detail the proof any further.
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String-Concatenation Monoid Action Oracles for 2-PC. We extend our definition of a generic string
concatenation monoid action oracles (SCMA) in order to model 2-PC. We refer to this extension of SCMA as
SCMA2-PC. Informally speaking, an SCMA2-PC oracle (with certain restrictions as outlined subsequently) is
a DCMA2-PC in the strongest possible sense, much like how an SCMA oracle is a DUCMA in the strongest
possible sense.

Definition 4.5 (Generic SCMA2-PC Oracle). An SCMA2-PC oracle M is a family of SCMA sub-oracles
of the form M = {Mκ(·, ·)}, defined over an alphabet Σ structured as Σ = Σ0 × Σ1,κ where Σ0 ⊂
{0, 1}∗,Σ1,κ ⊂ {0, 1}κ.

In the above definition, the sub-monoid Σ0 represents the set of all strings denoting valid (function, input)
pairs, while the sub-monoid Σ1,κ represents the set of all valid κ-bit randomness strings.

Generic k-restricted SCMA2-PC Oracle. We now formally define a 2k-“layered” restriction of a generic
SCMA2-PC oracle Mκ equipped with a k-base set element x0 (here, k-base element is as defined earlier for
SCMA sub-oracles).

Definition 4.6 (Generic k-restricted SCMA2-PC Oracle). A generic k-restricted SCMA2-PC oracle M is a
family of SCMA2-PC sub-oracles of the form M = {Mκ(·, ·)}, where each sub-oracle Mκ(·, ·) is an indepen-
dently distributed random variable such that its values are functions of the form Mκ : Σ∗ × {0, 1}cκk →
{0, 1}cκk for Σ = Σ0 ×Σ1,κ and for some constant c (looking ahead, we again need c > 12 for our proofs to
hold), satisfying all of the properties of a generic SCMA sub-oracle, with the following additional constraints:

1. Mκ has a k-base set element x0.

2. For any s ∈ Σ∗, we have Mκ(s,⊥) = ⊥.

3. For any s ∈ Σ∗ and any x ∈ {0, 1}cκk, we have Mκ(s, x) = ⊥ if either of the following conditions
holds:

• Either Levelk(x) = −1.

• Or |s|+ Levelk(x) > 2k (where |s| denotes the number of elements from Σκ in s).

• Or s not of the from s = a1b1a2b2 . . . or s = b1a1b2a2 . . . for ai, bi ∈ Σ0 × Σ1,κ.

In this paper, we consider k-restricted SCMA2-PC sub-oracles that additionally satisfy a special commutator-
like property, defined formally below.

Definition 4.7 (k′-Commutator k-restricted SCMA2-PC Sub-oracle). A generic k-restricted SCMA2-PC
sub-oracle Mκ with k-base element x0 ∈ {0, 1}cκk is said to be a k′-commutator (for k′ ∈ [1, k]) if
for any a, b ∈ Σ such that a = ((ina∥f), ra) ∈ Σ0 × Σ1,κ and b = ((inb∥f), rb) ∈ Σ0 × Σ1,κ for inputs
ina, inb, function f , and randomness ra, rb, we have

Mκ

(
(ab)k

′
, x0

)
= Mκ

(
(ba)k

′
, x0

)
= f(ina, inb).

In particular, we use k-restricted SCMA2-PC sub-oracles that are also k-commutator. In the rest of
the paper, when we refer to k-restricted SCMA2-PC sub-oracles, we assume that they are additionally k-
commutator by default (unless specified otherwise); hence, we do not explicitly specify the k-commutator
property.
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Extended k-restricted SCMA2-PC Oracle. In this paper, we consider an extended notion of the k-restricted
SCMA2-PC oracle defined above. The main purpose of this oracle is to help us simplify our separation result
below; it does not impact the 2-PC computations or security in any meaningful way.

Without this extension, there are some slight difficulties in our reduction. In particular, the security of a
query to a particular sub-oracle Mκ might be substantially larger than 2κ since the length of the input bits and
function bits are independent of κ. In general, this is not a problem, but, looking ahead to our separation
result, we want Eve to be able to brute-force search outputs from Mκ where κ is small relative to the number
of queries that Alice and Bob collectively make. This may not be possible for 2-PC functionalities that have
long input and function descriptions, so we add an extension to our previous oracle that lets Eve (and other
players too) discover the input and function bits of elements if she has correctly guessed the part of the
monoid element representing the randomness (Σ1,κ).

The extended oracle is defined as follows:

Definition 4.8 (Extended k-restricted SCMA2-PC Oracle). An extended k-restricted SCMA2-PC oracle M
is a family of sub-oracle pairs M = {Mκ,Mκ} where:

• For each κ, Mκ(·, ·) is an SCMA2-PC sub-oracle with k-base element x0 ∈ {0, 1}cκk as defined in
Definition 4.6.

• For each κ, Mκ(·, ·) : Σ∗1,κ × {0, 1}cκk → Σ∗0 ∪ {⊥} is an additional sub-oracle that takes as input a
sub-monoid element σ ∈ Σ∗1,κ and a set element x ∈ {0, 1}cκk, and proceeds as follows:

– If there exists a sub-monoid elements γ ∈ Σ∗0 such that x = Mκ((γ, σ), x0), then output γ.

– Otherwise, output ⊥.

What is this oracle doing, in words? Basically, every set element x that can be output from Mκ can be
written (in group action form–not the actual oracle input format) as

x = [(γi||σi) ||....|| (γ1||σ1)] ⋆ x0

where γ := {γ1, ..., γi} and σ := {σ1, ..., σi} for some i ≤ 2k. As usual, σ represents the monoid
randomness and γ represents the MPC information, including the function and inputs. The oracle Mκ takes
as input a set element x′ and a string σ′, and if x = x′ and σ = σ′, then it outputs γ.

In other words, it lets an adversary that has already found the monoid randomness extract the MPC
information from a set element. Looking ahead, this addition will not cause a security loss in our proof,
because we only use the monoid randomness part of the monoid action for our security proofs. However,
it will simplify our separations because we don’t have to worry about extra complexity from the MPC
information.

4.2 Separating 2k-round 2-PC from (2k + 1)-round Maliciously Secure 2-PC

Our (informal) goal is to black-box separate any 2k-round 2-PC protocol from any (2k+1)-round maliciously
secure 2-PC protocol. Subsequently, in Section 4.3, we show that the separation of (2k + 1)-round 2-PC
protocol from any (2k + 2)-round maliciously secure 2-PC protocol follows analogously.

Informally, we prove that there exists no relativizing reduction from 2k-round 2-PC secure against
semi-honest corruptions to (2k + 1)-round 2-PC with abort security against malicious corruptions. This is
captured by the following theorem.
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Theorem 4.9 (2-PC Separation Theorem). For a fixed k ∈ N, relative to an extended k-SCMA2-PC oracle
as in Definition 4.8, there exists a (2k + 1)-round 2-PC protocol that satisfies security with aborts against
malicious corruptions, but no 2k-round 2-PC protocol that is secure against semi-honest corruptions.

Proof Overview. The proof of this theorem is divided into two parts, as summarized below:

• We first show that, relative to an extended k-SCMA oracle, there exists a secure (2k + 1)-round 2-PC
protocol.

• We then show that, relative to an extended k-SCMA oracle, there does not exist a secure 2k-round
2-PC protocol.

The rest of this subsection formalizes these two results.

Semi-Honest Secure 2-PC from SCMA2-PC Oracle. We now state the following theorem

Theorem 4.10. Given a fixed k ∈ N, there exists a construction of semi-honest (2k+1)-round 2-PC protocol
from any extended (k + 1)-restricted SCMA2-PC oracle as in Definition 4.8.

Proof Overview. The proof of this lemma is very similar to the proof of Theorem 3.49, and is hence not
detailed. At a high level, as in the proof of Theorem 3.49, for a given security parameter κ, Alice and
Bob query the SCMA2-PC sub-oracle Mκ on monoid elements that represent their respective inputs and
internal randomness, and rely on the (k + 1)-commutator property of the sub-oracle Mκ to achieve the same
function output in (2k+1) rounds. Note that the proof of this theorem does not use the additional SCMA2-PC
sub-oracle Mκ, which is mainly used in the impossibility result presented subsequently.

Maliciously Secure 2-PC from SCMA2-PC Oracle. We now state the following theorem.

Theorem 4.11. Given a fixed k ∈ N, there exists a construction of (2k + 1)-round 2-PC protocol satisfying
malicious security with abort from any extended (k + 1)-restricted SCMA2-PC oracle as in Definition 4.8.

Proof Overview. The proof of this lemma builds upon the proof of Lemma 4.10 for the existence of a
semi-honest secure (2k − 1)-round 2-PC protocol, except that we need a way for the simulator to extract the
input of the corrupt party (concretely, the simulator needs to extract the monoid element representing the
input of the corrupt party that is used in the various queries to the extended k-restricted SCMA2-PC sub-oracle
Mκ). This, however, is immediate from the following observation: in the real world, if the adversary does not
abort and the honest party receives some output y = f(inA, inB) corresponding to some input inB used by
the adversary, then the messages sent to the honest party by the adversary A must embed information about
the monoid element representing inB . Additionally, any message that the adversary sends to the honest party
must be the output of a query to the k-restricted SCMA2-PC oracle (since there is no other way of generating
valid set elements corresponding to the k-restricted SCMA2-PC oracle). In the ideal world, the simulator can
thus observe all the queries issued by the adversary to the k-restricted SCMA2-PC oracle, thus extracting any
input monoid element used by the adversary with non-negligible probability. The remainder of the simulation
strategy is identical to that in the proof of Theorem 4.10, and is hence not detailed.
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Impossibility of 2k-round 2-PC relative to (k + 1)-SCMA2-PC. We now establish the impossibility of
a secure 2k-round 2-PC protocol where the participants Alice and Bob only make queries to a generic
(k + 1)-restricted SCMA2-PC oracle (which in turn implies a maliciously secure (2k + 1)-round 2-PC
protocol, as demonstrated earlier). Note that this immediately (black-box) separates 2k-round 2-PC from any
(2k + 1)-round 2-PC protocol.

In particular, we wish to establish that for any 2k-round 2-PC protocol where the participants Alice and
Bob only make queries to a (k + 1)-restricted SCMA2-PC oracle, there exists an attacker Eve that corrupts
Bob and recovers the input of the honest party Alice with non-negligible probability. Note that the corruption
by Eve is semi-honest; in fact, it suffices for Eve to only have access to the (k + 1)-restricted SCMA2-PC
oracle and the messages exchanged publicly between Alice and Bob. This allows us to prove an even stronger
result, namely that it is impossible to construct any 2k-round semi-honest secure 2-PC protocol from any
(2k + 1)-round maliciously secure 2-PC protocol in a black-box manner.

Before we formalize this goal, we define 2k-round 2-PC and introduce several notations for executions
and probability distributions associated with a 2k-round . In the rest of the section, when we refer to a
generic (k + 1)-restricted SCMA2-PC, we assume that it is an extended (k + 1)-restricted SCMA2-PC oracle
M = {Mκ,Mκ} as in Definition 4.8, that is also (k + 1)-commutator by default. We note that this is
analogous to our strategy for black-box separation of key exchange.

4.2.1 Round-based Definition of 2k-round 2-PC.

We begin by formally defining a 2k-round 2-PC protocol where the participants are Alice and Bob, and Eve
is the adversary (corrupting either Alice or Bob in a semi-honest manner), all of whom have access to a
(k + 1)-restricted SCMA2-PC oracle. We assume w.l.o.g. that Alice, Bob, and Eve will never issue the same
(k + 1)-restricted SCMA2-PC (sub-)oracle query twice. Also, we assume that Alice (resp., Bob) issues at
most nA (resp., nB) (k + 1)-restricted SCMA2-PC (sub-)oracle queries. Throughout this section, we abuse
notation and redefine several notations from the context of key exchange to the context of 2-PC below.

Rounds and Sub-Rounds. We assume that Alice has input inA and Bob has input inB . Each round i (for
i ≥ 1) consists of a message m(i)

AB sent from Alice to Bob and a message m(i)
BA sent from Bob to Alice. Each

round i consists of several sub-rounds (i, j) for j ∈ [ni + 1] defined as follows:

• Each sub-round (i, j) for j ∈ [ni] begins with either Alice or Bob issuing a single (new) (k + 1)-
restricted SCMA2-PC oracle query (to an SCMA sub-oracle Mκ or Mκ), and ends with Eve issuing her
(new) oracle queries based on the set of messages exchanged between Alice and Bob so far, defined as

m[i−1] =
{

m(1)
AB,m

(1)
BA, . . . ,m

(i−1)
AB ,m(i−1)

BA

}
.

In these sub-rounds, Alice and Bob do not exchange any messages.

• Sub-round (ni + 1) involves the following steps that happen simultaneously:

– Alice computes her message m(i)
AB and sends it to Bob.

– Simultaneously, Bob computes his message mBA and sends it to Alice.

