
BatchZK: A Fully Pipelined GPU-Accelerated System
for Batch Generation of Zero-Knowledge Proofs
Tao Lu†,§, Yuxun Chen†, Zonghui Wang†,∗, Xiaohang Wang†, Wenzhi Chen†,∗, Jiaheng Zhang§

†Zhejiang University, China,
{lutao2020, chenyuxunzju, zhwang, xiaohangwang, chenwz}@zju.edu.cn

§National University of Singapore, Singapore,
jhzhang@nus.edu.sg

Abstract
Zero-knowledge proof (ZKP) is a cryptographic primitive
that enables one party to prove the validity of a statement to
other parties without disclosing any secret information.With
its widespread adoption in applications such as blockchain
and verifiable machine learning, the demand for generat-
ing zero-knowledge proofs has increased dramatically. In
recent years, considerable efforts have been directed toward
developing GPU-accelerated systems for proof generation.
However, these previous systems only explored efficiently
generating a single proof by reducing latency rather than
batch generation to provide high throughput.

We propose a fully pipelined GPU-accelerated system for
batch generation of zero-knowledge proofs. Our system has
three features to improve throughput. First, we design a
pipelined approach that enables each GPU thread to contin-
uously execute its designated proof generation task without
being idle. Second, our system supports recent efficient ZKP
protocols with their computational modules: sum-check pro-
tocol, Merkle tree, and linear-time encoder. We customize
these modules to fit our pipelined execution. Third, we adopt
a dynamic loading method for the data required for proof
generation, reducing the required device memory. Moreover,
multi-stream technology enables the overlap of data trans-
fers and GPU computations, reducing overhead caused by
data exchanges between host and device memory.

We implement our system and evaluate it on various GPU
cards. The results show that our system achieves more than
259.5× higher throughput compared to state-of-the-art GPU-
accelerated systems. Moreover, we deploy our system in the
verifiable machine learning application, where our system
generates 9.52 proofs per second, successfully achieving sub-
second proof generation for the first time in this field.

1 Introduction
Zero-knowledge proof (ZKP) [19] is a cryptographic primi-
tive that enables one party to prove the validity of a state-
ment to other parties without disclosing any secret infor-
mation. For example, a machine-learning service provider

§ The first author conducted this work as a visiting scholar at NUS.
∗ Corresponding authers.

could claim its outputs are indeed calculated from a well-
trained model and then employ ZKP to prove the validity of
this claim, while keeping the model’s parameters confiden-
tial. In recent years, ZKP has received much attention from
academia [29, 38, 49, 59, 61] and industry [11, 17, 42, 48],
leading to its widespread adoption in private-critical appli-
cations such as blockchain [31, 46, 60], verifiable machine
learning [5, 13, 35], and verifiable program analysis [10, 12].

With the growing deployment of ZKP, the demand for gen-
erating zero-knowledge proofs has increased dramatically. A
report from Protocol Labs [32] states that the demand is ex-
pected to reach a staggering nearly 90 billion zero-knowledge
proofs from the time ZKPs start to be applied in real-world
applications to 2030. Moreover, generating zero-knowledge
proofs is a compute-intensive task. For example, ZENO [13],
a start-of-the-art ZKP scheme for verifiable neural networks,
requires more than 40 seconds to generate a single proof for
the prediction of the VGG-16 model [52] with a CIFAR-10 im-
age [8] as input. Therefore, improving the efficiency of proof
generation has become one of the most important topics in
expanding the deployment of ZKP in practical applications.
On the one hand, at the theoretical level, a series of re-

cent efficient ZKP protocols [6, 20, 49, 59, 61, 63] have been
proposed. These protocols bypass the expensive operations
used in previous ZKP protocols [3, 15, 22], such as number-
theoretic transform (NTT) and multi-scaler multiplication
(MSM). Instead, they utilize cheaper modules to minimize
the overhead in proof generation. On the other hand, at
the practical level, GPU is a powerful tool to further im-
prove computational efficiency through tens of thousands
of execution cores operating in parallel. Considerable ef-
forts [7, 29, 36, 38] have been directed toward developing
GPU-accelerated systems for proof generation.

However, these previous GPU-accelerated systems [7, 29,
36, 38] only explored how to efficiently generate a single
proof, with the goal of reducing proof generation latency.
These systems spend over-abundant GPU resources on in-
dividual proof generation, failing to optimize the overall
throughput of batch generation. Improving throughput is
critical in the industry as it means more proofs to be gen-
erated per unit of time, resulting in greater economic ben-
efits. In addition, these systems only cover ZKP protocols
[3, 15, 22] that rely on expensive computational modules

1

Table 1. The dominant computational modules in different
ZKP protocols

ZKP Protocols Year MSM NTT Sum. Merkle Encoder
Groth [22] 2016

√ √ × × ×
Hyrax [56] 2018

√ × √ × ×
Plonk [15] 2019

√ √ × × ×
Libra [59] 2019

√ × √ × ×
Virgo [63] 2020 × √ √ √ ×

Brakedown [20] 2021 × × √ √ √

Virgo++ [62] 2021 × √ √ √ ×
Orion [61] 2022 × × √ √ √

HyperPlonk [6] 2023 × × √ √ √

like NTT and MSM. However, as shown in Table 1, recent
ZKP protocols [6, 20, 49, 59, 61, 63] increasingly employ
cost-effective modules, such as the sum-check protocol [37],
Merkle tree [39], and linear-time encoder [24], to generate
proofs. The calculation process of these cost-effective mod-
ules is completely different from NTT and MSM. Thus, the
previous systems cannot be applied to ZKP protocols domi-
nated by these cost-effective modules.

In summary, the challenges associated to GPU-accelerated
systems for batch generation of zero-knowledge proofs are
twofold. First, the system needs to provide a suitable scheme
for effectively allocating GPU resources, including GPU ex-
ecution cores and device memory, across different stages
of the proving process to improve throughput. Second, the
system should be well-suited to the calculation patterns of
the modules utilized in recent ZKP protocols.

In this paper, we present a fully pipelined GPU-accelerated
system for batch generation of zero-knowledge proofs. Our
pipelined approach not only optimizes the utilization of GPU
execution cores but also reduces the required device memory
compared to the intuitive approach for generating proofs in
parallel. Furthermore, to facilitate integration with a wider
range of ZKP protocols [6, 20, 49, 59, 61, 63], we adopt a mod-
ular design. Specifically, we develop pipelined modules for
Merkle tree, sum-check protocol, and linear-time encoder, re-
spectively. These modules can work individually or together
to support our fully pipelined ZKP system.

In our system, computational modules required for proof
generation are not treated as units. Instead, we divide each
module into multiple stages, with each stage processed by a
dedicated GPU kernel. Thus, once GPU kernels are launched,
they solely focus on completing their assigned tasks and
cannot be scheduled to perform other operations.Wemanage
the computation of each module by sequentially forwarding
tasks through multiple GPU kernels, and the continuous
workflow in this manner establishes the pipeline execution.

Our system achieves three features that improve through-
put of proof generation. First, by dedicating each GPU kernel

to a fixed task, we can precisely tailor the number of threads
assigned to each kernel based on the scale of the task being
processed. In addition, as threads employed by GPU ker-
nels cannot be scheduled for other operations, they can be
forced to continuously perform their designated tasks with-
out idling. Second, our system supports recent efficient ZKP
protocols with their computational modules: sum-check pro-
tocol, Merkle tree, and linear-time encoder. We customize
these modules to fit the pipeline execution, improving their
throughput. Third, the pipeline strategy enables our system
to utilize a dynamic loading and storing method, reducing
the required device memory. Specifically, our system only
loads the data for a single proof in each cycle and dynam-
ically transfers temporarily unneeded intermediate results
back to host memory. Moreover, multi-stream technology
enables the simultaneous execution of data transfers and
GPU computations, reducing overhead caused by frequent
data exchanges between host and device memory.

We deploy our pipelined system in the verifiable machine
learning application. Unlike the traditional machine learning
service, where service providers directly return prediction
results to their customers without any integrity guarantee,
the verifiable machine learning application requires service
providers to additionally employ our system to generate
proofs, convincing customers that the prediction results are
correctly calculated from awell-trainedmodel. Our pipelined
system provides high throughput for proof generation, which
is well-suited to this setting, where service providers need
to continuously process customer inputs that come in like
a flowing stream. As a result, our system can generate 9.52
proofs per second on an Nvidia GH200 card for the prediction
of VGG-16 model [52] with CIFAR-10 images [8] as input.
Remarkably, this is the first time that sub-second proof gen-
eration for verifiable machine learning has been achieved.

The following is a summary of our contributions:

• Weuse pipeline technology to improve the throughput
of three computational modules on GPUs: Merkle tree,
sum-check protocol, and linear-time encoder. These
modules are increasingly being adopted in efficient
ZKP protocols due to their cost-efficiency.

• We propose a fully pipelined GPU-accelerated system
for batch generation of zero-knowledge proofs. By
adopting recent efficient ZKP protocols and providing
a suitable scheme for GPU resource allocation, our
system achieves 259.5× higher throughput compared
to state-of-the-art GPU-accelerated systems.

