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Abstract. Boneh et al. (CRYPTO’18) proposed two t-out-of-N thresh-
old fully homomorphic encryption (TFHE) schemes based on Shamir se-
cret sharing scheme and {0, 1}-linear secret sharing scheme. They demon-
strated the simulation security, ensuring no information leakage during
partial or final decryption. This breakthrough allows any scheme to be
converted into a threshold scheme by using TFHE.

We propose two polynomial time algorithms to break the simulation secu-
rity of t-out-of-N TFHE based on Shamir secret sharing scheme proposed
by Boneh et al.. First, we show that an adversary can break the simu-
lation security by recovering the secret key under some constraints on t
and N , which does not violate the conditions for security proof. Next,
we introduce a straightforward fix that theoretically satisfies the simula-
tion security. However, we argue that this modification remains insecure
insecure when implemented with any state-of-the-art fully homomorphic
encryption libraries in practice. To ensure robustness against our subse-
quent attacks, we recommend using an error-refreshing algorithm, such
as bootstrapping or modulus switching, for each addition operation.

Keywords: Threshold Fully Homomorphic Encryption, Shamir secret
sharing scheme, Cryptanalysis

1 Introduction

Threshold cryptography [28,30,33] has been considered as one of the fundamental
foundations in cryptography. It splits the secret key into N secret shares, with
each share stored on a different server. A t-out-of-N threshold access structure
ensures that at least t shares are required to decrypt a ciphertext, while any set
of t− 1 shares reveals no information about the secret.

Over the past few decades, many threshold signatures, and encryptions have
been proposed. Most of them are built on the pre-quantum hardness such as
factoring [26,28,33,37,46] and discrete logarithm [15,16,22,24,25,31,34–36,40,
42,47].



Recently, due to the growing threat of quantum computing, there have been
several researches to construct post-quantum threshold cryptosystems, particu-
larly lattice-based encryptions [7,10,11,18,23,43], and signatures [4,8,27,29,39].
Many of these lattice-based threshold primitives are built from lattice-friendly
secret sharing schemes such as Shamir secret sharing [45], {0, 1}-linear secret
sharing ({0, 1}-LSSS) [10], Tree secret sharing scheme (TreeSSS) [18] and pseu-
dorandom secret sharing [11,21].

In their pioneering work on one-round threshold primitives, Boneh et al. [10]
introduced the concept of a universal thresholdizer, demonstrating that the ex-
istence of threshold fully homomorphic encryption (TFHE) enables the trans-
formation of any scheme into a threshold scheme. They also proposed two one-
round TFHE schemes by combining secure fully homomorphic encryptions with
Sharmir secret sharing and {0, 1}-LSSS, respectively. Following this, Boudgoust
and Scholl [11] proposed selectively secure TFHE constructions using {0, 1}-LSSS
and pseudorandom secret sharing, respectively. Cheon, Cho and Kim [18] later
suggested a communication efficient one round TFHE construction based on a
new secret sharing scheme, called TreeSSS.

Each TFHE construction should satisfy simulation security beyond the se-
mantic security. Informally, the simulation security ensures that no information
about the key shares or messages should leak during partial or final decryp-
tion, except for what is inherently revealed by the results of the homomorphic
operations.

1.1 This work

This paper presents two types of polynomial time algorithms for breaking the
simulation security of t-out-of-N TFHE based on Shamir secret sharing scheme
in [10, Sec. 5.3]. We state the first result independent to underlying FHE schemes.

Theorem 1.1 (Informal) Let FHE be a fully homomorhpic encryption that
satisfies the following decryption: For a ciphertext ct of message m and a secret
key sk, a decryption algorithm consists of two steps4:

1. Compute ⟨ct, sk⟩ mod q = ⌊ q2⌉m+ (N !)2 · e.5

2. Recover m from ⟨ct, sk⟩ mod q

where |e| ≤ B for some bound B.
Let TFHE be a t-out-of-N threshold fully homomorphic encryption based on

FHE and Shamir secret sharing as in [10, Sec. 5.3]. Then, the following holds:

– If B ≤ N
7
10

t
log t , then one can (heuristically) break the simulation security of

TFHE in polynomial time with probability at least 1/2.

4 Boneh et al. [10] argued that certain well-known FHE schemes [13, 14, 38] can be
adapted to satisfy the properties.

5 We mainly describe a scale-invariant style decryption, but our attack also works for
BGV-style decryption that ⟨ct, sk⟩ mod q = m+ p · e for some prime p ≪ q.
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– If
√
t+ 1 · B ≤ N

2t
5 and 2t ≤ N , then one can (heuristically) break the

simulation security of TFHE in polynomial time with probability at least 1/2.

The first result is quite impressive, but there is a quick fix to make it robust
against our attack. By utilizing FHE scheme such that

⟨ct, sk⟩ mod q = ⌊q
2
⌉m+ (N !)4 · e,

the attack in Theorem 1.1 is no longer applicable. Furthermore, following the
original proof, the modified scheme achieves the simulation security.

The second result concerns the new TFHE scheme with an error (N !)4 · e.
To distinguish it from the original TFHE in [10, Sec. 5.3], we call the modified
scheme, TFHE′. We assert that TFHE′ remains insecure when instantiated using
state-of-the-art FHE libraries such as OpenFHE, HElib, and SEAL [1–3, 6, 44].
More precisely, if FHE scheme implements homomorphic evaluation for the addi-
tion circuit as the ciphertext addition, then TFHE′ built from such a FHE cannot
achieve the simulation security. These results reveal a security gap between the
theoretical and practical use of current libraries. To mitigate this, we recommend
incorporating an error-refreshing algorithm, such as bootstrapping or modulus
switching, to ensure robustness against our second attack. However, it is crucial
to note that implementing these algorithms could impact performance efficiency.

As a side contribution, the practical instantiation of the universal thresh-
oldizer (UT) based on Shamir’s TFHE in [10, Sec. 7] is also vulnerable in a
similar manner.

Additionally, we identify a flaw in the proof of the simulation security of
TFHE that affects the construction presented in the paper. Specifically, the proof
of [10, Thm. 5.14] consists of a sequence of hybrid experiments:

– Game 0: The real game.
– Game 1: Identical to Game 0, except for the partial decryption phases.
– Game 2: The ideal game.

