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Abstract. We say there is a share conversion from a secret sharing
scheme Π to another scheme Π ′ implementing the same access structure
if each party can locally apply a deterministic function to their share to
transform any valid secret sharing under Π to a valid (but not necessarily
random) secret sharing under Π ′ of the same secret. If such a conversion
exists, we say that Π ≥ Π ′. This notion was introduced by Cramer et
al. (TCC’05), where they particularly proved that for any access struc-
ture (AS), any linear secret sharing scheme over a given field F, has a
conversion from a CNF scheme, and is convertible to a DNF scheme.
In this work, we initiate a systematic study of convertability between
secret sharing schemes, and present a number of results with implications
to the understanding of the convertibility landscape.
– In the context of linear schemes, we present two key theorems pro-

viding necessary conditions for convertibility, proved using linear-
algebraic tools. It has several implications, such as the fact that
Shamir secret sharing scheme can be neither maximal or minimal.
Another implication of it is that for a broad class of access struc-
tures, a linear scheme where some party has sufficiently small share
complexity, may not be minimal.

– Our second key result is a necessary condition for convertibility to
CNF from a broad class of (not necessarily linear) schemes. This re-
sult is proved via information-theoretic techniques and implies non-
maximality for schemes with share complexity smaller than that of
CNF.

We also provide a condition which is both necessary and sufficient for the
existence of a share conversion to some linear scheme.The condition is
stated as a system of linear equations, such that a conversion exists iff. a
solution to the linear system exists. We note that the impossibility results
for linear schemes may be viewed as identifying a subset of contradicting
equations in the system.
Another contribution of our paper, is in defining and studying share con-
version for evolving secret sharing schemes. In such a schemes, recently
introduced by Komargodski et al. (IEEE ToIT’18), the number of par-
ties is not bounded apriori, and every party receives a share as it arrives,
which never changes in the sequel. Our impossibility results have im-
plications to the evolving setting as well. Interestingly, that unlike the
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standard setting, there is no maximum or minimum in a broad class of
evolving schemes, even without any restriction on the share size.
Finally, we show that, generally, there is no conversion between additive
schemes over different fields, however by degrading to statistical security,
it may be possible to create convertible schemes.

1 Introduction

Secret sharing is a fundamental notion in cryptography. A secret sharing scheme
enables a dealer to distribute a secret among a set of parties so that any pre-
specified subset of qualified parties can recover the secret while any other subset
of parties remain oblivious to the secret. The monotone class of subsets of quali-
fied parties constitute the access structure realized by the secret sharing scheme.

Secret sharing is a building block for realizing several complex cryptographic
tasks. Certain such tasks may require additional properties in the secret sharing
scheme – for instance, succinctness of the shares, or homomorphism and other
algebraic properties. This suggests use cases where a protocol requires secret
sharing according to one scheme during one stage, and according to another
scheme during another. This motivated non-interactive conversion between se-
cret sharing schemes, which was formalized in [9] by Cramer, Damgard, and
Ishai as share conversion.

We say there is a share conversion from a secret sharing scheme Π to another
scheme Π ′ implementing the same access structure if each party can locally apply
a deterministic function to their share to transform any valid secret sharing
under Π to a valid (but not necessarily random) secret sharing of the same
secret under Π ′. In full generality, share conversion may be defined from Π to
Π ′ which implement different access structures Γ ⊇ Γ ′, respectively. Moreover
the secret under Π ′ after the transformation can be a pre-specified function of
the secret under Π before transformation. In this work, we focus on the natural
case where Γ = Γ ′ and the above-mentioned function is identity.

In the sequel, we will say Π ≥ Π ′ if there is a share conversion from Π to Π ′.
This induces a partial ordering over secret sharing schemes realizing any access
structure Γ . Many important insights into the partial order ≥ of convertability
for linear secret sharing schemes over a finite field were provided in [9]. Among
other results, they proved that, for any access structure Γ and finite filed F, CNF-
based secret sharing scheme CNFΓ,F is maximal, and DNF-based secret sharing
scheme DNFΓ,F is minimal among the set of all linear secret sharing schemes for
Γ over F. I.e., CNFΓ,F ≥ Π ≥ DNFΓ,F for any linear secret sharing scheme Π.
Note, however, that the existence of additional minimal and maximal schemes
is not ruled out in [9]. For certain access structures, specifically (2,3)-threshold,
they demonstrated that certain linear schemes like Shamir secret sharing scheme
in not maximal, as it is not convertible to CNF. They also show that a limited
class of linear secret sharing schemes – the so called replicated schemes, that are
similar in structure to CNF in the sense that the secret is defined as the sum of
the random elements, and every party gets a subset of them as it’s share, are not
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maximal for (k, n)-threshold access structures unless they have share complexity
as high as that of CNF (see Section 3.3 in [9]).

In this paper, we initiate a systematic study of convertibility between secret
sharing schemes, and obtain new results in several directions:

– We develop new and easily checkable necessary conditions for share conver-
sion between linear schemes implementing a given access structure. These
necessary conditions are in the form of linear algebraic constraints on the
monotone span program (MSP) corresponding to the linear schemes. Using
these conditions, we are able to get a clearer view of the partial order induced
by convertibility over the linear schemes.

– We develop a necessary and sufficient condition for a conversion between the
linear schemes Π,Π ′ in form of a linear system decided by the MSP of Π
and Π ′ which has a solution if and only Π ≥ Π ′.

– Next, we address the more general problem of share conversions involving
potentially non-linear secret sharing schemes. We introduce the notion of
non-degenerate secret sharing schemes and develop a necessary condition for
share conversion to such schemes. Non-degenerate schemes consist a wide
class of widely-used schemes and include CNF and Shamir secret sharing.

– We apply our results to develop necessary conditions for conversion to the
well-studied schemes, such as CNF, DNF, and Shamir secret sharing schemes.

– The necessary conditions we develop also bear consequences for secret shar-
ing for evolving setting, i.e. where the number of parties is not bounded, and
the party gets it’s share when appears. We show that, for several interesting
evolving access structures, there is no maximal or minimal scheme.

