
SophOMR: Improved Oblivious Message Retrieval from
SIMD-Aware Homomorphic Compression

Keewoo Lee
UC Berkeley

Yongdong Yeo
Seoul National University

Abstract
Privacy-preserving blockchains and private messaging ser-

vices that ensure receiver-privacy face a significant UX chal-
lenge: each client must scan every payload posted on the
public bulletin board individually to avoid missing messages
intended for them. Oblivious Message Retrieval (OMR) ad-
dresses this issue by securely outsourcing this expensive scan-
ning process to a service provider using Homomorphic En-
cryption (HE).

In this work, we propose a new OMR scheme that substan-
tially improves upon the previous state-of-the-art, PerfOMR
(USENIX Security’24). Our implementation demonstrates
reductions of 3.3x in runtime, 2.2x in digest size, and 1.5x in
key size, in a scenario with 65536 payloads (each 612 bytes),
of which up to 50 are pertinent.

At the core of these improvements is a new homomorphic
compression mechanism, where ciphertexts of length propor-
tional to the number of total payloads are compressed into a
digest whose length is proportional to the upper bound on the
number of pertinent payloads. Unlike previous approaches,
our scheme fully exploits the native homomorphic SIMD
structure of the underlying HE scheme, significantly enhanc-
ing efficiency. In the setting described above, our compression
scheme achieves 7.4x speedup compared to PerfOMR.

1 Introduction

Consider a classic scenario where a sender wants to deliver
a message to a receiver without revealing any information to
eavesdroppers. While end-to-end encryption ensures message-
privacy, it alone does not guarantee metadata-privacy. In par-
ticular, eavesdroppers may still gather details such as who is
communicating, when, and how often, which can enable traf-
fic analysis [BMS01,MD04] and compromise privacy.12 As a

1https://www.propublica.org/article/how-facebook-undermines-privacy-
protections-for-its-2-billion-whatsapp-users

2https://www.forbes.com/sites/thomasbrewster/2022/02/23/meet-the-
secretive-surveillance-wizards-helping-the-fbi-and-ice-wiretap-facebook-
and-google-users/

former NSA general counsel said:3 “Metadata absolutely tells
you everything about somebody’s life. If you have enough
metadata you don’t really need content.” In this regard, mech-
anisms for metadata-privacy are critical in private messaging
systems [WCFJ12, CBM15, vdHLZZ15, AS16] and privacy-
preserving cryptocurrencies [BCG+14, Azt, Noe15].

In this work, we specifically focus on receiver-privacy,
which aims to hide the receiver’s identity. A plausible solu-
tion to receiver-privacy is the public bulletin board approach.
In this framework, the sender encrypts the message using
the receiver’s public key and posts it on a public bulletin
board (e.g., blockchain). Over time, the bulletin board accu-
mulates messages from various senders to various receivers.
To retrieve their messages, a receiver scans the entire bulletin
board and attempts to decrypt each message one by one. Mes-
sages that decrypt correctly are those intended for the receiver,
while unsuccessful decryptions are ignored. This framework
ensures that eavesdroppers without access to the decryption
key cannot link messages to their receivers.

In fact, many privacy-preserving blockchain projects that
aim to provide receiver-privacy are essentially following this
approach (e.g., Zcash [BCG+14, HBHW], Aztec [Azt], Mon-
ero [Noe15], ERC-5564 [WSDB22] for Stealth Address).
However, this approach poses a significant UX challenge:
clients must individually scan every payload posted on a pub-
lic bulletin board to avoid missing messages intended for them.
In the context of privacy-preserving blockchains, this means
that even light clients are required to scan all transactions.

One approach to addressing this issue is to securely out-
source the expensive scan to a powerful server. Homo-
morphic Encryption (HE) [RAD78, Gen09], a cryptosys-
tem that allows computation on encrypted data, is a natural
cryptographic primitive for such a secure outsourcing sce-
nario [But20b, But20a]. With HE, we can delegate the scan
to an untrusted server without compromising the privacy of
receivers.

Liu and Tromer [LT22] formalized this HE-based secure
3https://www.wired.com/2015/03/data-and-goliath-nsa-metadata-

spying-your-secrets/

1



scan-outsourcing solution as a primitive called Oblivious
Message Retrieval (OMR). They also explored various de-
sign choices and optimization techniques and provided a
proof-of-concept implementation of OMR. However, this ini-
tial scheme required over 20 hours to process 219 payloads
(155 ms/payload), making it impractical for real-world use.

A follow-up work, PerfOMR [LTW24b] by Liu-Tromer-
Wang, advanced the practicality of OMR through further opti-
mizations, achieving significantly improved efficiency. Specif-
ically, PerfOMR reported 15× faster runtime compared to the
original OMR construction [LT22].

1.1 Our Contribution

In this work, we propose a new OMR scheme, SophOMR, that
substantially improves upon PerfOMR [LTW24b]. Specifi-
cally, it takes less than 3 minutes to process 216 payloads in a
single thread (2.5 ms/payload).

• At the core of the improvement is our new homomorphic
compression mechanism based on [CLPY24]. The main
advantage of our approach lies in its compatibility with
the homomorphic SIMD4 structure of the underlying HE
scheme. This SIMD-awareness avoids complexities found
in prior works [LT22, LTW24b], resulting in a more effi-
cient and arguably simpler scheme. Notably, SophOMR
requires only O(

√
N) homomorphic rotations, in contrast

to PerfOMR’s O(N) rotations. In our primary setting, this
yields a 7.4× speedup in homomorphic compression. See
Sec. 1.2 for further details.

• We also suggest several other optimization techniques to fur-
ther improve the performance of the scheme: ring-switching
(Sec. 4.2), hybrid key-switching (Sec. 4.3), and BSGS-style
homomorphic matrix multiplication (Sec. 4.4).

• We implement SophOMR in a C++ library5 and compare its
concrete performance to that of PerfOMR. Our implemen-
tation demonstrates reductions of 3.3× in runtime, 2.2× in
digest size, and 1.5× in key size, in a scenario with 65536
payloads (each 612 bytes), of which up to 50 are pertinent.

• We also consider OMD (Oblivious Message Detection)
variants, where clients retrieve only pertinent indices rather
than the actual payloads (Sec. 4.5). OMD can be com-
bined with PIR (Private Information Retrieval) schemes
[CGKS95,KO97] to achieve OMR-like functionality. While
this approach introduces additional communication rounds,
it can inherit beneficial features from the underlying PIR
scheme. In the same setting, our OMD variant achieves
an overall 4.4× speedup and a specific 335× speedup in
homomorphic compression compared to PerfOMR (Sec. 5).

4Single Instruction, Multiple Data
5https://github.com/keewoolee/SophOMR

1.2 Technical Overview

1.2.1 System Model

More precisely, OMR operates as follows (Fig. 1). For more
details, refer to Sec. 2.5 and Sec. 3.

① Each user runs KeyGen, publishes their signal key pksig,
and send the detection key pkdet to Detector.

② Sender, who wants to deliver a payload6 x to Receiver,
posts the pair (sig, x) on the bulletin board BB, tagging
the payload with a signal sig generated using the Re-
ceiver’s signal key pksig. The signal enables only the
intended Receiver to detect the payload, while others
cannot.

③ Upon Receiver’s requests, Detector uses the Receiver’s
detection key pkdet to summarize the bulletin board BB
into a digest D and sends it to Receiver.

④ Finally, Receiver decodes the digest D to recover its
pertinent payloads.

At a high level, Detector’s task (③) is homomorphic detection
of the signals, given homomorphically encrypted Receiver’s
secret sk as a part of the detection key pkdet. Through this
process, Detector obtains an encrypted sparse binary vector,
where the ones indicate the indices pertinent to Receiver. This
encrypted binary vector is then used to mask the payloads on
Bulletin Board, preserving only the pertinent payloads while
zeroizing the rest. However, notice that the result is as large as
the entire Bulletin Board; the Detector cannot simply discard
irrelevant payloads since the detection result is encrypted.
Thus, homomorphic detection alone is insufficient to achieve
a compact digest.

This is where homomorphic compression comes into play.
It is a technique that obliviously compresses a lengthy, homo-
morphically encrypted sparse vector into a digest whose size
depends only on an upper bound for the number of non-zero
components in the input ciphertexts. By applying homomor-
phic compression to the output of homomorphic detection,
we can condense the sparse vector of pertinent payloads into
a compact digest.

Threat Model. The security of OMR (Sec. 2.5) considers
a passive adversary attempting to link specific messages to
their receivers. The adversary has access to the public bulletin
board, public keys, and any communication among the parties
in the system. It may also collude with any party except the
sender and receiver of the target messages.

6Note that we consider payload x as just a bitstring. In applications, these
payloads are typically end-to-end encrypted.

2

https://github.com/keewoolee/SophOMR


Receiver Detector

Sender Bulletin
Board

② Signal Generation:
sig← Signal(pksig)

① Key Generation:
(sk,pksig,pkdet)

← KeyGen(pp)

③ Digesting:
D←Digest(BB,pkdet,k)

BB
sig1 x1
sig2 x2

...
...

sigN xN

④ Decoding:
M←Decode(D,sk)

pksig

D

(sig,x)

BB

pkdet

Figure 1: Oblivious Message Retrieval

1.2.2 Our Techniques

SIMD-Aware Homomorphic Compression. Our main
technical contribution is identifying that the bottleneck of
prior works [LT22, LTW24b] is at homomorphic compres-
sion and devising a new mechanism based on the SIMD-
aware homomorphic compression scheme of [CLPY24]. Prior
approaches rely on a hashing-based compression scheme
(Sec. 3.4) in which each index is hashed into buckets, making
the scheme incompatible with the homomorphic SIMD struc-
ture. As a result, before the actual compression, each slot in
the detection result must be unpacked into separate cipher-
texts, using costly subroutines like SlotToCoeff [GHS12a,
LW23] and oblivious expansion [ACLS18]. The latter step
involves O(N) homomorphic rotations, where N is the size
of the bulletin board, creating a significant bottleneck in the
digesting process.

In contrast, our SIMD-aware homomorphic compression
mechanism based on [CLPY24] eliminates the need for
a complex and expensive unpacking process, enabling a
seamless transition between the detection and compression
phase (Sec. 4.1). Furthermore, our compression scheme ul-
timately reduces to a single homomorphic matrix-vector
multiplication, a well-studied operation in the HE litera-
ture [HS14, HS18, JVC18, CDKS19, LHH+21]. As a result,
our scheme is arguably simpler to understand and implement,
as well as significantly more efficient: it requires only O(

√
N)

homomorphic rotations, compared to the O(N) rotations re-
quired by previous hashing-based approaches. Another advan-
tage of our compression scheme is that, unlike the previous
hashing-based approach, it is deterministic and does not in-
troduce any additional failure probability, which substantially
simplifies the analysis for parameter setting.

A limitation of the SIMD-aware homomorphic compres-
sion of [CLPY24] is that it only considers small payloads
that fit within a single message slot of the underlying HE
(e.g., 16-bit). However, in many applications, including OMR,
payloads are significantly larger and require multiple slots.

To address this, we introduce precomputation and stacking
techniques to accelerate the compression of multi-slot pay-
loads, achieving a quadratic reduction in the required number
of homomorphic rotations, relative to the number of slots,
compared to the naive approach of compressing each slot
individually.

Optimizations. We also suggest several other optimization
techniques to further improve the performance of our scheme.

• Ring-Switching (Sec. 4.2): We adopt ring-switching
[BGV12, GHPS12, GHPS13], which reduces the HE pa-
rameter after completing the desired homomorphic compu-
tations, to achieve further compression of the digest.

• Hybrid Key-Switching Optimization (Sec. 4.3): We optimize
the parameter for hybrid key-switching [GHS12b, HK20,
KPZ21] in the HE scheme to reduce the key size.