Boneh et al. [10] demonstrated that Game 0 and Game 1 are statistically indis-
tinguishable using the noise smudging lemma [5]. The proof primarily focuses on
simulating partial decryptions. However, the partial decryption process in Game
0 differs from that in Game 1 due to the algebraic structure of the error term
during partial decryption. Further details are discussed in Section 3.2.

Attack Overview. To describe an idea of our attack, we briefly recap a thresh-
old primitive from Shamir secret sharing. Consider FHE in Theorem 1.1, and let
sk ∈ Zn

q be a secret key of FHE.
During the setup phase of the threshold variant of FHE, denoted by TFHE, a

dealer applies Shamir t-out-of-N secret sharing to sk to generate N keys, called
{ski}i∈[N ], where each ski is assigned to a user i. This sharing ensures that for
any set S ⊂ [N ] of size t, there exist the (public) Lagrange coefficients λS

i such
that ∑

i∈S

λS
i · ski = sk.
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The encryption algorithm remains the same as in the original fhe, but the
threshold decryption differs significantly: To decrypt a ciphertext ct, each user
first computes pi = ⟨ct, ski⟩ + (N !)2 · ei for some small ei. Next, for any subset
S ⊂ {1, . . . , N} of size t, the combiner compute6∑

i∈S

λS
i · pi =

∑
i∈S

λS
i · (⟨ct, ski⟩+ (N !)2 · ei) mod q

= ⟨ct, sk⟩+
∑
i

λS
i · (N !)2 · ei mod q

= ⌊q
2
⌉m+ (N !)2 · e+

∑
i

λS
i · (N !)2 · ei mod q

where (N !)2 ·e is an error derived from ct. If (N !)2 ·e+
∑

i λ
S
i ·(N !)2 ·ei is smaller

than q/4, then a combiner can decrypt a binary message m from ct by checking
the size [

∑
i∈S λS

i · pi]q.
In a nutshell, the simulation security of the t-out-of-N TFHE construction of

[10] asserts that the error e is not revealed even if the adversary A has access
to t − 1 secret shares {ski}i∈S∗ , where S∗ is a maximal invalid set of size t −
1. We demonstrate that the adversary can exploit the algebraic structure of∑

i ∈ SλS
i ·pi to recover information. For simplicity, we let S = {1, 2, . . . , t} and

S∗ = {2, . . . , t} be a maximal invalid set of size t− 1.
We emphasize thatA knows {ei}i∈S∗ . Hence, the adversaryA can have access

to the following

E = (N !)2 · e+ λS
1 · (N !)2 · e1 ∈ Z

by handling the decryption algorithm. In this equation, there are only two un-
knowns: e and e1. Given size constraints for e and e1, these values can be uniquely
determined.

Once the attacker A recovers e from E, they can also compute ct − (N !)2 ·
e = ⟨a, sk⟩ for some a ∈ Zn

q . By repeating this process for sufficiently many
ciphertexts cti, the attacker can obtain ⟨ai, sk⟩ for some vectors ai. Using linear
algebra, sk can then be recovered through Gaussian elimination, which runs in
polynomial time with respect to n. Thus, the remaining challenge is to recover
e from E. The detailed algorithm for recovering e will be provided in the main
section.

Related Work. Recently, two papers [17, 19] have examined the insecurity of
TFHE schemes under the IND-CPAD model from [41]. Specifically, both papers
propose efficient attacks on various FHE schemes, such as BGV [9], BFV [12,32],
and Torus-FHE [20]. They further argue that the threshold variants of these FHE
schemes would also be vulnerable if the underlying FHE schemes are not secure
against their attacks.

In contrast, we present a direct attack on TFHE itself, independent of the
security of the underlying FHE scheme.

6 In the simulation security of TFHE, attackers can access any set of partial decryptions
{pi}i∈S . Thus, the combiner can perform the computation.
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2 Preliminaries

Notations. Vectors and matrices are represented by bold letters. For any pos-
itive integer n, we denote the set 1, . . . , n by [n]. For any set S, the notation
x← S indicates that x is sampled from a uniform distribution over S.

2.1 Shamir Secret Sharing

For any subset S ⊂ [N ]∪{0} of size t, we define the Lagrange coefficient λS
i,j ∈ Zq

as follows:

λS
i,j =

∏
x∈S
x̸=i

j − x

i− x
.

Theorem 2.1 (Shamir Secret Sharing [45]) Let P = {1, . . . , N} be a set
of participants and t be a threshold. Then, t-out-of-N threshold Shamir Secret
Sharing with secret space Zq for some prime q satisfies the following:

– SS.Share(w0): For any input w0 ∈ Zq, a dealer distributes a single element
wi ∈ Zq to each party i ∈ P .

– SS.Combine: For every i, j ∈ [N ] ∪ {0} and set S ⊂ [N ] ∪ {0} of size ≥ t,
one can efficiently compute the Lagrange coefficients λS

i,j ∈ Zq such that

wj =
∑
i∈S

λS
i,j · wi.

For any subset S′ of size less than t, the set of shares {wi}i∈S′ is indistinguishable
from the set of {w′

i}i∈S′ where w′
i ← Zq for all i ∈ S′.

2.2 Fully Homomorphic Encryption

Here we describe a syntax of LWE-based fully homomorphic encryptions, de-
noted by FHE, consist of four algorithms FHE.Setup,FHE.Enc,FHE.Eval and
FHE.Dec.

– (pk, sk)← FHE.Setup(1λ, 1d): For the security parameter λ and pre-determined
depth bound d, returns a pair of keys (pk, sk).

– ct ← FHE.Enc(pk,m): For the public key pk and a message m ∈ {0, 1},
returns a ciphertext ct.

– ĉt← FHE.Eval(pk, C, ct1, . . . , ctk): For the public key pk, a circuit C of depth
at most d, and a family of ciphertexts {cti}i=1,...,k, return an evaluated
ciphertext ĉt.

– m̂← FHE.Dec(sk, pk, ĉt): For the public key pk and the secret key sk, and a
ciphertext ĉt, returns a message m̂.
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The FHE primitives that we consider should satisfy the following decryption
phase, called a special decryption.

Definition 2.2 (Special Decryption) For a ciphertext modulus q, it holds
that

1. Compute ⟨ct, sk⟩ mod q = ⌊ q2⌉m+ c · e
2. Recover m from ⟨ct, sk⟩ mod q.

where e ∈ [−B,B] for some noise parameter B and multiplicative constant c. If
a fully homomorphic encryption scheme FHE satisfies a special decryption, then
we say it a special FHE.