– We also initiate the study of the secret sharing conversion between different
fields. We show that, in a general case, there is no conversion between linear
schemes over two different fields. To circumvent this, we propose a general
approach of bounding the randomness domain in a source scheme. We build
a leaky additive scheme over Zp allowing conversion into Zq. as it’s possible
to see from our example, the proposed approach could result in a privacy
leakage, which is often tolerable if small.

1.1 Our Results

In this section, we provide a brief exposition of our results, which we formally
describe and prove in the subsequent sections.

Necessary conditions for conversion between linear schemes. A linear secret shar-
ing scheme Π over a field F implementing access structure Γ over n parties is
characterized by a monotone span program described as a triple (F,M, ρ), where
M is a matrix over F of dimension m × k and ρ : [m] → [n]. To share a secret
s ∈ F, the dealer samples a vector r ∈ Fk such that its first coordinate is s, and
computes v = M · r. Then, the i’th share in Π is shi = v[ρ(−1)(i)], which is the
sub-vector containing entries in the coordinates ρ−1(i). A qualified set of parties
T can recover the secret using a reconstruction function α ∈ F|ρ−1(T )| such that

(α)
T · vT = (α)

T ·MT · r = r[1] = s.
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Here, vT = v[ρ−1(T )] and MT = M [ρ−1(T ), ·], i.e., the rows of M corresponding
to the coordinates ρ−1(T ) (under some prespecified order).

One of the key tools in our paper is a necessary condition for conversion be-
tween a pair of linear schemes. Informally, it states that conversion is impossible,
if the schemes satisfy certain linear-algebraic conditions.

Theorem 1 (Necessary condition for conversion between linear schemes
- Informal). There is no share conversion from a linear secret sharing scheme
described by MSP (F,M ∈ Fm×k, ρ) to another linear scheme (F,M ′ ∈ Fm′×k′

, ρ′)
both realizing Γ , if there are sets of parties T , T ′ and party h /∈ T ∪T ′ such that
T ∪ h ∈ Γ , and no strict subsets of T ∪ h is qualified, and, when α and α′ are
reconstruction functions for T ∪ h in M and M ′, respectively,

1. (α′
h)

T ·M ′
h ∈ Rowspan(M ′

T ′).
2. (αh)

T ·Mh /∈
(Rowspan(MT ) ∩ Rowspan(Mh)) + (Rowspan(MT ′) ∩ Rowspan(Mh)) .

This theorem is formally stated as Theorem 7 in the technical section. We
demonstrate the power of this seemingly abstract necessary condition by provid-
ing concrete application to well studied secret sharing schemes, and its applica-
tion to share conversions for evolving access structures.

We exploit the facts that share conversion function is local, and the secret is
preserved during share conversion. We can reach a contradiction if it is possible
to produce a pair of fooling instances of sharing under the source scheme that
result in shares after conversion that do not respect the dependencies present
among the shares in the target distribution. This proof is a vast generalization of
the proof of a result in [9] that showed that in (2, 3)-Shamir is not convertible to
CNF, so that it applies to share conversion between any pair of linear schemes.

As a set of corollaries from Theorem 1, we prove the following statements:

– DNF over F with v minimal qualified sets over n parties is not convertible
to any linear scheme, if there is a party holding less than log|F|(v/n) bits as
its share;

– DNF over Fp realizing a (n, k)-threshold access structure for 2 ≤ k ≤ n− 2
is not convertible to (n, k)-Shamir scheme.

In Theorem 10 we prove other necessary condition for the convertibility between
linear schemes which can be alternatively used for proving statements above.

Convertibility characterization for linear schemes. We devise a characterization
of convertibility between linear schemes by solvability of a certain system of
linear equations LΠ,Π′ which we provide in Section 5.

Theorem 2 (Theorem 11, informal). There is a conversion from a linear
scheme Π to a linear scheme Π ′ realising the same access structure over the
same field if and only if the linear system LΠ,Π′ has a solution.
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A solution of the systen encodes a conversion in a straightforward (although
redundant) way. The high level idea is to solve for variables Xr,i,j , where Xr,i,j

represents the j’th share of pi, when converting from a sharing based on ran-
domness r in Π (as is sometimes useful, here r is assumed to include s) We note
that the impossibility in Theorem 1 may be viewed as identifying a subset of
contradicting equations in the system, so that a solution does not exist.

Share conversion from non-linear schemes. In a prior work [9], CNF was proved
to be maximal among linear schemes over the same field. In this work, we show
new necessary conditions for share conversion from arbitrary (potentially non-
linear) schemes to CNF for the same access structure and secret domain.

For this, we introduce the notion of non-degenerate secret sharing schemes.
A secret sharing scheme Π is said to be non-degenerate if any scheme Π ′ for the
same access structure is essentially the same as Π if every valid secret sharing
under Π ′ is also a valid secret sharing under Π.

To drive down this subtle point, consider DNF with corruption threshold
t < n − 1. We will now demonstrate that DNF is not non-degenerate. By [9],
there is a share conversion from Shamir secret sharing to DNF over the same field
with the same corruption threshold. Consider the secret sharing scheme induced
by share conversion of Shamir to DNF. Since the randomness complexity of DNF
is larger than that of Shamir, there necessarily exists a secret sharing under DNF
that cannot be obtained by share conversion from a Shamir secret sharing. This
shows that DNF is not non-degenerate.

When Π is non-degenerate, and there is a share conversion from another
potentially non-linear scheme Π ′ to Π, every secret sharing instance under Π
can be obtained as a share conversion of some instance of Π ′.

We prove non-degeneracy of CNF (Theorem 12) for arbitrary access struc-
tures, and of Shamir secret sharing (Theorem 13). The intuition behind Theo-
rem 12 is outlined below: Let Π be any secret-sharing scheme that admits share
conversion to CNF. Consider the correlation obtained by picking a secret s at
random, secret sharing it using Π, and applying the share conversion. Appealing
to correctness and privacy of Π, we show using an information theoretic argu-
ment that the entropy of each share in this correlation is the same as that in the
correlation obtained by secret sharing a random secret s using CNF. Further,
this observation implies that the scheme induced by share conversion from Π
coincides with CNF secret sharing.