• We deploy our system in the verifiable machine learn-
ing application, where our system generates 9.52 proofs
per second for the prediction of VGG-16 model with
CIFAR-10 images as input, successfully achieving sub-
second proof generation for the first time in this field.

2

Compile

ProveVerify

accept / reject

Encoder

Encoder

Merkle

Merkle

NTT

Merkle

Proof

Sumcheck

Encoder Merkle

Proof

Sumcheck Sumcheck

MSM

MSM

MSM

NTT

NTT

NTT

NTT

NTT

NTT

constraints

a, b, cvectors:

Compile

ProveVerify

accept / reject encoding

constraints

encoding

polynomials

random
numbers

:=

a

b

c

vector

(a) The first category of ZKP protocols (other works)

Compile

ProveVerify

accept / reject

Encoder

Encoder

Merkle

Merkle

NTT

Merkle

Proof

Sumcheck

Encoder Merkle

Proof

Sumcheck Sumcheck

MSM

MSM

MSM

NTT

NTT

NTT

NTT

NTT

NTT

constraints

a, b, cvectors:

Compile

ProveVerify

accept / reject encoding

constraints

encoding

polynomials

random
numbers

:=

a

b

c

vector

(b) The second category of ZKP protocols (our work)

Figure 1. Two categories of ZKP protocols.

2 Background
2.1 Zero-Knowledge Proof and its Applications
Zero-knowledge proof (ZKP) [19] is a cryptographic primi-
tive that enables a prover to generate a proof 𝜋 , proving to
verifiers that a computation 𝑦 = 𝐹 (𝑥,𝑤) is correctly calcu-
lated using a public input 𝑥 and the prover’s secret input𝑤 .
With the function 𝐹 capable of representing any arbitrary
computation, ZKP has been found to play important roles in
various privacy-critical applications [5, 10, 12, 13, 35, 46, 60].

However, generating zero-knowledge proofs is a compute-
intensive task. To improve the efficiency of proof genera-
tion, a series of efficient ZKP protocols [6, 20, 61] have been
proposed. These protocols bypass the expensive operations
used in previous ZKP protocols [3, 15, 22], such as number-
theoretic transform (NTT) and multi-scaler multiplication
(MSM). Instead, they utilize cheaper sum-check protocol [37],
Merkle trees [39], and linear-time encoders [24] to reduce
the computational overhead. Figure 1 illustrates the work-
flow of two categories of ZKP protocols. Different from other
GPU-accelerated systems [29, 36, 38] tailored for the first
category of ZKP protocols, our work focuses on accelerating
the second category. Notably, both two types of ZKP proto-
cols belong to zkSNARK, a family of ZKP protocols with the
three properties: (1) non-interactive: only a single message
from the prover to the verifier; (2) zero-knowledge: the proof
disclosing nothing about the prover’s secret input; (3) suc-
cinctness: small proof size and fast verification. Compared
to the first category of ZKP protocols, the proof size of the
second category is relatively larger and reaches several MB.

The acceleration of ZKP protocols benefits many ZKP ap-
plications. Verifiable machine learning [5, 13, 35] is one of the

most promising applications, where ZKP enables customers
to verify that the output provided by the cloud vendor is
indeed calculated from a particular model. In this verifiable
computation 𝑦 = 𝐹 (𝑥,𝑤), the function 𝐹 represents the in-
ference process of machine learning, with 𝑥 and 𝑦 being the
input and output of the model. The prover’s secret input𝑤
is the model parameters, which are considered intellectual
property and kept secret from customers. Since the large
scale of 𝐹 in verifiable machine learning can lead to signifi-
cant computational costs in proof generation, its hardware
acceleration will be of great help to practical deployment.
Another application is zkBridge [60], which utilizes ZKPs to
prove the validity of cross-chain transactions in cryptocur-
rencies, avoiding trusting centralized committees. zkBridge
service providers charge a handling fee for each transac-
tion. Thus, generating more proofs for transactions per unit
time (throughput) brings more income. Other applications
include zkEVM [48] for extending Ethereum’s capabilities
and verifiable vulnerabilities [10] to prove the existence of
vulnerabilities without revealing their location.

2.2 Merkle Tree
Merkle tree is a structure used to generate the hash value
of input data and verify the integrity to ensure the data is
undamaged and unaltered. Merkle tree serves as the funda-
mental building block in various applications, such as Btrfs
File System [45], Amazon DynamoDB [53], and Blockchain
[4]. In this paper, it is employed as a computational module
used in the ZKP protocols that we focus on. The method to
construct a Merkle tree is shown in Figure 2.

Specifically, it first divides input data into multiple blocks
and then hashes each block to create the leaf node. Usually,

3

Data

Block Block Block Block

512 bits

Hash Hash Hash Hash

Hash Hash

Hash
256 bits

Merkle

Root

SHA-256
Round

Operation

W0
W1

...

W15

32 bits

512 bits

h0 h1 ... h8

Hash Chunks

Loop

x64

256 bits

Leaf Nodes

Figure 2. Merkle tree.

the hash method can be a cryptographic hash function such
as SHA-256 [41], which produces a fixed-size 256-bit hash
value from a 512-bit block. Next, it iteratively combines pairs
of these hash values, converting the result to form the next
layer of the tree. Continue this process until only one hash
value remains at the top, known as the Merkle root, which is
the global hash value of input data. The efficient verifiability
is a characteristic of this hierarchical structure, as any change
in the input data will alter the corresponding hash value and
propagate up, ultimately changing the Merkle root.

2.3 Sum-check Protocol
The sum-check protocol [37] is a two-party protocol used
to efficiently verify that the sum of a polynomial 𝑝 over
all points in the Boolean hypercube {0, 1}𝑛 equals a certain
value 𝐻 with the formula 𝐻 =

∑
(𝑥1,...,𝑥𝑛) ∈{0,1}𝑛 𝑝 (𝑥1, . . . , 𝑥𝑛).

The literature [55] proposed an algorithm allowing one party
to generate a sum-check proof in 𝑂 (2𝑛) time complexity.
Based on this proof, the other party can verify that the sum is
correct in𝑂 (𝑛) time complexity. Given that the time required
to generate sum-check proofs is exponentially longer than
the time required to verify, our work focuses on accelerating
the proof generation process.
Algorithm 1 demonstrates the process of the sum-check

proof generation. Briefly, the algorithm maintains a table
throughout its execution. Initially, this table has a size of 2𝑛 ,
with each entry containing the evaluation of the polynomial
𝑝 over the points in the Boolean hypercube {0, 1}𝑛 . Next,
this algorithm executes for 𝑛 rounds. At each round, the
table is updated based on a random number, and the size
of the updated table is reduced to half of its original size.
Continue this process until the table has fewer than two
entries. The sum-check proof comprises two sums of the
half-table entries at each round.

2.4 Linear-time Encoder
The linear-time encoder is a family of algorithms that can
process and encode data into an error-correcting code in

Algorithm 1 Sum-check Proof Generation [55]
Input: A multi-linear polynomial 𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛). A initial

table A of size 2𝑛 with A[𝑏] = 𝑝 (𝑏1, ..., 𝑏𝑛), where 𝑏 =∑𝑛
𝑖=1 𝑏𝑖2𝑖−1 and 𝑏𝑖 ∈ {0, 1}. Random numbers 𝑟1, 𝑟2, ..., 𝑟𝑛 .

Output: The proof 𝜋 = {(𝜋11, 𝜋12), (𝜋21, 𝜋22), ..., (𝜋𝑛1, 𝜋𝑛2)}.
1: for 𝑖 = 1, 2, ..., 𝑛 do
2: 𝜋𝑖1 = 0, 𝜋𝑖2 = 0
3: for 𝑏 = 0, 1, ..., 2𝑛−𝑖 − 1 do
4: 𝜋𝑖1 = 𝜋𝑖1 + A[𝑏]
5: 𝜋𝑖2 = 𝜋𝑖2 + A[𝑏 + 2𝑛−𝑖]
6: A[𝑏] = (1 − 𝑟𝑖) · A[𝑏] + 𝑟𝑖 · A[𝑏 + 2𝑛−𝑖]
7: end for
8: end for
9: return 𝜋 = {(𝜋11, 𝜋12), (𝜋21, 𝜋22), ..., (𝜋𝑛1, 𝜋𝑛2)}

𝑂 (𝑁) time complexity with respect to the data size 𝑁 . The
linear-time encoder employed in ZKP protocols [6, 20, 61]
is the Spielman encoder [54]. The encoding process of the
Spielman encoder is shown in Figure 3.
Specifically, the Spielman encoder has a recursive encod-

ing process consisting of a sequence of execution stages. As
shown in Figure 3, each execution stage involves the use of
two bipartite graphs, and each bipartite graph can be repre-
sented by a sparse matrix, where right vertices correspond to
rows of the matrix and left vertices correspond to columns.
A non-zero entry in the sparse matrix represents an edge
between two vertices in the bipartite graph.
Once all bipartite graphs are represented as sparse ma-

trices, the encoding process starts its recursive process. In
each execution stage, it first performs the vector-matrix mul-
tiplication between the input vector and the sparse matrix
converted from the first bipartite graph. The resulting vector
from this multiplication is then forwarded to the subsequent
stage, where it performs the same operations as in every
stage and returns a vector. Afterward, back to the current
stage, it executes another vector-matrix multiplication be-
tween the vector returned from the subsequent stage and the
matrix converted from the second bipartite graph. The result,
combined with the input vector and the vector returned from
the subsequent stage, forms the output of this stage.