While computing the above messages, both Alice and Bob only use their own oracle queries till round
(i− 1), and the set of messages exchanged between Alice and Bob till round (i− 1), defined as

m[i−1] =
{

m(1)
AB,m

(1)
BA, . . . ,m

(i−1)
AB ,m(i−1)

BA

}
.
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We define the sub-rounds as above for ease of exposition, and for simplifying the attack analysis presented
subsequently.

4.2.2 Queries and Views.

We use the following notations to denote the queries and views of Alice, Bob, and Eve at the end of various
sub-rounds:

• Q
(i,j)
A (resp., Q(i,j)

B and Q
(i,j)
E ): denotes the set of (k + 1)-restricted SCMA2-PC oracle queries (to an

SCMA sub-oracle Mκ or Mκ) issued by Alice (resp., Bob and Eve) by the end of sub-round (i, j).

• P
(i,j)
A (resp., P (i,j)

B and P
(i,j)
E ): denotes the set of query-response pairs corresponding to the (k + 1)-

restricted SCMA2-PC oracle queries issued by Alice (resp., Bob and Eve) by the end of sub-round (i, j).
More formally, for α ∈ {A,B,E}, we have

P (i,j)
α =

{
(s, x, y = Mκ(s, x)) : (s, x) ∈ Q(i,j)

α

}
∪
{
(σ, x, γ = Mκ(σ, x)) : (σ, x) ∈ Q(i,j)

α

}
.

• V
(i,j)
A (resp., V (i,j)

B and V
(i,j)
E ): denotes the views of Alice (resp., Bob and Eve) by the end of sub-round

(i, j). More formally, for α ∈ {A,B}, we have

V (i,j)
α =

(
inα, rα,m(i,j), P (i,j)

α

)
,

where rA (resp., rB) denotes the internal randomness of Alice (resp., Bob). In addition, we have

V
(i,j)
E =

(
m(i,j), P

(i,j)
E

)
.

In particular, the view of Eve does not have any randomness since Eve does not use any randomness.

We again adopt the notation Q(·) from [BM09] to denote an operator that extracts the set of queries from any
set of (k+1)-restricted SCMA2-PC oracle query-answer pairs or views; namely, for any set of query-response
pairs P and any view V = (r,m, P ), we have

Q(P ) = Q(V = (r,m, P )) = {q = (s, x) : ∃y, (s, x, y) ∈ P}
∪ {q′ = (σ, x) : ∃γ, (σ, x, γ) ∈ P}.

Finally, we analogously use the notations Q
(i)
A (resp,. Q

(i)
B and Q

(i)
E ), P (i)

A (resp,. P
(i)
B and P

(i)
E ) and

V
(i)
A (resp,. V

(i)
B and V

(i)
E ) to denote the set of queries asked by Alice (resp., Bob and Eve), the set of

query-response pairs corresponding to the queries asked by Alice (resp., Bob and Eve), and the view of
Alice (resp., Bob and Eve) at the end of all sub-rounds of round i in the 2-PC protocol.

4.2.3 Executions and Distributions.

A (full) execution of Alice, Bob, and Eve can be described by a tuple (rA, rB,M = {Mκ,Mκ}, where rA
denotes Alice’s random tape, rB denotes Bob’s random tape, and M denotes the extended (k + 1)-restricted
SCMA2-PC (note that Eve is deterministic). We denote by E the distribution over (full) executions, obtained

88



by running the algorithms for Alice, Bob and Eve with uniformly chosen random tapes rA, rB , and a
uniformly sampled generic (k + 1)-restricted SCMA2-PC M = {Mκ,Mκ}. We denote by PrE [P

(i,j)
A ] (resp.,

PrE [P
(i,j)
B ] and PrE [P

(i,j)
E ]) the probability that P (i,j)

A (resp., P (i,j)
B and P

(i,j)
E ) is the set of query-response

pairs corresponding to the (k + 1)-restricted SCMA2-PC oracle queries issued by Alice (resp., Bob and Eve)
by the end of sub-round (i, j) during the execution.

For any (i, j), for any sequence of exchanged messages m(i,j), and for any set of (k + 1)-restricted
SCMA2-PC oracle query-answer pairs P (i,j)

E , we denote by V
(

m(i,j), P
(i,j)
E

)
the joint distribution over the

views
(
V

(i,j)
A , V

(i,j)
B

)
of Alice and Bob in their own (partial) executions up to just before the sub-round (i, j),

conditioned on the event that:

1. the transcript of messages exchanged between Alice and Bob until this point being equal to m(i,j), and

2. the set of all (k + 1)-restricted SCMA2-PC oracle query-answer pairs corresponding to the queries
issued by Eve until this point being equal to P

(i,j)
E .

We denote the probability of the aforementioned event by PrE [m(i,j), P
(i,j)
E ]. Similar to in [BM09], we use

the distribution V(m(i,j)) to essentially capture the conditional distribution of Alice’s and Bob’s views in the
eyes of the attacker Eve who knows the public messages exchanged between Alice and Bob, and has learned
all (k + 1)-restricted SCMA2-PC oracle query-answer pairs described in P

(i,j)
E .

4.2.4 Intersection Queries and Equivalence Queries.

We now formally define intersection and equivalence queries. Recall that for any (i, j), Q(i,j)
A (resp., Q(i,j)

B )
denotes the set of (k + 1)-restricted SCMA2-PC oracle queries issued by Alice (resp., Bob and Eve) by the
end of sub-round (i, j).

Intersection Queries. We define two sets of intersection queries. We define

Q
(i,j)
A∩B,0 = Q

(i,j)
A ∩Q

(i,j)
B ,

to be the set of common (k + 1)-restricted SCMA2-PC oracle queries issued by both Alice and Bob until
sub-round-(i, j). We also define the following auxiliary sets of intersection queries:

Q
(i,j)
A∩B,1 = {(s = (s0, s1), y) : ∃κ, (s, x0, y = Mκ(s, x0)) ∈ P

(i,j)
A

∧ (s0, y, s1 = Mκ(s0, y)) ∈ P
(i,j)
B }

Q
(i,j)
A∩B,1 = {(s = (s0, s1), y) : ∃κ, (s, x0, y = Mκ(s, x0)) ∈ P

(i,j)
B

∧ (s0, y, s1 = Mκ(s0, y)) ∈ P
(i,j)
A },

which captures queries where Alice and Bob effectively make the same query to Mκ for some κ, except that
one of them makes a direct query to Mκ using the entire monoid element (including input, function and
randomness), while the other one makes a query to Mκ using just the sub-monoid element corresponding
to the randomness, and then recovers the sub-monoid element corresponding to the input and the function.
Finally, we define the overall set of intersection queries as

Q
(i,j)
A∩B = Q

(i,j)
A∩B,0 ∪Q

(i,j)
A∩B,1 ∪Q

(i,j)
A∩B,2.
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Equivalence Queries. We now define the concept of equivalent queries with respect to the (k+1)-restricted
SCMA2-PC oracle queries issued by Alice and Bob.

Definition 4.12 (Equivalence Queries). Let qA = (sA, xA) and qB = (sB, xB) be two queries issued by
Alice and Bob to the (k + 1)-restricted SCMA2-PC oracle. We say that qA and qB are equivalent queries if
the following conditions hold simultaneously for some κ:

• (sA, xA) ̸= (sB, xB), Mκ(sA, xA) ̸= ⊥, Mκ(sB, xB) ̸= ⊥.

• One of the following two cases must be true (x0 being the (k + 1)-base set element for the (k + 1)-
restricted SCMA2-PC):

– Either there exist s′A, s
′
B ∈ Σ∗ such that

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = sB∥s′B.

– Or there exist a, b ∈ Σ, and s′A, s
′
B ∈ Σ∗, such that

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = (ab)k+1, sB∥s′B = (ba)k+1.

Note that the first condition immediately implies that Mκ(sA, xA) = Mκ(sB, xB). Additionally, the second
condition also implies that

Mκ(sA, xA) = Mκ(sA∥s′A, x) = Mκ((ab)
k+1, x)

= Mκ((ba)
k+1, x) = Mκ(sB∥s′B, x) = Mκ(sB, xB).

In other words, equivalence queries essentially depict two different sequences of queries to the (k + 1)-
restricted SCMA2-PC sub-oracle Mκ leading to the same (valid) output, and the two possibilities mentioned
above depict the only scenarios that could lead to such a “collision” between two different sequence of
queries with non-negligible probability (this follows immediately from statistical independence properties of
the outputs of a (k + 1)-restricted SCMA2-PC oracle on uncorrelated inputs).

Remark 4.13. We again remark here that, as in the case of our KE separation result, we could also have some
additional classes of equivalence queries that are essentially combinations of the above two cases. However,
we again avoid explicitly enumerating them since we do not need them for our eventual separation proof.

Next, we define the equivalence relationRA≡B as follows:

RA≡B =

{
1 if and only if qA and qB are equivalent,
0 otherwise.

Finally, we define the set of equivalence queries

Q
(i,j)
A≡B =

{
(qA, qB ∈ Q

(i,j)
A ×Q

(i,j)
B : RA≡B(qA, qB) = 1},

to be the set of equivalence query-pairs (where each pair consists of a query issued by Alice and a query
issued by Bob) until sub-round-(i, j).
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4.2.5 Good Events.

For any (i, j), for any sequence of exchanged messages m(i,j), and for any set of (k+1)-restricted SCMA2-PC

oracle query-answer pairs P (i,j)
E (corresponding to queries issued by Eve) such that PrE [m(i,j), P

(i,j)
E ] > 0,

we define the following:

• The event Good0
(

m(i,j), P
(i,j)
E

)
is defined over the distribution V

(
m(i,j), P

(i,j)
E

)
and is said to hold

if and only if:
Q

(i,j)
A∩B ⊆ Q(P

(i,j)
E ),

where Q(i,j)
A∩B and Q

(i,j)
A≡B are determined by Q

(i,j)
A and Q

(i,j)
B , which are in turn determined by sampling

the views of Alice and Bob as (
V

(i,j)
A , V

(i,j)
B

)
← V

(
m(i,j), P

(i,j)
E

)
.

• The event Good1
(

m(i,j), P
(i,j)
E

)
is defined over the distribution V

(
m(i,j), P

(i,j)
E

)
and is said to hold

if and only if:

Q
(i,j)
A∩B ⊆ Q(P

(i,j)
E ) and ∀(qA, qB) ∈ Q

(i,j)
A≡B, qA ∈ Q(P

(i,j)
E ) ∨ qbQ(P

(i,j)
E ),

where Q(i,j)
A∩B and Q

(i,j)
A≡B are again determined by Q

(i,j)
A and Q

(i,j)
B , which are in turn again determined

by sampling the views of Alice and Bob as(
V

(i,j)
A , V

(i,j)
B

)
← V

(
m(i,j), P

(i,j)
E

)
.

Intuitively, the event Good0
(

m(i,j), P
(i,j)
E

)
indicates that Eve has issued all queries that have been issued

by both both Alice and Bob, while the event Good1
(

m(i,j), P
(i,j)
E

)
indicates that Eve has not only issued

all queries that have been issued by both both Alice and Bob, but also at least one query from each pair of
equivalence queries issued by Alice and Bob.

Finally, we denote by GV0
(

m(i,j), P
(i,j)
E

)
and GV1

(
m(i,j), P

(i,j)
E

)
the distributions obtained by condi-

tioning the distribution V
(

m(i,j), P
(i,j)
E

)
on the events Good0

(
m(i,j), P

(i,j)
E

)
and Good1

(
m(i,j), P

(i,j)
E

)
,

respectively.

4.2.6 The Main Separation Theorem for 2-PC.

We prove the following main theorem:

Theorem 4.14 (Main Theorem for 2-PC Separation). Let Π be a 2k-round 2-PC protocol between Alice
and Bob such that:

• Alice and Bob have inputs inA and inB , respectively.

• Alice and Bob make at most nA and nB queries, respectively, to an extended (k + 1)-restricted
SCMA2-PC oracle M = {Mκ,Mκ}, and use random tapes rA and rB , respectively.
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• Alice and Bob output sA and sB , respectively, such that Pr[sA = sB = f(inA, inB)] > ρ, where
the probability is taken over the choice of (rA, rB,M = {Mκ,Mκ}) describing the execution of the
protocol.

Then for every 0 < δ < ρ, there exists an attacker Eve that corrupts party C ∈ {Alice,Bob}, and makes at
most O(poly(nA, nB, k)/δ

2) queries to the extended (k + 1)-restricted SCMA2-PC oracle, corresponding
to which, with probability at least ρ − δ, there exists no probabilistic simulator S that makes at most
O(poly(nA, nB, k)/δ

4) queries to the extended (k + 1)-restricted SCMA2-PC oracle such that

SM (inC , f(inA, inB))
c
≈ V Π

Eve,

where inC denotes the input of the party corrupted by Eve, and V Π
Eve denotes the view of Eve (consisting of the

messages exchanged by Alice and Bob, Eve’s queries to the extended (k + 1)-restricted SCMA2-PC oracle,
and Eve’s own internal random coins, if any).