We note that the multiplicative constant c depends on the secret sharing schemes.
For example, TFHE from Shamir secret sharing exploits a numerous constant
c = (N !)2 and TFHE from {0, 1}-LSSS uses c = 1.

Fortunately, Boneh et al. [10] argued that some well-known FHE schemes
[13, 14, 38] can be adapted to satisfy the properties. In this case, we sometimes
call it Special FHE.

2.3 Threshold Fully Homomorphic Encryption

This section presents a syntax of threshold fully homomorphic encryptions for
t-out-of-N access structure, denoted by TFHE. Suppose that P = {P1, . . . , PN}
be a set of parties.

– (pk, sk1, . . . , skN ) ← TFHE.Setup(1λ, 1d): For the security parameter λ and
pre-determined depth bound d, returns a public key pk and a set of secrets
sk1, . . . , skN .

– ct ← TFHE.Enc(pk,m): For the public key pk and a message m ∈ {0, 1},
returns a ciphertext ct.

– ĉt ← TFHE.Eval(pk, C, ct1, . . . , ctk): For the public key pk, a circuit C of
depth at most d, and a family of ciphertexts {cti}i=1,...,k, return an evaluated
ciphertext ĉt.

– pi ← TFHE.ParDec(pk, ski, ct): For the public key pk, a secret key share ski
and a ciphertext ct, returns a partial decryption pi, related to a party Pi.

– m̂ ← TFHE.FinDec(pk, J): For the public key pk and a set J = {pi}i∈S for
some S ⊂ P , returns a message m̂ ∈ {0, 1,⊥}.

The detailed construction of TFHE will be deferred in Section 3.1.

3 Threshold Fully Homomorphic Encryption from
Shamir Secret Sharing

In this section, we revisit the threshold fully homomorphic encryption scheme
based on Shamir’s secret sharing and FHE as presented in [10]. We begin by
providing a description of the scheme and then point out a flaw in the proof of
its simulation security.
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3.1 TFHE Construction from FHE and Shamir secret sharing

Let P = P1, . . . , PN be a set of parties, and let FHE be a lattice-based fully
homomorphic encryption scheme that satisfies special decryption (Definition 2.2)
with a multiplicative constant (N !)2 and a noise bound parameter B. Let SS
denote a Shamir secret sharing scheme for a t-out-of-N threshold access structure
as described in Theorem 2.1. Based on FHE and SS, a t-out-of-N threshold FHE,
denoted by TFHE, can be constructed as follows:

– TFHE.Setup(1λ, 1d) :

• Sample (fhepk, fhesk)← FHE.Setup(1λ, 1d)

• Divide fhesk into secret shares (fhesk1, . . . , fheskN )← SS.Share(fhesk)

• Set pk = fhepk and ski = fheski ∈ Zn
q for all i.

– TFHE.Enc(pk,m) :

Sample ct← FHE.Enc(pk,m) and return ct.

– TFHE.Eval(pk, C, {cti}) :
Compute ĉt← FHE.Eval(C, {cti}) and return ĉt.

– TFHE.ParDec(pk, ct, ski) :

• Sample a noise smudging error ei ← [−Bsm, Bsm]

• Compute pi = ⟨ct, ski⟩+ (N !)2 · ei ∈ Zq and return pi.

– TFHE.FinDec(pk, J) :

• Given J = {pi}i∈S for some S ⊂ P , compute |S|.

• If |S| < t, then return ⊥. Otherwise, compute the Lagrange coefficient
λS
i,0 for all i.

• Compute
∑

i λ
S
i,0 · pi and reconstruct a message m from

∑
i λ

S
i,0 · pi.

In this context, the noise bound parameter B must satisfy B·N !+(N !)3·N ·Bsm ≤
q/4 for correctness, and B/Bsm = negl(λ), where λ is the security parameter.
Under these parameter constraints, and assuming the security of both FHE and
SS, Boneh et al. proved that TFHE satisfies simulation security, provided that
FHE and SS are secure [10, Thm. 5.14]. We define the notion of simulation
security in Section 3.2.

Theorem 3.1 ([10, Thm. 5.14]) Suppose FHE is a fully homomorphic en-
cryption scheme that satisfies special decryption (Definition 2.2) and security,
and SS is a Shamir secret sharing scheme (Theorem 2.1). Then, the TFHE
scheme in Section 3.1 with parameter Bsm such that B/Bsm = negl(λ) satis-
fies simulation security.
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3.2 Flaw in the security proof of TFHE Shamir secret sharing

This section describes a flaw in the security proof of TFHE from Shamir secret
sharing. We first recall the definition of simulation security and the proof of
Theorem 3.1.

Definition 3.2 (Simulation Security [10]) For any adversary A, if there ex-
ists a stateful PPT algorithm S = (S1,S2) such that the following experiments
ExpA,Real(1

λ, 1d) and ExpA,Ideal(1
λ, 1d) are indistinguishable, a TFHE scheme sat-

isfies simulation security with a security parameter λ, depth bound d.
ExpA,Real(1

λ, 1d) :

1. The challenger C runs (pk, sk1, . . . , skN )← TFHE.Setup(1λ, 1d) and sends pk
to A.

2. A outputs a maximal invalid party set7 S∗ ⊆ {P1, . . . , PN} and messages
m1, . . . ,mk ∈ {0, 1}.

3. C provides the key {ski}i∈S∗ and {TFHE.Encrypt(pk,mi)}i∈[k] to A.
4. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN},

C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, C
computes ĉt ← TFHE.Eval(pk, C, ct1, . . . , ctk) and provides partial decryp-
tions {TFHE.PartDec(pk, ĉt, ski)}i∈S to A.

5. At the end of the experiment, A outputs a distinguishing bit b.

ExpA,Ideal(1
λ, 1d) :

1. The challenger C runs (pk, sk1, . . . , skN )← S1(1λ, 1d) and sends pk to A.
2. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} and messages

m1, . . . ,mk ∈ {0, 1}.
3. C provides the key {ski}i∈S∗ and {TFHE.Encrypt(pk,mi)}i∈[k] to A.
4. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN},

C) for circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the
challenger C runs simulator {pi}i∈S ← S2(C, {ct1, . . . , ctk}, C(m1, . . . ,mk), S, st)
and sends {pi}i∈S to A.