3 Pipelined ZKP Modules on GPU
To make it easy for our system to integrate with a wider
range of ZKP protocols [6, 20, 49, 50, 61, 63], we adopt a
modular design. We develop GPU-accelerated ZKP modules,
including Merkle tree, sum-check protocol, and linear-time
encoder, in a pipeline manner. Our proposed approach not
only maximizes the utilization of GPU execution cores but
also reduces the required device memory compared to the
intuitive parallel GPU execution methods [28, 51]. Details
are shown in the following sections.

4

Stage 2

Stage 3

L4
L5

R1

R2

R3

L1
L2
L3

Bipartite Graph

Sparse Matrix

4

7
1
3

9

Input Vector

Code

Sparse
Matrix

Vector
X

Sparse
Matrix

Input Vector

X
Vector

Sparse
Matrix
X

...

Stage 1

X: Vector-Matrix Multiplication

X

Stage 2

7 0 0 0 0
0 0 0 9 0
0 1 3 0 2

0
4
0

L6 2

Data

Output

Output

Figure 3. Linear-time encoder.

......

Tree 1
Tree 2
Tree 3

Tree m

......Time

Tree 1 Tree 2

Tree mTree m-1

idle

active

execution kernels

thread

thread

...

execution kernels

......

Tree 1
Tree 2
Tree 3

Tree m

......Time

Tree 1 Tree 2

Tree mTree m-1

idle

active

execution kernels

thread

thread

...

execution kernels

(a) The intuitive approach

......

Tree 1
Tree 2
Tree 3

Tree m

......Time

Tree 1 Tree 2

Tree mTree m-1

idle

active

execution kernels

thread

thread

...

execution kernels

(b)Our pipelined approach

Figure 4. The workload of GPU cores in a naive method and
our pipelined method to generate Merkle trees in batches.

3.1 Pipelined Merkle Tree
In this section, we present our pipelined GPU-accelerated
module for batch generation of Merkle trees.
Section 2.2 presents the generation method for a single

Merkle tree. For the input data consisting of 𝑁 512-bit blocks,
the method are performed in log𝑁 rounds. For each round,
the hash function like SHA-256 is used to convert the 512-bit
blocks from the previous layer of the Merkle tree into 256-bit
hash values for the next layer. These execution rounds must
be performed serially, because the calculations at each layer
depend on the values from the previous layer.
When considering batch generation of multiple Merkle

trees, an intuitive method is to launch multiple execution
GPU kernels, with each kernel generating a single Merkle
tree. Figure 4a shows the workload of GPU threads in this
method. Specifically, each GPU kernel requires 𝑁 threads to
generate the first layer of Merkle trees in parallel. However,
as the workload required to build subsequent tree layers
decreases, many threads become idle until the kernels finish
building the entire trees. Re-scheduling these idle threads

requires complex control logic and synchronization, which
are resource-consuming on GPUs.
To maximize the utilization of GPU execution cores, we

propose a pipelined method to batch generate Merkle trees.
Figure 4b shows the workload of GPU threads in our method.
Instead of building each Merkle tree using a single GPU
kernel, we generate Merkle trees by streaming them through
multiple GPU kernels, where each kernel is dedicated to
the generation of a fixed layer. In this way, multiple layers
are generated simultaneously without breaking the serial
generation rule in a single tree. Consequently, except for the
beginning and end stages of the pipeline, all GPU threads
run continuously without idling.

In addition to GPU threads, devicememory is another GPU
resource that we need to utilize properly. When we generate
thousands of Merkle trees in batches, it is a huge burden to
load all data blocks of Merkle trees directly into the limited
device memory. To reduce the required device memory, we
employ a dynamic loading and storing method instead of
pre-loading all data blocks for multiple trees. In the pipeline,
our method only loads data blocks of a single tree at each
time period. Simultaneously, GPU kernels construct Merkle
trees for the data blocks that have been in the device memory
by executing the hash function. Once the hash values of the
next layer of the Merkle tree are calculated, the data for
this layer is transferred back to host memory and released
from device memory. The hash function iteratively converts
512-bit blocks into 256-bit hash values, effectively halves
the memory space required for GPU kernels that generate
specific tree layers. Consequently, these GPU kernels require
a total of 2𝑁 ≈ 𝑁 + 𝑁

2 + ... + 1 blocks of device memory. In
contrast, the method that loads all data blocks in advance
requires𝑚𝑁 block space, where𝑚 is the number of Merkle
trees generated in parallel.

Moreover, we employ multi-stream technology to overlap
the process of data transfer between CPU host memory and
GPU device memory with hash computations performed by
GPU threads. This approach ensures that the generation of
Merkle trees within the pipeline occurs simultaneously with
data loading and storing. Therefore, no additional time is
spent on transferring data between CPU host memory and
GPU device memory.

Finally, we optimize the storage structure in the execution
of the SHA-256 hash function. As shown in Figure 2, SHA-
256 requires its input block to be divided into sixteen 32-
bit chunks. These chunks undergo complex SHA-256 round
operations to update eight 32-bit hash chunks. Crucially, the
size of chunks matches 32-bit registers of GPU execution
cores. Therefore, instead of storing these 32-bit chunks in
GPU global or shared memory, we force all chunks to be
stored in the registers, which are the most efficient storage
units in the hierarchical storage architecture of GPUs.

5

Table 3

+ +

UpdateUpdate

The 5th time period The 6th time period

Table 4Table 6Table 4Table 5 Table 5

1

2 Table 3Table 4Table 5 Table 4Table 6 Table 5

+ +
Update UpdateCPU

memory + +
Update Update

CPU
memory

CPU
memory

Time

Figure 5. The device memory access patterns in the sum-
check proof generation.

3.2 Pipelined Sum-check Protocol
In this section, we present our pipelined GPU-accelerated
module for batch generation of sum-check proofs, which are
used in sum-check protocols, enabling efficient verification
that the sum of a polynomial 𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛) over all points
in the Boolean hypercube {0, 1}𝑛 equals a certain value.

The literature [55] proposed a method to generate a sum-
check proof in 𝑂 (2𝑛) time complexity with details shown in
Algorithm 1. This algorithm takes a table of size 2𝑛 as input
and executes 𝑛 rounds. Each round begins by computing
the sum of the table entries, then updating the table using a
random number. After each round, the size of the updated
table is reduced to half of its original size.
Obviously, the generation pattern of sum-check proofs

closely resembles the pattern of Merkle trees. They both
adopt a reduction method that iteratively transforms the
original task into a half-scale task. Specifically, as shown in
Figure 2, each Merkle tree consists of multiple layers, and
the size of each upper layer is half of the lower layer. Thus,
the generation of the upper layer is a half-scale task for the
lower layer. Similarly, the sum-check in Algorithm 1 consists
of multiple rounds, with the computational complexity of the
next round being half of the previous round. This similarity
allows us to leverage our design strategy from the pipelined
module for Merkle trees to develop a pipelined module for
sum-check proofs. To optimize GPU core utilization, we
generate each sum-check proof by launching 𝑛 GPU kernels,
with each kernel dedicated to a fixed round of execution.
By streaming the input tables for sum-check proofs through
multiple GPU kernels, we achieve a workload distribution
among the GPU threads similar to the pattern shown in
Figure 4b, where all threads run continuously without idling
except for the beginning and end stages of the pipeline.
However, unlike the computationally intensive task of

generating Merkle trees, the generation of sum-check proofs
is primarily intensive in terms of memory access. Specifi-
cally, when generating Merkle trees, GPU threads need to

perform multiple complex SHA-256 round operations. In
contrast, when generating sum-check proofs, the operations
performed by threads become only several basic addition
and multiplication, shifting the performance bottleneck from
computational execution to memory access. Therefore, we
should reduce memory access as much as possible, especially
access to global memory, which is the slowest unit in the
GPU hierarchical storage architecture.

In generating sum-check proofs, a part of memory access
occurs when updating the input table, which initially holds
2𝑛 entries and is stored in global memory. At each execu-
tion round, every GPU core is required to read at least two
entries from the table and combine them with a random
number to produce a single element. Figure 5 shows two
approaches with the least memory access. The first approach
iteratively processes the elements in the table and stores
the results in the following location for the next sum-check
proof. However, this approach could trigger memory race
hazards among threads. Therefore, we employ the second ap-
proach, where two recyclable memory buffers are allocated
to store these tables. As shown in Figure 5, during odd time
periods, data is read from the lower buffer and written to the
upper buffer. During even time periods, the reverse opera-
tion is allowed: reading from the upper buffer and writing
to the lower. This alternating use of the two buffers every
two periods ensures that reading and writing never occur
simultaneously within the same buffer.