• BSGS Optimization for Affine Transform (Sec. 4.4): We
apply BSGS (Baby-Step-Giant-Step) optimization to speed
up homomorphic matrix-vector multiplications.

1.3 Related Work

Oblivious Message Retrieval. Besides the two
works [LT22, LTW24b] previously mentioned, OMR
has been extended further by several studies. Group
OMR [LTW24a] extends OMR to group messaging scenarios,
offering enhanced efficiency than naive use of OMR, where
the detector’s workload scales linearly with the group size.
DoS-resistant OMR [LSTW24] considers an extended
security notion to safeguard OMR schemes against spamming
attacks by malicious senders. We believe that our SophOMR
scheme is compatible with techniques developed for the
group setting [LTW24a] and DoS-resistance [LSTW24];
however, these extensions are beyond the scope of this work.

3



Receiver Privacy. Several non-HE-based solutions have
been proposed that offer receiver privacy along with
OMR/OMD-like functionality. Fuzzy Message Detection
(FMD) [BLMG21] is a decoy-based solution that employs a
detection algorithm specifically designed to misidentify im-
pertinent messages at a predetermined false positive rate, ef-
fectively hiding the exact set of pertinent messages. However,
the decoy-based security notion of FMD is indeed relatively
complex and weak, as analyzed in [SPB22]. In contrast to
FMD, some works achieve full privacy [MSS+22, JLM23,
JMK24], but they rely on stronger trust assumptions than
OMR, such as trusted execution environment (TEE) or two
non-colluding servers.

Homomorphic Compression. Several homomorphic
compression schemes and its variants have been pro-
posed [CDG+21, LT22, FLS23, BPSY24, CLPY24]. However,
many of these schemes [CDG+21, LT22, FLS23] are not
particularly efficient when implemented with HE schemes,
as they are not SIMD-friendly due to their hashing-based
approach. (See Sec. 3.4.2.) Although Cheon-Lee-Park-
Yeo [CLPY24] is the first to investigate SIMD-friendliness,
some earlier works feature structures that can be im-
plemented in a SIMD-friendly manner. However, these
approaches have their own limitations: The FFT-based
scheme by Fleischhacker-Larsen-Simkin [FLS23] has
a costly decompression algorithm that requires solving
small instances of discrete logarithms, and the scheme
by Bienstock-Patel-Seo-Yeo [BPSY24] assumes that the
entity performing the decompression already knows the
indices of interest, which is not applicable in the context
of OMR. Cheon et al. [CLPY24] proposed a SIMD-aware
homomorphic compression scheme by reinterpreting and
extending PS-COIE of Choi et. al. [CDG+21], which only
considered compressing binary vector and disregarded its
SIMD-friendly structure. This new scheme achieves both an
asymptotically optimal compression rate and asymptotically
good decompression complexity.

Comparison to PIR. Private Information Retrieval
(PIR) [CGKS95, KO97] is a cryptographic primitive that
allows clients to retrieve an item from a server hosting a
database without revealing which specific item is being ac-
cessed. Although PIR and OMR might appear similar, they
exhibit fundamentally different characteristics. In PIR, each
query is made by an index that must remain hidden from
the server, whereas in OMR, queries are executed using the
receiver’s public key, which does not necessarily need to be
hidden. Furthermore, a typical PIR scheme retrieves a sin-
gle entry, but an OMR scheme retrieves multiple pertinent
payloads. Most importantly, an OMR scheme incorporates a
mechanism that allows anyone to tag their messages with a
signal, which can only be detected by the intended receiver.

2 Preliminaries

2.1 Notations
We use [n] to denote the set of integers {0, · · · ,n− 1}, and
log refers to the base-2 logarithm. Throughout the paper,
we follow the column vector notation. For a vector vvv, we
use vvv[i] to denote its i-th element, and for a matrix MMM, we
use MMM[i][ j] to denote its (i, j)-th element. The Hadamard
product (a.k.a. element-wise product) is denoted by ⊙, and
⟨ · , · ⟩ denotes the inner product. For i < n, we use Roti

to denote the left rotation of a vector by i positions, i.e.,
Roti(v0, · · · ,vn−1) = (vi, · · · ,vn−1,v0, · · · ,vi−1). The vector
111 refers to a vector of ones (1, · · · ,1). We use λ for the se-
curity parameter and negl(λ) to denote a negligible function
with respect to λ. The notation ct(m) denotes a ciphertext
encrypting a message m, and ct(mmm) denotes possibly multiple
ciphertexts encrypting the entries of a vector mmm.

2.2 Homomorphic Encryption
A homomorphic encryption (HE) scheme allows us to com-
pute an encryption of f (m) when only given a circuit f and
a ciphertext encrypting m without decryption. Let M be
the message space and C be the ciphertext space. An HE
scheme is a tuple of probabilistic polynomial time algorithms
(KeyGen, Enc, Dec, Eval) described below:

• KeyGen(1λ): The key generation algorithm takes a security
parameter λ and returns a secret key sk and public key pk.

• Encpk(m): The encryption algorithm takes the public key
pk and a message m ∈ M as inputs. Then, it returns a
ciphertext ct(m) ∈ C encrypting m.

• Decsk(ct(m)): The decryption algorithm takes the secret
key sk and a ciphertext ct(m) ∈ C encrypting a message
m ∈M . Then, it returns the message m.

• Evalpk( f ,ct(mmm)): The evaluation algorithm takes the pub-
lic key pk, a circuit f , and ciphertext ct(mmm) ∈ C ∗ as inputs.
Then, it returns ciphertext ct( f (mmm)) ∈ C ∗ that encrypts
f (mmm) ∈M ∗ as message.

Definition 1 (Security of HE). Let (sk,pk)← KeyGen(1λ).

• Correctness: For any circuit f (in some class F ) and input
mmm∈M ∗, the following holds with overwhelming probability
for ct(mmm)← Encpk(mmm):

Decsk
(
Evalpk( f ,ct(mmm))

)
= f (mmm)

• Semantic Security: For any probabilistic polynomial time
adversary A and m1,m2 ∈ M , the following holds for
cti← Encpk(mi):

|Pr[A(pk,ct1) = 1]−Pr[A(pk,ct2) = 1]| ≤ negl(λ)

4



2.2.1 BFV Scheme

As in the previous works [LT22, LTW24b], we employ the
BFV scheme [Bra12, FV12] in our SophOMR construction.7

The BFV scheme supports homomorphic SIMD arithmetic in
Zp for a prime p, which is critical to our SophOMR construc-
tion, especially in our homomorphic compression scheme.

More precisely, we consider the BFV scheme with the ring
dimension n that is a power of 2, along with the plaintext mod-
ulus p satisfying p = 1 (mod 2n). In this case, the plaintext
space is given by Rp := Zp[X ]/(Xn + 1) ∼= Z2×(n/2)

p , while
the ciphertext space is R 2

Q , where RQ := ZQ[X ]/(Xn +1) for

a ciphertext modulus Q. For a plaintext mmm ∈ Z2×(n/2)
p , we de-

note its rows and entries as follows. We often refer to each
plaintext entry as a slot.

mmm =

[
mmmT

1
mmmT

2

]
=

[
m1,1 · · · m1,n/2
m2,1 · · · m2,n/2

]
(1)

The BFV scheme supports (1) SIMD arithmetic in Zp and
(2) homomorphic rotations (horizontal and vertical). That
is, we can homomorphically add and multiply a ciphertext
encrypting vvv ∈ Z2×(n/2)

p with a ciphertext (or plaintext) of
www∈Z2×(n/2)

p to obtain a ciphertext of vvv+www and vvv⊙www, respec-
tively. For homomorphic rotations, to be precise, let Rotr( · )
denote the rotation operation which maps [v1, · · · ,vn/2] 7→
[v1+r, · · · ,vn/2,v1, · · · ,vr]. Then, the BFV scheme supports
homomorphic rotations computing Rotrow and Rotcol, defined
as follows.

Rotr
row

([
mmmT

1
mmmT

2

])
=

[
Rotr(mmmT

1 )
Rotr(mmmT

2 )

]
Rot1

col

([
mmmT

1
mmmT

2

])
=

[
mmmT

2
mmmT

1

]
In this work, we will often abuse notation and iden-

tify a BFV plaintext [mmm1|mmm2]
T ∈ Z2×(n/2)

p with the vector
[mmmT

1 |mmmT
2 ]

T ∈ Zn
p.

2.2.2 Sparse Packing

When working with a vector vvv of length k that is smaller than
the HE ring dimension n, we often employ Sparse Packing
(a.k.a. Repetitive Slot Packing), where multiple copies of vvv are
packed into a plaintext. More precisely, when n = 0 (mod k),
we pack vvv (n/k) times, resulting in [vvvT | · · · |vvvT ]T . The ratio-
nale for using sparse packing is that it preserves the rotation
structure. For example, Rotk

row([vvv
T | · · · |vvvT ]T ) = [vvvT | · · · |vvvT ]T ,

which would not hold if we did not use sparse packing, such
as when padding the remaining slots naively with zeros.

7We note that SophOMR is also compatible with the BGV
scheme [BGV12]. Although one might consider using the TFHE
scheme [CGGI20], which supports homomorphic operations without re-
quiring SIMD structure, it incurs significant communication costs even after
compression due to the high plaintext-ciphertext expansion ratio.

Throughout this paper, whenever n = 0 (mod dimvvv), ct(vvv)
should be interpreted as a sparsely packed ciphertext.

2.3 Homomorphic Matrix Multiplication
At the heart of our SophOMR scheme is homomorphic
matrix-vector multiplication (MatMul) [HS14, HS18, JVC18,
CDKS19, LHH+21]. The goal of MatMul is to multiply a
plaintext matrix MMM with an encryption of vector vvv and obtain
an encryption of MMMvvv. Here, we review an efficient MatMul
algorithm that we leverage in our SophOMR scheme.

2.3.1 Diagonal Packing

The idea of diagonal packing, first introduced in [HS14], is
fundamental to MatMul algorithms. Given a matrix MMM ∈Zm×k

p

and a vector vvv ∈ Zk
p, let diagi(MMM) denote the i-th diagonal

packing of MMM (w.r.t. dimension n), which is defined as follows
(for 0≤ j < n).

diagi(MMM)[ j] = MMM[ j mod m][(i+ j) mod k]

The rationale behind diagonal packing is that it enables a
concise representation of a matrix-vector multiplication with
native HE operations, specifically Hadamard products and
rotations, as follows (for n = m = k).

MMMvvv =
k−1

∑
i=0

diagi(MMM)⊙Roti(vvv) (2)

2.3.2 BSGS-Style MatMul

Halevi and Shoup [HS18] introduced the baby-step-giant-step
(BSGS) style optimization to reduce the number of homo-
morphic rotations required in a MatMul algorithm. The core
idea is captured by the following equalities, where k = g̃ · b̃
and mmmgb̃+b denotes Rot−gb̃

(
diaggb̃+b(MMM)

)
. Notice that, by

reusing the Rotb(vvv) terms, we can reduce the number of rota-
tions to g̃+ b̃, rather than k = g̃ · b̃ as in Eq. 2.

MMMvvv =
k−1

∑
i=0

diagi(MMM)⊙Roti(vvv)

=
g̃−1

∑
g=0

b̃−1

∑
b=0

diaggb̃+b(MMM)⊙Rotgb̃+b(vvv)

=
g̃−1

∑
g=0

Rotgb̃

(
b̃−1

∑
b=0

mmmgb̃+b⊙Rotb(vvv)

)

Among several follow-ups on [HS18], we adopt the ap-
proach of PEGASUS [LHH+21], which exhibits the best
performance in the case of non-square matrices. The orig-
inal MatMul algorithm of PEGASUS is designed for the
CKKS scheme [CKKS17] and its rotation structure. In this

5



work, we use its straightforward adaptation to our BFV set-
ting [Bra12, FV12]. Additionally, we extend the approach to
handle cases where the matrix dimension exceeds the under-
lying HE ring dimension, requiring the encrypted vectors to
span multiple ciphertexts.