Proof Strategy. Our proof strategy is analogous to that for our KE separation proof, and involves showing
the existence of an attacker Eve that recovers more information about the honest party Alice’s input inA

than is revealed by the knowledge of Bob’s input inB and the function output f(inA, inB). Consequently, an
ideal-world simulator S can never simulate Eve’s view since it can never obtain this additional information
about Alice’s input inA (except with non-negligible probability) given only (inB, f(inA, inB)). More formally,
we prove the following auxiliary theorem, which in turn implies the main theorem above.

Theorem 4.15 (Auxiliary Theorem for 2-PC Separation). For a fixed k ∈ N, let Π be a 2k-round 2-PC
protocol between Alice and Bob such that:

• Alice and Bob have inputs inA and inB , respectively.

• Alice and Bob make at most nA and nB queries, respectively, to an extended (k + 1)-restricted
SCMA2-PC oracle M = {Mκ,Mκ} as per Definition 4.8, and use random tapes rA and rB , respectively.

• Alice and Bob output sA and sB , respectively, such that Pr[sA = sB = f(inA, inB)] > ρ, where
the probability is taken over the choice of (rA, rB,M =

{
Mκ,Mκ

}
) describing the execution of the

protocol.

Then for every 0 < δ < ρ, there exists an attacker Eve that corrupts party C ∈ {Alice,Bob} and makes
at most O(poly(nA, nB, k)/δ

4) queries to the generic (k + 1)-restricted SCMA2-PC oracle, such that Eve
recovers, with probability at least (ρ − δ), all queries made by the honest party to the (k + 1)-restricted
SCMA2-PC oracle that are either identical to or are “equivalent” to the queries made by Bob to the (k + 1)-
restricted SCMA2-PC oracle.

Auxiliary Theorem 4.15 implies Main Theorem 4.14. For the sake of explanation, we briefly outline
why this theorem still implies the existence of a valid attack on the 2-PC protocol Π. To begin with, observe
that since the outputs of the generic (k + 1)-restricted SCMA2-PC oracle M = {Mκ,Mκ} are (by definition)
uniformly random and uncorrelated except for the commutator relation that allows computing the function
output in an honest execution of the protocol, Alice and Bob must issue certain intersection/equivalence
queries to M in order to arrive at the final output with high enough probability, and these queries must contain
information about the parts of the inputs inA and inB of Alice and Bob, respectively, that are relevant to
the final function output f(inA, inB). We emphasize that this follows from the definition of the extended

92



(k + 1)-restricted SCMA2-PC oracle, which forces Alice and Bob to use the same input on every step for
correctness to hold.

Also, note that Eve recovers (with high enough probability) all of the intersection and equivalence queries
made by Alice and Bob to the extended (k + 1)-restricted SCMA2-PC oracle based on their respective inputs.
As a result, Eve recovers more information about Alice’s input beyond what is revealed trivially by the
function output. In particular, since the extended SCMA2-PC oracle enforces Alice and Bob to use the same
input on every step, Eve manages to recover the “exact” query Alice used in the computation that was used to
get the final result. In fact, observe that it suffices for Eve to recover the sub-monoid elements corresponding
to the MPC randomness for Alice, since it can then use the additional sub-oracles {Mκ} to recover the
corresponding sub-monoid elements corresponding to Alice’s input. At a high level, this implies that Eve
manages to extract a query from the extended SCMA2-PC oracle that allows her to simulate the computation
on Alice’s input for any of Bob’s inputs she likes (thus breaking security of the 2-PC protocol Π immediately).

Finally, we also emphasize that, for perfect correctness to hold, Alice must use a query that (if it doesn’t
correspond to her correct input) must result in the exact same output for all possible inputs of Bob. Alice
could, of course, use a query that corresponds to a different input than her “official” input in the protocol (as
long as it gives the same results on all queries) in the process, but finding this again is clearly enough to break
the security of the 2-PC protocol since, once again, Eve could simulate the computation on Alice’s input for
any of Bob’s inputs.

Remark 4.16. In our proof, we construct an attacker Eve that recovers the part of Alice’s input that is relevant
to the output of the function (more concretely, the secret monoid element representing Alice’s input that is
used in Alice’s queries to the extended (k + 1)-restricted SCMA2-PC oracle). Eve does not recover any parts
of Alice’s inputs that were not used by Alice to query the extended (k + 1)-restricted SCMA2-PC oracle. In
fact, it is impossible in general to recover any parts of Alice’s input that are (potentially) irrelevant to the
output, since Alice can (at least sometimes) start the interaction by first deleting the irrelevant part its input.
We note, however, that recovering the part of Alice’s input that is relevant to its output already constitutes an
attack on the security of the 2-PC protocol since it allows Eve to learn potentially greater information than is
leaked by the corrupt party Bob’s output.

Remark 4.17. We remark that our attack strategy only allows Eve to recover the output of a single honest
party, namely Alice. In particular, in the case where Bob is also honest and Eve only observes the messages
exchanged by Alice and Bob, our attack strategy only allows it to recover the input of either Alice or Bob,
but not necessarily the inputs of both parties. It is worth noting here that, in the case of 2-PC protocols, it
is sometimes possible to only find one player’s secret. Consider the following protocol: Alice sends her
input to Bob in the clear, and then Bob computes the function(s) and outputs the result (or at least Alice’s
output) in the clear. This is technically a (insecure) 2-PC because both parties learn the final result (or at
least, the output for Alice), and Alice’s secret input, but clearly we cannot extract Bob’s secret input (or even
Bob’s output if it is different from Alice’s). Since our attack (or any generic attack on 2-PC protocols) should
handle this situation, it seems hard to come up with a generic attack on any 2-PC protocol that recovers both
parties’ inputs and/or outputs.

Before describing Eve’s attack algorithm, we introduce a special form of 2k-round 2-PC (the existence of
which is implied by any 2k-round 2-PC protocol). The special form of 2k-round 2-PC is introduced purely to
make our attack analysis easier; our attack applies to any 2k-round 2-PC protocol. We emphasize that we
used a similar strategy in our key exchange proof.
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4.2.7 2-PC with Equivalence Complete Query Pattern.

We now introduce what we call an equivalence complete query pattern for Alice and Bob during an execution
of a 2k-round 2-PC protocol, which essentially depicts a sequence of queries issued by Alice and Bob to the
(k + 1)-restricted SCMA2-PC oracle, albeit subject to certain constraints as described subsequently.

Definition 4.18 (Query Length). Let M = {Mκ,Mκ} be an extended (k+ 1)-restricted SCMA2-PC oracle
as in Definition 4.8, and let (s, x) be a query to Mκ for any κ. Let s = s1∥ . . . ∥sℓ be a “decomposition” of
s such that each si ∈ Σ∗ for i ∈ [ℓ]. We say that the “length” of the query (for this decomposition) is ℓ.
Observe that, by the associative properties of the sub-oracle Mκ, we must have

Mκ(s, x) = Mκ(s1,Mκ(s2, . . . ,Mκ(sℓ, x) . . .)).

Remark 4.19. Note that the length of the query may vary depending on the decomposition of the string s,
and may be different from |s|, which denotes the unique number of symbols from Σ in the string s.

Definition 4.20 (Equivalence Complete Query Pattern). Let Q be any set of queries to an extended (k +
1)-restricted SCMA2-PC oracle M = {Mκ,Mκ}, such that each query q ∈ Q is of the form q = (s, x) ∈
Σ∗ × {0, 1}∗. We say that Q is equivalence complete if the following conditions are satisfied (x0 being the
(k + 1)-base set element):

• Informally, for any query q ∈ Q, the query set Q also contains all the “split” versions of this query.
Formally, for each q = (s, x) ∈ Q such that x = Mκ(s

′, x0) for some κ and such that s∥s′ = a1 . . . aℓ
for ℓ > 1 (where for each j ∈ [ℓ], we have aj ∈ Σ), there exists a subset of “single-element” queries
S ⊂ Q of the form

S = {q1 = (s1, x1), . . . , qℓ = (sℓ, xℓ)},

such that for each j ∈ [ℓ], we

sj = aj , xj = Mκ(aj+1,Mκ(aj+2, . . . ,Mκ(aℓ, x0) . . .)).

• Informally, for any query q ∈ Q that is a substring of either (ab)k+1 or (ba)k+1, and which potentially
“triggers” a build-up to an equivalence query of the form Mκ

(
(ab)k+1, x0

)
= Mκ

(
(ba)k+1, x0

)
for

some κ, the query set Q also contains all the possible ways to compute this equivalence query. Formally,
for any q = (s, x) ∈ Q such that x = Mκ(s

′, x0) for some κ and such that there exist distinct elements
a, b ∈ Σ such that

|s∥s′| > 2, s∥s′ ∈ SUBSTRING
(
(ab)k+1

)
∪ SUBSTRING

(
(ba)k+1

)
,

where SUBSTRING
(
(ab)k+1

)
and SUBSTRING

(
(ba)k+1

)
denote the sets of all possible substrings

of (ab)k+1 and (ba)k+1, respectively, we must have

S0 ⊂ Q ∧ S1 ⊂ Q,

where the query subsets S0 and S1 are defined as:

S0 =
{
q̃ = (s̃, x0) : s̃ ∈ SUBSTRING

(
(ab)k+1

)}
,

S1 =
{
q̃ = (s̃, x0) : s̃ ∈ SUBSTRING

(
(ba)k+1

)}
.
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Definition 4.21 (2-PC with Equivalence Complete Query Pattern). Let Π be any 2-PC protocol as de-
fined in Section 4.2.1. The protocol Π is said to have equivalence complete query pattern if for any round
i, letting Q

(i)
A and Q

(i)
B denote the set of queried asked by Alice and Bob to the extended (k + 1)-restricted

SCMA2-PC oracle, we have that Q(i)
A and Q

(i)
B are both equivalence complete query patterns as per Defini-

tion 4.20.

Equivalence Queries Follow Intersection Queries. We now state and prove that for any 2k-round 2-
PC protocol with equivalence complete query pattern where Alice and Bob make queries to an extended
(k + 1)-restricted SCMA2-PC oracle, for each equivalence query, one of the two must be true: (i) there either
exists a corresponding intersection query such that if Eve makes this intersection query, she makes a query
that is either identical to or equivalent to the original equivalence query, or (ii) one of Alice or Bob must
issue at least one SCMA2-PC oracle query involving a set element x∗ such that x∗ was not the output of
any SCMA2-PC oracle query made by either Alice or Bob, but x∗ can be used to potentially build up to an
equivalence query. We then prove that the probability of event (ii) can be upper-bounded such that Eve can
decide if the probability of this event is negligible or non-negligible, and choose to follow a corresponding
attack strategy. It is this special property of a 2-PC protocol with equivalence complete query pattern that
makes our subsequent attack analysis significantly simpler.

We note here that this step again constitutes a core novelty of our attack analysis, and is necessitated by
the additional algebraic structure that is inherent to an extended (k+1)-restricted SCMA2-PC oracle over and
above a plain random oracle. In particular, the proofs of [IR89, BM09] do not require this additional analysis
since any equivalence query is, by definition, an intersection query by default for a plain random oracle.
However, since this is not the case for an extended (k + 1)-restricted SCMA2-PC oracle, we additionally need
to establish that Eve can “cover” all equivalence queries by identifying only the intersection queries (unless
Alice or Bob manage to perform a random guess on a set element as mentioned above). We formally prove
this via Lemmas 4.22 and 4.23, that we state and prove below.

Lemma 4.22 (Equivalence Queries Follow Intersection Queries-1). Let Q(i)
A and Q(i)

B be the set of queries
issued by Alice and Bob to an extended (k + 1)-restricted SCMA2-PC oracle M = {Mκ,Mκ} till round i of
a 2k-round 2-PC protocol with an equivalence complete query pattern. Suppose that there is an equivalence
query pair (qA, qB) = ((sA, xA), (sB, xB)) ∈ Q

(i)
A ×Q

(i)
B such that there exist s′A, s

′
B ∈ Σ∗ such that

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = sB∥s′B.

and that Alice and Bob are only given the base set element x0 at the beginning of the 2-PC protocol. Then
there exists a set intersection queries

S = {q1, . . . , qℓ} ⊂ Q
(i)
A ∩Q

(i)
B ,

such that if Eve asks each query in S, she asks a query that is equivalent to both the queries qA and qB .

Proof. Since Alice and Bob are only given the initial set-element x0, they must have each issued a sequence
of queries building up to the queries (s′A, x0) and (s′B, x0), respectively. By the definition of equivalence
complete query pattern, they also issue all possible singleton queries leading up to these queries. In addition,
they also issued all possible singleton queries building up to the queries (sA, xA) and (sB, xB), respectively.
Suppose

sA∥s′A = sB∥s′B = a1a2 . . . aℓ,
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where for each j ∈ [ℓ], we have aj ∈ Σ. Then, by definition of equivalence complete query pattern, there
exists a set of queries of the form

S = {q1 = (s1, x1), . . . , qℓ = (sℓ, xℓ)},

such that for each j ∈ [ℓ] and for some κ, we have

sj = aj , xj = Mκ(aj+1,Mκ(aj+2, . . . ,Mκ(aℓ, x0) . . .)),

such that S ⊂ Q
(i)
A ∩ Q

(i)
B , and such that q1 is equivalent to both qA and qB . This completes the proof of

Lemma 4.22.