By appealing to non-degeneracy of CNF, and using rather standard entropy
lower bounds, we show that share conversion to CNF scheme is possible only if
the share size under the source scheme is at least as large as that in the CNF
scheme. The following result is formally stated in Theorem 14.

Theorem 3 (Extended maximality of CNF). Let Π be a secret sharing
scheme realizing an n-party access structure Γ with secret domain G - a finite
group. There is a share conversion from Π to CNF over G realizing Γ only if,
for each i ∈ [n], size of the share i in Π is at least log |G| · |{F ∈ F s.t. i /∈ F}|,
where F is the set of all maximal forbidden sets associated with Γ .
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We note that Theorem 1 also implies results of non-maximality by impossibil-
ity of conversion to CNF for certain linear schemes Π with low share complexity.
These results are mostly subsumed by Theorem 3, both because it does not re-
strict Π to be linear, and in terms of share size. However, certain impossibility
results of converting to CNF based on Theorem 1 cover certain parameter set-
tings not covered by Theorem 3. See Appendix C for more details.

Share conversion for evolving secret sharing. Komargodski et al. [16] defined
evolving secret-sharing schemes where the unbounded number of parties arriving
one after another, obtain their shares of secret. The previously qualified sets
remain qualified, and shares of parties are not refreshed as new parties come,
but each newcomer is provided a (potentially) progressively larger share. An
evolving access structure is an infinite monotone class of qualified subsets of N.

We initiate a study of share conversion for evolving secret sharing, starting
with formal extension of the notion of share conversion, MSP and linearity to the
evolving setting. Then, we apply the theory we develop for proving impossibility
of share conversion in the standard setting to the evolving setting. In particular,
some of our results apply to evolving linear secret sharing schemes, which have
been previously considered in the literature, but never explicitly defined.

We address the problem of maximal and minimal secret sharing schemes for
evolving access structures, and show that for several broad classes of evolving
schemes there is no maximal and minimal scheme. In Theorem 18 we formally
state and prove the following result.

Theorem 4 (No evolving maximal scheme - Informal). For any non-
trivial evolving access structure, there exists no maximal secret sharing scheme
for one-bit secrets.

By a non-trivial evolving access structure (See Definition 17), we mean one
that does not devolve into a finite secret sharing scheme among the first n parties
(for some n) with the remaining parties either being not part of the qualified set
or are required to simply receive the secret.

In the other direction, we obtain a slightly weaker result, showing there is no
minimal linear scheme for certain access structures. This is formally stated and
proved as Theorem 17.

Theorem 5 (No evolving minimal scheme - Informal). For a certain
broad class of evolving access structures Γ , and for the finite field F2, there
is no minimal linear evolving scheme for any Γ in the class.

Conversion between different fields. The bit simultaneously shared in two dif-
ferent fields, is called dBit, and is an important primitive for many applications,
such as [2,6,8,11,12,18,19,23]. There exist bit share conversion protocols, here we
point out only few of them, such as proposed in [6,7,10]. It is natural to raise
the question if such a conversion can be done locally.

Generalizing our impossibility result for linear schemes over the same field,
we prove the inconvertibility of the maximal CNF scheme over Zp to any other
linear scheme over Zq with the same secret domain {0, 1}.



New Results in Share Conversion with Applications 7

1.2 Future work

Our work leaves several fascinating questions open. The main question is to
obtain a simpler characterization of convertibility between linear schemes. As a
first step, identify pairs of linear schemes Π,Π ′ over the same field where Π is not
convertible to Π ′, which is not implied by Theorem 7 or Theorem 10. It may be
particularly interesting to find a different type of conflicting requirements in the
linear system in Section 5, thereby better understanding the easier linear case,
which was also studied in the original paper on share conversion [9]. Another
concrete question is to characterize the minimal and maximal schemes for various
access structures (in other words, those convertible to CNF, or from DNF).
As the linear systems introduced in Section 5 work also for non-linear source
schemes, it could be also interesting to explore convertibility from such schemes
to linear ones. This would require new techniques not based on theorems as
above, that both rely on linearity of Π as well.

In evolving setting, proving impossibility results is potentially easier. In our
context, it could be interesting to understand whether minimal and/or maximal
schemes exist for access structures for which we have not resolved this question.

Finally, it is interesting to find new non-trivial examples of conversions which
are possible. As an extension, it is interesting to study the direction of converting
from a modified subset of a scheme Π where part of the randomness is removed,
as we do for a modified version of additive over Zp to Zq, and the incurred privacy
losses. The motivation here is that some properties of the original Π may be
preserved by such a transformation, which may suffice for certain applications.

2 Prior Work

Share conversion Cramer et al. [9] first defined share conversion for secret-
sharing schemes as a way for converting shares of a secret in one scheme into
shares of the same secret in a different scheme using only local computation and
no communication between parties. Referring to a conversion between schemes
realizing the same access structure and defined over the same field, they showed
that CNF can be converted to any linear scheme, and any linear scheme can
be converted to DNF. Furthermore, they put forward an application of share
conversion to improving efficiency of multiparty computation (MPC). Beimel et
al. [5] use generalized share conversion including non-identity relation between
secrets from (2, 3) CNF to (3, 3) additive secret sharing over different groups to
3-party private information retrieval (PIR). In fact, they observe that certain
share conversions are implicit in state of the are 3-party PIR constructions from
the literature, and devise another conversions along these lines that induces an
improved PIR construction. They also put forward certain impossibility results
for certain PIR induced conversions. The following papers [20,21] show addi-
tional positive results for potential conversions for 3-party schemes from the
PIR-induced family.
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Evolving secret-sharing Komargodski et al. [16] defined evolving secret-sharing
schemes for a case that the number of parties is unbounded, parties are only
added as they arrive one after the other, and previously qualified sets remain
qualified. They constructed the following evolving linear secret-sharing schemes:
(1) a scheme for every evolving access structure, such that, the share size of the
tth party is 2t−1; (2) a k-threshold secret-sharing schemes in which the size of
the share of party pt is O(k log t); (3) an undirected st-connectivity schemes in
which the share of each party is a bit.