To be precise, let n be the ring dimension of the underlying
BFV scheme. Let us consider the MatMul of k×N matrix MMM
with a length-N vector vvv. Here, we focus on the wide case,
where N = s · n for some positive integer s and k < n.8 For
simplicity, we assume k is a power of two. Alg. 1 describes
the BFV-adapted PEGASUS MatMul algorithm for the speci-
fied setting. We use the Horner-style [HS18] variant, which
optimizes the number of required rotation keys.9 The costs
for Alg. 1 are summarized in Tab. 1. Note that the number of
rotations is minimized when g̃≈

√
s · k. For more detailed dis-

cussions, refer to PEGASUS [LHH+21] and references therein,
such as [HS18].

Algorithm 1 MatMul (Wide)

Input: MMM ∈ Zk×N
p , (ct(vvvi))

s−1
i=0 ▷ k < n, N = s · n, vvvi ∈ Zn

p,
k: power-of-two

Step 0: Parameter Setting
[MMM0| · · · |MMMs−1]←MMM and k = g̃ · b̃

Step 1: Plaintext Packing
for (i, j) ∈ [s]× [k] do

mmmi, j← Rot
−gb̃
row
(
diag j(MMMi)

)
for g = ⌊ j/b̃⌋

Step 2: Baby-Step-Giant-Step (BSGS)
for i = 0, · · · ,s−1 do ▷ Baby-Step

cti,0← ct(vvvi)
for b = 1, · · · , b̃−1 do

cti,b← Rot1
row(cti,b−1)

for g = g̃−1, · · · ,0 do ▷ Giant-Step
ctsum← ∑

s−1
i=0 ∑

b̃−1
b=0(mmmi,gb̃+b⊙cti,b)

if g = g̃−1 then
ctout← ctsum

else
ctout← Rotb̃

row(ctout)+ctsum

Step 3: Block Summation
for j = 0, · · · , log(n/k)−2 do

ctout← ctout +Rotk·2 j
row (ctout)

ctout← ctout +Rot1
col(ctout)

return ctout

8The tall case is described in Alg. 8 of Sec. 4.4.
9While Horner-style MatMul algorithms benefit from the significantly re-

duced number of rotation keys, they are incompatible with so-called hoisting
optimization [HS18]. This trade-off is discussed in Sec. 4.1.

#(Ptxt-Mult) #(Rotation) #(Rot. Key)

s · k < s · b̃+ g̃+ log(n/k) ≤ 2+ log(n/k)

Table 1: Cost Analysis for Alg. 1

2.4 Homomorphic Compression

The goal of homomorphic compression [CDG+21, LT22,
FLS23, BPSY24, CLPY24] is to homomorphically compress
an encryption of a sparse vector, which has only a few non-
zero components, into an encryption of a shorter vector, which
can later be efficiently decompressed after decryption. In this
section, we provide a brief overview of the homomorphic com-
pression scheme from [CLPY24], which offers high efficiency
due to its compatibility with homomorphic SIMD operations.
For a more in-depth discussion, please refer to [CLPY24].

2.4.1 Index Compression

We first consider the task of compressing a sparse binary
vector (a.k.a. index compression) as a stepping stone for
compressing an arbitrary sparse vector (a.k.a. payload com-
pression). The index compression of [CLPY24] leverages
so-called Newton’s identity, which provides conversions be-
tween power sum polynomials and elementary symmetric
polynomials. Although the idea of using Newton’s identity
for index compression has been previously explored in the
literature [CDG+21], the novelty of [CLPY24] lies in (1) rec-
ognizing that the power sum encoding can be interpreted as
a matrix-vector multiplication and (2) implementing it with
efficient SIMD-aware homomorphic algorithms for MatMul
(e.g., Alg. 1).

More precisely, for p > N, consider a sparse binary vector
vvv ∈ ZN

p with at most k number of non-zero entries and define
a Vandermonde-like k×N matrix CCC defined as follows. The
homomorphic compression scheme can then be concisely
described as in Alg. 2, with decompression outlined in Alg. 3.

CCC :=


1 2 · · · N
12 22 · · · N2

...
...

. . .
...

1k 2k · · · Nk

 (mod p) (3)

Algorithm 2 CompIdx

Input: ct(vvv) ▷ ciphertexts of vvv ∈ ZN
p

ct(www)←MatMul(CCC,ct(vvv)) ▷ see Sec. 2.3
return ct(www)

6



Algorithm 3 DecompIdx

Input: www = (w1, · · · ,wk) ∈ Zk
p ▷ decryption of ct(www)

Step 1: Build a polynomial from www using Newton’s identity.
a0← 1
for j = 1, · · · ,k do

a j← j−1 ·∑ j
i=1(−1)i−1a j−i ·wi

f k
vvv (X)← ∑

k
i=0(−1)iaiXk−i

Step 2: Reconstruct non-zero indices from the polynomial.
while X divides f k

vvv (X) do
f k
vvv (X)← f k

vvv (X)/X
Ivvv← Find zeros of f k

vvv (X) ▷ e.g. by Cantor-Zassenhaus
return Ivvv

2.4.2 Payload Compression

With the index compression at hand, we can now compress an
arbitrary sparse vector. Consider a sparse vector ddd ∈ ZN

p with
at most k number of non-zero entries. To compress ct(ddd),
we first obtain an encryption of the binary vector vvv, whose
indices of non-zero entries match those in ddd. For example,
Fermat’s little theorem can be employed for this purpose (as
outlined in Alg. 4). However, in certain scenarios (e.g., private
database query [CLPY24]), it may not be necessary to derive
ct(vvv) from ct(ddd), as ct(vvv) may be already available from
other source. In fact, ct(ddd) is often computed from ct(vvv).
Looking ahead, this is the case also for OMR.

Then, we can compress ct(vvv) via Alg. 2 and use vvv as a hint
in the decompression phase. Note that any k distinct columns
of the matrix CCC are linearly independent. Therefore, we can
also compress ct(ddd) by performing a MatMul with CCC and
decompress it by solving a linear equation for a submatrix
of CCC. The homomorphic compression scheme can then be
concisely described as in Alg. 4, with decompression outlined
in Alg. 5.

Algorithm 4 Comp

Input: ct(ddd) ▷ ciphertexts of ddd ∈ ZN
p

ct(vvv)← Eval(Powerp−1,ct(ddd))10▷ Fermat’s little theorem
ct(www)← CompIdx(ct(vvv)) ▷ see Alg. 2
ct(eee)← Eval(CCC,ct(ddd))

return ct(eee),ct(www)

2.5 OMR and OMD
In this section, we review the formal definitions of Oblivious
Message Retrieval (OMR) and Oblivious Message Detection
(OMD) [LT22]. See also Sec. 1.2.1 and Fig. 1.

10Powerℓ denotes an arithmetic circuit over Zp such that Powerℓ(ddd) =
(dℓ

1, · · · ,dℓ
N), where ddd = (d1, · · · ,dN) ∈ ZN

p .

Algorithm 5 Decomp

Input: eee,www ∈ Zk
p ▷ decryption of ct(eee),ct(www)

Ivvv← DecompIdx(www) ▷ see Alg. 3
ĈCC← [CCCi1 | · · · |CCCiℓ ] ▷ k× ℓ matrix whose j-th

column is i j-th column of
CCC, where Ivvv = {i1, · · · , iℓ}

d̂dd = (d̂1, · · · , d̂ℓ)← Solve ĈCCxxx = eee for xxx

return d̂dd

2.5.1 Oblivious Message Retrieval (OMR)

Definition 2 (Oblivious Message Retrieval). An Oblivious
Message Retrieval (OMR) scheme (w.r.t. payload space P )
is a tuple of probabilistic algorithms (ParamGen,KeyGen,
Signal,Digest,Decode) described below:

• pp←ParamGen(1λ): The parameter generation algorithm
takes a security parameter λ and returns a public parameter
pp. The following algorithms implicitly take pp as an input.

• (sk,pksig,pkdet)← KeyGen(pp): The key generation al-
gorithm outputs a secret key sk, a signal key pksig, and a
detection key pkdet.

• sig← Signal(pksig): The signaling algorithm takes a sig-
nal key pksig and outputs a signal sig.

A bulletin board BB= ((x1,sig1), · · · ,(xN ,sigN)) is formed
by several parties uploading a payload xi ∈ P tagged with
a signal sigi with respect to the signal key of the intended
receiver.

• D←Digest(BB,pkdet,k): The digesting algorithm takes a
bulletin board BB= ((x1,sig1), · · · ,(xN ,sigN)) for some
size N, a detection key pkdet, and an upper bound k on
the number of pertinent payloads addressed to the receiver.
Then, it returns a digest D.

• M← Decode(D,sk): The decoding algorithm takes a di-
gest D and a secret key sk. Then, it returns a list of decoded
payloads M ∈ P ∗.

Definition 3 (Security of OMR). Let pp← ParamGen(1λ).

• Correctness: Let (sk,pksig,pkdet) ← KeyGen(pp). Let
BB be a bulletin board of length N and M̃ be the list of
pertinent payloads in BB addressed to pksig. For k ≥ |M̃|,
the following holds.

Pr

[
M ̸= M̃

∣∣∣∣∣ D← Digest(BB,pkdet,k)

M← Decode(D,sk)

]
≤ negl(λ)

• Receiver-Privacy: Signals generated from different signal
keys should be computationally indistinguishable to anyone
who does not have access to the corresponding secret keys.

7



To be precise, let (sk,pksig,pkdet) and (sk′,pksig
′,pkdet

′)
be two set of keys generated from KeyGen(pp). Let sig←
Signal(pksig) and sig′← Signal(pksig

′). For any proba-
bilistic polynomial time adversary A , the following holds
for aux= (pp,pksig,pkdet,pksig

′,pkdet
′).∣∣Pr[A(aux,sig) = 1]−Pr[A(aux,sig′) = 1]

∣∣≤ negl(λ)

2.5.2 Oblivious Message Detection (OMD)

Oblivious Message Detection (OMD) is a variant of OMR
where the receiver only retrieves pertinent indices (instead
of pertinent payloads as in OMR). Note that by combining
an OMD scheme with a private information retrieval (PIR)
scheme [CGKS95, KO97] one can obtain an OMR-like func-
tionality: first, retrieve pertinent indices using OMD, and then
use PIR to obtain the corresponding payloads. While this
approach introduces an additional round of communication,
it provides a generic construction of OMR. Below are formal
definitions for OMD.

Definition 4 (Oblivious Message Detection). An Oblivious
Message Detection (OMD) scheme is a tuple of probabilis-
tic algorithms (ParamGen,KeyGen,Signal,Digest,Decode).
Descriptions for ParamGen, KeyGen, Signal, and Digest are
identical to those of OMR (Def. 2).

• M← Decode(D,sk): The decoding algorithm takes a di-
gest D and a secret key sk. Then, it returns a list of pertinent
indices M ∈ N∗.

Definition 5 (Security of OMD). Let pp← ParamGen(1λ).
The definition of receiver-privacy is identical to that of OMR
(Def. 3).

• Correctness: Let (sk,pksig,pkdet) ← KeyGen(pp). Let
BB be a bulletin board of length N and M̃ be the list of
pertinent indices addressed to pksig in BB. For k ≤ |M̃|,
the following holds.