5. At the end of the experiment, A outputs a distinguishing bit b.

The proof of Theorem 3.1 proceeds a sequence of hybrid experiments,H0, H1,
and H2 between an adversary and a challenger.

– H0: Real experiment
– H1: Identical to H0 except that for partial decryption phases.

- If i ∈ S∗, then C returns pi = ⟨ĉt, ski⟩ + (N !)2 · ei mod q where ei ←
[−Bsm, Bsm]

- If i /∈ S∗, then C outputs pi defined by

λS∗

0,i · ⌊
q

2
⌉ · C(m) +

∑
j∈S∗

λS∗

j,i · (⟨ĉt, skj⟩) + (N !)2 · ei mod q

where ei ← [−Bsm, Bsm] and C(m) = C(m1, . . . ,mk).

7 For t-out-of-N access structure, a maximal invalid party is identical to a subset S∗

of parties of size t− 1.
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– H2: Ideal experiment

Flaw in the security proof of [10]. In [10], they (incorrectly) proved that
H1 and H0 are indistinguishable. To be precise, on page 53, given a relation
⌊ q2⌉ · C(m) = FHE.Dec0(sk, ĉt) + ẽ, they showed that

pi = λS∗

0,i · ⌊
q

2
⌉ · C(m) +

∑
j∈S∗

λS∗

j,i · FHE.Dec(skj , ĉt) + (N !)2 · e,

which is identical to the following

λS∗

0,i · FHE.Dec0(sk, ĉt) + ẽ+
∑
j∈S∗

λS∗

j,i · FHE.Dec(skj , ĉt) + (N !)2 · e.

For correctness, the term ẽ should be replaced by λS∗

0,i · ẽ, not solely ẽ. The flaw
messes up the proof. In fact, we can show that H0 and H1 can be distinguished.

3.3 Distinguishability between H0 and H1

We now demonstrate that H0 and H1 are distinguishable, even though ?? re-
mains valid. For simplicity, we assume the following: Given a proper maximal
invalid set S∗, a circuit C, and messages mi ∈ 0, 1 such that C(m1, . . . ,mk) = 0,
C can compute ĉt as defined in Definition 3.2 Then, we first observe that

⟨ĉt, sk⟩ mod q = ⌊q
2
⌉ · C(m) + (N !)2 · e = (N !)2 · e

for some e ∈ [−B,B] by Definition 2.2. Moreover, A already possesses a set of
secret shares {ski}i∈S∗ . In other words, when C computes pi = ⟨ĉt, ski⟩ mod q+
(N !)2 · ei for i ∈ S∗, A can recover each ei by removing the term ⟨ĉt, ski⟩ mod q
for every i ∈ S∗. Thus, in the following, we consider ei to be zero when i ∈ S∗.

Decryption in H0). For each adaptive query S ⊂ {P1. . . . , PN}, C provides set
of partial decryptions

pi = TFHE.PartDec(pk, ĉt, ski) = ⟨ĉt, ski⟩+ (N !)2 · ei mod q,

when j /∈ S∗. We here note ei ← [−Bsm, Bsm]. Hence, A can run the final
decryption phase as follows:

λS∗

i,0 · pi +
∑
j∈S∗

λS∗

j,0 · (⟨ĉt, skj⟩) mod q

By definition of pi, it is represented by

λS∗

i,0 ·
(
⟨ĉt, ski⟩+ (N !)2 · ei

)
+
∑
j∈S∗

λS∗

j,0 · (⟨ĉt, skj⟩) mod q.

9



Moreover, due to the linear property of inner products, we have

⟨ĉt, λS∗

i,0 · ski +
∑
j∈S∗

λS∗

j,0 · skj⟩+ λS∗

i,0 · (N !)2 · ei mod q,

which is identical to

⟨ĉt, sk⟩+ λS∗

i,0 · (N !)2 · ei mod q.

Hence, in the game H0, an attacker finally gets

⌊q
2
⌉ · C(m) + (N !)2 · e+ λS∗

i,0 · (N !)2 · ei = (N !)2 · e+ λS∗

i,0 · (N !)2 · ei ∈ Z

if B ·N ! + (N !)3 ·N ·Bsm ≤ q/4.

Decryption in H1). For each adaptive query S ⊂ {P1. . . . , PN}, C provides set
of partial decryptions

p̃i = λS∗

0,i · ⌊
q

2
⌉ · C(m) +

∑
j∈S∗

λS∗

j,i · ⟨ĉt, skj⟩+ (N !)2 · ẽi mod q,

since C does not know skj when j /∈ S∗. Here, it satisfies that ẽi ← [−Bsm, Bsm].
Due to ⟨ĉt, sk⟩ = ⌊ q2⌉ · C(m) + (N !)2 · e, p̃i can be represented by

p̃i = λS∗

0,i ·
(
⟨ĉt, sk⟩ − (N !)2 · e

)
+
∑
j∈S∗

λS∗

j,i · ⟨ĉt, skj⟩+ (N !)2 · ẽi mod q.

Moreover, the linearity of an inner product, it satisfies that

p̃i = ⟨ĉt, λS∗

0,i · sk+
∑
j∈S∗

λS∗

j,i skj⟩ − λS∗

0,i · (N !)2 · e+ (N !)2 · ẽi mod q.

On the other hand, the correctness Shamir secret sharing scheme implies λS∗

0,i ·
sk+

∑
j∈S∗ λS∗

j,i skj = ski. Thus, p̃i can be expressed as

⟨ĉt, ski⟩ − λS∗

0,i · (N !)2 · e+ (N !)2 · ẽi mod q.

On the other hand, A can compute the decryption of ĉt as follows:

λS∗

i,0 · p̃i +
∑
j∈S∗

λS∗

j,0 · (⟨ĉt, skj⟩ mod q).

By definition of p̃i and the linearity of inner products, the above equation is
identical to

⟨ĉt, λS∗

i,0 · ski +
∑
j∈S∗

λS∗

j,0 · skj︸ ︷︷ ︸
sk

⟩ − λS∗

i,0 · λS∗

0,i · (N !)2 · e+ λS∗

i,0 · (N !)2 · ei.

10



Moreover, by definition of the Lagrange’s coefficients, it holds λS∗

i,0 · λS∗

0,i = 1.
Therefore, A finally has

⟨ĉt, sk⟩ − (N !)2 · e+ λS∗

i,0 · (N !)2 · ei.