A natural generalization of an evolving threshold access structure is to allow
the threshold to depend on the index of the arriving party. Komargodski and
Paskin-Cherniavsky [17] showed that any dynamic-threshold access can be real-
ized with an evolving linear secret-sharing scheme in which the size of the share
of party pt is O(t4 · log t). Infinite decision trees were used in [16,17] to construct
evolving secret-sharing schemes. Alon et al. [1] define formally this model. They
showed how to construct evolving secret-sharing schemes for generalized infinite
decision trees. We use this construction in our work.

Peter in [22] defined evolving conditional disclosure of secrets (CDS). In this
model the number of parties is unbounded, parties arrive in sequential order.
Each party holds a private input, and when arrives, it sends a random message
to a referee. In turn, at any stage of the protocol, the referee should be able to
reconstruct a secret string, held by all the parties, from the messages it gets, if
and only if the inputs of the parties that arrived satisfy some condition.

3 Preliminaries

In this section, we present necessary notation and formal definitions of secret-
sharing schemes and evolving secret-sharing schemes.

Notation. For n ∈ N by [n] we denote the set {1, 2, . . . , n}. We denote by log
the logarithmic function with base 2. Vectors are denoted by bold letters (e.g.,
r). For matrices M , M ′ with the same number of columns we denote by [M ;M ′]
the concatenation of matrix M ′ below M . Similarly, for matrices M , M ′ with
the same number of rows, [M |M ′] is the concatenation of M ′ to the right for M .
By Rowspan(M) we denote the set of all vectors spanned by rows of M .

For a set of parties P = {p1, . . . , pn}, when it is clear from the context, we
often abuse notation replacing parties by their indexes from [n]. When we refer
to a subset of parties {pi1 , pi2 , . . . , pit}, we assume that i1 < i2 < · · · < it.

3.1 Secret-Sharing

We start by defining (perfect) secret-sharing schemes for a finite set of parties.

Definition 1 (Access Structures). Let P = {p1, . . . , pn} be a set of parties.
A collection Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure Γ ⊆ 2{p1,...,pn} is a monotone collection of non-empty sets.
Sets in Γ are called authorized, and sets not in Γ are called unauthorized. We
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will represent an n-party access structure by a function f : {0, 1}n → {0, 1},
where an input (i.e., a string) σ = (σ1, σ2, . . . , σn) ∈ {0, 1}n represents the set
Aσ = {pi : i ∈ [n], σi = 1}, and f(σ) = 1 if and only if A ∈ Γ . We will also call
f an access structure.

In a monotone access structure, the set A ∈ Γ is called a minterm if there is
no B ⊂ A such that B ∈ Γ . The set A /∈ Γ is called a maxterm if for all pi /∈ A
it holds that A ∪ {pi} ∈ Γ .

The most basic and well-known access structure is the threshold access structure:

Definition 2 (Threshold Access Structures). Let 1 ≤ k ≤ n. A k-out-of-n
threshold access structure Γ over a set of parties P = {p1, . . . , pn} is the access
structure containing all subsets of size at least k, that is, Γ = {A ⊆ P : |A| ≥ k}.

A secret-sharing scheme defines a way to distribute shares to parties. Such a
scheme is said to realize an access structure Γ if the shares held by any authorized
set of parties (i.e., a set in the access structure) can be used to reconstruct the
secret, and the shares held by any unauthorized set of parties reveal nothing
about the secret. The formal definition is given as follows.

Definition 3 (Secret-Sharing Schemes). A secret-sharing scheme Π over a
set of parties P = {p1, . . . , pn} with domain of secrets S and domain of random
strings R is a mapping from S × R to a set of n-tuples S1 × S2 × · · · × Sn

(the set Sj is called the domain of shares of pj). A dealer distributes a secret
s ∈ S according to Π by first sampling a random string r ∈ R with uniform
distribution, computing a vector of shares Π(s; r) = (sh1, . . . , shn), and privately
communicating each share shj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote
ΠA(s; r) as the restriction of Π(s; r) to its A-entries (i.e., the shares of the
parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access struc-
ture Γ if the following two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of parties.
That is, for any authorized set B = {pi1 , . . . , pi|B|} ∈ Γ , there exists a recon-
struction function ReconB : Si1 × · · · × Si|B| → S such that for every secret
s ∈ S and every random string r ∈ R, it holds that ReconB (ΠB(s; r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from
its shares. Formally, for any set T /∈ Γ , every two secrets s1, s2 ∈ S, and
every possible vector of shares ⟨shj⟩pj∈T ,

Pr
[
ΠT (s1; r) = ⟨shj⟩pj∈T

]
= Pr

[
ΠT (s2; r) = ⟨shj⟩pj∈T

]
,

where the probability is over the choice of r from R with uniform distribution.

The size of the share of party pj is defined as log |Sj | and the size of the shares
of Π as max1≤j≤n log |Sj |. The total share size of Π is defined as

∑n
j=1 log |Sj |.

Next we give some widely known secret sharing schemes.
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Definition 4 (Additive Secret-Sharing Scheme [14]). In the additive
secret-sharing scheme ADDF,n over F, shares sh1, ..., shn are sampled uniformly
at random from F on the condition that s =

∑n
i=1 shi, and Γ = {P}.

Definition 5 (Shamir Secret-Sharing Scheme [24]). In the (n, k)-Shamir
secret sharing scheme over F realizing k-out-of-n threshold access structure Γ ,
the dealer sets a polynomial p(x) = s+r1x+ · · ·+rk−1x

k−1 by uniformly random
sampling of rj ← F for j ∈ [k−1]. The share of pi for i ∈ [n] is set as shi = p(i).

The properties of Shamir’s scheme over F2m for an appropriate m ∈ N are
summarized in the next theorem.

Theorem 6 (Shamir [24]). For every n ∈ N, and k ∈ [n], there is a secret-
sharing scheme for secrets of size ℓ (i.e., the domain of secrets is S = {0, 1}ℓ)
realizing the k-out-of-n threshold access structure, in which the share size is
max{ℓ, ⌈log(n + 1)⌉}. Moreover, the shares of the scheme are elements of the
field F2ℓ+log n .

Next two schemes realize any monotone access structure. A replicated secret-
sharing scheme [13] is also known as a CNF secret-sharing scheme [14].