Lemma 4.23 (Equivalence Queries Follow Intersection Queries-2). Let Q(i)
A and Q(i)

B be the set of queries
issued by Alice and Bob to an extended (k + 1)-restricted SCMA2-PC oracle M = {Mκ,Mκ} till round i of
a 2k-round 2-PC protocol with an equivalence complete query pattern. Suppose that there is an equivalence
query pair (qA, qB) ∈ Q

(i)
A ×Q

(i)
B such that there exist a, b ∈ Σ, and s′A, s

′
B ∈ Σ∗, such that

xA = Mκ(s
′
A, x0), xB = Mκ(s

′
B, x0), sA∥s′A = (ab)k+1, sB∥s′B = (ba)k+1,

and that Alice and Bob are only given the base set element x0 at the beginning of the 2-PC protocol. Then
one of the following must be true:

• Either we must have
qA ∈ Q

(i)
A ∩Q

(i)
B or qB ∈ Q

(i)
A ∩Q

(i)
B ,

• Or one of Alice or Bob issues at least one SCMA2-PC oracle query of the form (s∗, x∗) (where s∗ ∈ Σκ

and x∗ ∈ {0, 1}cκ(k+1) for some κ) such that both of the following are true:

1. There exists α < k + 1 such that

x∗ ∈ {Mκ((ab)
α, x0),Mκ((ba)

α, x0),Mκ(b(ab)
α, x0),Mκ(a(ba)

α, x0)}.

2. There exists no query q̂ = (ŝ, x̂) ∈ Q
(i)
A ∪Q

(i)
B satisfying Mκ(ŝ, x̂) = x∗.

Proof. We will show that if Alice and Bob compute an equivalence query of the aforementioned form in at
most 2k rounds, then either Alice or Bob must have computed a query that triggered the equivalence complete
query pattern. Therefore, (at least) one of Alice and Bob will have computed the equivalence query in all
possible ways, implying the existence of a corresponding intersection query by definition.

Based on the definition of equivalence query as outlined in Definition 4.12, in this scenario, Alice and
Bob effectively compute an equivalence query of the form (for some κ)

Mκ

(
(ab)k+1 , x0

)
= Mκ

(
(ba)k+1 , x0

)
,

given only the (k+1)-base set element x0. To do this, they each must make queries of the form Mκ (t1, t2 ⋆ x)
where t1||t2 is a right substring of either (ab)k+1 or (ba)k+1 and send these back and forth between one
another, constantly building t2. Suppose we assume that if either Alice or Bob makes multiple queries of the
above form in the same round that build upon one another, we replace them with a single query. Note that
this will not change the final equivalence query or whether or not we have triggered an equivalence complete
query pattern.
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With this assumption, we may assume that Alice and Bob make no more than 2k queries of the form
qi = Mκ (si, qi−1) for i ∈ [2k] such that

s1∥ . . . ∥s2k = (ab)k+1 or s1∥ . . . ∥s2k = (ba)k+1 .

If less than 2k queries are used by either Alice or Bob (or both), we simply assume that the extra si strings
are empty strings.

By the pigeonhole principle, one of the following much be true:

• Either at least one of the si strings must contain a string concatenation of both a and b. In this case, by
the definition of equivalence complete query pattern (Definition 4.20), at least one of Alice and Bob
must have computed all possible ways to compute that particular equivalence query, and hence made
the corresponding queries to the extended (k + 1)-restricted SCMA2-PC oracle. At least one of these
queries must have therefore been the same as a query of the other party, meaning that an intersection
query occurred.

• Or one of Alice or Bob issues an extended (k + 1)-restricted SCMA2-PC oracle query of the form
(s∗, x∗) such that x∗ can be used to build up to the equivalence query (i.e., x∗ must be a set element that
is obtained by querying Mκ on some valid substring of either (ab)k+1 or (ba)k+1), but this element
is not the response to any of the queries issued by Alice or Bob (i.e., one of them must have guessed
this set element without receiving it as the output of an extended (k + 1)-restricted SCMA2-PC oracle
query).

This completes the proof of Lemma 4.23.

Finally, we state the following lemma.

Lemma 4.24. Let Q(i)
A and Q

(i)
B be the set of queries issued by Alice and Bob to an extended (k+1)-restricted

SCMA2-PC oracle M = {Mκ,Mκ} till round i of a 2k-round 2-PC protocol with an equivalence complete
query pattern, and let nA = |Q(i)

A | and nB = |Q(i)
B |. Let p∗ the probability that either Alice or Bob issues a

query of the form (s∗, x∗) (where s∗ ∈ Σκ and x∗ ∈ {0, 1}cκ(k+1) for some κ) such that both of the following
are true:

1. There exists α < k + 1 such that

x∗ ∈ {Mκ((ab)
α, x0),Mκ((ba)

α, x0),Mκ(b(ab)
α, x0),Mκ(a(ba)

α, x0)}.

2. There exists no query q̂ = (ŝ, x̂) ∈ Q
(i)
A ∪Q

(i)
B satisfying Mκ(ŝ, x̂) = x∗.

Then we have

p∗ ≤ (nA + nB)O(k)
∑
κ

22κ

2cκk
= (nA + nB)O(k)

∑
κ

2−(ck−2)κ.

Proof. Note that for a fixed κ, the total number of set elements is 2cκk, while the total number of set elements
that can possibly build up to the output of an equivalence query is (4k + 12)22κ. Hence the probability that a
randomly sampled set element is, in fact, the output of an equivalence query for a fixed κ is

p∗κ ≤
(4k + 12)22κ

2cκk
.
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Taking union bound over all possible κ and the total number of queries (nA + nB), we observe that

p∗ ≤ (nA + nB)
∑
κ

p∗κ ≤ (nA + nB)
∑
κ

(4k + 12)22κ

2cκk
= (nA + nB)(4k + 12)

∑
κ

2−(ck−2)κ,

which completes the proof.

From any 2-PC to 2-PC with Equivalence Complete Query Pattern. Next, we show that any 2k-round
2-PC protocol implies the existence of a 2k-round 2-PC protocol while incurring only a polynomial blow-up in
the number of queries issued to the extended (k+1)-restricted SCMA2-PC oracle by Alice and Bob (assuming
that Alice and Bob make at most polynomially many queries to the extended (k + 1)-restricted SCMA2-PC
oracle in the original 2k-round 2-PC protocol). More formally, we state and prove the following lemma.

Lemma 4.25. Assuming the existence of any secure 2k-round 2-PC protocol between Alice and Bob with
correctness probability ρ such that Alice and Bob make at most nA and nB queries, respectively, to an
extended (k + 1)-restricted SCMA2-PC oracle such that nA and nB are at most polynomially large, there
exists a secure 2k-round 2-PC protocol between Alice and Bob with correctness probability ρ such that
the query pattern for Alice and Bob is equivalence complete, and such that Alice and Bob make at most
poly(k, nA) and poly(k, nB) queries to an extended (k + 1)-restricted SCMA2-PC oracle.

Proof. Given any 2k-round 2-PC, we can immediately construct a 2k-round 2-PC with equivalence complete
query pattern as follows: we allow Alice and Bob to behave exactly as in the original 2k-round 2-PC
except that they additionally ask the extra queries entailed by the definition of equivalence complete query
pattern, and ignore the corresponding responses of the extended (k + 1)-restricted SCMA2-PC oracle to
these additional queries. Since both Alice and Bob are PPT algorithms, the lengths of their queries are also
poly-bounded. Hence, the blow-ups in the number of queries issued by Alice and Bob are at most poly(k, nA)
and poly(k, nB), respectively. Note that neither changes the transcript of messages exchanged by Alice and
Bob, nor does it change the view of Eve. This immediately implies that the following must hold:

• If the original 2k-round 2-PC is correct with probability ρ, then the new 2k-round 2-PC protocol with
equivalence complete query pattern is also correct with the same probability ρ.

• If the original 2k-round 2-PC is secure against any PPT adversary Eve, then the new 2k-round 2-PC
protocol with equivalence complete query pattern is also secure against any PPT adversary Eve.

This completes the proof of Lemma 4.25.

Attacking 2-PC with Equivalence Complete Query Pattern. At this point, we shift focus from the main
theorem to the following auxiliary theorem.

Theorem 4.26 (Theorem for 2-PC with Equivalence Complete Query Pattern). Let Π be a 2k-round
2-PC protocol between Alice and Bob such that:

• Alice and Bob have inputs inA and inB , respectively.

• Alice and Bob make at most nA and nB queries, respectively, to an extended (k + 1)-restricted
SCMA2-PC oracle M = {Mκ,Mκ} as per Definition 4.8, and use random tapes rA and rB , respectively.
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• Π has an equivalence complete query pattern per Definition 4.20.

• Alice and Bob output sA and sB , respectively, such that Pr[sA = sB = f(inA, inB)] > ρ, where
the probability is taken over the choice of (rA, rB,M =

{
Mκ,Mκ

}
) describing the execution of the

protocol.

Then for every 0 < δ < ρ, there exists an attacker Eve that corrupts party C ∈ {Alice,Bob}, and makes at
most O(poly(nA, nB, k)/δ

2) queries to the extended (k + 1)-restricted SCMA2-PC oracle, corresponding
to which, with probability at least ρ − δ, there exists no probabilistic simulator S that makes at most
O(poly(nA, nB, k)/δ

4) queries to the extended (k + 1)-restricted SCMA2-PC oracle such that

SM (inC , f(inA, inB))
c
≈ V Π

Eve,

where inC denotes the input of the party corrupted by Eve, and V Π
Eve denotes the view of Eve (consisting of the

messages exchanged by Alice and Bob, Eve’s queries to the extended (k + 1)-restricted SCMA2-PC oracle,
and Eve’s own internal random coins, if any).

We note that Theorem 4.26, together with Lemma 4.25, immediately implies Theorem 4.14, which is the
main theorem that we originally set out to prove1. Hence, in the rest of the paper, we focus purely on proving
Theorem 4.26 in the context of a 2k-round 2-PC with equivalence complete query pattern.

Finally, we prove Theorem 4.26 by proving the following auxiliary theorem.

Theorem 4.27 (Auxiliary Theorem for 2-PC with Equivalence Complete Query Pattern). For a fixed
k ∈ N, let Π be a 2k-round 2-PC protocol between Alice and Bob such that:

• Alice and Bob have inputs inA and inB , respectively.

• Alice and Bob make at most nA and nB queries, respectively, to an extended (k + 1)-restricted
SCMA2-PC oracle M = {Mκ,Mκ} as per Definition 4.8, and use random tapes rA and rB , respectively.

• Π has an equivalence complete query pattern per Definition 4.20.

• Alice and Bob output sA and sB , respectively, such that Pr[sA = sB = f(inA, inB)] > ρ, where the
probability is taken over the choice of (rA, rB,Mκ) describing the execution of the protocol.

Then for every 0 < δ < ρ, there exists an attacker Eve that corrupts party C ∈ {Alice,Bob} and makes
at most O(poly(nA, nB, k)/δ

4) queries to the generic (k + 1)-restricted SCMA2-PC oracle, such that Eve
recovers, with probability at least (ρ − δ), all queries made by the honest party to the (k + 1)-restricted
SCMA2-PC oracle that are either identical to or are “equivalent” to the queries made by Bob to the (k + 1)-
restricted SCMA2-PC oracle.

We note that Theorem 4.27 implies Theorem 4.26 in the same way as Theorem 4.15 implies Theorem 4.14.
Indeed the only change from the previous set of theorems is that we now require the 2-PC protocol to
additionally satisfy the requirement of equivalence complete query pattern, which does not affect any of the
arguments for why the existence of a (semi-honest) 2-PC attacker per Theorem 4.27 implies the existence of
a (semi-honest) 2-PC attacker per Theorem 4.26 whose view cannot be simulated (except with negligible
probability) by any probabilistic simulator.

1Note that the number of queries made by Eve when attacking the 2-PC protocol with equivalence complete query pattern is
actually independent of k; the factor of poly(k) blowup in the number of queries over and above any 2-PC protocol (as in the
statement of Theorem 4.14) is already implicit in the number of queries nA and nB in the statement of Theorem 4.26.
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4.2.8 The Attack Algorithm.

We now describe the algorithm that the attacker Eve uses to break any 2k-round 2-PC protocol with
equivalence complete query pattern. We follow essentially the same attack strategy as used in our KE
separation result; the main difference lies in actually analyzing the attack algorithm in our setting, as
presented subsequently. However, we summarize the attack strategy here for the sake of completeness.