By definition, it can be represented by

⌊q
2
⌉ · C(m) + λS∗

i,0 · (N !)2 · ei = λS∗

i,0 · (N !)2 · ei,

which implies A gets λS∗

i,0 · (N !)2 · ei over Z.

Distinguishing H0 and H1. Following the paragraphs, we can summarize that
A can obtains the following information

– From H0, A gets E0 = (N !)2 · e+ λS∗

i,0 · (N !)2 · ei over Z
– From H1, A gets E1 = λS∗

i,0 · (N !)2 · ei over Z.

Under the condition that B/Bsm = negl(λ), the distributions are computa-
tionally indistinguishable. However, this setup introduces an algebraic relation.
Specifically, A also knows that λS∗

i,0 = a
b mod q ∈ Zq, where a and b are relatively

prime integers. On the other hand, λS∗

i,0 · (N !)2 must be an integer.

Assuming that (N !)2 can be expressed as b · c for some integer c ∈ Z, it
follows that λS∗

i,0 · (N !)2 = a · c.
As a result, E1 must be a multiple of a·c, while E0 only needs to be a multiple

of c. For E0 to also be a multiple of a · c, the error term e must be divisible by
a. The probability of this happening is less than 1/a ≤ 1/2.

Thus, by checking whether Eβ is divisible by a · c, A can easily determine
whether β = 0 or β = 1. This distinction shows that H0 and H1 are distinguish-
able, contradicting the original proof.

4 Breaking TFHE from Shamir Secret Sharing

We now present a polynomial time algorithm for breaking TFHE in Section 3.1
for t-out-of-N threshold access structure under some constraints.

By definition of the simulation security (Definition 3.2), the adversary A out-
puts a maximal invalid party set S∗, and messages. Furthermore, the simulation
security provides a set of partial decryptions {pi}i∈S to A, where S is a set con-
taining S∗ of size t. We here denote the maximal invalid set S∗ by {2, . . . , t− 1},
and S = {1} ∪ S∗ for simplicity.

We now delve into the details of the final decryption phase. First, parties in
S can compute the Lagrange coefficient λS

i,0 and∑
i∈S

λS
i,0 · pi =

∑
i∈S

λS
i,0 · (⟨ct, ski⟩+ (N !)2 · ei) mod q

= ⟨ct, sk⟩+
∑
i∈S

λS
i,0 · (N !)2 · ei mod q

11



= ⌊q
2
⌉m+ (N !)2 · e+

∑
i∈S

λS
i,0 · (N !)2 · ei mod q.

where (N !)2 · e is an error in ciphertext ct of size less than B · (N !)2. Here,
we note that (N !)2 · e +

∑
i∈S λS

i,0 · (N !)2 · ei is smaller than q/4 because of

B · (N !)2 + (N !)3 ·N ·Bsm ≤ q/4. Then, one can recover the message m ∈ {0, 1}
by checking the size of

[∑
i∈S λS

i,0 · pi
]
q
.

We now intend to describe an algorithm for recovering the e from the in-
termediate term

[∑
i∈S λS

i,0 · pi
]
q
. Since the decryption algorithm outputs m, A

can remove ⌊ q2⌉ ·m.
Here, we also remark that the adversary A effortlessly compute λS

i,0 for all
i. Moreover, A has access to ei with i ∈ S. This collective knowledge, shared
among the colluding parties, gives a relation

∑
i∈S

λS
i,0 · pi −

t−1∑
i=2

λS
i,0 · (N !)2 · ei mod q = (N !)2 · e+ λS

1,0 · (N !)2 · e1.

From the above size constraint B ·(N !)2+(N !)3 ·N ·Bsm ≤ q/4, the last equation
is defined over Z, not Zq. For a simple description, we let E denote the term:

E = (N !)2 · e+ λS
1,0 · (N !)2 · e1 ∈ Z. (1)

In conclusion, the adversary A obtains E leveraging the final decryption
phase. As the next step, we describe an algorithm for recovering e, noise of
ciphertext of TFHE from E.

Recover e from E. Let g = gcd((N !)2, λS
1,0 · (N !)2) and consider the following

relation:

E/g = (N !)2/g · e+ (λS
1,0 · (N !)2)/g · e1

= (N !)2/g · e mod (λS
1,0 · (N !)2)/g.

Therefore, if |e| ≤ λS
1,0·(N !)2

2g , then e can be exactly determined, as C, (N !)2, g, λS
1,0

are already known to A.
Once the attacker gets e from ct, then the attacker obtains ct − (N !)2 · e =

⟨a, sk⟩ for some known a ∈ Zn
q . Hence, for sufficiently many ciphertexts cti, by

repeating the same process, we can obtain a family of inner products ⟨ai, sk⟩ for
some ai. After that, by the linear algebra, we can recover sk using the Gaussian
elimination, which takes polynomial time in n.

4.1 Attack amplification

In the following, we state how to mitigate the constraint for breaking the TFHE
by leveraging several partial decryptions.

Let H be a set of honest participants of size h and Sk = S∗⊔{k} where
k ∈ H. For simplicity, we assume that H = {1, 2, . . . , h} and S∗ is a subset of
{h+ 1, . . . , N} of size t− 1. Let ct be a ciphertext of a message m = 0.

12



Then, since |Sk| = t, by definition of TFHE, Sk can conduct the final decryp-
tion algorithm. As the previous section, each Sk can compute the following:∑

i∈Sk

λSk
i,0 · pi =

∑
i∈Sk

λSk
i,0 · (⟨ct, ski⟩+ (N !)2 · ei) mod q

= ⟨ct, sk⟩+
∑
i∈Sk

λSk
i,0 · (N !)2 · ei mod q

= ⌊q
2
⌉m+ (N !)2 · e+

∑
i∈Sk

λSk
i,0 · (N !)2 · ei mod q

= (N !)2 · e+
∑
i∈Sk

λSk
i,0 · (N !)2 · ei

where (N !)2 ·e is an error in FHE ciphertext ct and λSk
i,0 is the Lagrange coefficient

corresponding to the set Sk. By reducing the term {ei}i∈S∗ shared noise terms
from the adversary, A can obtain relations

Ek = (N !)2 · e+ λSk

k,0 · (N !)2 · ek for k ∈ H.