The other part of memory access arises when computing
the sum of table entries. In this process, the table entries
accessed by threads are the same as those accessed during
the table updating process, thus eliminating the need for ad-
ditional global memory access. After loading all table entries,
we implement a well-studied sum method [26] to complete
the subsequent task. Firstly, we store table entries into mul-
tiple shared memories and utilize a tree-based reduction
technique to compute partial sums for the elements in these
shared memories. Subsequently, the partial results are moved
back to global memory, and the above steps are repeated until
they are aggregated to produce the final sum.

3.3 Pipelined Linear-time Encoder
In this section, we present our pipelined GPU-accelerated
module for batch generation of linear-time codes.

Section 2.4 gives the encoding process for converting input
data into a linear-time code. The encoding process comprises
a sequence of execution stages, each involving two vector-
matrix multiplications. Especially, the vector used in the
second vector-matrix multiplication is the output of the sub-
sequent stage. It establishes a recursive dependency where
each stage relies on the completion of its subsequent stage.

However, recursive functions are not suitable to perform
on GPUs because each recursive call consumes stack space
to store local variables and other state information necessary
for the function execution. Due to the limited stack memory

6

Stage 1

X
X X

output

Stage 1 Stage 2 Stage 3

X X
X

Stage 3 Stage 2 Stage 1

input

Pipeline Pipeline
X: Vector-Matrix Multiplication

MatrixVectorMatrixVector

X

MatrixVector

X

Stage 2
Stage 3

X X X
X

MatrixVector

Recursion

Figure 6. The workflow of the pipelined encoding process.

on GPUs, deeply nested recursive calls can quickly exhaust
this space, resulting in stack overflow.
As shown in Figure 6, we split the encoding process into

two parts. The first part performs the first vector-matrix
multiplication in the encoding stages. In this process, the
vector used in vector-matrix multiplication is from the pre-
vious stage. Thus, all stages can be executed in a sequen-
tial manner, where the size of vector-matrix multiplications
decreases gradually. The second part performs the second
vector-matrix multiplication, where the vector used in each
stage comes from the output of its subsequent stage. In order
to prevent recursive execution, wemust perform these stages
in reverse order, from the small scale to the large scale.
Next, we develop two pipelines to perform two parts of

the encoding process, respectively. Each pipeline launches
multiple GPU kernels, with each kernel dedicated to vector-
matrix multiplication in a fixed stage. As shown in Figure
6, in each cycle, all encoding tasks within the pipeline con-
currently execute matrix operations at their current stages,
and then progress to their next stages. Two pipelines are in-
terconnected, allowing the output from the first pipeline to
feed into the second. The encoding tasks are complete only
after they have passed through all stages of both pipelines,
ultimately generating the required linear-time codes.

Remember that all matrices involved in the encoding pro-
cess are converted from bipartite graphs, and they are sparse
matrices. While numerous GPU optimization approaches
[2, 16, 21] exist for multiplying vectors with sparse matrices,
these approaches are tailored to matrices composed of 32-bit
and 64-bit integers. In our setting, the elements in matri-
ces are finite field elements, which can be treated as large
integers whose bit-width typically ranges from 256 to 768.
In this setting, we can improve the workload balance

across threads within GPU wraps. Each GPU wrap is a group

of 32 threads that operate in a Single Instruction, Multiple
Data (SIMD) manner. Typically, we assign each wrap the task
of calculating the product between the vector and 32 matrix
rows, with each thread processing a single row. Due to SIMD
execution manner, the workload of a wrap is determined by
the thread with the heaviest workload among the 32 threads.
Therefore, it is crucial to group rows of similar length. In the
linear-time encoder, each matrix row contains fewer than
256 non-zero elements, allowing the length of each row to
be encoded in a single byte. We sort these row lengths us-
ing the bucket sorting algorithm [9], which is the optimal
sorting method for data with a few distinct values. Finally,
we assign every 32 rows of similar lengths to a wrap, effec-
tively reducing the overhead caused by workload imbalances
across threads within GPU wraps. Note that our approach
cannot be directly used in matrices composed of regular 32-
bit and 64-bit integers, because the high sorting cost relative
to regular integer operations makes it uneconomical.

4 Fully Pipelined ZKP System on GPU
In this section, we introduce our fully pipelined ZKP sys-
tem, designed to achieve two distinct targets compared to
previous GPU-accelerated ZKP systems.

On the one hand, our system focuses on the acceleration
of ZKP protocols that utilize computational modules, includ-
ing the sum-check protocol, Merkle tree, and linear-time en-
coder, which makes our ZKP systemmore cost-effective than
previous ZKP systems that rely on expensive modules like
number-theoretic transform (NTT) and multi-scaler multipli-
cation (MSM). On the other hand, our system is tailored to im-
prove throughput in the batch generation of zero-knowledge
proofs. In contrast, previous ZKP systems only focus on gen-
erating a single proof for the purpose of reducing latency.
Improving throughput is critical in the industry as it means
more proofs to be generated per unit of time, resulting in
greater economic benefits.
Figure 7 outlines our GPU-accelerated ZKP system. At

a high level, the workflow of our system follows the proof
generation process shown in Figure 1, but with the original
modules replaced by our pipelined modules discussed in
Section 3. In details, we introduce our ZKP system through
the following important features.
The start execution of our system. Initially, we store

all the prover’s input for proof generation in the CPU host
memory, and our system employs a dynamic loading method
to reduce the required GPU device memory. At the first
execution cycle, our system only loads the prover’s input
required for the first proof to the device memory. This input
is segmented into multiple pieces, each dispatched to the first
processing stage of a pipelined linear-time encoder. After
each cycle, the prover’s input required for the next proof is
loaded and dispatched to the pipelined encoders, while the
ongoing tasks in our system move to the next stage. This

7

Pipelined Encoder Pipelined Merkle Tree

Stage 2 Stage 1 Layer 3

Pipelined Merkle Tree

Merkle Roots

Proof

Round1 Round2 Round3

Pipelined Sum-check

Random Numbers

Layer 1 Layer 2Stage 2Stage 1

Round1 Round2 Round3Round1 Round2 Round3

GPU

Data

Transfer

Stream 1

Stream 2

Host Memory

Input for Proof
No.1

Input for Proof
No.2

Input for Proof
No.m

...

Figure 7. An overview of our fully pipelined GPU-accelerated system for batch generation of zero-knowledge proofs.

sequential process ensures that one proof generation task
enters our system every cycle.

The generation task for each proof. Once the required
prover’s input for the proof generation is fed into the pipeline,
our system processes the input through the linear-time en-
coder, Merkle tree, and sum-check modules in sequence.
Specifically, the prover’s input is initially divided into mul-
tiple segments, each encoded into an error-correction code
using a linear-time encoder. Next, the codes are transmitted
to Merkle tree modules, which generate multiple Merkle
roots. These roots serve as leaf nodes for another Merkle
tree module, ultimately yielding a single final root.
Afterward, the following task is carried out by the sum-

check modules. The input to sum-check modules is two-fold.
The first is random numbers, which are generated by pseudo-
random generators using either the final Merkle root or the
output from other sum-check modules as a seed. The second
is the intermediate results from the proving function. These
results are stored in the CPU host memory and encoded
into polynomials through Lagrange interpolation [23]. Thus,
the sum-check modules are required to load data from host
memory in each cycle, similar to the linear-time encoders.
Ultimately, the proof is assembled using the final Merkle

root, sum-check proofs, and a linear combination of linear-
time codes. The other part of the proof used to verify the
correct construction of Merkle trees does not require any
calculations and is not depicted here.

The execution of our system at full workload. In our
system, proof generation tasks consistently flow into the
pipelines. When the first proof generation task is processed
through all pipelined modules, our system reaches the full
workload state. In this state, all pipelined modules are fully
engaged in executing their designated tasks concurrently.
In addition, the working manner of these modules, detailed
in Section 3, ensures that all GPU threads are working con-
tinuously without being idle. At the end of each cycle, all
ongoing tasks flow to their next stage, and one task that

has progressed through all pipelined modules completes its
proof generation and is pushed out of our system. Thus, it has
room to introduce a new task at the next cycle. Our system
maintains a full workload state until the proof generation is
no longer required. At that point, our system completes all
remaining tasks in the pipelines before shutting down.
The resource allocation in our system. To maximize

GPU core utilization, we manually allocate resources to dif-
ferent modules to keep their throughput consistent. For ex-
ample, when we apply 10, 240 threads on a GPU V100 card
with 5, 120 CUDA cores. Since the amortized execution time
ratio of three individual modules is around 35 : 12 : 113,
which is obtained based on tests using the real hardware
device, we allocate 2, 240 = 35 × 64, 768 = 12 × 64, and
7, 296 = 113 × 64 threads to the linear-time encoder, Merkle
tree, and sum-check modules, respectively. Inside each mod-
ule, execution threads are allocated as described in Section
3. For example, when the input is 𝑁 = 214 blocks to Merkle
trees, we should perform 2𝑁 ≈ 𝑁 + 𝑁

2 + . . . +1 hashes, where
the number of hashes in each layer is half of the previous
layer. Therefore, when the Merkle tree module is allocated
with a total of 𝑀 = 768 threads, we will allocate 384 = 𝑀

2
threads to the first layer with 𝑁 hashes, 192 = 𝑀

4 threads to
the second layer with 𝑁

2 hashes, ..., and 3 = 𝑀
28 threads to the

8-th layer with 𝑁
27 hashes. Other 3 threads handle the remain-

ing layers with 𝑁
27 hashes. Each thread processes 2𝑁

𝑀
hashes,

ensuring equal workload per thread. This method is also
employed in sum-check and linear-time encoder modules.