The attack algorithm is parameterized by some constant ϵ > 0, which we assume is smaller than 1/10.
Let (i, j) denote some sub-round of the 2-PC protocol, let m(i,j) denote the corresponding set of messages
between Alice and Bob until sub-round (i, j), and let P (i,j)

E denote the set of extended (k + 1)-restricted
SCMA2-PC oracle query-answer pairs until sub-round (i, j) asked by Eve. We assume without loss of
generality that Alice is the honest party, and Eve corrupts Bob. In this case, Eve proceeds as follows during
sub-round (i, j):

• If PrE [m(i,j), P
(i,j)
E ] = 0, Eve aborts.

• Otherwise, as long as there is a query q = (s, x) for s ∈ Σk+1 and x such that Level(x) ̸= −1 such
that

Pr(
V

(i,j)
A ,V

(i,j)
B

)
←V

(
m(i,j),P

(i,j)
E

)[q ∈ Q(V (i,j)
A )] >

ϵ

nB
,

or
Pr(

V
(i,j)
A ,V

(i,j)
B

)
←V

(
m(i,j),P

(i,j)
E

)[q ∈ Q(V (i,j)
B )] >

ϵ

nA
,

Eve issues the lexicographically first such query q to the (k + 1)-restricted SCMA2-PC oracle and adds
the query-response pair (q,Mκ(q)) to P

(i,j)
E .

• Suppose that the above query q = (s, x) was made by Eve to the sub-oracle Mκ for κ such that

(nA + nB) > 22κϵ2/(4k + 12).

In this case, we want Eve to make all possible queries that potentially build up to a query equivalent to
the query q. Note that this corresponds to the case for small κ in our KE separation proof where Alice
and Bob may make enough queries to have a potentially non-negligible (in κ) probability of guessing a
set element that potentially builds up to an equivalence query.

Note, however, that unlike our KE separation proof, Eve cannot iterate over all possible queries to Mκ.
In particular, as per Definitions 4.6 and 4.8, we have s = (s0, s1) ∈ Σ∗0×Σ∗1,κ, where s0 ∈ Σ∗0 denotes
the sub-monoid element corresponding to some (input, function) tuple, while s1 ∈ Σ∗1,κ denotes the
sub-monoid element corresponding to the MPC randomness. Realistically, Eve can only iterate over
all possible s′1 ∈ Σk′

1,κ for k′ ∈ [k], but needs to identify all queries of the form q′ = (s′, x0) for
s′ = (s′0, s

′
1) that are potentially equivalent to q = (s, x). However, observe that Eve can recover the

corresponding s′0 monoid sub-element by querying Mκ(s
′
1, y = Mκ(s, x)).

Concretely, Eve proceeds as follows:

– Let y = Mκ(s, x) be the response to the query issued by Eve in round (i, j).

– For each s′1 ∈ Σk′
1,κ where k′ ∈ [k], Eve does the following:

* Eve obtains s′0 = Mκ(s
′
1, y).
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* If s′0 ̸= ⊥, Eve checks if q = (s, x) and q′ = (s′ = (s′0, s
′
1), x0) constitute an equivalence

query pair. Recall from the proof of Lemma 4.24 that there are (4k + 12)22κ possible set
elements that could potentially lead up to an equivalence query for q′ = (s′, x0). Eve ex-
haustively enumerates all of the set elements that could potentially lead up to an equivalence
query for q, and then checks if q = (s, x) is one of the possible equivalence queries. If yes,
Eve issues the query q′ to Mκ.

• Eve continues in this way until there remains no additional query that Eve can ask, at which point she
stops and waits for the next sub-round to commence.

Eventually, at the end of all sub-rounds of the final round 2k (when Eve is also done with asking her oracle
queries), Eve’s final query set P (2k)

E includes all of her queries to the SCMA2-PC sub-oracles {Mκ}κ and
{Mκ}κ (recall that this follows from the formal definition of P (2k)

E presented above). At this point, Eve
samples (

V
(2k)
A , V

(2k)
B

)
← V

(
m(2k), P

(2k)
E

)
,

computes Alice’s input inA determined by V
(2k)
A , and outputs inA as its own output.

Note that Eve’s algorithm above may ask much more than poly(k, nA, nB) queries. However, we will
show that the probability that Eve needs to ask more than O(poly(k, nA, nB)/ϵ

4) queries is bounded by
O(ϵ), and hence we can stop Eve after asking these many queries without changing significantly her success
probability.

Remark 4.28. As in the case of the attack algorithm of [BM09] and also our attack algorithm for our KE
separation result, our attacking algorithm above is not computationally efficient, as in general computing the
probability distribution V

(
mk, P

(k)
E

)
could be a hard problem since it involves “inverting” the algorithms of

Alice and Bob to a certain extent. But because computing these probabilities is in #P we can use known
techniques to approximate them with arbitrarily good precision using an NP-oracle. In particular this means
that our attacker (as was the case in previous works) is computationally efficient in a relativized world in
which P = NP, and hence our result also rules out relativizing reductions from semi-honest secure 2k-round
2-PC to extended (k + 1)-restricted SCMA2-PC oracle (and hence, rules out relativizing reductions from
semi-honest secure 2k-round 2-PC to (2k + 1)-round maliciously secure 2-PC).

Analyzing Events. We first analyze some events for any 2k-round 2-PC protocol with equivalence complete
query pattern. Recall that the event Good0 holds if Eve has found all of the intersection queries, while event
Good1 holds if Eve has found all of the intersection and equivalence queries.

We define an additional event Bad∗. Informally speaking, Bad∗ is the event where, for some small κ,
Alice and Bob make enough queries to have a potentially non-negligible (in κ) probability of guessing a set
element that potentially builds up to an equivalence query w.r.t. the sub-oracle Mκ. The formal definition
is as follows: let Q(i)

A and Q
(i)
B be the set of queries issued by Alice and Bob till round i of a 2k-round

2-PC protocol with an equivalence complete query pattern. We say that the event Bad∗ occurs if either
Alice or Bob issues a query of the form (s∗, x∗) to the SCMA2-PC sub-monoid oracle Mκ for some κ (where
s∗ ∈ Σ0 × Σ1,κ and x∗ ∈ {0, 1}cκ(k+1)) such that both of the following are true (x0 being the (k + 1)-base
element):

1. There exists α < k + 1 such that

x∗ ∈ {Mκ((ab)
α, x0),Mκ((ba)

α, x0),Mκ(b(ab)
α, x0),Mκ(a(ba)

α, x0)}.
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2. There exists no query q̂ = (ŝ, x̂) ∈ Q
(i)
A ∪Q

(i)
B satisfying Mκ(ŝ, x̂) = x∗.

We now state and prove the following lemma.

Lemma 4.29 (Good0 ∧ ¬Bad∗ =⇒ Good1). Given any 2-PC protocol with equivalence complete query
pattern as described above, let (i, j) denote some sub-round, let m(i,j) denote the corresponding set of
exchanged messages until sub-round (i, j), and let P (i,j)

E denote some sequence of (k + 1)-restricted
SCMA2-PC oracle query-answer pairs until sub-round (i, j), such that we have PrE [m(i,j), P

(i,j)
E ] > 0. Then,

we have
Pr
E
[Good1

(
m(i,j), P

(i,j)
E

)
|(Good0 ∧ ¬Bad∗)

(
m(i,j), P

(i,j)
E

)
] = 1.

Let V(m(i,j)) denote the conditional distribution of Alice’s and Bob’s views in the eyes of the attacker
Eve who knows the public messages exchanged between Alice and Bob, and has learned all (k + 1)-
restricted SCMA2-PC oracle query-answer pairs described in P

(i,j)
E . Finally, let GV0

(
m(i,j), P

(i,j)
E

)
and

GV1
(

m(i,j), P
(i,j)
E

)
denote the distributions obtained by conditioning the distribution V

(
m(i,j), P

(i,j)
E

)
on the events (Good0 ∧ ¬Bad∗)

(
m(i,j), P

(i,j)
E

)
and Good1

(
m(i,j), P

(i,j)
E

)
, respectively. Then, assuming

Lemma 4.29, we also immediately obtain the following corollary.

Corollary 4.30. GV0
(

m(i,j), P
(i,j)
E

)
and GV1

(
m(i,j), P

(i,j)
E

)
are identical.

Proof. Lemma 4.29 follows immediately from Lemmas 4.22 and 4.23.

We define two additional events, which we call fail event and long event.

Fail Event. Given any 2k-round 2-PC protocol with equivalence complete query pattern, let (i, j) denote
some sub-round, let m(i,j) denote the corresponding set of exchanged messages until sub-round (i, j), and let
P

(i,j)
E denote the sequence of extended (k + 1)-restricted SCMA2-PC oracle query-answer pairs made by Eve

until sub-round (i, j), such that we have PrE [m(i,j), P
(i,j)
E ] > 0. We define the event Fail(i,j) to be the event

that:

• EITHER the query (made by Alice or Bob) to the extended (k + 1)-restricted SCMA2-PC oracle after
this sub-round causes the event Bad∗ to hold.

• OR one of the following holds:

– EITHER the query (made by Alice or Bob) to the extended (k + 1)-restricted SCMA2-PC oracle
after this sub-round is an intersection query but is not contained in P

(i,j)
E .

– OR the query (made by Alice or Bob) to the extended (k + 1)-restricted SCMA2-PC oracle after
this sub-round is an equivalence query w.r.t. some query issued earlier by the other party, but
P

(i,j)
E does not contain a query that is either identical or equivalent to this query,

and this is the first instance of Eve missing either an intersection query or an equivalence query. Let
the event Fail =

∨
(i,j) Fail

(i,j) be the event that at some point during the 2k-round 2-PC protocol with
equivalence query pattern, an intersection query is missed by Eve.
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Long Event. We also denote by Long the event that Eve makes more than O(poly(k, nA, nB)/ϵ
4) queries

when attacking any 2k-round 2-PC protocol with equivalence complete query pattern.

Simplified Attack Analysis. We first present an analysis of the attack strategy in a simplified situation
that excludes all of the queries made by Eve to Mκ and Mκ for small κ. In other words, we focus on the
simplified case where all of queries made by Eve are to Mκ for large κ.

Lemma 4.31 (Attack is successful in the simplified case). For any sub-round (i, j) of the 2-PC protocol
with equivalence complete query pattern, we have

Pr
E
[Fail(i,j)] = O

(
ϵ

(nA + nB)

)
.

Hence, by union bound, we have PrE [Fail] = O(ϵ).

Lemma 4.32 (Attack is efficient in the simplified case). We have PrE [Long] = O(ϵ).

We prove Lemma 4.31 by proving the following stronger result in the simplified case.

Lemma 4.33. For any sub-round (i, j) of the 2-PC protocol with equivalence complete query pattern, let
m(i,j) denote the corresponding set of exchanged messages until sub-round (i, j), and let P (i,j)

E denote the
sequence of extended (k + 1)-restricted SCMA2-PC oracle query-answer pairs made by Eve until sub-round
(i, j), such that all queries are made to Mκ for large κ, and such that we have PrE [m(i,j), P

(i,j)
E ] > 0. Then

we have

Pr
E

[
Fail(i,j)|Good1

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

(nA + nB)

)
.

To see why Lemma 4.33 implies Lemma 4.31, observe that Fail(i,j) is the event that Eve fails to query
an intersection query or an equivalence query for the first time in sub-round (i, j), and hence, Eve found
all intersection queries and equivalence queries during the execution up until sub-round (i, j), meaning that
Good1

(
m(i,j), P

(i,j)
E

)
holds. Hence, we must have

Pr
E
[Fail(i,j)] ≤ Pr

E

[
Fail(i,j)|Good1

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

(nA + nB)

)
,

which is precisely the statement of Lemma 4.31. We prove Lemma 4.33 by using a product characterization of
the distribution GV1. The proof is very similar to the proof of Lemma 3.72 that we use for our KE separation
result, and is hence not detailed here.

Proof of Lemma 4.32: The Attack is Efficient (Simplified Analysis). We follow a strategy similar to our
separation result for 2-party NIKE to prove that the attack is efficient by crucially relying on the fact that the
attack is successful. Recall that in her algorithm, Eve follows the following strategy: at any given sub-round
of the protocol, Eve keeps making the lexicographically first query q that has “significant” probability of
appearing in either Alice’s query set or Bob’s query set, until all such queries are exhausted. Also recall
that this probability is based on the distribution V

(
m(i,j), P

(i,j)
E

)
(where m(i,j) denotes the set of messages

exchanged between Alice and Bob until sub-round (i, j), and P
(i,j)
E denotes the set of extended (k + 1)-

restricted SCMA2-PC oracle query-answer pairs until sub-round (i, j) asked by Eve), conditioned on the event
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that Eve has not missed any intersection or equivalence queries up until this point (i.e. the event Good1). Now,
since we have proven that the event Good1 happens with high probability (Lemma 4.29), this implies that
queries with a significant probability of occurrence according the distribution V

(
m(i,j), P

(i,j)
E

)
conditioned

on Good1 also have a significant probability of occurrence under the real distribution V
(

m(i,j), P
(i,j)
E

)
.