Definition 6 (Replicated Secret-Sharing Schemes [13]). Let Γ ⊆ 2[n]

be a (monotone) access structure, and let T is the set of all maxterms of Γ .
The CNF secret-sharing schemes for Γ over F, denoted CNFΓ,F, proceeds as
follows. A secret s ∈ S is shared in ADDF,|T |, where each share rT is labelled by
a different set T ∈ T . Then, the dealer distributes to each party pj all shares rT
such that j /∈ T , that is, shj = (rT )j /∈T . For correctness, since Γ is monotone, a
qualified set Q ∈ Γ cannot be contained in any unqualified set, hence, members
of Q jointly view all shares rT and can thus reconstruct the secret s. For privacy,
the parties of every maxterm T ∈ T jointly miss exactly one additive share rT ,
hence parties of any unqualified set miss at least one share.

Definition 7 (DNF Secret-Sharing Scheme [14]). In DNF secret-sharing
schemes, denoted DNFΓ,F, the secret s is additively shared between the parties
of each minterm, where each additive sharing uses independent randomness.

More secret sharing schemes can be defined using the notion of a monotone
span program (MSP). We bring the definition of MSP below.

Definition 8 (Monotone Span Program [15]). A monotone span program
is a triple M = (F,M, ρ), where F is a field, M is an m× k matrix over F, and
a mapping ρ : [m]→ [n] labels each row of M by a party’s index. The size of M
is the number of rows of M (i.e., m).

Next we give some notation which simplifies addressing to sets and operations
of MSP. Let M ∈ Fm×k be a matrix, and A ⊆ [m]. We denote by M [A, ·] the
|A| × k dimensional submatrix that restricts M to the rows labelled by i ∈ A.
Hence, for an MSP (F,M ∈ Fm×k, ρ) describing an n-party linear secret sharing
scheme, and h ∈ [n], M [ρ−1(h), ·] denotes the submatrix induced by rows of M
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corresponding to shares of party h. For any S ⊆ [n], for brevity, we will refer
to M [ρ−1(S), ·] by MS , and when S = {h} for some h ∈ [n], we will further
simplify the notation by referring to M{h} as Mh. Similarly, in the context of
the above MSP, for a column vector α ∈ Fm, and set A ⊆ [m], we denote by
α[A] the sub-vector of α labeled by i ∈ A, and for the subset of parties S ⊆ [n]
we let αS = α[ρ−1(S)], and α{h} = αh.

Definition 9 (Access structure accepted by MSP [15]). We say that MSP
M accepts B ⊆ [n] if the rows of MB span the vector e1 = (1, 0, . . . , 0), called
a target vector.3 We say that M accepts an access structure Γ if M accepts a
set B if and only if B ∈ Γ .

A monotone span program implies a so called linear secret-sharing scheme for
an access structure containing all the sets accepted by the program. Essentially,
a dealer gives each party the rows of matrix M assigned to it, multiplied by the
randomness vector.

Claim 1 ([4]). Let M = (F,M, ρ) be a MSP accepting an access structure Γ ,
where F is a finite field and for every j ∈ [n] there are aj rows of M labeled by pj .
Then, there is a linear secret-sharing scheme realizing Γ for S = F such that the
share of party pj is a vector in Faj with the information equal to max1≤j≤n aj .

3.2 Evolving Secret-Sharing Schemes

In an evolving secret-sharing scheme, defined by [16], the number of parties is
unbounded. Parties arrive one after the other; when a party pt arrives the dealer
gives it a share. The dealer cannot update the share later and does not know how
many parties will arrive after party pt. Thus, we measure the share size of pt as
a function of t. We start by defining an evolving access structure, which specifies
the authorized sets. The number of parties in an evolving access structure is
infinite, however every authorized set is finite.

Definition 10 (Evolving Access Structures). Let P = {pi}i∈N be an in-
finite set of parties. A collection of finite sets Γ ⊆ 2P is an evolving access
structure if for every t ∈ N the collections Γ t ≜ Γ ∩2{p1,...,pt} is an access struc-
ture as defined in definition 1. We will represent an access structure by a function
f : {0, 1}∗ → {0, 1}, where an input (i.e., a string) σ = (σ1, σ2, . . . , σn) ∈ {0, 1}n
represents the set Aσ = {pi : i ∈ [n], σi = 1},4 and f(σ) = 1 if and only if
Aσ ∈ Γ . We will also call f an evolving access structure.

Definition 11 (Evolving Secret-Sharing Schemes). Let S be a domain
of secrets, where |S| ≥ 2, and {Rt}t∈N , {St}t∈N be two sequences of finite sets.
An evolving secret-sharing scheme with domain of secrets S is a sequence of
3 In [15] it is proven that one could define MPS’s with any target vector ϵ ̸= 0, rather

than e1, resulting in the same matrix size and labeling.
4 In particular, the same set has infinitely many representations by inputs of various

lengths, using sufficiently many trailing zeros.
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mappings Π = {Πt}t∈N, where for every t ∈ N, Πt is a mapping Πt : S ×R1 ×
· · · ×Rt → St (this mapping returns the share sht of pt).

An evolving secret-sharing scheme Π = {Πt}t∈N realizes an evolving ac-
cess structure Γ if for every t ∈ N the secret-sharing scheme Πt (s; r1, . . . , rt)
≜

〈
Π1 (s; r1) , . . . ,Π

t (s; r1, . . . , rt)
〉

(i.e., the shares of the first t parties) is a
secret-sharing scheme realizing Γ t according to definition 3.

By default, the domain of secrets of an evolving secret-sharing scheme is
{0, 1}. Known results show that every evolving access structure can be realized
by an evolving secret-sharing scheme.

Infinite decision trees were used in [16,17] to construct evolving secret-sharing
schemes. Alon et al. [1] defined generalized infinite decision trees.

Definition 12 (Generalized Infinite Decision Trees – GIDT). A gener-
alized infinite decision tree is a quadruple T = (G = (V,E), u0, µ, h), where

– V is a countable set of vertices.
– G = (V,E) is an infinite directed tree with root vertex u0 such that the

out-degree of each vertex is finite. We denote that ith level Li as {u ∈ V :
u is at distance i from u0}, and refer to Li as the ith layer.