Pr

[
M ̸= M̃

∣∣∣∣∣ D← Digest(BB,pkdet,k)

M← Decode(D,sk)

]
≤ negl(λ)

3 Review: PerfOMR [LTW24b]

In this section, we provide a concise overview of the Per-
fOMR scheme [LTW24b]. First, in Sec. 3.1, we recall a build-
ing block for OMR, which we call private signaling. Then,
we review each component of PerfOMR: ParamGen,KeyGen,
Signal (Sec. 3.2), and Digest (Sec. 3.3 and 3.4). Specifically,
the Digest algorithm is presented in a modular manner, split-
ted into a detection phase (Sec. 3.3) and a compression phase
(Sec. 3.4).

3.1 RLWE-based Private Signaling Scheme
A Private Signaling (PS) scheme is a core building block
of OMR, enabling a sender to generate a signal that only
the intended receiver can detect. We begin by presenting a
formal definition of private signaling (Sec. 3.1.1), followed by
a construction based on the Ring Learning with Error (RLWE)
assumption [Reg05, LPR10] (Sec. 3.1.2).

3.1.1 Private Signaling

Definition 6 (Private Signaling11). A Private Signaling (PS)
scheme is a tuple of probabilistic polynomial time algorithms
(ParamGen,KeyGen,Signal,Detect) described below:

• pp← ParamGen(1λ): The parameter generation algorithm
takes a security parameter λ and returns a public parameter
pp. The following algorithms implicitly take pp as an input.

• (sk,pk)← KeyGen(pp): The key generation algorithm re-
turns a secret key sk and a public key pk.

• sig← Signal(pk): The signaling algorithm takes a pub-
lic key pk and returns a signal sig.

• 0/1← Detectsk(sig): The detection algorithm takes a
secret key sk and a signal sig. Then, it returns 1 if sig was
generated from a public key corresponding to sk; otherwise,
it returns 0.

Definition 7 (Security of Private Signaling). Let pp ←
ParamGen(1λ).

• Completeness: The following holds.

Pr


(sk,pk)← KeyGen(pp);
sig← Signal(pk) :

Detectsk(sig) = 1

≥ 1−negl(λ)

• Soundness: The following holds.

Pr


(sk,pk)← KeyGen(pp);
(sk′,pk′)← KeyGen(pp);
sig← Signal(pk) :

Detectsk′(sig) = 1

≤ negl(λ)

• Receiver-Privacy: Signals generated from different pub-
lic keys should be computationally indistinguishable to
anyone who does not have access to the corresponding
secret keys. To be precise, let (sk,pk) and (sk′,pk′) be
two set of keys generated from KeyGen(pp). Let sig←
Signal(pk) and sig′← Signal(pk′). For any probabilis-
tic polynomial time adversary A , the following holds for
aux= (pp,pk,pk′).∣∣Pr[A(aux,sig) = 1]−Pr[A(aux,sig′) = 1]

∣∣≤ negl(λ)
11Our definition differs from that of [MSS+22] and aims to capture the

framework they refer to as naive approach based on key-private PKE.

8



3.1.2 Construction

We now present an overview of the private signaling scheme
from PerfOMR [LTW24b] whose security is based on the
hardness of the Ring Learning with Errors (RLWE) prob-
lem [Reg05, LPR10]. For a more detailed discussion of the
scheme, refer to [LTW24b].

Remark 1 (On Choice of LWE-based Scheme). Although
we have a generic conversion from any PKE scheme with
reasonable properties, private signaling schemes in this line
of works [LT22, LTW24b], are based on (Ring) LWE assump-
tion. The primary reason is that the decryption circuit of
LWE-based PKE is simpler and better suited to the compu-
tational model of HE than other cryptographic assumptions
(e.g., group-based assumptions). Specifically, a large part of
the decryption process is just a simple linear algebra over a
relatively small modulus.

We first introduce a notation to ease the presentation.
We denote and define the i-th negacyclic vector of aaa =
(a0, · · · ,an′−1) ∈ Zn′

q′ as follows, for 0≤ i < n′.

Negi(aaa) = (ai, · · · ,a0,−an′−1, · · · ,−ai+1)

Let a(X) = ∑
n−1
i=0 aiX i for aaa and similarly for b(X) and bbb =

(b0, · · · ,bn′−1). Notice that ⟨Negi(aaa),bbb⟩ equals to the i-th co-
efficient of a(X) ·b(X) over R ′q′ =Zq′ [X ]/(Xn′+1). With this
in mind, the following construction can be seen, at a high level,
as an RLWE-based PKE scheme specifically designed for en-
crypting zeroes. It can be viewed as a ring-optimized variant
of the PVW scheme [PVW08], or as a truncated version of
the LPR scheme [LPR13].

Construction 1. The private signaling scheme PS =
(PS.ParamGen,PS.KeyGen,PS.Signal,PS.Detect) is de-
fined as follows.

• pp← PS.ParamGen(1λ): The parameter generation algo-
rithm returns pp= (n′,q′, ℓ,r,χs,χe), consisting of polyno-
mial ring dimension n′, modulus q′, repetition parameter ℓ,
range parameter r, secret key distribution χs over Zn′

q′ , and
error distribution χe over Zq′ .

• (sk,pk)← PS.KeyGen(pp): The key generation algorithm
first samples a secret key sk← χs. Then, it samples ααα←Zn′

q′

and compute βββ= (
(
⟨Negi(ααα),sk⟩

)n′−1
i=0 +eee∈Zn′

q′ with noise

eee← χn′
e . Finally, the algorithm returns (sk,pk), where pk=

(ααα,βββ) ∈ Zn′
q′ ×Zn′

q′

• sig← PS.Signal(pk): The signaling algorithm takes a
public key pk = (ααα,βββ) ∈ Zn′

q′ × Zn′
q′ and samples noises

eee0 ← χs, eee1 ← χn′
e , and eee2 ← χℓ

e. Then, it computes aaa =(
⟨Negi(ααα),eee0⟩

)n′−1
i=0 + eee1 and bbb =

(
⟨Negi(βββ),eee0⟩

)ℓ−1
i=0 + eee2.

Finally, the algorithm returns sig= (aaa,bbb) ∈ Zn′
q′ ×Zℓ

q′ .

• 0/1 ← PS.Detectsk(sig): The detection algorithm
takes sig = (aaa,bbb) ∈ Zn′

q′ × Zℓ
q′ and computes ddd = bbb−(

⟨Negi(aaa),sk⟩
)ℓ−1

i=0 ∈ Zℓ
q′ . Then, it computes ci’s by check-

ing ddd = (d1, · · · ,dℓ) with the range parameter r, as follows.

ci =

{
0, if di ∈ [−r,r]
1, otherwise

Finally, the algorithm returns ∏
ℓ
i=1(1− ci) ∈ {0,1}.

Remark 2 (Security of Construction 1). We sketch the secu-
rity of Construction 1 with respect to Def. 7. For more detailed
proofs, refer to [LTW24b].

• Completeness: The range parameter r can be set to guar-
antee completeness, following standard analysis in LWE-
based encryptions to guarantee correctness.

• Soundness: The repetition parameter ℓ can be set to guar-
antee soundness as follows: By the hardness of RLWE over
R ′q′ , sig← PS.Signal(pk) is indistinguishable from a uni-
form random sample, in the absence of access to the secret
key sk. Therefore, the following holds when sk′ is sampled
independently of sk.

Pr[PS.Detectsk′(sig) = 1]≤
(

2r+1
q′

)ℓ

+negl(λ)

• Receiver-Privacy: The receiver-privacy directly follows
from the hardness of RLWE over R ′q′ .

3.2 Setup
Given homomorphic encryption scheme BFV (Sec. 2.2.1)
and private signaling scheme PS (Sec. 3.1.2), (ParamGen,
KeyGen,Signal) of PerfOMR can be described as follows.

• pp← ParamGen(1λ): Run ppPS← PS.ParamGen(1λ) and
return pp= (ppPS,1

λ).

• (sk,pksig,pkdet) ← KeyGen(pp): Run (skPS,pkPS) ←
PS.KeyGen(ppPS) and (skBFV,pkBFV)← BFV.KeyGen(1λ).
Then, compute ctsk ← BFV.Enc(skPS). Finally, re-
turn sk = (skPS,skBFV), pksig = pkPS, and pkdet =
(pkBFV,ctsk).

• sig← Signal(pksig): Return sig← PS.Signal(pkPS).

3.3 Detection
For clarity, we describe the Digest algorithm of PerfOMR in
a modular manner, divided into (1) a detection phase and (2)
a compression phase. In this section, we begin by illustrat-
ing Detect (Alg 6) for the detection phase, followed by an
explanation of the compression phase in Sec. 3.4.

9



The goal of Detect is to homomorphically compute the per-
tinent indices from the bulletin board BB using the detection
key pkdet. The output of Detect is ciphertexts encrypting a
sparse binary vector, where the ones indicate the pertinent
indices, referred to as the Pertinency Vector, PV.12 At a high
level, Detect can be viewed as a batched homomorphic de-
tection of signals, consisting of two main steps: (i) Affine
Transform and (ii) Range Check.

Affine Transform. The goal of Affine Transform (Step 1
of Alg. 6) is to homomorphically compute linear parts of
multiple PS.DetectskPS(sigi) in parallel. More precisely, we
want to compute ddd = bbbi−

(
⟨Neg j(aaai),sk⟩

)ℓ−1
j=0 ∈ Zℓ

q′ where

sigi = (aaai,bbbi) ∈ Zn′
q′ ×Zℓ

q′ for 1≤ i≤ N. Notice that we can
stack up the inner products ⟨Neg j(aaai),sk⟩ into a matrix-vector
multiplication. In this way, we can leverage homomorphic
MatMul algorithms (Sec. 2.3) with respect to ctsk. We will
explore this in greater detail in Sec. 4.4.

Range Check. The goal of Range Check (Step 2 of Alg. 6)
is to homomorphically compute the remaining non-linear
parts of multiple PS.DetectskPS(sigi). More precisely, we
want to compute ∏

ℓ
i=1(1− ci) ∈ {0,1} where r is the range

parameter and

ci =

{
0, if di ∈ [−r,r]
1, otherwise,

for ddd = (d1, · · ·dℓ) which is the output from Affine Transform.
The computation of ci’s can be done homomorphically by
evaluating the following function on di’s.

f (X) =

{
0, if − r ≤ X ≤ r
1, otherwise

(4)

In PerfOMR [LTW24b], f (X) is homomorphically eval-
uated by first computing g(X) = ∏

r
i=0(X

2 − i2) and then
h(X) = Xq′−1, rather than directly evaluating the polynomial
interpolation of f (X) as done in [LT22]. Notice that g(X)
maps the input to 0 if and only if it lies within the range
[−r,r], and h(X) maps non-zero inputs to 1 and zero to 0 by
Fermat’s little theorem. By decomposing the evaluation of f
into g and h, PerfOMR significantly reduced the number of
homomorphic multiplications required, while only slightly in-
creasing the circuit depth, resulting in an overall improvement
in computational cost.

3.4 Compression
In the compression phase, pertinent payloads are compressed
into a digest using the encrypted pertinency vector PV.

12Previous works [LT22, LTW24b] have referred to this detection proce-
dure as ClueToPackedPV.

Algorithm 6 Detect

Input: pkdet, BB= (xi,sigi)
N
i=1 ▷ N = s ·n

Step 0: Signal Preprocessing ▷ sigi = (aaai,bbbi) ∈ Zn′
q′ ×Zℓ

q′

for j = 0, · · · , ℓ−1 do
AAA j← [Neg j(aaa1)| · · · |Neg j(aaaN)]

T ▷ AAA j ∈ ZN×n′
q′

βββ j← (b1, j, · · · ,bN, j) ▷ bbbi = (bi, j)
ℓ−1
j=0

Step 1: Affine Transform

for j = 0, · · · , ℓ−1 do
(cti, j)

s−1
i=0 ← βββ j−MatMul(AAA j,ctsk) ▷ see Sec. 4.4

Step 2: Range Check ▷ g(X) = X ·∏r
i=1(X

2− i2),
h(X) = X p−1

for i = 0, · · · ,s−1 do
for j = 0, · · · , ℓ−1 do

cti, j← BFV.EvalpkBFV(g(X),cti, j)
cti, j← BFV.EvalpkBFV(h(X),cti, j)

cti←∏
ℓ−1
j=0(111−cti, j)

return (cti)
s−1
i=0

Roughly speaking, PerfOMR compresses both PV and perti-
nent payloads; during decoding, PV is decoded first and then
used as a hint to decode the compressed payloads. Below is a
brief overview of PerfOMR’s compression phase. For a more
detailed discussion, refer to [LT22, LTW24b].