Intuitively, we use this to bound the number of queries that Eve has to make by arguing that each query that
Eve makes decreases the (nonzero) expected number of unknown queries.

A Bad Event. For the formal proof, we begin by defining an additional event, which we refer to as a “bad”
event. Let (i, j) denote some sub-round of the 2-PC protocol, let m(i,j) denote the corresponding set of
messages between Alice and Bob until sub-round (i, j), and let P (i,j)

E denote some sequence of extended
(k+1)-restricted SCMA2-PC oracle query-answer pairs until sub-round (i, j) learned by Eve. We use Bad(i,j)

to denote the event that
Pr

V
(

m(i,j),P
(i,j)
E

) [¬Good1 (m(i,j), P
(i,j)
E

)]
>

1

2
.

We also define the probability space Ê to denote the same execution probability space as E with the difference
that for any sub-round (i, j), Eve stops asking more queries at sub-round (i, j) if the event Bad(i,j) occurs (the
behavior of Alice and Bob remains unchanged). Note that E and Ê are identical as long as Bad(i,j) does not
happen, and so we have

Pr
E
[Bad] = Pr

Ê
[Bad].

More generally speaking, for any event D whose definition depends on the behavior of Eve, we have

Pr
E
[Bad ∨ D] = Pr

Ê
[Bad ∨ D].

The proof of Lemma 4.32 follows from the following steps:

• Step-1: We first show the following:

Pr
E
[Fail] = O(ϵ) =⇒ Pr

E
[Bad] = Pr

Ê
[Bad] = O(ϵ).

Since our analysis of the success probability of the attack already established that PrE [Fail] =
O(ϵ) (Lemma 4.31), we have

Pr
E
[Bad] = Pr

Ê
[Bad] = O(ϵ).

• Step-2: We then show the following: PrÊ [Long] = O(ϵ).

Observe that

Pr
E
[Long] ≤ Pr

E
[Long ∨ Bad] = Pr

Ê
[Long ∨ Bad] ≤ Pr

Ê
[Long] + Pr

Ê
[Bad].

Hence, we have PrE [Long] = O(ϵ), which is precisely the statement of Lemma 4.32. The detailed proof is
very similar to the proof of Lemma 3.71 that we use for our KE separation result, and is hence not detailed.
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Generalized Attack Analysis. We now generalize Lemmas 4.31 and 4.32 to the general case where Eve
also issues queries to Mκ and Mκ for small κ.

Lemma 4.34 (Attack is successful in the general case). In the general case, for any sub-round (i, j) of
the 2-PC protocol with equivalence complete query pattern, we have

Pr
E
[Fail(i,j)] = O

(
ϵ

(nA + nB)

)
.

Hence, by union bound, we have PrE [Fail] = O(ϵ).

Lemma 4.35 (Attack is efficient in the general case). We have PrE [Long] = O(ϵ) in the general case.

Attack Success: Generalized Analysis. We also complete the analysis of the success probability of Eve’s
attack strategy by considering the additional case where Eve issues queries to Mκ and Mκ for small κ, and
proving a generalized version of Lemma 4.33. Recall that, by Lemma 4.29, we have

Good0 ∧ ¬Bad∗ =⇒ Good1,

where Good0 is the event where Eve finds all intersection queries, Good1 is the event that Eve finds all
intersection and equivalence queries, and Bad∗ is the event where, for some small κ, Alice and Bob make
enough queries to have a potentially non-negligible (in κ) probability of guessing a set element that potentially
builds up to an equivalence query w.r.t. the sub-oracle Mκ. First of all, the probability that Eve fails to fail
all intersection queries for Alice and Bob is O(ϵ) for both small κ and big κ (this follows from the fact that
Eve’s attack strategy to find intersection queries remains the same for small and big κ). To prove that the
probability that Eve fails to find all equivalence queries for Alice and Bob over (Mκ,Mκ) is also O(ϵ) for
small κ, it suffices to bound the probability of the event Bad∗ defined above in the case of small κ. We
provide an informal proof overview below.

Consider a scenario where, Eve identifies all intersection queries but fails to find an equivalence query
pair (q, q′) for q queried by Alice and q′ queried by Bob (this is precisely the event Bad∗) for the first time
in some round (i, j) where q and q′ are queries issued to Mκ for some small κ. Recall that in its attack
strategy, at any given sub-round of the protocol, Eve keeps making the lexicographically first query q that
has “significant” probability of appearing in either Alice’s query set or Bob’s query set, until all such queries
are exhausted. Also recall that this probability is based on the distribution V

(
m(i,j), P

(i,j)
E

)
(where m(i,j)

denotes the set of messages exchanged between Alice and Bob until sub-round (i, j), and P
(i,j)
E denotes the

set of extended (k + 1)-restricted SCMA2-PC oracle query-answer pairs until sub-round (i, j) asked by Eve),
conditioned on the event that Eve has not missed any intersection queries up until this point (i.e. the event
Good0). Finally, recall that, in the case where Eve issues a query q∗ to Mκ for some small κ, Eve exhaustively
queries all possible queries that could potentially build up to a query equivalent to q∗ and includes these in its
query set P (i,j)

E .
Now, since we have proven that the event Good0 happens with high probability, this implies that queries

with a significant probability of occurrence according the distribution V
(

m(i,j), P
(i,j)
E

)
conditioned on

Good0 also have a significant probability of occurrence under the real distribution V
(

m(i,j), P
(i,j)
E

)
. This

implies that: (i) Alice (resp., Bob) must query q (resp. q′) and, more generally any query on the path building
up to q (resp., q′) with probability less than ϵ/nB (resp., less than ϵ/nA), since otherwise, it would have been
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queried by Eve following its attack strategy. By union bound, the probability that such an equivalence query
pair (q, q′) exists is given by

p ≤ ϵ(nA + nB)/nAnB

which gives us the desired bound on the probability of the event Bad∗ in the case where Eve makes a query
to Mκ for small κ. This completes the proof overview for Lemma 4.34. Looking ahead, we use this crucially
in our analysis of the probability that Eve finds the honest party’s input.

To formally prove Lemma 4.34, we prove the following stronger theorem.
We prove Lemma 4.31 by proving the following stronger result in the simplified case.

Lemma 4.36. For any sub-round (i, j) of the 2-PC protocol with equivalence complete query pattern, let
m(i,j) denote the corresponding set of exchanged messages until sub-round (i, j), and let P (i,j)

E denote the
sequence of extended (k+1)-restricted SCMA2-PC oracle query-answer pairs made by Eve (including queries
made to Mκ for small κ) until sub-round (i, j), such that we have PrE [m(i,j), P

(i,j)
E ] > 0. Then we have

Pr
E

[
Fail(i,j)|Good1

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

(nA + nB)

)
.

To see why Lemma 4.36 implies Lemma 4.34, observe that Fail(i,j) is the event that Eve fails to query
an intersection query or an equivalence query for the first time in sub-round (i, j), and hence, Eve found
all intersection queries and equivalence queries during the execution up until sub-round (i, j), meaning that
Good1

(
m(i,j), P

(i,j)
E

)
holds. Hence, we must have

Pr
E
[Fail(i,j)] ≤ Pr

E

[
Fail(i,j)|Good1

(
m(i,j), P

(i,j)
E

)]
= O

(
ϵ

(nA + nB)

)
,

which is precisely the statement of Lemma 4.34. Finally, the formal proof of Lemma 4.36 follows from using
a product characterization of the distribution GV1. The proof is again very similar to the proof of Lemma 3.72
that we use for our KE separation result, and is hence not detailed here.

Attack Efficiency: Generalized Analysis. We now complete the attack efficiency analysis by considering
the additional case where Eve issues queries to Mκ and Mκ for small κ, and proving a generalized version
of Lemma 4.32. Let nE = O((nAnB)/ϵ

2) = O((nA + nB)
2/ϵ2) be the number of queries made by Eve

excluding these queries, as established in Lemma 3.71, and let n∗E be the total number of queries made by
Eve. Then, we have

n∗E ≤ n′E × nE ,

where n′E is an upper bound on the number of additional queries made by Eve per Mκ query for small κ.
Since (4k + 12)22κ is the maximum number of possible equivalence queries over Mκ and (nA + nB) >
22κϵ2/(4k + 12) by definition for small κ, we have

n′E ≤ (4k + 12)22κ ≤ (4k + 12)2(nA + nB)/ϵ
2,

Hence, we have

n∗E ≤ n′E × nE = O((4k + 12)(nA + nB)
3/ϵ4) = O(poly(k, nA, nB)/ϵ

4),

as in the statement of Theorem 4.27. This completes the proof of Lemma 4.35.

106



4.2.9 Finishing the Attack: Eve finds The Honest Party’s Input.

Finally, we formally prove that Eve actually finds the the honest party’s private input. Assume without loss of
generality that Alice is the honest party. For any triple of the form (VA, VB, VE), we say that:

• the event Good0 (VA, VB, VE) holds if Q (VA) and Q (VB) have no intersection query that does not
also appear in VE , and

• the event Good1 (VA, VB, VE) holds if Q (VA) and Q (VB) have no intersection query that does not
appear in VE and no equivalence query-pair such that VE does not have a corresponding query
equivalent to this pair.

The proof of the fact that Eve finds Alice’s input now follows from the following claims.

Claim 4.37. We claim that Pr[¬Good0
(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
] = O(ϵ).

Proof. The proof of this claim follows immediately from the proofs of Lemmas 4.34 and 4.35.

Claim 4.38. We claim that Pr[¬Good1
(
V̂ , V

(2k)
B , V

(2k)
E

)
] = O(ϵ).

Proof. We argue this claim as follows. It follows from Lemmas 4.22 and 4.23 that for any 2k-round 2-PC
protocol with equivalence complete query pattern,

Pr
[
¬(Good0 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

) ∣∣∣¬Good1 (V̂ , V
(2k)
B , V

(2k)
E

)]
= 1,

and hence

Pr
[
¬(Good0 ∧ ¬Fail∗)

(
V̂ , V

(2k)
B , V

(2k)
E

)]
= Pr

[
¬Good1

(
V̂ , V

(2k)
B , V

(2k)
E

)]
.

Now suppose we fix V
(2k)
E =

(
m(2k), P

(2k)
E

)
and sample V̂ as above. Then V̂ is independent of V (2k)

B , and

hence, any query q such that q ∈ Q
(
V

(2k)
B

)
and q /∈ Q

(
V

(2k)
E

)
has probability at most ϵ/nB of appearing

in Q
(
V̂
)

(this follows from Eve’s strategy of choosing queries in the attack). Hence, we must have

Pr[¬Good1
(
V̂ , V

(2k)
B , V

(2k)
E

)
] = O(ϵ) + Pr

[
Fail∗

(
V̂ , V

(2k)
B , V

(2k)
E

)]
.

We now split the analysis into two cases. In the case where Fail∗ is triggered by a query to Mκ for large κ,
we get From Lemma 4.24:

Pr[¬Good1
(
V̂ , V

(2k)
B , V

(2k)
E

)
] ≤ O(ϵ) + (nA + nB)

2O(k2)
∑
κ

2−2(ck−2)κ,

where the second term is exponentially small in κ. Finally, in the case where Fail∗ is triggered by a query to
Mκ for small κ, we get from the above analysis

Pr[¬Good1
(
V̂ , V

(2k)
B , V

(2k)
E

)
] ≤ O(ϵ) +O(ϵ(nA + nB)/nAnB) = O(ϵ),

From Lemma 4.24:
This completes the proof of this claim.
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Finally, we make the following claim.

Claim 4.39. We claim that

SD
((

V
(2k)
A , V

(2k)
B , V

(2k)
E

)
|Good1

(
V

(2k)
A , V

(2k)
B , V

(2k)
E

)
,(

V̂ , V
(2k)
B , V

(2k)
E

)
|Good1

(
V̂ , V

(2k)
B , V

(2k)
E

))
= O(ϵ).

Proof. The proof is identical to the proof of Claim 3.86, and is hence not detailed.
Finally, it follows from the above claims that, during the 2-PC protocol with equivalence complete query

pattern, if the honest party (say, Alice) issued an intersection/equivalence query of the form Mκ

(
(ab)k+1, x

)
,

then Eve must have issued either the same query or an equivalent query, which allows it to recover a, and
hence, the input for the honest party (say, inA for Alice). This completes the proof of successful input
recovery by Eve, and hence, the proof of Theorem 4.26.

Remark 4.40. Since our definition of the SCMA2-PC oracle currently models 2-PC protocols for symmetric
functionalities, our proof as described below works for 2-PC protocols supporting symmetric functionalities.
In Section 4.4, we discuss how to generalize the definition of SCMA2-PC oracle to additionally model 2-PC
protocols for asymmetric functionalities. The rest of our proof strategy generalizes in a straightforward
manner.