From the same argument as the above, each Ek is lying over Z. We then consider
a set of equations of Ek/gk, where gk = gcd((N !)2, λSk

k,0 · (N !)2) for k ∈ H:{
Ek/gk = (N !)2/gk · e+ (λSk

k,0 · (N !)2)/gk · ek
}
k∈{1,...,h}

. (2)

To represent these relations as a matrix multiplication, we let e = (e, e1, . . . , eh),
c = (E1/g1, . . . , Eh/gh), and define A as following:

A =


(N !)2

g1
−λS1

1,0 ·
(N !)2

g1
(N !)2

g2
−λS2

2,0 ·
(N !)2

g2
...

. . .
(N !)2

gh
−λSh

h,0 ·
(N !)2

gh

 .

Under the notation, A · e = c over Z.
Once e is obtained from the linear system, as in the previous attack, one can

recover the secret key in polynomial time in n.

Recover e from (A, c). The remaining part is to find e from a pair (A, c)
satisfying A · e = c. Since the rank of A is obviously h, the orthogonal comple-
ment A⊥ can be generated by a single vector, denoted by a. We also let e0 be a
particular solution such that A · e0 = c. Then, e can be expressed as e0 + a · y
for some integer y.

We first define a diagonal matrix H ∈ Z(h+1)×(h+1) as diag
(
Bsm

B , 1, . . . , 1
)

to balance the entries of e. We then intend to find a vector H · e from the set
H · e0 +H · a · Z.

To this end, we will show that H · e is the shortest vector of H · e0 +H ·a ·Z
when

√
h+ 1 · Bsm ≤ ∥H · a∥. This is because ∥H · e∥ ≤

√
h+ 1 · Bsm. With

13



an obvious computation, one can show that the size of a vector of the form

H · e0 + H · a · y becomes smallest when y = −
⌊
⟨H·e0,H·a⟩
⟨H·a,H·a⟩

⌉
. Thus, one can

recover the target vector H ·e (Resp. e) in polynomial time under the constraint

√
h+ 1 ·Bsm ≤ ∥H · a∥. (3)

Therefore, it suffices to describe the attack constraint of Eq. (3) with respect
toM. To estimate a lower bound of ∥H · a∥, we initially consider a vector

t =

(
L′,

L′

λS1
1,0

,
L′

λS2
2,0

, 0 . . . , 0

)
,

given the least common multiple L′ of (λS1
1,0 · (N !)2)/g1 and (λS2

2,0 · (N !)2)/g2.

We note that the vector ((λS1
1,0 · (N !)2)/g1, (N !)2/g1, . . . , 0) is orthogonal to the

first row of A, and the vector ((λS2
2,0 · (N !)2)/g2, 0, (N !)2/g2, . . . , 0) is orthogonal

to the second row of A, respectively. It implies that t is the smallest vector
orthogonal to the first and second row of A at the same time.

With an obvious extension, one can verify that the vector a is of the form:

a =

(
L,

L

λS1
1,0

,
L

λS2
2,0

, . . . ,
L

λSh

h,0

)
,

where L is the least common multiple of {(λSi
i,0 · (N !)2)/gi}1≤i≤h. This ensures

that ∥H · a∥ ≥ Bsm

B · L. Combining it with the above attack constraint, one can

recover the noise vector e when L ≥
√
h+ 1 ·B.

4.2 Heuristic Analysis

While both attacks that we propose in the previous section are theoretically
feasible, these constraints heavily depend on which maximal invalid set is se-
lected. In this section, we approximate the average case of constraints through
several experimental results for various t and N to provide a general result that
does not depend on the maximal invalid set. From our implementation, we give
approximation results for breaking TFHE construction [10, Sec. 5.3].

Theorem 4.1 (Heuristic) Suppose FHE is a fully homomorhpic scheme that
satisfies a special decryption (Definition 2.2) with a multiplicative constant (N !)2

and a noise bound parameter B, and SS is a Shamir secret sharing scheme.
Then the t-out-of-N TFHE scheme based on (FHE,SS) from construction [10,

Sec. 5.3] can be broken with at least 1/2 probability in polynomial time t and
logN for t− 1 adversary parties if one of the following holds:

– B ≤ N
7
10

t
log t

–
√
t+ 1 ·B ≤ N

2
5 t and 2t ≤ N .
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Proof. The proof of this theorem is in the form of applying the algorithms in
Section 4 to several parameters and averaging the obtained results.

To be precise, we first identify two attacks to classify the attacks:

– Basic attack: a constraint from a single equation: B ≤ (λS
i,0 · (N !)2)/g

where g = gcd((N !)2, λS
i,0 · (N !)2) with a maximal invalid party S∗ and

S = S∗⊔{i}.8
– Improved attack: a constraint from h equations:

√
h+ 1 ·B ≤ L where L =

lcm
1≤k≤h

(
λ
Sk
k,0·(N !)2

gk

)
with gk = gcd(((N !)2, λSk

k,0 · (N !)2)), a maximal invalid

party S∗ and Sk = S∗⊔{k}.
Empirically, for various parameters t and N , we aim to show that

E
(
(λS

i,0 · (N !)2)
)
/g ≥ N

7
10

t
log t and E(L) ≥ N

2
5 t,

where E(·) is an average function. Combining them together, completes the proof.
We then justify each case in the following.

Basic attack. Initially, we claim the size of (λS
i,0 · (N !)2)/g where S = S∗⊔{i}.

By the structure of λS
i,0 · (N !)2, we observe that

λS
i,0 · (N !)2 =

∏
x∈S\{i}

−x
(i− x)

· (N !)2 =

( ∏
x∈S∗

−x

)
·
∏
x∈S∗

(N !)2

(i− x)

(N !)2 =

( ∏
x∈S∗

i− x

)
·
∏
x∈S∗

(N !)2

(i− x)
.

From this relation, it follows that g is divisible by
∏

x∈S∗
(N !)2

(1−x) and that (λS
i,0 ·

(N !)2)/g is divisible by
∏

x∈S∗ −x. To specify further,

(λS
i,0 · (N !)2)/g =

∏
x∈S∗ −x

gcd(
∏

x∈S∗ i− x,
∏

x∈S∗ −x)
.

Consequently, the expected size of (λS
i,0 · (N !)2)/g should be less than N t.

Through this observation, we initially compared the actual values with N
t

log t

and N
t

log t log log t .
In Table 1, the ‘Real’ column gives the mean value of logN ((λS

i,0 · (N !)2)/g).