Data transfer betweenhost and devicememory.Given
that our system employs a dynamic loading and storing
method to reduce the required GPU device memory, necessi-
tating frequent data transfers between host and device mem-
ory. These data transfers include the input to linear-time
encoders and sum-check modules, and the output from the
intermediate layers of Merkle trees. To reduce the overhead
associated with these transfers, we employ multi-stream

8

technology, which enables the simultaneous execution of
data transfers and GPU computations. In our setting, time
spent on the computations exceeds that of data transfers,
thus ensuring no time is lost waiting for data transfer.

5 Application
In this section, we present the deployment of our pipelined
ZKP system in a verifiable machine-learning application. For
a more intuitive description, we demonstrate this system
in the context of Machine-Learning-as-a-Service (MLaaS),
where the service provider (prover) convinces its customers
(verifiers) that the prediction results are correctly calculated
from a particular machine-learning model, while preserving
the model’s privacy.
Figure 8 shows an overview of our system for verifiable

machine-learning applications. It consists of three compo-
nents. The first is an interface for the service provider to in-
teract with customers. All public data to both parties, includ-
ing customer input, prediction results, and zero-knowledge
proofs, are transmitted through this interface. Notably, the
secret model should be guaranteed not to leak to customers
via this interface. The second is the machine-learning engine,
which provides prediction services similar to those in MLaaS.
Upon receiving customer input, the engine calculates the
prediction result using the well-trained model and returns
the result to the customers. The engine can be implemented
based on machine-learning platforms, such as Pytorch [43].
The third is our ZKP system. It generates zero-knowledge
proofs, convincing customers that the prediction results are
correctly calculated. Our pipelined system is well-suited to
the MLaaS scenario, where the input from the customer is
passed to the service provider like a flowing stream.
The system works as follows. In the preprocessing stage,

the model parameters are used as input to generate a Merkle
tree. The Merkle root is sent to customers, which is used as a
commitment, as any change in the model parameters could
ultimately change the Merkle root. Moreover, we compile
the function for the model inference into a circuit based on
the technology proposed in many recent works [5, 13, 35]
for verifiable machine learning. The preprocessing stage
should only be performed once, so the execution time of the
preprocessing stage is not counted into the time to generate
zero-knowledge proofs.
Next, the system enters the prediction phase performed

by the machine-learning engine. In this stage, customers
interact with the service provider as in the traditional MLaaS
scenario, where customers send input to the service provider,
and the machine-learning engine employs the committed
model to calculate the prediction results and return them
to the customers. Third, the service provider employs our
pipelined ZKP system to generate proofs. Our system col-
lects customer input and the intermediate results from the
machine-learning engine and forwards this required data

Interface

Customer
Input

Prediction

Result

Merkle

Merkle

Root

Model

Machine-learning

Engine

Encoder Merkle

Sumcheck

Our pipelined
ZKP system

Circuit

Proof

Figure 8. An overview of the verifiable machine-learning
application accelerated by our pipelined ZKP system.

into the pipeline in order. The system follows the workload
shown in Section 4 to generate zero-knowledge proofs and
deliver them to customers through the interface. Finally,
customers can verify the prediction results are correctly cal-
culated from the committed model using these proofs.

The security of our system is based on the fact that the ML
engine cannot substitute another model to perform inference.
On the service provider side, we consider the ML engine and
our ZKP system as trusted components because both compo-
nents are controlled by the service provider. On the customer
side, theMerkle root generated during preprocessing ensures
that the model cannot be substituted because each inference
process includes a ZK proof to prove that this Merkle root is
correctly calculated from the committed model.

6 Evaluation
In this section, we present the evaluation of our pipelined
GPU-accelerated ZKP system. We give our experimental
setup in Section 6.1. Next, we present evaluation results
of pipelined modules in Section 6.2. Finally, we give the
performance of our overall ZKP system in Section 6.3.

6.1 Experimental Setup
Hardware Setup.We implement our pipelined system using
CUDA and evaluate it on the latest Nvidia GH200 platform,
which is equipped with an Nvidia GH200 Grace Hopper
Superchip (GPU) and an Nvidia Grace chip with 72 Arm
cores (CPU). The platform has GPU device memory of 96GB
and CPU host memory of 480GB. While our evaluations
are mainly performed on the GH200 card, our implemen-
tation does not rely on specific features exclusive to new-
generation Nvidia GPUs, making it compatible with older
Nvidia GPUs, such as Nvidia V100. In addition, our imple-
mentation involves data communication between host and
device memory, for which a traditional PCIe 3.0/4.0 x16 is
sufficient. Since the CPU baselines we compare in this paper
are not adapted to the Nvidia Grace Arm chip, we perform
these CPU baselines on Amazon EC2 using the c5a.8xlarge
instance equipped with 32 vCPU and memory of 64GB.

9

Table 2. Baseline implementations used for evaluation

Modules Schemes Hardware Languages

Merkle Tree
Orion [61] CPU C++
Simon [51] GPU OpenCL

Ours GPU CUDA

Sumcheck
Arkworks [1] CPU Rust
Icicle [28] GPU CUDA

Ours GPU CUDA

Encoder
Orion [61] CPU C++
Ours-np GPU CUDA
Ours GPU CUDA

ZKPs

Orion&Arkworks CPU C++&Rust
Libsnark [47] CPU C++
Bellperson [14] GPU OpenCL

Ours GPU CUDA

Table 3. The throughput of Merkle tree modules

Size
Throughput (trees/ms) Speedup

Orion[61] Simon[51] Ours vs. [61] vs. [51]
(CPU) (GPU) (GPU) (CPU) (GPU)

222 2.140×10−3 0.845 1.698 793.2× 2.01×
221 4.290×10−3 1.412 3.356 782.3× 2.38×
220 8.600×10−3 2.137 6.536 760.0× 3.06×
219 17.21×10−3 3.003 12.658 735.7× 4.22×
218 34.45×10−3 3.861 23.810 691.0× 6.17×

Baselines. Table 2 lists the baselines used for comparison in
this section. They are all state-of-the-art works on CPU/GPU.
Icicle [28] is an industrial product developed by Ingonyama
[27], a well-known company focusing on the acceleration of
ZKPs. Simon [51] is GPU-accelerated Merkle tree that can be
used to scale Bitcoin [40]. Since there is no GPU implementa-
tion for the linear-time encoder, we employ "Ours-np" which
denotes our linear-time encoder without using pipeline tech-
nology. Libsnark and Bellperson [14] are ZKP systems for
the protocols that rely on NTT and MSM operations. Both
systems are also used as baselines in GZKP [38], whose code
has not been open-sourced. We evaluate the combination of
Orion [61] and Arkwards [1] to show a CPU-based ZKP im-
plementation that employs the same modules as ours, where
Orion provides the linear-time encoder and Merkle tree, and
Arkwards provides the sum-check module.

6.2 Evaluating Pipelined ZKP Modules
We benchmark the performance of our pipelined ZKP mod-
ules, including the Merkle tree, sum-check protocol, and

Table 4. The throughput of Sum-check modules

Size
Throughput (proofs/ms) Speedup

Arkworks[1] Icicle[28] Ours vs. [1] vs. [28]
(CPU) (GPU) (GPU) (CPU) (GPU)

222 0.382×10−3 0.969 1.461 3823× 1.51×
221 0.773×10−3 1.497 2.884 3729× 1.93×
220 1.583×10−3 2.160 5.622 3552× 2.60×
219 3.241×10−3 2.865 10.610 3274× 3.70×
218 6.497×10−3 3.378 19.753 3040× 5.85×

Table 5. The throughput of Linear-time encoder modules

Size
Throughput (codes/ms) Speedup

Orion[61] Ours-np Ours vs. [61] vs. np
(CPU) (GPU) (GPU) (CPU) (GPU)

222 0.216×10−3 0.031 0.182 844.7× 5.82×
221 0.643×10−3 0.061 0.365 567.7× 5.98×
220 1.699×10−3 0.114 0.726 425.2× 6.33×
219 3.510×10−3 0.211 1.550 441.8× 7.36×
218 7.242×10−3 0.328 3.115 430.2× 9.50×

linear-time encoder. For each module, we compare the state-
of-the-art CPU and GPU implementations.
Merkle Tree. Table 3 gives the evaluation results of our

pipelined Merkle tree modules. This experiment benchmarks
the performance for generating Merkle trees using 𝑁 512-bit
blocks as input, where 𝑁 ranges from 218 to 222. We compare
our scheme to two other implementations, Orion [61] and
Simon [51], with all using SHA-256 as the hash function.