4.3 Separating (2k − 1)-round 2-PC from 2k-round Maliciously Secure 2-PC

In this section, we argue that we can also black-box separate any (2k − 1)-round 2-PC protocol from any
2k-round maliciously secure 2-PC protocol. The argument is almost identical to the separation of 2k-round
2-PC from (2k + 1)-round maliciously secure 2-PC, with the exception of some minor tweaks to the (k + 1)-
commutator property of a (k + 1)-restricted SCMA2-PC oracle, and our core argument that for any 2-PC
protocol with equivalence complete query pattern, each equivalence query is also essentially an intersection
query. The rest of the proof structure as well as the arguments surrounding attack success, attack efficiency,
and the probability that Eve finds Alice’s input, remain essentially unchanged.

Changing the k-Commutator Property Slightly. For k ≥ 1, suppose that we tweak the k-commutator
property of a (k + 1)-commutator SCMA2-PC sub-oracle Mκ(·, ·) slightly as follows: instead of requiring
that Mκ((ab)

k+1, x0) = Mκ((ba)
k+1, x0) (x0 being the base set element), we now require that

Mκ(b∥(ab)k, x0) = Mκ(a∥(ba)k, x0)

It is easy to see that in this case, a (k + 1)-commutator oracle implies a 2k-round 2-PC protocol as follows:

• Given a base element x0, Alice would sample some a ∈M and obtain Mκ(a, x0), while Bob would
sample some b ∈ M and obtain Mκ(b, x0). Alice and Bob would then exchange their first-round
messages, where Alice sends Mκ(a, x0) to Bob and Bob sends Mκ(b, x0) to Alice.

• In the next round, Alice would obtain Mκ(ab, x0) = Mκ (a,Mκ (b, x0)), and Bob would obtain
Mκ(ba, x0) = Mκ (b,Mκ (a, x0)). Alice and Bob would then exchange their second-round messages,
where Alice sends Mκ(ab, x0) to Bob and Bob sends Mκ(ba, x0) to Alice.
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Observe that by repeating this process for 2k rounds and asking a final query to the extended (k+1)-restricted
SCMA2-PC oracle, Alice and Bob would have obtained Mκ(a∥ (ba)k , x0) = Mκ(b∥ (ab)k , x0) for some κ,
which they can use as the output. Note that this computation requires the full 2k rounds1.

Arguing Impossibility of (2k − 1)-round 2-PC. Now let’s look at what happens if Alice and Bob try to
exploit the “commutative” property of the (k+1)-SCMA2-PC oracle in less than 2k rounds. Again, they must
generate some equivalence query-pair of the form Mκ(a∥(ba)k, x0) = Mκ(b∥(ab)k, x0) with less than 2k
rounds of communication. Once again, note that when “building up” to such an equivalence query that gives
Alice and Bob the same final set element via two different query sequences in less than 2k rounds, Alice and
Bob cannot only issue queries to the (k + 1)-SCMA2-PC oracle, where the monoid element is either a or b
like in the 2k-round 2-PC protocol outlined above. In particular, by the pigeonhole principle, at least one of
Alice or Bob must compute a query involving both the elements a and b.

At this point, we can the same core argument as in the separation of 2k-round 2-PC from (2k + 1)-round
2-PC to establish that even in this case, as long as the (2k − 1)-round 2-PC protocol is in a special form that
“forces” Alice and Bob to make all “split” versions of their queries and at least one of Alice or Bob to compute
all possible ways of computing an equivalence query as soon as there is a “trigger” query where the monoid
element is a substring of either (ab)k or (ba)k, any equivalence query w.r.t. the extended (k + 1)-SCMA2-PC
oracle that can be computed within (2k − 1) rounds is also an intersection query.

This again effectively reduces all equivalence queries that rely on the (modified) commutative property of
the extended (k + 1)-SCMA2-PC oracle to the “traditional” notion of intersection queries, and we can again
handle such queries using the [BM09] framework. More concretely, the rest of the proof structure as well as
the arguments surrounding attack success, attack efficiency, and the probability that Eve finds Alice’s input,
remain essentially unchanged.

4.4 Generalization to 2-PC Protocols for Asymmetric Functionalities

Our impossibility results so far have assumed 2-PC protocols for symmetric functionalities where both parties
Alice and Bob receive the same output, computed by evaluating a single function f on their inputs inA and
inB . In this section, we discuss how to generalize our separation result to 2-PC protocols for asymmetric
functionalities where Alice and Bob receive different outputs fA(inA, inB) and fB(inA, inB) (including
protocols where one of the participants may not receive any output).

“Asymmetric” DCMA2-PC. Informally speaking, the generalization essentially uses a slight structural
tweak to our definition of the commutative monoid action for 2-PC (ℓ-DCMA2-PC, Definition 4.1) wherein we
encode the functions for Alice and Bob (which are different) as part of the same monoid element, except that
the order in which they are encoded differs for Alice and Bob. In particular, Alice encodes the functions into
a monoid element as tuple of the form (fA, fB), while Bob encodes it as (fB, fA). The modified DCMA2-PC
operates as follows: on input a monoid element that is a tuple of the above form and a set element, it now
produces as output a tuple of set elements, where the order of the elements in the tuple depends on the order
in which the functions are encoded. Finally, we assume that in the output of the DCMA2-PC, only the first
element in each output tuple is received as the output of the query, while the second element remains private.
This effectively models the asymmetric nature of the functionality being computed, such that even if Alice

1We again note that if M is a countably infinite set, then a uniform distribution over M is not well-defined; in this case, we
restrict to those distributions for which the set of all strings consisting of more than 2k elements has negligible density in the sample
space.
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and Bob issue a sequence of queries that yields the same tuple of function outputs for both of them (albeit in
different order), each party only learns the output of its own functionality. We now formalize this asymmetric
ℓ-DCMA2-PC in Definition 4.41 below.

Definition 4.41 (Asymmetric ℓ-DCMA2-PC). A monoid action (M,X, ⋆) is an asymmetric ℓ-DCMA2-PC
if it satisfies following additional structural properties:

• The monoid (M,⊕) is a string concatenation monoid structured as M = MA ∪MB where

MA = I × F ×RA, MB = I × F ×RB,

such that both of the sub-monoids MA and MB are individually string concatenation monoids them-
selves, and F consists of tuples of all possible functions of the form (fA, fB).

• The set X is structured as

X = PP ×

⋃
i∈[ℓ]

Si,A ∪
⋃
i∈[ℓ]

Si,B ∪ {⊥}

× (Y ∪ {⊥})× (Y ∪ {⊥}) .

• For any public parameters pp ∈ PP , any pair of inputs inA, inB ∈ I , any tuple of functions (fA, fB) ∈
F , and any pair of randomnesses (rA, rB) ∈ RA ×RB , letting

g = (inA, (fA, fB), rA) ∈MA, h = (inB, (fB, fA), rB) ∈MB,

x = (pp,⊥,⊥,⊥) ∈ X, yA = fA(inA, inB), yB = fB(inA, inB).

we have
(g ⊕ h)ℓ ⋆ x = (pp,⊥, (yA, yB)), (h⊕ g)ℓ ⋆ x = (pp,⊥, (yB, yA)).

Generic k-restricted Asymmetric SCMA2-PC Oracle. We similarly tweak the definition of the commutator
property of a generic k-restricted SCMA2-PC oracle to incorporate such an asymmetric functionality as
follows.

Definition 4.42 (k′-Asymmetric Commutator k-restricted SCMA2-PC Sub-oracle). A generic k-restricted
SCMA2-PC sub-oracle Mκ over an alphabet Σ = Σ0 × Σ1,κ with k-base element x0 is said to be a k′-
commutator (for k′ ∈ [1, k]) if for any a, b ∈ Σ such that a = ((ina∥(fA, fB)), ra) ∈ Σ0 × Σ1,κ and
b = ((inb∥(fB, fA)), rb) ∈ Σ0 × Σ1,κ for inputs ina, inb, function f , and randomness ra, rb, we have

Mκ

(
(ab)k

′
, x0

)
= fA(ina, inb)∥fB(ina, inb),

Mκ

(
(ba)k

′
, x0

)
= fB(ina, inb)∥fA(ina, inb).

Lemma 4.43. There exists a construction of (2k + 1)-round 2-PC protocol for asymmetric functionalities
satisfying malicious security with abort from any (k + 1)-restricted SCMA2-PC oracle M = {Mκ,Mκ}.
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Proof. The proof of this lemma is very similar to the proof of Lemma 4.43, with some minor modifications
to incorporate the asymmetric nature of the protocol. At a high level, each party encodes (the string
representations of) the functions fA and fB into a single monoid element, except that party A encodes it as
fA∥fB , while party B encodes it as fB∥fA. For each query, the oracle checks that the query from each party
encodes the same set of functions (arranged in a fixed order as stipulated above depending on which party
issues the query), and then, in response to the final query, provides each party with either yA or yB depending
on whether the response is to the final query from party A or party B (we assume that both parties are not
allowed to query the oracle any further once they have issued their final queries). Correctness is immediate,
while security also follows since each player is committed to the set of functions (fA, fB) in each query, and
are hence implicitly in agreement on the output throughout. Finally, the extraction argument works exactly as
in the case of Lemma 4.43.

Separating Asymmetric 2-PC by Rounds. Given the above generic k-restricted asymmetric SCMA2-PC
oracle, it is immediate to extend our proof strategy for 2-PC supporting symmetric functionalities to the case
of 2-PC supporting asymmetric functionalities. In particular, Eve uses essentially the same attack strategy,
and our arguments for it recovering the intersection and equivalence queries remain unchanged. We avoid
detailing the whole attack strategy and proof for brevity.

5 On Black-Box Separating Multiparty NIKE

It is natural to ask if our approach to black-box separations using structural characterization extends to other
similar cryptographic primitives, such as multiparty noninteractive key exchange (NIKE). More concretely,
we ask if there exists a structural characterization of k-party NIKE that would allow us to extend our black-box
separation techniques for 2-party KE by rounds (Section 3) and 2-PC by rounds (Section 4) for showing a
black-box separation between (k + 1)-party NIKE and k-party NIKE (for k ≥ 2). We give evidence that
such a characterization is likely to require very different techniques (at least generally for all k ≥ 2).

5.1 Overview

We begin with an informal explanation of our argument.

“Noisy” Multiparty NIKE. Informally speaking, we say that a k-party NIKE protocol is “ℓ-noisy” (for
ℓ > 1) if, instead of outputting a single shared key k to all parties, the protocol outputs a total of ℓ candidate
keys k1, . . . , kℓ to each party with the following properties: (i) at least one of the ℓ keys received by each
party is guaranteed to be shared by all parties, and hence can be treated as the shared secret key, and (ii) a
passive eavesdropping (computationally bounded) adversary cannot predict (with non-negligible property)
any of the ℓ candidate keys received by each party. For many practical applications (such as encryption),
an ℓ-NIKE protocol in conjunction with a random oracle offers the same functionality as a regular NIKE
protocol, albeit inefficiently. For example, in the case of encryption, the players could derive ℓ uncorrelated
encryption keys by invoking the random oracle on the ℓ keys received from the ℓ-NIKE protocol, and then
encrypt each message under each of the derived keys (one of which is guaranteed to be shared by all parties).

Constructing (k + 1)-party 2-noisy NIKE from k-party NIKE. We show a construction of (k + 1)-
party 2-noisy NIKE that uses a k-party (regular) NIKE protocol (in a black-box manner) and a (single-bit)
randomness extractor Ext. We present an informal overview of the construction here. The full details appear
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in Section 5.2. The construction proceeds as follows. The parties run (k + 1) instances of the k-party
(regular) NIKE protocol in parallel, where the ith NIKE instance does not involve party-i. Let k′i be the
shared key output by the ith NIKE instance, and let bi = Ext(k′i) ∈ {0, 1} be a bit extracted from this shared
key. Observe that party-i obtains all bits bj for j ∈ [k + 1] except the ith bit bi. It now derives two keys
ki,0, ki,1 ∈ {0, 1}k+1 as follows:

ki,0 = (b1∥ . . . ∥bi−1∥0∥bi+1∥bk+1) , ki,1 = (b1∥ . . . ∥bi−1∥1∥bi+1∥bk+1) .

Finally, party-i outputs the pair of keys (ki,0, ki,1), one of which is guaranteed to be shared by all the parties.

Separating Multiparty NIKE by Number of Parties. While 2-noisy NIKE does not exactly meet the
definition of regular NIKE, the existence of this construction seems to imply that it would be difficult to use our
black-box separation techniques, as well as the black-box separation frameworks from [IR89, Rud92, BM09],
to separate (k + 1)-party NIKE and k-party NIKE. Note that all of these frameworks rely on the fact that an
eavesdropping adversary Eve can make all of the queries to the oracle that the honest participants can make.
Unfortunately, given a k-party NIKE oracle, any subset of k parties can issue a query to this oracle that Eve
provably cannot make (in fact, our construction above crucially exploits this feature). Hence, we believe that
a black-box separation of (k + 1)-party NIKE and k-party NIKE would require entirely new techniques.

5.2 Formal Argument

Multiparty NIKE. We begin by recalling the definition of a plain multiparty NIKE protocol.