3.4.1 Unpacking the Pertinency Vector

In PerfOMR, before compressing the pertinency vector
PV, each slot of PV are unpacked into separate cipher-
texts. This process, referred to as PVUnpack in previous
works [LT22, LTW24b], is necessary for them because they
compress PV by hashing its components into buckets. (For
more details, see Sec. 3.4.2.) PVUnpack incorporates so-
called SlotToCoeff [GHS12a, LW23] and oblivious expan-
sion [ACLS18] as subroutines, both of which are quite costly.
As a result, PVUnpack becomes a bottleneck in the entire
digesting process.

3.4.2 Hashing-based Index Compression

PerfOMR compresses the unpacked pertinency vector
PVUnpack(PV) = {cti}N

i=1 via hashing. Each index 1≤ i≤
N is randomly assigned to a bucket Yj for 1≤ j ≤m. The per-
tinent vector is compressed by computing Ctr j ← ∑i∈Y j cti
and Acc j← ∑i∈Y j i ·cti. Notice that Ctr j indicates the num-
ber of pertinent indices that were hashed into Yj, revealing
whether a collision occurred. If Ctr j encrypts the value 1, the
corresponding value in Acc j is the pertinent index; otherwise,
a collision has occurred and happened, and decoding will fail.
To prevent such failures, PerfOMR sets the number of buck-

10



ets m to be sufficiently larger than k, the upper bound on the
number of pertinent indices, and repeats the process multiple
times.

3.4.3 Payload Compression with Random Linear Codes

PerfOMR then compresses pertinent payloads using random
linear codes. The core idea is to compress the vector of per-
tinent payloads (i.e., the payloads masked by the pertinency
vector) by multiplying it with a random K×N matrix. By
setting K sufficiently larger than k – the upper bound on the
number of pertinent indices – it becomes possible to solve the
system of equations for the pertinent payloads via Gaussian
elimination with high probability, given the pertinent indices.

3.4.4 Bundling: Runtime/Digest-Size Trade-off

To reduce the computational overhead of PVUnpack,
PerfOMR processes multiple indices simultaneously via
bundling. Before applying PVUnpack, PerfOMR combines v
indices of the pertinency vector by homomorphically adding
them into a single ciphertext. While this reduces the runtime
by a factor of v, it introduces a trade-off: now the receiver
only knows that a bundle contains a pertinent index, requiring
retrieval of all v indices and their corresponding payloads.
This approach balances the reduction in PVUnpack runtime
against an increase in the final digest size.

3.5 Optimizations
Modulus-Switching. Modulus-Switching [BGV12] is a
technique of switching the ciphertext modulus of a given HE
ciphertext into a smaller one. While modulus-switching is not
strictly necessary in the BFV scheme [Bra12, FV12] (unlike
the BGV scheme [BGV12]), it can be highly beneficial for
performance optimizations. In BFV, choosing a large enough
ciphertext modulus is crucial to support the desired computa-
tion, as the modulus determines the computational budget of a
ciphertext. However, a larger modulus increases the ciphertext
size and degrades the overall performance of homomorphic
operations. Modulus-switching addresses this issue by reduc-
ing the modulus as the budget is consumed, preserving the
remaining budget. PerfOMR leverages modulus-switching
repeatedly to keep the ciphertext modulus as small as possible
without compromising the budget, enhancing performance.

Rotation Key Management. The BFV scheme can natively
support all types of rotation. However, each requires its own
rotation key and storing all these keys can be quite demanding
in practice. Therefore, trade-offs between storage and com-
putational time are often advantageous. It is also important
to note that the size of rotation keys scales with the size of
the ciphertext modulus. However, if the rotation keys will
be used only after modulus-switching, generating them in a

smaller modulus suffices. For this reason, PerfOMR reduces
the number of rotation keys more aggressively for the ones
used at higher ciphertext modulus levels. The approach taken
by PerfOMR will be further detailed in Sec. 4.4.

3.6 Security

We sketch the security of PerfOMR with respect to Def. 3.
For detailed proofs, refer to [LTW24b].

• Correctness: The correctness of PerfOMR is implied by
the completeness and soundness of the underlying private
signaling scheme (Rmk. 2) and the correctness of the BFV
scheme (Sec. 2.2.1).

• Receiver-Privacy: The receiver-privacy of PerfOMR is
implied by the receiver-privacy of the underlying private
signaling scheme (Rmk. 2) and the semantic security of the
BFV scheme (Sec. 2.2.1).

4 Our Scheme: SophOMR

In this section, we present our new OMR scheme, SophOMR.
While we largely follow the approach of PerfOMR [LTW24b],
the key distinction lies in the compression phase (Sec. 3.4),
where we extend and apply the SIMD-aware homomorphic
compression scheme of [CLPY24] (Sec. 2.4). A detailed ex-
planation of our homomorphic compression mechanism is
provided in Sec.4.1. Additionally, we propose several opti-
mizations: ring-switching for digest-size reduction (Sec. 4.2),
hybrid key-switching optimization for key-size reduction
(Sec. 4.3), and BSGS-style Affine Transform step (Sec. 3.3)
for run-time reduction (Sec. 4.4). Additionally, we briefly
discuss the OMD variant of SophOMR (Sec. 4.5).

4.1 SIMD-Aware Digest Compression

As discussed in Sec. 3.4, PerfOMR [LTW24b] cannot fully
exploit the homomorphic SIMD structure (Sec. 2.2.1) dur-
ing the compression step due to its hashing-based approach
(Sec.3.4.2). As a result, it requires the costly PVUnpack pro-
cess (Sec. 3.4.1), which unpacks each slot of the packed PV
ciphertext into separate ciphertexts, creating a bottleneck for
the entire Digest.

In this regard, we adopt a SIMD-aware homomorphic
compression scheme from [CLPY24] (Sec. 2.4), which re-
moves the need for the heavy PVUnpack step, significantly
improving the runtime of the compression step.13 However,
[CLPY24] only considered payloads of the size of a single
HE slot, which is unrealistic for many scenarios. For example,
in prior works on OMR [LT22, LTW24b], each payload is

13Another advantage of our compression scheme is that, unlike PerfOMR’s,
it is deterministic and does not introduce any additional failure probability.

11



assumed to be 612 bytes, the typical size of Zcash transac-
tions [HBHW], meaning that the payload occupies multiple
HE slots. Thus, we need to extend the approach of [CLPY24]
to accommodate these typical OMR settings.

Naive Approach. To be precise, let each payload occupy t
number of HE slots (e.g., t ≈ 300 for typical HE parameters in
the example of Zcash transactions). Let PLi denote the length-
N vector containing the i-th slot of payloads. Directly apply-
ing the homomorphic compression of [CLPY24] (Sec. 2.4)
to the compression step of OMR (Sec. 3.4), one would first
compress the encrypted pertinency vector PV obtained from
the detection step (Sec. 3.3). This involves homomorphically
computing CCC ·PV via MatMul (Alg. 1), where CCC is defined in
Eq. 3. Then, one would compress masked payloads PLi⊙PV
by computing CCC ·(PLi⊙PV) again with MatMul, for 1≤ i≤ t.
This naive approach would require a total (t +1) number of
calls to MatMul with respect to the k×N matrix CCC. While this
method is already fairly efficient, it can be optimized much
further, as described below.

Stacking Matrices. First, we note a simple yet powerful
fact that enables our optimization. Let diag(PLi) denote the
N×N diagonal matrix whose diagonal is PLi and let DDDi de-
note the k×N matrix CCC ·diag(PLi). Then, the following holds.

CCC · (PLi⊙PV) = DDDi ·PV

This allows the detector to precompute DDDi =CCC ·diag(PLi) and
then compute DDDi ·PV homomorphically. Note that this prepro-
cessing is almost free, as both CCC and diag(PLi) are plaintexts
with regard to the underlying HE scheme. Furthermore, this
approach consumes less computational budget (Sec. 3.5) as
the homomorphic computation of PLi⊙PV is no longer per-
formed before MatMul.

But much more importantly, this precomputation allows us
to stack multiple MatMul into a single MatMul as follows.[

CCCT |DDDT
1 | · · · |DDDT

t
]T ·PV

To see why this is useful at all, recall that the number of
homomorphic rotations required in k×N MatMul is O(

√
k).

(See Tab. 1.) The stacking method significantly reduces the
total number of rotations required for compression: the naive
approach, which involves t+1 calls to k×N MatMul, requires
O((t +1) ·

√
k) rotations. In contrast, the stacking approach,

which involves a single call to ((t +1) · k)×N MatMul, only
requires O(

√
(t +1) · k) rotations. This results in roughly a√

t +1 reduction in the total number of rotations.

Implementing MatMul. We use MatMul described in
Alg. 1 (Sec. 2.3) for digest compression. In particular, we
employ the Horner-style [HS18] MatMul, which significantly
reduces the number of required rotation keys. Although this

method is incompatible with the so-called hoisiting tech-
nique [HS18], which optimizes runtime, we prioritize Horner-
style MatMul. We believe that in scenarios where a detector
handles multiple clients, minimizing the key size per client is
much more important than the runtime improvements offered
by hoisting.

4.2 Further Compression with Ring-Switching
Similar to modulus-switching (Sec. 3.5), there is a technique
called ring-switching [BGV12, GHPS12, GHPS13], which
switches the ring degree n of a given HE ciphertext into a
smaller one. This can be done while preserving the same
security level after some modulus-switching.14 In our case,
ring-switching is useful for further reducing the digest size.
Specifically, the ciphertext size scales linearly with the ring
dimension n, which corresponds to the number of slots in the
BFV scheme (Sec. 2.2.1). This implies that if the final result
occupies fewer slots than n, the unused slots are being wasted.
For instance, after homomorphic compression (Sec. 4.1), only
(t +1) ·k slots are occupied, which is typically smaller than n
under standard OMR parameters. Ring-switching addresses
this inefficiency by reducing the ring dimension and making
the digest more compact.15 In SophOMR, ring-switching is
employed as the final step of Digest to further compress the
digest. We note that ring-switching is a relatively inexpensive
procedure, whose cost is dominated by a single key-switching
operation. For further details, please refer to [GHPS13].

4.3 Key Size Reduction through Hybrid Key-
Switching Optimization

The key-switching technique is a fundamental element of
homomorphic multiplications and rotations. There are two
main approaches to key-switching. The first, known as the bit-
decomposition approach [BV11,BEHZ16] optimizes the com-
putational budget (Sec. 3.5). In contrast, the special-modulus
approach [GHS12b, CHK+19] prioritize key-size optimiza-
tion. In practice, a hybrid approach that combines these two
methods has been found to be most favorable [GHS12b,HK20,
KPZ21]. One downside of PerfOMR is its large key-size,
which stems from its reliance on one extreme of this hybrid
approach. In SophOMR, we strike a balance between these
two extremes, significantly reducing the key-size.

4.4 Affine Transform with BSGS-MatMul
We optimize the runtime of Affine Transform step in the
Detect procedure (Sec. 3.3) by adopting the BSGS-style Mat-

14For the same level of security, a larger ring dimension is required when
using a larger ciphertext modulus.

15Ring-switching is especially effective in the context of OMD (Sec. 2.5.2),
where the digest contains only the pertinent indices, excluding payloads,
requiring significantly fewer slots. See Sec. 4.5.