– h : N→ N is an increasing function that partitions the variables into genera-
tions, where for i ∈ N, generation i is the variables Gi ≜ {xh(i−1)+1, . . . , xh(i)}
(where we define h(0) = 0).

– µ is a labeling of the edges by predicates, where for every edge e from level
Li−1 to Li, the labeling µe is some monotone predicate on the variables of
generation i, of the form φ(xh(i−1)+1, . . . , xh(i)) : {0, 1}h(i)−h(i−1) → {0, 1}.

For a path P in the tree ending at a vertex in layer i, we say that P is
satisfied by an input σ ∈ {0, 1}t, denoted by satP (σ) = 1, if h(i) ≤ t (that is, the
variables in all predicates labeling edges in P are from x1, . . . , xt) and for each
edge e on the path the predicate µe is satisfied by σ. The GIDT T accepts an
input σ if there is at least one directed path P starting in the source vertex u0

and leading to a leaf such that satP (σ) = 1 (where satP (σ) = 1 if σ satisfies all
variables on the path). The function f : {0, 1}∗ → {0, 1} computed by T is the
function f such that f(σ) = 1 if and only if T accepts σ.

Proposition 1 ([1]). There exists an evolving secret-sharing scheme that re-
alizes the GIDT T = (G, u0, µ, h).

A construction realizing GIDT is presented in Appendix A.

3.3 Share Conversion

Cramer et al. [9] defined the notion of a share conversion as a local mapping from
the shares a secret over one scheme into shares over another scheme, maintaining
the secret value. We next include a formal definition of share conversion.5

5 In [9], they in fact give a slightly more general definition.
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Definition 13 (Share Conversion). Let Π,Π ′ be two secret-sharing schemes
over the same secret-domain S for n parties realizing the same access structure.
We say that Π is locally convertible to Π ′ if there exist functions g1, . . . , gn such
that the following holds. If (sh1, . . . , shn) are valid shares of a secret s in Π (i.e.,
Pr[Π(s; r) = (sh1, . . . , shn)] > 0), then (g1(sh1), . . . , gn(shn)) are valid shares
of the same secret s in Π ′. We denote by g the concatenation of all gi, namely
g(sh1, . . . , shn) = (g1(sh1), . . . , gn(shn)), and refer to g as a conversion function.

We next extend the definition of share conversion to the evolving setting.

Definition 14 (Evolving Share Conversion). Let Π,Π ′ be two evolving
secret-sharing schemes over the same secret-domain S realizing an access struc-
ture Γ . We say that Π is locally convertible to Π ′ if there exists a sequence
of functions g1, g2, g3, . . . such that the following holds. For every t ≥ 1, if
(sh1, . . . , sht) are valid shares of a secret s in Π (i.e., ∃r ∈ R1 × . . . × Rt

such that Π(s; r) = (sh1, . . . , sht)), then (g1(sh1), . . . , gt(sht)) are valid shares
of the same secret s in Π ′. We denote by g the concatenation of all gi, namely
g(sh1, sh2, . . .) = (g1(sh1), g2(sh2), . . .), and refer to g as a conversion function.

If the secret sharing scheme Π is convertible to Π ′, we say that Π ≥ Π ′. This
defines a partial ordering over secret-sharing schemes.

Next, we show that changing a target vector preserves much of the MSP
structure, while being convertible to the original scheme.

Claim 2. Let Π = (F,M ∈ Fm×k, ρ) is a linear scheme for an access structure Γ
with the target vector ϵ ∈ Fm \ 0. Then for any target vector ϵ′ ∈ Fm \ 0, there
exists a linear scheme Π ′ = (F,M ′ ∈ Fm×k, ρ) for Γ , convertible to Π.

Proof. We prove that the identity conversion works. Let H denote an invertible
matrix such that ϵ ·H = ϵ′. Let Π ′ = (F,M ′ = M ·H, ρ) with target vector ϵ′.
First, observe that Π ′ is indeed a scheme implementing Γ . This is the case as
the submatrix M · H[A, ·] spans ϵ′ if and only if M [A, ·] spans ϵ (and the fact
we keep ρ the same). It is known [4] that the reconstructing sets A are exactly
those that span the target vector.

To see that Π ′ is convertible to Π via the identity transformation g, we
observe that for every r ∈ Fm, we have M ′ ·r = M ·(H ·r), that is, it corresponds
to a valid sharing via randomness Hr. Now show that the shared secret value
⟨ϵ′, r⟩ is not changed, i.e., ⟨ϵ,Hr⟩ = ⟨ϵ′, r⟩. Let α denote a reconstruction vector
for M . We have

(α)
T ·M(H · r) = (ϵ)

T
, H · r = ⟨(ϵ)T H, r⟩ = ⟨(ϵ′)T , r⟩ .

In linear (MSP-based) schemes, it is convenient to consider a secret s as part
of the randomness vector r, being its first coordinate. Sometimes, s is defined
by r in a different manner, which results in a different than e1 target vector in
MSP. For example, in CNF with 1 target, as used in [9], the secret is the sum
of all elements in r. Thus, we will sometimes consider conversions to a scheme
Π ′ with a certain target vector, and implicitly rely on the implied conversion to
Π ′ with a different target vector.
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4 Impossibility results for linear Share Conversion

Our impossibility results for linear schemes presented in this section follow from
the lemma which we give and prove below.