Definition 5.1 (k-party NIKE). An ℓ-noisy k-party NIKE is a tuple of algorithms (Setup,Gen,Combine)
defined as follows:

• Setup
(
1λ, 1k

)
: Takes as input a security parameter λ, and the number of parties k, and outputs a

public parameter pp.

• Gen(pp, i ∈ [k]): Takes as input a public parameter pp and an index i ∈ [k], and outputs a (message,
state) pair (mi, sti).

• Combine
(
pp, sti, {mj}j∈[k],j ̸=i

)
: Takes as input a public parameter pp, an index i ∈ [k], and a

sequence of messages {mj}j∈[k],j ̸=i, and outputs a key ki ∈ {0, 1}λ.

We require the following correctness and security properties to be satisfied.

• Correctness: For any λ ∈ N, letting

pp← Setup
(
1λ, 1k, 1ℓ

)
, {(mi, sti)← Gen(pp, i)}i∈[k],

and for each i ∈ [k],letting

ki = Combine
(
pp, sti, {mj}j∈[k],j ̸=i

)
,

we must have the following: there exists some k∗ ∈ {0, 1}λ such that

k1 = . . . = kk = k∗.
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• Security: For any λ ∈ N, letting

pp← Setup
(
1λ, 1k, 1ℓ

)
, {(mi, sti)← Gen(pp, i)}i∈[k],

and for each i ∈ [k], letting

ki = Combine
(
pp, sti, {mj}j∈[k],j ̸=i

)
,

such that k1 = . . . = kk = k∗, we must have the following: for any passive eavesdropping PPT
adversary A, we have∣∣Pr[A(m1, . . . ,mk, k∗) = 1]− Pr[A(m1, . . . ,mk, k′) = 1]

∣∣ ≤ negl(λ),

where k′ ← {0, 1}λ, and where the probability is taken over the internal random coins of Setup and
Gen.

“Noisy” Multiparty NIKE. In particular, we show that (for large enough k), a k-party NIKE protocol
black-box implies a slightly weaker “noisy” variant of a (k+1)-party NIKE protocol, which we call “2-noisy”
NIKE protocol. We formally describe this notion of multiparty NIKE below.

Definition 5.2 (ℓ-noisy k-party NIKE). An ℓ-noisy k-party NIKE is a tuple of algorithms (Setup,Gen,Combine)
defined as follows:

• Setup
(
1λ, 1k, 1ℓ

)
: Takes as input a security parameter λ, the number of parties k, and the “noise”

parameter ℓ, and outputs a public parameter pp.

• Gen(pp, i ∈ [k]): Takes as input a public parameter pp and an index i ∈ [k], and outputs a (message,
state) pair (mi, sti).

• Combine
(
pp, sti, {mj}j∈[k],j ̸=i

)
: Takes as input a public parameter pp, an index i ∈ [k], and a

sequence of messages {mj}j∈[k],j ̸=i, and outputs a list of ℓ keys (ki,1, . . . , ki,ℓ) ∈
(
{0, 1}λ

)ℓ.
We require the following correctness and security properties to be satisfied.

• ℓ-“noisy” correctness: Informally, an ℓ-noisy k-party NIKE is said to satisfy ℓ-“noisy” correctness if
at least one of the ℓ keys received by each party is guaranteed to be shared by all parties, and hence can
be treated as the shared secret key. Formally, for any λ ∈ N, letting

pp← Setup
(
1λ, 1k, 1ℓ

)
, {(mi, sti)← Gen(pp, i)}i∈[k],

and for each i ∈ [k],letting

(ki,1, . . . , ki,ℓ) = Combine
(
pp, sti, {mj}j∈[k],j ̸=i

)
,

we must have the following: there exists a key k∗ ∈ {0, 1}λ and there exist indices j1, . . . , jℓ ∈ [ℓ] s.t.

ki,j1 = k2,j2 = . . . = ki,j1 = k∗.
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• Security: Informally, an ℓ-noisy k-party NIKE is said to be secure if a passive eavesdropping (com-
putationally bounded) adversary cannot predict (with non-negligible property) any of the ℓ candidate
keys received by each party. Formally, for any λ ∈ N, letting

pp← Setup
(
1λ, 1k, 1ℓ

)
, {(mi, sti)← Gen(pp, i)}i∈[k],

and for each i ∈ [k], letting

(ki,1, . . . , ki,ℓ) = Combine
(
pp, sti, {mj}j∈[k],j ̸=i

)
,

we must have the following: for each i ∈ [k], each j ∈ [ℓ], and any passive eavesdropping PPT
adversary A, we have

Pr[A(m1, . . . ,mk) = ki,j ] ≤ negl(λ),

where the probability is taken over the internal random coins of Setup and Gen.

Remark 5.3. For many practical applications (such as encryption), an ℓ-NIKE protocol in conjunction with a
random oracle offers the same functionality as a regular NIKE protocol, albeit inefficiently. We illustrate this
using the example of encryption below.

Application of “noisy” multiparty NIKE for Encryption. We illustrate how a k-party ℓ-noisy NIKE
protocol can be used to enable (symmetric-key) encryption. Party-i proceeds as follows upon receiving the
set of keys (ki,1, . . . , ki,ℓ) from the NIKE protocol:

• Party-i passes (ki,1, . . . , ki,ℓ) through a random oracle H to derive ℓ uncorrelated encryption keys as

k′i,1 = H(ki,1), . . . , k′i,ℓ = H(ki,ℓ).

• Party-i then uses these derived keys (k′i,1, . . . , k
′
i,ℓ) to encrypt a message m as a tuple of ciphertexts

(cti,1, . . . , cti,ℓ), where
ct1 = Enc(k′i,1,m), . . . , cti,ℓ = Enc(k′i,ℓ,m).

Note that one of these derived keys is guaranteed to be shared by all parties. Hence, correctness of decryption
follows (albeit inefficiently since each party must also decrypt under each derived key) from the noisy
correctness guarantee of the ℓ-noisy NIKE protocol, while semantic security follows from the unpredictability
guarantee of the ℓ-noisy NIKE protocol and the properties of the random oracle H (concretely, as long as
the keys output by the NIKE protocol are sufficiently unpredictable, the corresponding derived keys are
sufficiently random under the assumption that H is a random oracle).

Constructing (k + 1)-party 2-noisy NIKE from k-party NIKE. We now show that, for large enough
k, given a k-party (regular) NIKE protocol, there exists a construction of a (k + 1)-party 2-noisy NIKE
satisfying the aforementioned requirements, such that the construction uses the underlying k-party NIKE in a
fully black-box manner. Concretely, we state and prove the following theorem:

Theorem 5.4. For k = ω(log λ) (λ being the security parameter), a k-party (regular) NIKE protocol
satisfying Definition 5.1 implies (in a black-box manner) a (k + 1)-party 2-noisy NIKE protocol satisfying
Definition 5.2.
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Proof. The construction uses, in addition to the k-party (regular) NIKE protocol Π = (Π.Setup,Π.Gen,Π.Combine),
a randomness extractor Ext : {0, 1}λ → {0, 1}. The construction is as follows:

• Setup(ℓ=2)

(
1λ, 1(k+1)

)
: For each i ∈ [k + 1], sample ppi ← Π.Setup(1λ) and output the public

parameter
pp =

(
pp1, . . . ,ppk+1

)
.

• Gen(pp, i ∈ [k + 1]): For each j ∈ [k + 1] such that j ̸= i, do the following:

– If i < j, sample (mi,j , sti,j)← Π.Gen(ppj , i).

– If i > j, sample (mi,j , sti,j)← Π.Gen(ppj , i− 1).

Output a (message, state) pair (mi, sti), where

mi = (mi,j)j∈[k+1],j ̸=i , sti = (sti,j)j∈[k+1],j ̸=i .

• Combine
(
pp, sti, {mj}j∈[k],j ̸=i

)
: For each j ∈ [k + 1] such that j ̸= i, parse

mj =
(
mj,j′

)
j′∈[k+1],j′ ̸=j

.

Now, for each j′ ∈ [k + 1] such that j′ ̸= i, recover

k′i,j′ = Combine
(
pp, sti,j′ , {mj,j′}j∈[k+1],j ̸=i,j ̸=j′

)
,

and set bi,j′ = Ext
(
k′i,j′

)
. Finally, output the key-pair (ki,0, ki,1), where:

ki,0 = (bi,1∥ . . . ∥bi,i−1∥0∥bi,i+1∥bi,k+1) , ki,1 = (bi,1∥ . . . ∥bi,i−1∥1∥bi,i+1∥bi,k+1) .

Finally, party-i outputs the pair of keys (ki,0, ki,1).

Correctness and Security. Correctness follows immediately from the correctness of the underlying (regular)
k-party NIKE protocol Π. To argue security, we observe that for each b ∈ {0, 1}, ki,b is sufficiently
unpredictable since: (a) each k′i,j′ is pseudorandom (this follows from the security guarantees of the underlying
k-party NIKE protocol Π), and (b) each extracted bit bi,j′ is pseudorandom (this follows from (a) and the
security guarantees of the random extractor Ext), which in turn implies that for k = ω(log λ), no PPT
adversary can predict either of the final keys ki,b for b ∈ {0, 1} with probability greater than 1/2k ≤ negl(λ).

This completes the proof of Theorem 5.4.

Discussion: Separating Multiparty NIKE by Number of Parties. Note that 2-noisy NIKE does not
exactly meet the definition of regular NIKE and thus, our construction above does not necessarily rule out
any black-box separation of (k + 1)-party NIKE from k-party NIKE. However, it does offer strong evidence
that such a separation will have to rely on very different techniques as compared to the techniques used in our
black-box separation proofs, as well as the proof frameworks from [IR89, Rud92, BM09].

We begin by observing that our result indicates that any black-box separation of (k + 1)-party NIKE
and k-party NIKE (for large enough k) will have to rely on the distinction between “noise-free” and “noisy”
NIKE. Our approach of using structural characterization of primitives for black-box separations was the
following: we identified a structured primitive that is equivalent to the “base” cryptoprimitive of interest for
the separation, and then argued that a (generic, statistically secure version of) this algebraic structure is not
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sufficient to realize the “target” cryptoprimitive. Unfortunately, it seems impossible to capture the distinction
between “noise-free” and “noisy” NIKE using such a structural characterization (such as one based on “hard”
monoid actions). In other words, if there exists a general black-box separation between (k + 1)-party NIKE
and k-party NIKE (and hence between (k + 1)-party regular NIKE and (k + 1)-party 2-noisy NIKE), we do
not believe that the separation can be explained in terms of the algebraic structure inherent to these primitives.

More generally, it seems difficult to use the black-box separation frameworks from the prior works that
we build upon [IR89, Rud92, BM09] to separate (k+1)-party NIKE and k-party NIKE. Note that all of these
frameworks rely on the fact that an eavesdropping adversary Eve can make all of the queries to the oracle that
the honest participants can make. Unfortunately, given a k-party NIKE oracle, any subset of k parties can
issue a query to this oracle that Eve provably cannot make (in fact, our construction above crucially exploits
this feature). Hence, we believe that a black-box separation of (k + 1)-party NIKE and k-party NIKE would
require entirely new techniques.
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[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind signature
schemes. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 197–215.
Springer, Heidelberg, May / June 2010.

[Gar08] David Garber. Braid group cryptography, 2008.

[GHMM18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ameer Mohammed. Limits
on the power of garbling techniques for public-key encryption. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 335–364.
Springer, Heidelberg, August 2018.

[GKLM12] Vipul Goyal, Virendra Kumar, Satyanarayana V. Lokam, and Mohammad Mahmoody. On black-
box reductions between predicate encryption schemes. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 440–457. Springer, Heidelberg, March 2012.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan. The
relationship between public key encryption and oblivious transfer. In 41st FOCS, pages
325–335. IEEE Computer Society Press, November 2000.

[GMM17a] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds on obfuscation
from all-or-nothing encryption primitives. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 661–695. Springer, Heidelberg, August
2017.

[GMM17b] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does functional encryp-
tion imply obfuscation? In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 82–115. Springer, Heidelberg, November 2017.

[GMMM18] Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler. On the round com-
plexity of OT extension. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 545–574. Springer, Heidelberg, August 2018.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor functions
on trapdoor predicates. In 42nd FOCS, pages 126–135. IEEE Computer Society Press, October
2001.

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 412–426. Springer, Heidelberg, March 2008.

119



[HHRS07] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions in
interactive protocols - a tight lower bound on the round complexity of statistically-hiding
commitments. In 48th FOCS, pages 669–679. IEEE Computer Society Press, October 2007.

[HK05] Omer Horvitz and Jonathan Katz. Bounds on the efficiency of “black-box” commitment
schemes. In Luı́s Caires, Giuseppe F. Italiano, Luı́s Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, ICALP 2005, volume 3580 of LNCS, pages 128–139. Springer, Heidelberg, July
2005.

[HK17] Mohammad Hajiabadi and Bruce M. Kapron. Toward fine-grained blackbox separations
between semantic and circular-security notions. In Jean-Sébastien Coron and Jesper Buus
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