The ‘ratio with t
log t ’ column gives a ratio logN ((λS

i,0 · (N !)2)/g)/ t
log t . This result

shows that the size of logN ((λS
i,0 · (N !)2)/g) is always larger than t

log t log log t . At

the same time, 7
10

t
log t gives the tight bound for all parameters. Especially, we

have observed that the ratio with t
log t converges to (approximately) 0.7 regard-

less of the size of N . Hence, we empirically argue that logN ((λS
i,0 ·(N !)2)/g)≥ 7

10 ·
t

log t .

8 In the previous section, we simply employ S = S∗ ⊔{1}.
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Improved attack. In this case, we focus on determining the size of L. L is
defined as the least common multiple (lcm) of the set (λSk

i,0 · (N !)2)/gk for 1 ≤
k ≤ h. Drawing parallels with the basic case, we note that:

λ
Sj

j,0 · (N !)2 =
∏

x∈Sj\{j}

−x
(j − x)

· (N !)2 =
∏
x∈S∗

−x
(j − x)

· (N !)2

=

( ∏
x∈S∗

1

(j − x)
· (N !)2

)
·

( ∏
x∈S∗

−x

)
.

Given that gi incorporates the factor
(∏

x∈S∗
1

(j−x) · (N !)2
)
, it follows that L =

lcm
1≤k≤h

((λSk

k,0 · (N !)2)/gk) invariably divides
(∏

x∈S∗ −x
)
.

This scenario mirrors the basic case, where each term (λSk

k,0 · (N !)2)/gk in
L is analogous. Based on this framework, we logically infer that the size of L
would closely approximate

(∏
x∈S∗ −x

)
, especially for a significant value of h.

Following this logic, we compared the actual value against N t.

By taking h = t+1, the results, as displayed in the Table 2, consistently show
that the expected size of logN (L) tends to converge to 0.86·t/2 ≥ 2

5 t independent
to the choice of N . Hence, we heuristically argue logN (L) ≥ 2

5 · t. ⊓⊔

5 Correcting Proofs and Considerations in Practical
Implementation of TFHE

In this section, we provide a modification of the TFHE scheme. However, we also
demonstrate that while these corrections are theoretically sound, they still pose
problems when instantiated through current homomorphic encryption libraries.
Specifically, we illustrate that careful use of homomorphic encryption libraries
is essential for the practical implementation of TFHE.

Correction of TFHE. The attacks in Section 4 can be easily fixed by blow-
ing up the parameters from (N !)2 to (N !)4. To be precise, a ciphertxt ct ←
TFHE.Enc(pk,m) holds the following: ⟨ct, sk⟩ = ⌊ q2⌉ ·m+ e · (N !)4. This modifi-
cation directly implies that A obtains the following structure

⌊q
2
⌉ · C(m1, . . . ,mk) + e · (N !)4 + λ1,0 · (N !)2 · e1

during the decryption phase when A submits a query S = S∗⊔{1}. This modifi-
cation is obtained by exploiting a multiplicative constant (N !)4. More precisely,
it satisfies that (N !)4 ·e+λ1,0 ·(N !)2 ·e1 can be expressed as λ1,0N !2 ·(e·κ+e1) for
some κ since (N !)4 is a multiple of λ1,0 · (N !)2. If e1 is super-polynomially bigger
than e·κ, then e·κ+e1 is statistically close to e1 and hence this can be simulated
by the simulator, which prevents our attacks and ensures the Theorem 3.1 holds.
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Parameters Basic attack

N t t
log t

t
log t log log t

Real ratio with t
log t

50

10 3.01 1.74 3.33 1.11

20 4.63 2.19 5.18 1.12

30 6.11 2.66 6.30 1.03

40 7.52 3.12 6.62 0.88

49 8.73 3.51 6.07 0.70

100

20 4.63 2.19 6.33 1.37

40 7.52 3.12 9.57 1.27

50 8.86 3.55 10.62 1.20

60 10.16 3.96 11.13 1.10

80 12.65 4.76 11.68 0.92

99 14.93 5.47 10.51 0.70

150

30 6.11 2.66 9.29 1.52

60 10.16 3.96 13.99 1.38

75 12.04 4.56 15.36 1.28

90 13.86 5.14 16.38 1.18

120 17.37 6.23 16.78 0.97

149 20.64 7.24 14.85 0.72

Table 1: Comparison basic attack results of Expected values and Real value.
Basic attack consists of t−1 adversaries and 1 honest party. For each parameter
(N, t), 1000 experiments are conducted.

Parameters Improved attack

N t h t
2

t
log t

Real ratio with t
2

50

10 11 5 3.01 5.31 1.06

20 21 10 4.63 9.25 0.93

25 26 12.5 5.38 10.77 0.86

100

20 21 10 4.63 10.92 1.09

40 41 20 7.52 18.71 0.94

50 51 25 8.86 21.53 0.86

150

30 31 15 6.11 16.30 1.09

60 61 30 10.16 28 0.93

75 76 37.5 12.04 32.22 0.86

Table 2: Comparison improved attack results of Expected values and Real value.
Basic attack consists of t−1 adversaries and h honest parties. For each parameter
(N, t, h), 100 experiments are conducted.
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This modification can be generalized as follows: Suppose that during the
decryption phase, A can obtain the following

⌊q
2
⌉ · C(m1, . . . ,mk) + e · (N !)α + λ1,0 · (N !)β · e1

where α ≥ β+2. Then, one can prove the simulation security using the technique
in the original paper [10].

Practical aspects of TFHE instantiation. However, such a fix of TFHE
cannot achieve the simulation security when TFHE is instantiated by the state-
of-the-art FHE libraries[1–3,6, 44] satisfying special decryption (Definition 2.2).

To support our claim, we propose a new attack on the modified TFHE scheme
under the assumption that TFHE.Eval(pk,+, ct1, ct2) is conducted by ct1 + ct2,
where + is the addition circuit of two inputs. Remark that every Special FHE
(Definition 2.2) obtained from state-of-the-art FHE scheme and its libraries im-
plement a homomorphic evaluation for the addition circuit as the ciphertext
addition, as in our assumption. We now consider the circuit C : {0, 1}k → {0, 1}
of depth at most d computed as follows:

1. Given the input (m1, . . . ,mk), compute C ′(m1, . . . ,mk) = m2
1 −m1 and

2. K times summation of C ′. i.e., C(m1, . . . ,mk) =
∑K

i=1(m
2
1 − m1), where

K = 1/(N !)α mod q.