Lemma 1. Let Π,Π ′ denote linear secret sharing schemes realizing Γ and spec-
ified by MSPs (F,M ∈ Fm×k, ρ), (F,M ′ ∈ Fm′×k′

, ρ′). Let T ∪ {h} denote a
minterm in Γ with reconstruction functions αT∪h, α′

T∪h in Π and Π ′ respec-
tively. Let L = Rowspan(MT ) ∩ Rowspan(Mh), and B denote a basis for it.
Let g denote some share conversion from Π to Π ′. Then ∀r (α′)

T
h gh(Mhr) =

αMhr+ c(Br) for some constant c. 6

Proof. First observe that since T ∪ {h} is a minterm, (α)T Mh /∈ L. Also, by
definition, B ⊆ Rowspan(Mh). We complement {(αh)

T
Mh} ∪ B into a basis

of rows in Mh by adding a set of appropriate linear combinations of rows in
Mh, which we denote by X. Let M−

T denote a subset of MT ’s rows constituting
a basis of Rowspan(MT ). By choice of B and X, for any scalar a and vec-
tors uX ,v (of the right dimensions) there exists randomness r (one or more)
such that M−

T r = v, Xr = uX , (αh)
T
Mhr = a. Note that uB = Br is deter-

mined by v (and is otherwise independent of r). In the sequel, for (an implicit
or explicit) randomness vector r, and let v, uX , a denote the share portions
as above induced by it. As α′ is a reconstruction function, ∀r it holds that

(α′
T∪h)

T
gT∪h(MT∪hr) = (α′

h)
T
gh(Mhr) + α′

T gT (v)
is the reconstructed value. As α is a reconstruction function, the secret of r
does not depend on Xr. Therefore, (α′)

T
h gh(Mhr) depends only on Br and a.

Otherwise, for some a, v, uX (induced by some r), we could find r′ consistent
with a, v and uB , but not uX in a way that modifies g(Mhr), but not the secret
of gT∪h(MT∪hr), and thus breaks correctness. Now, to see that (α′)

T
gh(Mhr)

is of the form (α)
T
Mhr + c(Br), note that for a fixed v (that also determines

Br), any value of a is possible for some r consistent with v. For every secret
s ∈ F, let (as,v) denote some (partial) share vector consistent with s, induced
by rs. By choice of of Π, (αh)

T
Mhrs is of the form c + s for the constant c =

− (αT )
T
v. Similarly, α′

hgh(Mhrs) corresponds to c′+s for c′ = − (α′
T )

T
(gT (v)).

As (α′
h)

T
gh(Mhr) depend only on (αh)

T
Mhr and and Br, we conclude that for

all r it holds that (α′
h)

T
gh(Mhr) = (α)

T
Mhr + c(v) = (α)

T
Mhr + c(Br) (as

g(Mhr) only sees the c(Br) part out of v).

In the following theorem, we prove necessary conditions for conversion be-
tween two linear schemes over a finite field F realizing the same access structure.

Theorem 7. Let Γ be an access structure on n parties. Let Π and Π ′ be linear
secret sharing schemes realizing Γ and specified by MSP (F,M ∈ Fm×k, ρ) and
(F,M ′ ∈ Fm′×k′

, ρ′), respectively, with target vector e1. Then, Π has no share

6 Note that even if L = {0}, we are free to pick the constant c(0), which depends only
on α in this case.
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conversion to Π ′ if there exist h ∈ [n], ∅ ̸= T ⊆ [n] \ {h} such that T ∪ {h} is
a minterm of Γ with the reconstruction functions α and α′ in Π and Π ′ resp.,
and ∅ ≠ T ′ ⊆ [n] \ {h} that satisfy the following conditions:

1. (α′
h)

T ·M ′
h ∈ Rowspan(M ′

T ′).
2. (αh)

T ·Mh /∈ (Rowspan(MT ) ∩ Rowspan(Mh))+
+ (Rowspan(MT ′) ∩ Rowspan(Mh)) .7

Proof. Let assume for contradiction a conversion g exists, and denote L =
Rowspan(MT ) ∩ Rowspan(Mh) and L′ = Rowspan(MT ′) ∩ Rowspan(Mh). We
fix randomness vectors r1, r2 such that: 1) (L + L′)r1 = (L + L′)r2 = 0,
where L + L′ denotes the direct sum of L and L′. 2) MT r1 = MT ′r2 = 0,
and αhMhr1 ̸= αhMhr2. Clearly, such r1 and r2 exist. By Lemma 1, we have
α′
hg(Mr1) ̸= α′

hg(Mr2). By locality, g(Mr1)[ρ
′−1(T ′)] = g(Mr2)[ρ

′−1(T ′)]. By
the assumption that α′

hM
′
h is in Rowspan(M ′

T ′), we conclude that α′
hg(Mr1) =

α′
hg(Mr2) (as g(Mr) is consistent with M ′r′ for some r′) - a contradiction.

Next, we prove several impossibility results following from Theorem 7.

Theorem 8. Let Γ be an access structure with v minterms. Let Π ′ be a linear
secret sharing scheme specified by MSP (F,M ′ ∈ Fm′×k′

, ρ), realizing Γ such
that, for some i ∈ [n], size of every share is at most ℓ field elements. Then, if
ℓ < log|F|(v/n), DNFΓ,F = (F,M ∈ Fm×k, ρ) is not convertible to Π.

Proof. We assume that |F|ℓ < v/n, and conclude DNFΓ,F is not convertible
to Π. Let us consider a party w contained in at least v/n of the minterms,
wlog. assume w = 1. By the pegion hole principle, there exist paraties Ti, Tj

containing 1 with reconstruction vectors α′i ∈ F|ρ−1(Ti)| and α′j ∈ F|ρ−1(Tj)|,
respectively, that satisfy α′i

1 = α′j
1( ̸= 0). Let d ∈ Ti \ Tj . First observe that(

α′i
d

)T

·M ′
d is not in Rowspan(M ′

Ti\{d}) (or else Ti \{d} would be qualified). As(
αi
)T ·M ′

Ti
=

(
αj

)T ·M ′
Tj

= e1, we have(
α′i

d

)T

·Md+
(
α′i

Ti\{d,1}

)T

·M ′
Ti\{d,1}+

(
α′i

1

)T

·M1 =
(
α′i

Tj\{1}

)T

·MTj\{1}+
(
α′j

1

)T

·M1

(1)
Here we use the fact that α′j

1 = α′i
1. Thus, it follows from Equation (1) that(

α′i
d

)T

·M ′
d =

(
α′j

Tj\{1}

)T

·M ′
Tj\{1} −

(
α′i

Ti\{d,1}

)T

·M ′
Ti\{d,1}, (2)

which implies that
(
αi
d

)T · Md is spanned by the rows of M ′
(Ti∪Tj)\{d,1}. We

prove Π = DNFΓ,F, Π ′ satisfy Theorem 7 with parameters T = Ti \ {d}, T ′ =

(Tj ∪Ti)\{d, 1}, h = d, α′ = α′i, and αTi is the (unique) reconstruction function
that picks from MTi the rows corresponding to rTi,w’s (each party w ∈ Ti holds
7 That is, there exists no u ∈ Rowspan(MT )∩Rowspan(Mh) and v ∈ Rowspan(MT ′)∩
Rowspan(Mh) such that (αh)

T ·Mh = u+ v.
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a single matrix row of the form rTi,w, which is either a fresh random value or
s−

∑
w>w′ rTi,w, for the minimal w′ ∈ Ti). Property 1 follows from Equation 1.