As shown in Table 3, our pipelinedmodule has high through-
put. We achieved a speedup of more than 691.0× (up to
793.2×) compared to Orion’s CPU-based implementation
[61], and more than 2.01× (up to 6.17×) over Simon’s GPU
implementation [51]. Notably, our pipelined module main-
tains nearly linear throughput growth as the size of Merkle
trees decreases. This starkly contrasts the Simon implementa-
tion, which struggles with the small trees when the tree size
is similar to the number of GPU cores. In ZKPs, thousands
of relatively small-sized Merkle trees should be generated.
Sum-check. Table 4 gives the evaluation results of our

pipelined sum-check modules. This experiment benchmarks
the performance for generating sum-check proofs for the
multi-linear polynomial 𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛), with the number of
variables𝑛 ranging from 18 to 22. For convenience, we record
the size 𝑁 = 2𝑛 , similar to the Merkle trees. We compare
our scheme to two other implementations, Arkwords [1] and
Icicle [28], both of which have been used in industry.

10

Table 6. The latency performance of different ZKP modules

Size Modules Schemes Latency (ms) Speedup

218

Merkle
Simon [51] 0.259

0.388×
Ours 0.668

Sumcheck
Icicle [28] 0.296

0.325×
Ours 0.911

Encoder Ours-np 3.048 0.678×
Ours 4.494

220

Merkle Simon [51] 0.468 0.161×
Ours 2.913

Sumcheck
Icicle [28] 0.463

0.130×
Ours 3.557

Encoder
Ours-np 8.760

0.396×
Ours 22.14

As shown in Table 4, our pipelined module demonstrates
superior throughput. We achieved a speedup of more than
3040× (up to 3823×) compared to Arkwords’s CPU-based
implementation [1], and more than 1.51× (up to 5.85×) over
Icicle’s GPU implementation [28]. Icicle [28] is an indus-
trial product developed by Ingonyama [27], a well-known
company focusing on the acceleration of ZKPs. Therefore,
achieving such a speedup means that our implementation
has great commercial value.

Linear-time encoder. Table 5 gives the evaluation results
of our pipelined linear-time encoder modules. This exper-
iment benchmarks the performance for encoding 𝑁 finite
field elements, which can be treated as large integers whose
bit-width is set to 256-bit here. We present the evaluation
results with 𝑁 ranging from 218 to 222. We compare our
scheme to Orion [61] as well as "Our-np," which represents
our linear-time encoder without using pipeline technology.

As shown in Table 5, our pipelined module demonstrates
superior throughput. We achieved a speedup of more than
430.2× (up to 844.7×) compared to Orion’s CPU-based imple-
mentation [61], and more than 5.82× (up to 9.50×) over our
non-pipelined GPU implementation. Similar to our Merkle
treemodule, our encoder module alsomaintains nearly linear
throughput growth in throughput as the input size decreases.
As shown in Figure 1, in the ZKP protocols, the input data is
split into multiple parts and forwarded to different encoders.
Therefore, each part is relatively small, and our method has
advantages in this scenario.
GPU Core Utilization. Figure 9 gives the GPU core uti-

lization of three ZKPmodules. Clearly, our pipelined schemes
maintain high utilization throughout the computation of
each module, whereas other approaches lacking pipelining
exhibit a sharp drop in utilization. The decrease is primarily
because many threads become idle while waiting for a few

0.2 0.4 0.6
Time (ms)

0

25

50

75

100

GP
U

co
re

 u
til

iza
tio

n
(%

)

Simon
Ours

(a) Merkle Tree

0.1 0.2 0.3
Time (ms)

0

25

50

75

100

GP
U

co
re

 u
til

iza
tio

n
(%

)

Icicle
Ours

(b) Sumcheck

0.4 0.8 1.2
Time (ms)

0

25

50

75

100

GP
U

co
re

 u
til

iza
tio

n
(%

)

Ours-np
Ours

(c) Linear-time Encoder

Figure 9. GPU core utilization of different ZKP modules
evaluated on Nvidia RTX 3090Ti with 10,752 CUDA cores.

threads to complete their tasks, which is consistent with the
theoretical thread execution model in Figure 4.
Latency. Table 6 gives the latency metrics for different

ZKP modules. Compared to non-pipelined schemes, our ap-
proach involves a trade-off between latency and throughput:
while the pipelined modules achieve high throughput, they
exhibit larger latency. For example, the latency performance
of our Merkle tree module is only 0.161× that of the bench-
mark set by Simon [51]. Therefore, exploring the possibility
of improving the throughput without losing too much la-
tency would be an important research direction in the future.

6.3 Evaluating our Pipelined ZKP System
In this section, the evaluation results of our fully pipelined
ZKP system are presented. Our system is compared to three
other ZKP systems, including Libsnark [47], Bellperson [14],
and the combination of Orion [61] and Arkwards [1]. Specif-
ically, Libsnark [47] is a CPU-based implementation for ZKP
protocols [3, 15, 22] that relies on NTT and MSM operations.
Bellperson [14] is a GPU-accelerated system that supports
the same ZKP protocol as Libsnark. In addition, we evaluate
the combination of Orion [61] and Arkwards [1] to show
a CPU-based ZKP implementation with the same computa-
tional modules as ours, where Orion provides linear-time
encoders and Merkle trees to commit input data, and Ark-
wards provides sum-check modules to additionally prove
one function is correctly calculated.

Table 7 gives the evaluation results for our pipelined sys-
tem, where the scale 𝑆 denotes the number of multiplication

11

Table 7. The amortized execution time (in millisecond) for each proof generation in CPU/GPU-based systems

S Platforms Schemes MSM NTT Proof Schemes Merkle Sumcheck Encoder Proof

218 CPU Libsnark 18.99×103 4.19×103 23.19×103 Orion&Arkwords 62.5 607.1 143.2 812.7
GPU Bellperson 970 267 1299 Ours 0.167 1.782 0.479 2.524

219 CPU Libsnark 36.80×103 9.05×103 45.89×103 Orion&Arkwords 124.6 1291.3 295.9 1711.8
GPU Bellperson 1318 287 1933 Ours 0.286 2.713 0.833 4.021

220 CPU Libsnark 65.32×103 20.25×103 89.67×103 Orion&Arkwords 249.8 2810.8 623.3 3684.0
GPU Bellperson 1805 342 2204 Ours 0.535 3.699 1.597 6.161

221 CPU Libsnark 138.1×103 39.49×103 177.8×103 Orion&Arkwords 498.3 5856.9 1561.5 7916.7
GPU Bellperson 2876 442 3410 Ours 1.004 6.392 3.148 11.189

222 CPU Libsnark 281.5×103 82.38×103 364.1×103 Orion&Arkwords / / / /
GPU Bellperson 6795 660 7591 Ours 1.922 10.817 6.270 20.305

gates in the circuit compiled from the function to be proved.
In the experiments, we assess the amortized time required for
producing each proof for the circuits with 𝑆 multiplication
gates, where 𝑆 ranges from 218 to 222. The evaluation results
show that our pipelined system is very efficient. Our system
achieves a speedup of more than 304.7× (up to 514.8×) com-
pared to GPU-based ZKP implementation, Bellperson [14],
and it achieves more than 332.0× (up to 707.5×) over the
CPU-based implementation that has the same computational
modules as our system. In addition, as shown in Table 10,
our system requires less amortized device memory for each
proof generation executed in parallel.
A breakdown of throughput improvement. The per-

formance improvement of our work comes from two as-
pects: one is the adoption of new ZKP protocols, and the
other is the deployment of a pipeline mode. We can esti-
mate the breakdown of throughput improvement from new
ZKP protocols and our pipeline design in Table 7. For ex-
ample, when the circuit scale 𝑆 = 220, the speedup (24.34×)
between Orion&Arkwords and Libsnark reflects the con-
tribution of new ZKP protocols. Thus, the extra speedup
(357.7/24.34 = 14.70×) between Bellperson and ours reflects
the improvement coming from our pipeline design.
Performance across different GPUs. Our system is

also compatible with older Nvidia GPUs. Table 8 displays
the performance of our system across different GPUs at a
circuit scale of 𝑆 = 220. The results show that our pipelined
systemmaintains great throughput on different GPUs. For in-
stance, on the V100 GPU card, our system achieves a speedup
of 259.5× compared to Bellperson. In addition, due to the
adoption of new ZKP protocols, our work even achieves
lower latency than Bellperson which utilizes old ZKP proto-
cols. The effectiveness of overlapping GPU computation and
CPU-GPU communication is shown in Table 9. The results
show that the multi-stream technology significantly reduces

Table 8. The throughput (proofs/second) and latency (sec-
onds) of ZKP systems across different GPUs

GPUs Schemes Latency Speedup Throu. Speedup

V100
Bell. [14] 6.579

9.28× 0.152
259.5×

Ours 0.709 39.44

A100
Bell. [14] 3.817

10.29× 0.262
305.4×

Ours 0.371 80.01

3090Ti
Bell. [14] 2.967

9.36× 0.337
283.2×

Ours 0.317 95.44

H100
Bell. [14] 2.703

10.32× 0.370
288.6×

Ours 0.262 106.8

communication overheads caused by large CPU-GPU data
exchanges due to our dynamic data loading approach.
Application. In addition, we have deployed our GPU-

accelerated system in a verifiable machine-learning applica-
tion. We compare our implementation with three state-of-
the-art works, including zkCNN [35], ZKML [5], and ZENO
[13]. They are all CPU-based implementations for verifiable
convolutional neural networks. We conducted evaluations
using the same VGG-16 [52] network and the CIFER-10 [8]
dataset that contains 10 classes of images, and the image size
is 32 × 32 × 3. The VGG-16 model we independently trained
using Pytorch [43] can achieve an accuracy of 93.93% on the
CIFER-10 dataset, outperforming the models utilized in all
other ZKP implementations [5, 13, 35].