We first note that the circuit C consumes only 1 depth since it only adds messages
K times after only one multiplication to get a ciphertext of message m2

1 −m1.
Suppose that the adversary A queries to the challenger C to obtain a ci-

phertext ĉt ← TFHE.Eval(pk, C, ct1, . . . , ctk) given a family ciphertexts {cti}.
By definition of the circuit C, ĉt is represented by

ĉt =
K∑
i=1

ct

for some ciphertext ct ← TFHE.Eval(pk, C ′, ct1, . . . , ctk) of which message is
m2

1−m1 = 0. On the other hand, the special decryption (Definition 2.2) implies
that for the secret key sk, it satisfies that

⟨ct, sk⟩ = (N !)α · e

for some e. Thus, it gives a relation that

⟨ĉt, sk⟩ =
K∑
i=1

⟨ct, sk⟩ = e mod q (4)

We here note that A can query a circuit C to C since Definition 3.2 indicates
that A can issue a circuit C of depth at most d. According to the basic attack
with ĉt, A obtains X defined by

X = e+ λ1,0 · (N !)β · e1 mod q
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= e+ λ1,0 · (N !)β · e1

If e is smaller than
λ1,0·(N !)β

2 , then A gets e mod λ1,0 · (N !)β = e. In fact, the
current implementations of FHE libraries, e is sufficiently small. After having e,
then one can easily recover sk as in Section 4.

The attack argues that the state-of-the-art FHE schemes cannot satisfy the
special decryption (Definition 2.2) for every circuit C.

Remark. To the best of our knowledge, the simplest countermeasure to this
attack is to implement bootstrapping/modulus switching algorithms for each
addition. However, it significantly reduces the performance of FHE schemes and
TFHE schemes for almost all applications.
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the indcpa-d security of exact fhe schemes. Cryptology ePrint Archive, Paper
2024/127, 2024. https://eprint.iacr.org/2024/127.

20. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In international conference
on the theory and application of cryptology and information security, pages 3–33.
Springer, 2016.

21. R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Theory of Cryptography: Second
Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005. Proceedings 2, pages 342–362. Springer, 2005.

22. E. C. Crites, C. Komlo, and M. Maller. Fully adaptive schnorr threshold signatures.
In H. Handschuh and A. Lysyanskaya, editors, Advances in Cryptology - CRYPTO
2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa
Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, volume 14081 of
Lecture Notes in Computer Science, pages 678–709. Springer, 2023.

23. M. Dahl, D. Demmler, S. El Kazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. P.
Smart, S. Tap, and M. Walter. Noah’s ark: Efficient threshold-fhe using noise
flooding. In Proceedings of the 11th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, WAHC ’23, page 35–46, New York, NY, USA, 2023.
Association for Computing Machinery.

24. A. Dalskov, C. Orlandi, M. Keller, K. Shrishak, and H. Shulman. Securing dnssec
keys via threshold ecdsa from generic mpc. In Computer Security–ESORICS 2020:
25th European Symposium on Research in Computer Security, ESORICS 2020,
Guildford, UK, September 14–18, 2020, Proceedings, Part II 25, pages 654–673.
Springer, 2020.

25. I. Damg̊ard, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergaard. Fast
threshold ecdsa with honest majority. Journal of Computer Security, 30(1):167–
196, 2022.

20



26. I. Damg̊ard and M. Koprowski. Practical threshold rsa signatures without a trusted
dealer. In International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 152–165. Springer, 2001.

27. I. Damg̊ard, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n and
multi-signatures and trapdoor commitment from lattices. Journal of Cryptology,
35(2):14, 2022.

28. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 522–533. ACM, 1994.

29. R. del Pino, S. Katsumata, M. Maller, F. Mouhartem, T. Prest, and M.-J. Saarinen.
Threshold raccoon: Practical threshold signatures from standard lattice assump-
tions. To appear at Eurocrypt 2024.

30. Y. Desmedt and Y. Frankel. Threshold cryptosystesns. Advance in Cryptology,
pages 305–315, 1989.

31. J. Doerner, Y. Kondi, E. Lee, and A. Shelat. Threshold ecdsa from ecdsa assump-
tions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 1051–1066. IEEE, 2019.

32. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Paper 2012/144, 2012.

33. Y. Frankel. A practical protocol for large group oriented networks. In Workshop on
the Theory and Application of of Cryptographic Techniques, pages 56–61. Springer,
1989.

34. R. Gennaro and S. Goldfeder. Fast multiparty threshold ecdsa with fast trustless
setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1179–1194, 2018.

35. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal dsa/ecdsa signa-
tures and an application to bitcoin wallet security. In International Conference on
Applied Cryptography and Network Security, pages 156–174. Springer, 2016.

36. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold dss signa-
tures. Information and Computation, 164(1):54–84, 2001.

37. R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing
of rsa functions. Journal of Cryptology, 13(2):273–300, 2007.

38. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92. Springer, 2013.

39. K. D. Gur, J. Katz, and T. Silde. Two-round threshold lattice signatures from
threshold homomorphic encryption. Cryptology ePrint Archive, 2023.

40. C. Komlo and I. Goldberg. Frost: flexible round-optimized schnorr threshold signa-
tures. In Selected Areas in Cryptography: 27th International Conference, Halifax,
NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers 27,
pages 34–65. Springer, 2021.

41. B. Li and D. Micciancio. On the security of homomorphic encryption on ap-
proximate numbers. In Advances in Cryptology–EUROCRYPT 2021: 40th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I 40, pages
648–677. Springer, 2021.

42. Y. Lindell and A. Nof. Fast secure multiparty ecdsa with practical distributed
key generation and applications to cryptocurrency custody. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1837–1854, 2018.

21



43. D. Micciancio and A. Suhl. Simulation-secure threshold pke from lwe with poly-
nomial modulus. Cryptology ePrint Archive, Paper 2023/1728, 2023. https:

//eprint.iacr.org/2023/1728.
44. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL, Jan. 2023.

Microsoft Research, Redmond, WA.
45. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,

1979.
46. V. Shoup. Practical threshold signatures. In International Conference on the

Theory and Applications of Cryptographic Techniques, pages 207–220. Springer,
2000.

47. D. R. Stinson and R. Strobl. Provably secure distributed schnorr signatures and
a (t, n) threshold scheme for implicit certificates. In Australasian Conference on
Information Security and Privacy, pages 417–434. Springer, 2001.

22