12



Mul algorithm, which uses two rotation keys. Thanks to hy-
brid key-switching (Sec. 4.3), this optimization is achieved
while maintaining a smaller key-size compared to PerfOMR’s
approach of using a single rotation key. (See Sec. 5.)

Recall that the Affine Transform step involves homomor-
phic matrix multiplications between tall plaintext matrices
AAA j’s and the ciphertext vector ctsk (Sec. 3.3, Alg. 6). For clar-
ity, in this section, we consider the goal of homomorphically
multiplying a tall N× k plaintext matrix MMM (representing AAA j)
with a ciphertext ct(vvv) (representing ctsk) that encrypts a
vector vvv ∈ Zk

p via sparse packing (Sec. 2.2.2).

4.4.1 PerfOMR’s Approach: MatMul with Single Key

Note that the Affine Transform (Sec. 3.3) is the very first
step of digesting and occurs before any modulus-switching
(Sec. 3.5). As a result, the rotation keys used in this step
must be generated at the largest modulus, making them rela-
tively large. In this regard, PerfOMR [LTW24b] aggressively
minimizes the number of rotation keys required during the
Affine Transform, ultimately using only one. The approach
skips BSGS-style optimization (Sec. 2.3.2) and applies Eq. 2
directly. Alg. 7 outlines PerfOMR’s method, with its costs
summarized in Tab. 2.

Algorithm 7 MatMul w/ Single Rotation Key

Input: MMM ∈ ZN×k
p , ct(vvv) ▷ k < n, N = s ·n, vvv ∈ Zk

p

Step 0: Parameter Setting
[MMMT

0 | · · · |MMMT
s−1]←MMMT

Step 1: Rotation Preprocessing
ct0← ct(vvv)
for i = 1, · · · ,k−1 do

cti← Rot1
row(cti−1)

Step 2: Ptxt-Mult & Sum
for j = 0, · · · ,s−1 do

ctout, j← ∑
k−1
i=0 diagi(MMM j)⊙cti

return (ctout, j)
s−1
j=0

4.4.2 Our Approach: MatMul with Two Keys

In SophOMR, thanks to hybrid key-switching (Sec. 4.3), the
size of the rotation key generated at the largest modulus is
substantially smaller than in PerfOMR. As a result, even
with the BSGS-style optimization and the use of two keys,
SophOMR’s total key-size remains smaller than PerfOMR’s.
The adoption of BSGS reduces the number of required homo-
morphic rotations from O(k) to O(

√
k), enhancing runtime

performance.
Alg. 8 describes the BSGS-MatMul algorithm used for

Affine transform in SophOMR. Although it is simply the tall

matrix version of Alg. 1, we include it here for completeness.
The costs for Alg. 8 are summarized in Tab. 2. Note that the
number of rotations is minimized when b̃≈

√
s · k.

Algorithm 8 MatMul (Tall)

Input: MMM ∈ ZN×k
p , ct(vvv) ▷ k < n, N = s ·n, vvv ∈ Zk

p

Step 0: Parameter Setting
[MMMT

0 | · · · |MMMT
s−1]←MMMT and k = g̃ · b̃

Step 1: Plaintext Packing
for (i, j) ∈ [s]× [k] do

mmmi, j← Rot
−gb̃
row
(
diag j(MMMi)

)
for g = ⌊ j/b̃⌋

Step 2: Baby-Step-Giant-Step (BSGS)
ct0← ct(vvv) ▷ Baby-Step
for b = 1, · · · , b̃−1 do

ctb← Rot1
row(ctb−1)

for i = 0, · · · ,s−1 do ▷ Giant-Step
for g = g̃−1, · · · ,0 do

ctsum,i← ∑
b̃−1
b=0(mmmi,gb̃+b⊙ctb)

if g = g̃−1 then
ctout,i← ctsum,i

else
ctout,i← Rotb̃

row(ctout,i)+ctsum,i

return (ctout,i)
s−1
i=0

#(Ptxt-Mult) #(Rotation) #(Rot. Key)

Alg. 7 s · k k 1
Alg. 8 s · k b̃+ s · g̃ 2

Table 2: Cost Analysis for Alg. 7 and Alg. 8

4.5 OMD Variant
Our SophOMR scheme can be readily adapted into an Obliv-
ious Message Detection (OMD) scheme (Sec. 2.5.2). Since
OMD does not require payload compression, it is sufficient
to compress only the encrypted pertinency vector PV. This
is done by homomorphically computing CCC ·PV via MatMul
(Alg. 1), where CCC is defined in Eq. 3, without stacking the
matrices as described in Sec. 4.1. This leads to a significant
speedup in the compression phase (Sec. 4.1). See Sec. 5 for
concrete performance results. An OMR-like functionality
can be achieved by combining an OMD scheme with a pri-
vate information retrieval (PIR) scheme [CGKS95, KO97], as
discussed in Sec. 2.5.2. Although this approach introduces
an additional round of communication, it provides a generic
method to implement OMR-like functionality, allowing the
unique features and advantages of various PIR schemes to be
utilized depending on the specific PIR scheme chosen.

13



5 Evaluation

Methodology. To evaluate the concrete performance of our
SophOMR scheme, we implement it in a C++ library16 using
the OpenFHE library [BAB+22], with the NTL library [Sho]
to implement Decode (Sec. 4.1 and 2.4). We then compare
its performance against the implementation [LTW] of Per-
fOMR [LTW24b], which uses PALISADE library [PAL21]
for the private signaling scheme (Sec. 3.1), the SEAL li-
brary [SEA23] for the BFV scheme (Sec. 2.2.1). Both im-
plementations leverage the HEXL library [BKS+21] to accel-
erate HE libraries. All experiments are conducted on a Google
Compute Cloud n2-standard-8 instance (Intel Ice Lake) in
a single-threaded mode.

Parameters. We choose parameters that uphold the secu-
rity claims of PerfOMR’s parameter sets and comply with
the Homomorphic Encryption Security Standardization ef-
fort [ACC+18, BCC+24]. All bit security is measured using
the latest version of the Lattice Estimator available at the
time of writing [Alb, APS15] (Commit ID: 5c25455). De-
tailed parameters are provided in Tab. 4, Tab. 5, and Tab. 6
of Appx. A. Note that SophOMR uses a larger BFV ring
dimension of n = 216, compared to n = 215 of PerfOMR, to
comply with the HE Security Standard for 128-bit security
(Tab. 4). We also employ a larger parameter for the underlying
private signaling scheme (Sec. 3.1) that offers 128-bit security
and 30-bit completeness to uphold the security claim of Per-
fOMR’s parameters. The parameters provided in PerfOMR
only achieve 94-bit security and 18-bit completeness, leading
to easily observable errors (Tab. 6).

Experiments. Experiments are conducted with a total num-
ber of payloads N = 216 and 219. The number of pertinent
payloads is set to k = 50, following PerfOMR. We present the
results in Tab. 3 for N = 216. Additionally, Fig. 2 illustrate
the runtime breakdown of each component contributing to the
Digest runtime: Preprocessing (Rmk. 4), Affine Transform
(Sec. 4.4), Range Check (Sec. 3.3), and Compress (Sec. 4.1).
Refer to Appx. B, for experimental results with N = 219.

Remark 3 (On Choice of N). While PerfOMR conducted
experiments with N = 219,221,223, we focus on N = 216,219,
considering N = 216 as the primary setting. Our reasoning
is that dividing N into smaller sets can be advantageous for
latency, provided it maintains similar throughput and keeps
communication costs reasonable. For example, PerfOMR uses
N = 219 to model Bitcoin-scale applications,17 but a client
may find it more useful to receive digests for 216 payloads
every 3 hours than a single digest for 219 every 24 hours. This
issue is even more relevant in private messaging scenarios.

16https://github.com/keewoolee/SophOMR
17There are roughly 219 transactions per day on Bitcoin: https://

ycharts.com/indicators/bitcoin_transactions_per_day

Remark 4 (Preprocessing). In Fig. 2 and Fig. 3, the blue
mesh represents the time that PerfOMR manually excluded
from their timing results to account for the preprocessing
potential of a significant portion of SlotToCoeff (Sec. 3.4.1).
However, this preprocessing requires a substantial amount of
RAM (at least 25GB for their parameters). If such an amount
of RAM is available, SophOMR can also be accelerated by
preprocessing a significant portion of MatMul in Compress
(Sec. 4.1).18 For a fair comparison, preprocessing time is
excluded from Tab. 3 and Tab. 7, but it is provided in Fig. 2
and Fig. 3.

Experimental Results for N = 216. As shown in Tab. 3,
SophOMR provides multiple improvements over PerfOMR.
Specifically, SophOMR achieves a 3.3× speedup in Digest
runtime while maintaining a reasonably small Decode run-
time. The detection key size is reduced by 1.5× through
hybrid key-switching optimization (Sec. 4.3). Furthermore,
the digest size is reduced by 2.2×, thanks to ring-switching
(Sec. 4.2) and our compact homomorphic compression
scheme (Sec. 4.1); see also Rmk. 6. Note that all these im-
provements are achieved despite SophOMR using larger pa-
rameters than PerfOMR to meet security levels that PerfOMR
does not satisfy (Appx. A).

As illustrated in Fig. 2, the improvement in Digest run-
time primarily stems from our SIMD-aware homomorphic
compression scheme (Sec. 4.1). Specifically, our compression
achieves 7.4× speedup compared to PerfOMR, even when
excluding the runtime for preprocessing (Rmk. 4). The Affine
Transform step also achieves considerable speedup thanks to
BSGS-style MatMul (Sec. 4.4). On the other hand, the Range
Check step (Sec. 3.3) shows a slight increase in runtime, at-
tributed to our use of larger parameters to meet security levels
that PerfOMR does not satisfy (Appx. A).

Remark 5 (On Choice of v). The bundling parameter v in
PerfOMR represents how many payloads are concatenated
and processed simultaneously (See Sec. 3.4.4). We compare
only with PerfOMR using v= 2 for N = 216 because (i) setting
v = 2 incurs nearly no additional runtime or digest size costs
compared to v = 1 due to PerfOMR’s specific utilization BFV
slots, and (ii) setting v > 2 does not improve runtime further
due to the fixed number of BFV slots (n = 215).

Remark 6 (Digest Size). PerfOMR optimizes the digest size
by setting the BFV ciphertext modulus at the lowest level
to be as small as possible in the SEAL library (Sec. 3.5).
However, this optimization is not applied in our SophOMR
implementation due to limitations in the OpenFHE library: (i)
it does not officially allow the base-level ciphertext modulus
to be set independently of the RNS limbs, and (ii) its cipher-
text serialization does not further reduce when the ciphertext

18If an even larger RAM is available, we can also preprocess Affine Trans-
form (Sec. 4.4).

14

https://github.com/keewoolee/SophOMR
https://ycharts.com/indicators/bitcoin_transactions_per_day
https://ycharts.com/indicators/bitcoin_transactions_per_day


Digest (s) Decode (ms) Detection Key (MB)19 Digest (KB)20

PerfOMR (v = 2) 534 12 171 567
SophOMR 162 14 114 263

PerfOMD (v = 2) 492 4 171 284
SophOMD 113 5 142 132

Table 3: Performance of OMR/OMD Schemes (N = 216, k = 50)

0m 2m 4m 6m 8m 10m

PerfOMR (v = 2)

SophOMR

PerfOMD (v = 2)

SophOMD

Preprocess
Affine

RangeCheck
Compress

Figure 2: Runtime Breakdown for OMR/OMD Schemes (N = 216, k = 50)

modulus is below 64-bit. If we apply the same optimization
as in PerfOMR, SophOMR’s digest size can be reduced by
approximately an additional factor of 2×.