Table 11 presents the evaluation results for verifiable neu-
ral network systems, where our system generates 9.52 proofs
per second for the prediction of the VGG-16 model with
CIFAR-10 images as input. We achieve a remarkable speedup,
being 458× faster than ZENO [13] and 5601× faster than
ZKML [5]. To the best of our knowledge, our system is the
first that achieves sub-second proof generation in this field.

12

Table 9. The amortized CPU-GPU communication time and
GPU computation time in each cycle of the pipeline.

GPUs
CPU-GPU Comm. Comm. Comp. Overall
Connection Size Time Time (Overlap)

V100 PCIe 3.0 x16 320MB 22.95ms 24.73ms 25.35ms
A100 PCIe 4.0 x16 320MB 10.44ms 12.41ms 12.50ms
3090Ti PCIe 4.0 x16 320MB 10.50ms 10.42ms 10.56ms
H100 PCIe 5.0 x16 320MB 4.90ms 9.11ms 9.37ms

Table 10. The amortized device memory required for each
proof generation executed in parallel

S 218 219 220 221 222

Bell. [14] 0.90GB 1.25GB 1.38GB 2.21GB 3.87GB
Ours 0.08GB 0.10GB 0.15GB 0.25GB 0.44GB

7 Related Works
Zero-knowledge Proof. Since zero-knowledge proof (ZKP)
[19] was introduced by Goldwasser, Micali, and Rackoff, it
has been used as an important cryptographic primitive. Due
to its powerful effect, considerable efforts [3, 15, 22, 38, 64]
have been directed toward developing ZKPs in both theory
and practice. In recent years, a line of efficient ZKP protocols
[6, 18, 20, 59, 61, 63] has been proposed. These protocols
bypass the expensive operations used in previous ZKP pro-
tocols [3, 15, 22], such as number-theoretic transform (NTT)
and multi-scalar multiplication (MSM). Instead, they employ
cost-effective modules, such as the sum-check protocol [37],
Merkle tree [39], and linear-time encoder [24], to generate
zero-knowledge proofs. Our work focuses on the accelera-
tion of new ZKP protocols with their cost-effective modules.

In addition, zero-knowledge proofs have been widely used
in privacy-critical applications such as blockchain [31, 46,
60], verifiable machine learning [5, 13, 35], and verifiable
program analysis [10, 12]. Verifiable machine learning is one
of themost promising ZKP applications.When cloud vendors
supply paid services using their well-trained models, ZKP
schemes allow the customers to verify the outcomes provided
by cloud vendors are indeed from the well-trained model,
in the face of lazy or malicious vendors. Numerous studies
[5, 13, 25, 30, 33, 35, 57] have been dedicated to developing
efficient ZKP schemes for machine-learning neural networks.
Our pipelined system can further improve their efficiency,
achieving sub-second proof generation.
Hardware-accelerated ZKPs. Recently, a great number of
works have implemented high-performance zero-knowledge
proofs on certain hardware, including GPUs [7, 36, 38], ASICs
[64], FPGAs [44, 65] and CPU clusters [34, 58]. These works
focus on the acceleration of NTT and MSM operations used

Table 11. The performance of our pipelined system when it
used in the verifiable machine-learning application

Schemes
zkCNN ZKML ZENO Ours
[35] [5] [13]

Throughput 0.0113 0.0017 0.0208 9.5220
Latency 88.3s 637s 48.0s 15.2s
Accuracy 90.30% 90.37% 84.19% 93.93%

in previous ZKP protocols [3, 15, 22]. For example, the sys-
tems proposed in the works [36, 38, 58, 64] employ differ-
ent hardware to accelerate the same ZKP protocol [22] pro-
posed by Groth in 2016. However, recent ZKP protocols
[6, 20, 49, 59, 61, 63] increasingly employ cost-effective mod-
ules, such as the sum-check protocol, Merkle tree, and linear-
time encoder, to generate proofs. The calculation process of
these modules is completely different from NTT and MSM.
Thus, the previous systems cannot be applied to ZKP proto-
cols dominated by these cost-effective modules.
Simon [51] and Icicle [28] introduced GPU-accelerated

Merkle tree and the sum-check protocol, respectively. How-
ever, they employ an intuitive parallel algorithm that fails to
fully utilize GPU cores, because their employed GPU threads
should periodically enter the idle state in the execution pro-
cedure to wait for other threads completing their tasks, with
details shown in Figure 4a. PipeZK [64] employs a pipeline
execution manner to accelerate the NTT and MSM opera-
tions on ASIC, while our work employs the pipeline technol-
ogy to accelerate the sum-check protocol, Merkle tree, and
linear-time encoder on GPU.

8 Conclusion
In this work, we propose a fully pipelined GPU-accelerated
system for batch generation of zero-knowledge proofs, and
our system also supports three pipelined computational mod-
ules: the sum-check protocol, Merkle tree, and linear-time
encoder. We customize these modules to fit the pipeline exe-
cution manner. By adopting recent efficient ZKP protocols
and providing a suitable scheme for GPU resource allocation,
our system has a considerable speedup over other state-of-
the-art implementations, and it shows excellent performance
in the verifiable machine-learning application.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful and constructive comments. This work was sup-
ported in part by the National Natural Science Foundation of
China under Grants 92373205 and 62374146, in part by the
National Key Research and Development Program of China
No. 2023YFB4404404, in part by the Key Technologies R&D
Program of Jiangsu (Prospective and Key Technologies for
Industry) under Grant BE2023005-2.

13

References
[1] arkworks. Linear-time sumcheck protocol for multilinear polynomials

and related addends. https://github.com/arkworks-rs/sumcheck.
[2] Nathan Bell and Michael Garland. Implementing sparse matrix-vector

multiplication on throughput-oriented processors. In Proceedings of
the conference on high performance computing networking, storage and
analysis, pages 1–11, 2009.

[3] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P Ward. Aurora: Transparent succinct
arguments for r1cs. In Advances in Cryptology–EUROCRYPT 2019:
38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part I 38, pages 103–128. Springer, 2019.

[4] Vitalik Buterin et al. Ethereumwhite paper. GitHub repository, 1:22–23,
2013.

[5] Bing-Jyue Chen, Suppakit Waiwitlikhit, Ion Stoica, and Daniel Kang.
Zkml: An optimizing system for ml inference in zero-knowledge
proofs. In Proceedings of the Nineteenth European Conference on Com-
puter Systems, pages 560–574, 2024.

[6] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyper-
plonk: Plonk with linear-time prover and high-degree custom gates.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 499–530. Springer, 2023.

[7] Yutian Chen, Cong Peng, Yu Dai, Min Luo, and Debiao He. Load-
balanced parallel implementation on gpus for multi-scalar multipli-
cation algorithm. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2024(2):522–544, 2024.

[8] CIFAR-10. A collection of images that are commonly used to train
machine learning and computer vision algorithms., 2024. Accessed:
April 02, 2024.

[9] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2022.

[10] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pernsteiner, and
Eran Tromer. Cheesecloth:{Zero-Knowledge} proofs of real world
vulnerabilities. In 32nd USENIX Security Symposium (USENIX Security
23), pages 6525–6540, 2023.

[11] Cysic. Hardware accelerating zero-knowledge proofs. https://cysic.
xyz.

[12] Zhiyong Fang, David Darais, Joseph P Near, and Yupeng Zhang. Zero
knowledge static program analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
2951–2967, 2021.

[13] Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, and Yufei Ding.
Zeno: A type-based optimization framework for zero knowledge neu-
ral network inference. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, pages 450–464, 2024.

[14] filecoin. bellperson is a crate for building zero-knowledge proofs with
gpu acceleration. https://github.com/filecoin-project/bellperson.

[15] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge. Cryptology ePrint Archive, 2019.