OMD Variants. We also present the performance of
SophOMD, the OMD variant of SophOMR (see Sec. 4.5).
As there is no existing OMD implementation corresponding
to PerfOMR, we modified the PerfOMR implementation to
run only the relevant components and refer to this version as
PerfOMD. The OMD experiments use the same parameter
sets as in the OMR experiments.

As shown in Tab. 3, SophOMD also provides multiple
improvements over PerfOMD, similar to the OMR setting.
Specifically, SophOMD achieves a 4.4× speedup in Digest
runtime. As illustrated in Fig. 2, this improvement primar-
ily stems from our SIMD-aware homomorphic compression
scheme (Sec. 4.1), allowing compression in SophOMD to
complete in only one second – a 335× speedup compared to
PerfOMD. Notice that the performance gain is even greater
than in the OMR setting, as we only compress the indices and
not the payloads (Sec. 4.5). On the other hand, the detector
key size has slightly increased (though still smaller than Per-
fOMR) due to the use of additional rotation keys from the
reduced number of rows in MatMul (Tab. 1). The bundling
technique (Sec. 3.4.4) can still be applied to PerfOMD; how-
ever, achieving OMR-like functionality (Sec. 4.5) requires
performing PIR (Private Information Retrieval) on the bun-
dles, causing PIR performance to depend on the bundling

19For the key size, we take into account the compression of randomness
into the hash seed.

20Our digest size can be further reduced, as explained in Rmk. 6.

parameter v.

Acknowledgments

We would like to thank Zeyu Liu for the discussion on Per-
fOMR and its implementation.

15



References

[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jin-
tai Ding, Shafi Goldwasser, Sergey Gorbunov,
Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Miccian-
cio, Dustin Moody, Travis Morrison, Amit Sa-
hai, and Vinod Vaikuntanathan. Homomor-
phic encryption security standard. Technical
report, HomomorphicEncryption.org, Toronto,
Canada, November 2018.

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and
Srinath T. V. Setty. PIR with compressed
queries and amortized query processing. In
2018 IEEE Symposium on Security and Pri-
vacy, pages 962–979. IEEE Computer Society
Press, May 2018.

[Alb] Martin Albrecht. Security Estimates for Lat-
tice Problems. https://github.com/malb/
lattice-estimator.

[APS15] Martin R. Albrecht, Rachel Player, and Sam
Scott. On the concrete hardness of learning
with errors. J. Math. Cryptol., 9(3):169–203,
2015.

[AS16] Sebastian Angel and Srinath T. V. Setty. Unob-
servable communication over fully untrusted
infrastructure. In Kimberly Keeton and Timo-
thy Roscoe, editors, 12th USENIX Symposium
on Operating Systems Design and Implementa-
tion, OSDI 2016, Savannah, GA, USA, Novem-
ber 2-4, 2016, pages 551–569. USENIX Asso-
ciation, 2016.

[Azt] Aztec. https://aztec.network/.

[BAB+22] Ahmad Al Badawi, Andreea Alexandru, Jack
Bates, Flavio Bergamaschi, David Bruce
Cousins, Saroja Erabelli, Nicholas Genise, Shai
Halevi, Hamish Hunt, Andrey Kim, Yongwoo
Lee, Zeyu Liu, Daniele Micciancio, Carlo Pas-
coe, Yuriy Polyakov, Ian Quah, Saraswathy
R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy
Suponitsky, Matthew Triplett, Vinod Vaikun-
tanathan, and Vincent Zucca. OpenFHE: Open-
source fully homomorphic encryption library.
Cryptology ePrint Archive, Paper 2022/915,
2022. https://eprint.iacr.org/2022/
915.

[BCC+24] Jean-Philippe Bossuat, Rosario Cammarota,
Ilaria Chillotti, Benjamin R. Curtis, Wei
Dai, Huijing Gong, Erin Hales, Duhyeong
Kim, Bryan Kumara, Changmin Lee, Xianhui

Lu, Carsten Maple, Alberto Pedrouzo-Ulloa,
Rachel Player, Yuriy Polyakov, Luis Anto-
nio Ruiz Lopez, Yongsoo Song, and Donggeon
Yhee. Security guidelines for implementing
homomorphic encryption. Cryptology ePrint
Archive, Paper 2024/463, 2024.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina
Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decen-
tralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Pri-
vacy, pages 459–474. IEEE Computer Society
Press, May 2014.

[BEHZ16] Jean-Claude Bajard, Julien Eynard, M. Anwar
Hasan, and Vincent Zucca. A full RNS variant
of FV like somewhat homomorphic encryption
schemes. In Roberto Avanzi and Howard M.
Heys, editors, SAC 2016, volume 10532 of
LNCS, pages 423–442. Springer, Cham, Au-
gust 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod
Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Shafi
Goldwasser, editor, ITCS 2012, pages 309–325.
ACM, January 2012.

[BKS+21] Fabian Boemer, Sejun Kim, Gelila Seifu, Fil-
lipe DM de Souza, Vinodh Gopal, et al. Intel
HEXL (release 1.2). https://github.com/
intel/hexl, 2021.

[BLMG21] Gabrielle Beck, Julia Len, Ian Miers, and
Matthew Green. Fuzzy message detection.
In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 1507–1528. ACM Press,
November 2021.

[BMS01] Adam Back, Ulf Möller, and Anton Stiglic.
Traffic analysis attacks and trade-offs in
anonymity providing systems. In Ira S.
Moskowitz, editor, Information Hiding, 4th In-
ternational Workshop, IHW 2001, Pittsburgh,
PA, USA, April 25-27, 2001, Proceedings, vol-
ume 2137 of Lecture Notes in Computer Sci-
ence, pages 245–257. Springer, 2001.

[BPSY24] Alexander Bienstock, Sarvar Patel, Joon Young
Seo, and Kevin Yeo. Batch PIR and labeled
PSI with oblivious ciphertext compression. In
33rd USENIX Security Symposium (USENIX
Security 24), pages 5949–5966, Philadelphia,
PA, August 2024. USENIX Association.

16

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://aztec.network/
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://github.com/intel/hexl
https://github.com/intel/hexl


[Bra12] Zvika Brakerski. Fully homomorphic encryp-
tion without modulus switching from classical
GapSVP. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 868–886. Springer, Berlin, Hei-
delberg, August 2012.

[But20a] Vitalik Buterin. Exploring fully homomorphic
encryption. https://vitalik.eth.limo/
general/2020/07/20/homomorphic.html,
2020.

[But20b] Vitalik Buterin. Open problem: im-
proving stealth addresses. https:
//ethresear.ch/t/open-problem-
improving-stealth-addresses/7438,
2020.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan.
Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In
Phillip Rogaway, editor, CRYPTO 2011, vol-
ume 6841 of LNCS, pages 505–524. Springer,
Berlin, Heidelberg, August 2011.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David
Mazières. Riposte: An anonymous messag-
ing system handling millions of users. In
2015 IEEE Symposium on Security and Pri-
vacy, pages 321–338. IEEE Computer Society
Press, May 2015.

[CDG+21] Seung Geol Choi, Dana Dachman-Soled,
S. Dov Gordon, Linsheng Liu, and Arkady
Yerukhimovich. Compressed oblivious en-
coding for homomorphically encrypted search.
In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 2277–2291. ACM Press,
November 2021.

[CDKS19] Hao Chen, Wei Dai, Miran Kim, and Yongsoo
Song. Efficient multi-key homomorphic en-
cryption with packed ciphertexts with applica-
tion to oblivious neural network inference. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 395–412. ACM Press, November
2019.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya
Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the
torus. Journal of Cryptology, 33(1):34–91,
January 2020.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushile-
vitz, and Madhu Sudan. Private information

retrieval. In 36th FOCS, pages 41–50. IEEE
Computer Society Press, October 1995.

[CHK+19] Jung Hee Cheon, Kyoohyung Han, Andrey
Kim, Miran Kim, and Yongsoo Song. A full
RNS variant of approximate homomorphic en-
cryption. In Carlos Cid and Michael J. Jacob-
son Jr:, editors, SAC 2018, volume 11349 of
LNCS, pages 347–368. Springer, Cham, August
2019.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim,
and Yong Soo Song. Homomorphic encryp-
tion for arithmetic of approximate numbers.
In Tsuyoshi Takagi and Thomas Peyrin, edi-
tors, ASIACRYPT 2017, Part I, volume 10624
of LNCS, pages 409–437. Springer, Cham, De-
cember 2017.

[CLPY24] Jung Hee Cheon, Keewoo Lee, Jai Hyun Park,
and Yongdong Yeo. SIMD-aware homomor-
phic compression and application to private
database query, 2024. https://arxiv.org/
abs/2408.17063.

[FLS23] Nils Fleischhacker, Kasper Green Larsen, and
Mark Simkin. How to compress encrypted data.
In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part I, volume 14004 of
LNCS, pages 551–577. Springer, Cham, April
2023.

[FV12] Junfeng Fan and Frederik Vercauteren. Some-
what practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144,
2012.

[Gen09] Craig Gentry. Fully homomorphic encryption
using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

[GHPS12] Craig Gentry, Shai Halevi, Chris Peikert, and
Nigel P. Smart. Ring switching in BGV-style
homomorphic encryption. In Ivan Visconti and
Roberto De Prisco, editors, SCN 12, volume
7485 of LNCS, pages 19–37. Springer, Berlin,
Heidelberg, September 2012.

[GHPS13] Craig Gentry, Shai Halevi, Chris Peikert, and
Nigel P. Smart. Field switching in bgv-style
homomorphic encryption. J. Comput. Secur.,
21(5):663–684, 2013.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart.
Better bootstrapping in fully homomorphic en-
cryption. In Marc Fischlin, Johannes Buch-
mann, and Mark Manulis, editors, PKC 2012,

17

https://vitalik.eth.limo/general/2020/07/20/homomorphic.html
https://vitalik.eth.limo/general/2020/07/20/homomorphic.html
https://ethresear.ch/t/open-problem-improving-stealth-addresses/7438
https://ethresear.ch/t/open-problem-improving-stealth-addresses/7438
https://ethresear.ch/t/open-problem-improving-stealth-addresses/7438
https://arxiv.org/abs/2408.17063
https://arxiv.org/abs/2408.17063


volume 7293 of LNCS, pages 1–16. Springer,
Berlin, Heidelberg, May 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart.
Homomorphic evaluation of the AES circuit.
In Reihaneh Safavi-Naini and Ran Canetti, ed-
itors, CRYPTO 2012, volume 7417 of LNCS,
pages 850–867. Springer, Berlin, Heidelberg,
August 2012.

[HBHW] Daira-Emma Hopwood, Sean Bowe, Taylor
Hornby, and Nathan Wilcox. Zcash Proto-
col Specification. https://zips.z.cash/
protocol/protocol.pdf.

[HK20] Kyoohyung Han and Dohyeong Ki. Better
bootstrapping for approximate homomorphic
encryption. In Stanislaw Jarecki, editor, CT-
RSA 2020, volume 12006 of LNCS, pages 364–
390. Springer, Cham, February 2020.

[HS14] Shai Halevi and Victor Shoup. Algorithms in
HElib. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 554–571. Springer, Berlin, Hei-
delberg, August 2014.

[HS18] Shai Halevi and Victor Shoup. Faster homo-
morphic linear transformations in HElib. In
Hovav Shacham and Alexandra Boldyreva, ed-
itors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 93–120. Springer, Cham, August
2018.

[JLM23] Sashidhar Jakkamsetti, Zeyu Liu, and Varun
Madathil. Scalable private signaling. Cryp-
tology ePrint Archive, Paper 2023/572, 2023.
https://eprint.iacr.org/2023/572.

[JMK24] Yanxue Jia, Varun Madathil, and Aniket Kate.
HomeRun: High-efficiency oblivious message
retrieval, unrestricted. Cryptology ePrint
Archive, Paper 2024/188, 2024. https://
eprint.iacr.org/2024/188.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and
Anantha Chandrakasan. GAZELLE: A low la-
tency framework for secure neural network in-
ference. In William Enck and Adrienne Porter
Felt, editors, USENIX Security 2018, pages
1651–1669. USENIX Association, August
2018.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Repli-
cation is NOT needed: SINGLE database,
computationally-private information retrieval.
In 38th FOCS, pages 364–373. IEEE Computer
Society Press, October 1997.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent
Zucca. Revisiting homomorphic encryp-
tion schemes for finite fields. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part III, volume 13092 of
LNCS, pages 608–639. Springer, Cham, De-
cember 2021.

[LHH+21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yip-
ing Ma, and Hunter Qu. PEGASUS: bridging
polynomial and non-polynomial evaluations in
homomorphic encryption. In 42nd IEEE Sym-
posium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021, pages
1057–1073. IEEE, 2021.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded
Regev. On ideal lattices and learning with er-
rors over rings. In Henri Gilbert, editor, EU-
ROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, Berlin, Heidelberg, May / June
2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded
Regev. A toolkit for ring-LWE cryptography.
In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 35–54. Springer, Berlin, Heidel-
berg, May 2013.

[LSTW24] Zeyu Liu, Katerina Sotiraki, Eran Tromer, and
Yunhao Wang. Snake-eye resistance from
LWE for oblivious message retrieval and ro-
bust encryption. Cryptology ePrint Archive, Pa-
per 2024/510, 2024. https://eprint.iacr.
org/2024/510.

[LT22] Zeyu Liu and Eran Tromer. Oblivious mes-
sage retrieval. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, vol-
ume 13507 of LNCS, pages 753–783. Springer,
Cham, August 2022.

[LTW] Zeyu Liu, Eran Tromer, and Yunhao Wang.
PerfOMR: proof of concept C++ imple-
mentation for OMR (Oblivious Message
Retrieval) with Reduced Communication
and Computation. https://github.
com/ObliviousMessageRetrieval/
ObliviousMessageRetrieval/tree/
perfomr.

[LTW24a] Z. Liu, E. Tromer, and Y. Wang. Group obliv-
ious message retrieval. In 2024 IEEE Sym-
posium on Security and Privacy (SP), pages
118–118, Los Alamitos, CA, USA, may 2024.
IEEE Computer Society.

18

https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://eprint.iacr.org/2023/572
https://eprint.iacr.org/2024/188
https://eprint.iacr.org/2024/188
https://eprint.iacr.org/2024/510
https://eprint.iacr.org/2024/510
https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/perfomr
https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/perfomr
https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/perfomr
https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/perfomr


[LTW24b] Zeyu Liu, Eran Tromer, and Yunhao Wang. Per-
fOMR: Oblivious message retrieval with re-
duced communication and computation. In
Davide Balzarotti and Wenyuan Xu, editors,
33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August
14-16, 2024. USENIX Association, 2024.

[LW23] Zeyu Liu and Yunhao Wang. Amortized func-
tional bootstrapping in less than 7 ms, with
Õ(1) polynomial multiplications. In Jian Guo
and Ron Steinfeld, editors, ASIACRYPT 2023,
Part VI, volume 14443 of LNCS, pages 101–
132. Springer, Singapore, December 2023.

[MD04] Nick Mathewson and Roger Dingledine. Prac-
tical traffic analysis: Extending and resisting
statistical disclosure. In David M. Martin Jr.
and Andrei Serjantov, editors, Privacy Enhanc-
ing Technologies, 4th International Workshop,
PET 2004, Toronto, Canada, May 26-28, 2004,
Revised Selected Papers, volume 3424 of Lec-
ture Notes in Computer Science, pages 17–34.
Springer, 2004.

[MSS+22] Varun Madathil, Alessandra Scafuro,
István András Seres, Omer Shlomovits,
and Denis Varlakov. Private signaling. In
Kevin R. B. Butler and Kurt Thomas, editors,
USENIX Security 2022, pages 3309–3326.
USENIX Association, August 2022.

[Noe15] Shen Noether. Ring signature confidential
transactions for monero. Cryptology ePrint
Archive, Report 2015/1098, 2015.

[PAL21] PALISADE Lattice Cryptography Library (re-
lease 1.11.3). https://palisade-crypto.
org/, May 2021.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent
Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS,
pages 554–571. Springer, Berlin, Heidelberg,
August 2008.

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L.
Dertouzos. On data banks and privacy homo-
morphisms. Foundations of Secure Computa-
tion, Academia Press, pages 169–179, 1978.

[Reg05] Oded Regev. On lattices, learning with errors,
random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors,
37th ACM STOC, pages 84–93. ACM Press,
May 2005.

[SEA23] Microsoft SEAL (release 4.1). https:
//github.com/Microsoft/SEAL, January
2023. Microsoft Research, Redmond, WA.

[Sho] Victor Shoup. NTL: A Library for doing Num-
ber Theory. https://libntl.org/.

[SPB22] István András Seres, Balázs Pejó, and Péter
Burcsi. The effect of false positives: Why fuzzy
message detection leads to fuzzy privacy guar-
antees? In Ittay Eyal and Juan A. Garay, edi-
tors, FC 2022, volume 13411 of LNCS, pages
123–148. Springer, Cham, May 2022.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Za-
haria, and Nickolai Zeldovich. Vuvuzela: scal-
able private messaging resistant to traffic anal-
ysis. In Ethan L. Miller and Steven Hand,
editors, Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages
137–152. ACM, 2015.

[WCFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs,
Bryan Ford, and Aaron Johnson. Dissent in
numbers: Making strong anonymity scale. In
Chandu Thekkath and Amin Vahdat, editors,
10th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2012,
Hollywood, CA, USA, October 8-10, 2012,
pages 179–182. USENIX Association, 2012.

[WSDB22] Toni Wahrstätter, Matt Solomon, Ben
DiFrancesco, and Vitalik Buterin. ERC-5564:
Stealth Addresses. Ethereum Improvement
Proposals, no. 5564, August 2022. Available:
https://eips.ethereum.org/EIPS/eip-
5564.

A Parameters

The BFV parameters used in our experiments are presented
in Tab. 4. For SophOMR and SophOMD, we also present the
BFV parameters for ring-switching (Sec. 4.2) in Tab. 5. The
private signaling parameters are presented in Tab. 6.

BFV Parameters. In Tab. 4 and Tab. 5, logPQ denotes
the largest modulus used in the scheme, including special
modulus used in the hybrid key-switching (Sec. 4.3), which
impacts the security level. In Tab. 4, notice that SophOMR
uses a larger BFV ring dimension of n= 216, compared to n=
215 of PerfOMR, to comply with the HE Security Standard
for 128-bit security. In this setup, a larger plaintext modulus
p is required to satisfy p = 1 (mod 2n) to fully leverage the
homomorphic SIMD structure. In Tab. 5, observe that we

19

https://palisade-crypto.org/
https://palisade-crypto.org/
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://libntl.org/
https://eips.ethereum.org/EIPS/eip-5564
https://eips.ethereum.org/EIPS/eip-5564


further reduce the ring dimension n in SophOMD, as the final
digest occupies much fewer slots than SophOMR.

n p logQ logPQ λ

PerfOMR 215 65537 857 917 120.9
SophOMR 216 786433 1140 1740 128.6

Table 4: Parameters for BFV

n logQ logPQ λ

SophOMR 214 120 240 244.6
SophOMD 213 120 180 154.4

Table 5: BFV Parameters for Ring-Switching

Private Signaling Parameters. In Tab. 6, ρ and ν de-
note the false-positive and false-negative security parame-
ters, which are associated with soundness and completeness,
respectively (Def. 7). Note that the parameters used in Per-
fOMR provide only 94-bit security and 18-bit completeness,
falling short of their claimed 128-bit security and 30-bit com-
pleteness. When running PerfOMR for N = 219 with these
parameter sets, errors become readily apparent due to this
lack of completeness. In SophOMR, we choose parameters
that uphold the security claims of PerfOMR’s parameter sets,
which negatively affect our performance. Note that our key
and signal sizes are slightly larger than PerfOMR due to our
larger BFV parameter, which is to comply with the HE Secu-
rity Standard for 128-bit security.

B Experimental Results for N = 219

In this section, we present our experimental results for N =
219. We compare the performance of SophOMR/SophOMD
with PerfOMR/PerfOMD for v = 2 and v = 16, representing
the two extremes in the trade-off between digest size and
runtime. (See Sec. 3.4.4 and Rmk. 5.) As shown in Tab. 7
and Fig. 3, SophOMR/SophOMD provides multiple improve-
ments over PerfOMR/PerfOMD for N = 219.

OMR Schemes. Compared to PerfOMR with v = 2,
SophOMR achieves a 3.0× speedup in Digest runtime and a
2.2× reduction in digest size. In contrast, compared to Per-
fOMR with v = 16, SophOMR achieves 1.1× speedup in
Digest runtime and a 10.8× reduction in digest size. Addi-
tionally, note that the Decode runtime for PerfOMR increases
when v = 16.

21For the key size, we take into account the compression of randomness
into the hash seed.

OMD Schemes. For the OMD variants, similar trends are
observed as in the N = 216 setting. Specifically, our SIMD-
aware homomorphic compression scheme (Sec. 4.1) enables
SophOMD to complete compression for N = 219 in just 2
seconds—yielding a 1343× speedup over PerfOMD with
v = 2 and a 190× speedup with v = 16.

20



n′ q′ σ h ℓ r λ ρ ν PS Key (KB)21 Signal (KB)

PerfOMR 1024 65537 0.5 32 2 19 94.0 21.4 17.6 2.2 2.2
SophOMR 1024 786433 0.5 80 2 40 128.4 26.5 30.7 2.6 2.6

Table 6: Parameters for PS

Digest (s) Decode (ms) Detection Key (MB) Digest (KB)

PerfOMR (v = 2) 3627 12 171 568
PerfOMR (v = 16) 1386 70 171 2840
SophOMR 1107 14 114 263

PerfOMD (v = 2) 3331 4 171 284
PerfOMD (v = 16) 1004 5 171 568
SophOMD 723 5 142 132

Table 7: Performance of OMR/OMD Schemes (N = 219, k = 50)

0m 20m 40m 60m

PerfOMR (v = 2)

PerfOMR (v = 16)

SophOMR

PerfOMD (v = 2)

PerfOMD (v = 16)

SophOMD

Preprocess
Affine

RangeCheck
Compress

Figure 3: Runtime Breakdown for OMR/OMD Schemes (N = 219, k = 50, single-thread)

21


	Introduction
	Our Contribution
	Technical Overview
	System Model
	Our Techniques

	Related Work

	Preliminaries
	Notations
	Homomorphic Encryption
	BFV Scheme
	Sparse Packing

	Homomorphic Matrix Multiplication
	Diagonal Packing
	BSGS-Style MatMul

	Homomorphic Compression
	Index Compression
	Payload Compression

	OMR and OMD
	Oblivious Message Retrieval (OMR)
	Oblivious Message Detection (OMD)


	Review: PerfOMR 
	RLWE-based Private Signaling Scheme
	Private Signaling
	Construction

	Setup
	Detection
	Compression
	Unpacking the Pertinency Vector
	Hashing-based Index Compression
	Payload Compression with Random Linear Codes
	Bundling: Runtime/Digest-Size Trade-off

	Optimizations
	Security

	Our Scheme: SophOMR
	SIMD-Aware Digest Compression
	Further Compression with Ring-Switching
	Key Size Reduction through Hybrid Key-Switching Optimization
	Affine Transform with BSGS-MatMul
	PerfOMR's Approach: MatMul with Single Key
	Our Approach: MatMul with Two Keys

	OMD Variant

	Evaluation
	Parameters
	Experimental Results for N=219