[16] Michael Garland. Sparse matrix computations on manycore gpu’s.
In Proceedings of the 45th annual design automation conference, pages
2–6, 2008.

[17] Giza. Actionable ai for decentralized applications. build reliable, scal-
able and easy to integrate ai solutions for web3. https://www.gizatech.
xyz/.

[18] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegat-
ing computation: interactive proofs for muggles. Journal of the ACM
(JACM), 62(4):1–64, 2015.

[19] Shafi Goldwasser, Silvio Micali, and Chales Rackoff. The knowledge
complexity of interactive proof-systems. In Providing sound founda-
tions for cryptography: On the work of shafi goldwasser and silvio micali,

pages 203–225. 2019.
[20] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and

Riad S Wahby. Brakedown: Linear-time and field-agnostic snarks for
r1cs. In Annual International Cryptology Conference, pages 193–226.
Springer, 2023.

[21] Joseph L Greathouse and Mayank Daga. Efficient sparse matrix-vector
multiplication on gpus using the csr storage format. In SC’14: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 769–780. IEEE, 2014.

[22] Jens Groth. On the size of pairing-based non-interactive arguments.
In Annual international conference on the theory and applications of
cryptographic techniques, pages 305–326. Springer, 2016.

[23] G Grünwald. On the theory of interpolation. 1942.
[24] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and

list decodable codes. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 126–135, 2003.

[25] Meng Hao, Hanxiao Chen, Hongwei Li, Chenkai Weng, Yuan Zhang,
Haomiao Yang, and Tianwei Zhang. Scalable zero-knowledge proofs
for non-linear functions in machine learning.

[26] Mark Harris. Optimizing parallel reduction in cuda.
https://developer.download.nvidia.com/compute/cuda/1.1-
Beta/x86_website/projects/reduction/doc/reduction.pdf.

[27] ingonyama. Hardware accelerators for zero knowledge cryptography.
https://www.ingonyama.com/.

[28] Ingonyama. Icicle is a library for zk acceleration using cuda-enabled
gpus. https://github.com/ingonyama-zk/icicle.

[29] Zhuoran Ji, Zhiyuan Zhang, Jiming Xu, and Lei Ju. Accelerating multi-
scalar multiplication for efficient zero knowledge proofs with multi-
gpu systems. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 57–70, 2024.

[30] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling up
trustless dnn inference with zero-knowledge proofs. arXiv preprint
arXiv:2210.08674, 2022.

[31] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalam-
pos Papamanthou. Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. In 2016 IEEE symposium on
security and privacy (SP), pages 839–858. IEEE, 2016.

[32] Protocol Labs. The state of zero-knowledge proofs: From research to
serious business., 2023. Accessed: April 19, 2024.

[33] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn:
Verifiable convolutional neural network based on zk-snarks. IEEE
Transactions on Dependable and Secure Computing, 2024.

[34] Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, and Yupeng
Zhang. Pianist: Scalable zkrollups via fully distributed zero-knowledge
proofs. Cryptology ePrint Archive, 2023.

[35] Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn: Zero knowledge
proofs for convolutional neural network predictions and accuracy.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2968–2985, 2021.

[36] Tao Lu, Chengkun Wei, Ruijing Yu, Chaochao Chen, Wenjing Fang,
Lei Wang, Zeke Wang, and Wenzhi Chen. Cuzk: Accelerating zero-
knowledge proof with a faster parallel multi-scalar multiplication
algorithm on gpus. Cryptology ePrint Archive, 2022.

[37] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. Journal of the ACM
(JACM), 39(4):859–868, 1992.

[38] Weiliang Ma, Qian Xiong, Xuanhua Shi, Xiaosong Ma, Hai Jin,
Haozhao Kuang, Mingyu Gao, Ye Zhang, Haichen Shen, and Weifang
Hu. Gzkp: A gpu accelerated zero-knowledge proof system. In Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
pages 340–353, 2023.

14

https://github.com/arkworks-rs/sumcheck
https://cysic.xyz
https://cysic.xyz
https://github.com/filecoin-project/bellperson
https://www.gizatech.xyz/
https://www.gizatech.xyz/
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
https://www.ingonyama.com/
https://github.com/ingonyama-zk/icicle

[39] Ralph C Merkle. A digital signature based on a conventional en-
cryption function. In Conference on the theory and application of
cryptographic techniques, pages 369–378. Springer, 1987.

[40] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

[41] Wouter Penard and Tim vanWerkhoven. On the secure hash algorithm
family. Cryptography in context, pages 1–18, 2008.

[42] Polyhedra. Empowering interoperability and computation via zk.
bringing interoperability and scalability to web3 with cutting-edge
zero-knowledge proof systems. https://www.polyhedra.network/.

[43] Pytorch. A fast, flexible experimentation and efficient production
through a user-friendly front-end, distributed training, and ecosystem
of tools and libraries., 2024.

[44] Andy Ray, Benjamin Devlin, Fu Yong Quah, and Rahul Yesantharao.
Hardcaml msm: A high-performance split cpu-fpga multi-scalar multi-
plication engine. In Proceedings of the 2024 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages 33–39, 2024.

[45] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage (TOS), 9(3):1–32, 2013.

[46] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE symposium on security
and privacy, pages 459–474. IEEE, 2014.

[47] scipr lab. This library implements zksnark schemes, which are a
cryptographic method for proving/verifying, in zero knowledge, the
integrity of computations. https://github.com/scipr-lab/libsnark.

[48] Scroll. Scroll seamlessly extends ethereum’s capabilities through
zero knowledge tech and evm compatibility. the l2 network built by
ethereum devs for ethereum devs. https://scroll.io/.

[49] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. In Annual International Cryptology Conference, pages
704–737. Springer, 2020.

[50] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup
singularity with lasso. Cryptology ePrint Archive, 2023.

[51] Simon. Gpu accelerated high-speed merkle tree computation for
bitcoin. https://github.com/shilch/fastmerkle.

[52] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[53] Swaminathan Sivasubramanian. Amazon dynamodb: a seamlessly
scalable non-relational database service. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data, pages
729–730, 2012.

[54] Daniel A Spielman. Linear-time encodable and decodable error-
correcting codes. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 388–397, 1995.

[55] Victor Vu, Srinath Setty, Andrew J Blumberg, and Michael Walfish.
A hybrid architecture for interactive verifiable computation. In 2013
IEEE Symposium on Security and Privacy, pages 223–237. IEEE, 2013.

[56] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zksnarks without trusted setup. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 926–943. IEEE, 2018.

[57] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang.
Mystique: Efficient conversions for {Zero-Knowledge} proofs with
applications to machine learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 501–518, 2021.

[58] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa,
and Ion Stoica. {DIZK}: A distributed zero knowledge proof system. In
27th USENIX Security Symposium (USENIX Security 18), pages 675–692,
2018.

[59] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papaman-
thou, and Dawn Song. Libra: Succinct zero-knowledge proofs with
optimal prover computation. In Advances in Cryptology–CRYPTO
2019: 39th Annual International Cryptology Conference, Santa Barbara,

CA, USA, August 18–22, 2019, Proceedings, Part III 39, pages 733–764.
Springer, 2019.

[60] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng
Zhang, Yongzheng Jia, Dan Boneh, andDawn Song. zkbridge: Trustless
cross-chain bridges made practical. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages
3003–3017, 2022.

[61] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowl-
edge proof with linear prover time. In Annual International Cryptology
Conference, pages 299–328. Springer, 2022.

[62] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song,
Xiang Xie, and Yupeng Zhang. Doubly efficient interactive proofs for
general arithmetic circuits with linear prover time. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 159–177, 2021.

[63] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Trans-
parent polynomial delegation and its applications to zero knowledge
proof. In 2020 IEEE Symposium on Security and Privacy (SP), pages
859–876. IEEE, 2020.

[64] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao,
Fan Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun.
Pipezk: Accelerating zero-knowledge proof with a pipelined archi-
tecture. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 416–428. IEEE, 2021.

[65] Baoze Zhao, Wenjin Huang, Tianrui Li, and Yihua Huang. Bstmsm: A
high-performance fpga-based multi-scalar multiplication hardware
accelerator. In 2023 International Conference on Field Programmable
Technology (ICFPT), pages 35–43. IEEE, 2023.

15

https://www.polyhedra.network/
https://github.com/scipr-lab/libsnark
https://scroll.io/
https://github.com/shilch/fastmerkle

	Abstract
	1 Introduction
	2 Background
	2.1 Zero-Knowledge Proof and its Applications
	2.2 Merkle Tree
	2.3 Sum-check Protocol
	2.4 Linear-time Encoder

	3 Pipelined ZKP Modules on GPU
	3.1 Pipelined Merkle Tree
	3.2 Pipelined Sum-check Protocol
	3.3 Pipelined Linear-time Encoder

	4 Fully Pipelined ZKP System on GPU
	5 Application
	6 Evaluation
	6.1 Experimental Setup
	6.2 Evaluating Pipelined ZKP Modules
	6.3 Evaluating our Pipelined ZKP System

	7 Related Works
	8 Conclusion
	References