Property 2 follows form the follows by observing that in DNFΓ,F Ti ∪Tj \ {1, d}
are missing two shares of the rTi,w form: for w = 1, d. Although this set may
be qualified and reconstruct s via shares rT,w for other minterms T , it does not
span αi

dMd = rw,d.

Theorem 9. Let Γ be the (t, n)-threshold access structure with 2 ≤ t ≤ n−2. Let
Π ′ be the Shamir scheme (F,M ′ ∈ Fm′×k′

, ρ), realizing Γ (here m′ = n, k′ = t).
Then, DNFΓ,F (F,M ∈ Fm×kρ′) is not convertible to Π.8

Proof. Consider a pair of minterms Ti, Tj containing 1, such that |Tj \ Ti| ≥ 2.
Let αi denote the (unique, although we do not use this fact) reconstruction
function for Ti. Let d be as in the proof of Theorem 8, that is d ∈ Ti \ Tj . Then,
by |Tj \ Ti| ≥ 2, we conclude that |Tj ∪ Ti \ {1, d}| ≥ t, and is therefor qualified.
We prove that Π = DNFΓ,F, Π

′ satisfy the conditions of Lemma 7 with α′ = αi

and α as in the proof of Theorem 8, and h = d. Property 2 is proved as in
Theorem 8, as we ended up with the same T, T ′ as there. For property 1, as T ′

is qualified, it spans every row in Fk′
, in particular M ′

d, which is a multiple of
α′

dM
′
d. The latter must be non-zero, because it is the only row held by d, and

Ti is a minterm.

One more theorem follows from Lemma 1 providing another impossibility cri-
teria for linear schemes. We note that the following theorem provides a condition
for non-convertibility that is not generally implied by Theorem 7, and provides
an alternative proof for non-convertibility between DNF and Shamir schemes.

Theorem 10. Let Γ be an access structure on n parties. Let Π,Π ′ be lin-
ear secret sharing schemes specified by MSP (F,M ∈ Fm×k, ρ) and (F,M ′ ∈
Fm′×k′

, ρ′), respectively, realizing Γ . Then, Π has no share conversion to Π ′

if there exist h ∈ [n], ∅ ≠ T1, T2 ⊆ [n] \ {h} such that T1 ∪ {h}, T2 ∪ {h} are
minterms of Γ with reconstruction functions α1, α2, resp., in Π, and α′

1, α
′
2,

resp., in Π ′ that satisfy the following conditions:

1.
(
α1
h

)T ·Mh is lin. independent of
(
α2
h

)T ·Mh.

2.
(
α′1
h

)T ·M ′
h = a

(
α′2
h

)T ·M ′
h for some constant a.

3. Rowspan
[(
α1
h

)T ·Mh;
(
α2
h

)T ·Mh

]
∩ ((Rowspan(MT1

) ∩ Rowspan(Mh))+

+ (Rowspan(MT2
) ∩ Rowspan(Mh))) = {0}.

On a high level, there is a party h that uses the same linear combination, up
to a constant, for recovery in Π ′ for T1 ∪ h and T2 ∪ h. In Π, we require that
only some pairs of recovery functions for T1 ∪ h and T2 ∪ h are not consistent
for h in this way.

8 This result is not implied by Theorem 8 if |F| is very large.
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Proof. Let MT1
r1 = 0, MT2

r2 = 0, where r1, r2 have additional properties to be
determined next. Let Li = Rowspan(MTi

)∩Rowspan(Mh). We will fix r1, r2 such
that (L1+L2)r1 = (L1+L2)r2 = 0, where L1+L2 denotes the direct sum of L1

and L2. Now, fix ∆1, ∆2 ∈ F to be specified later, and let us choose r1, r2 so that
α1Mh(r2− r1) = ∆1, α2Mh(r2− r1) = ∆2. Now, applying Lemma 1 to g(Mr1),
g(Mr2) and T1 ∪ h, we conclude that α′

1M
′
h(r2 − r1) = aα2M

′
h(r2 − r1) = ∆1,

and α2M
′
h(r2−r1) = ∆2. By picking ∆1 ̸= a∆1, this can not hold, contradicting

the existence of the conversion g. 9

5 A characterization of convertability between linear
schemes

Let Γ be an access structure on n parties. Let Π,Π ′ be linear secret sharing
schemes specified by MSPs (F,M ∈ Fm×k, ρ) and (F,M ′ ∈ Fm′×k′

, ρ′), respec-
tively, realizing Γ . We devise a characterization of convertibility from Π to Π ′

by solvability of a certain system of linear equations. Essentially, every solution
of the system represents a conversion function g. Namely, ror every randomness
vector from Π, it defines converted shares for Π ′.

The linear system LΠ,Π′ . For each randomness vector r ∈ Fm we define a
variable X(r) ∈ Fm′

, that assumes a value for the purported sharing under M ′

induced by the share conversion of M ·r. The constraints we define are as follows.

– Locality. For every i ∈ [n] and r, r′ ∈ Fm such that Mi · r = Mi · r′, add the
constraint:

X
(r)
i = X

(r′)
i .

– Consistency. Let A ⊆ [m′] be a subset of rows of M ′ which form a basis
of Rowspan(M ′). Since M [A, ·] is a basis of Rowspan(M), there exists a
(unique) matrix H ∈ Fm′,|A| such that H ·M ′[A, ·] = M ′. For every r ∈ Fm,
we add the constraint

H ·X(r)[A] = X(r).

– Correctness. For each minterm T ⊂ [n] of Γ do the following: let α ∈
F|(ρ′)−1(T )| be a reconstruction vector for T ; i.e., (α′)

T ·M ′
T = (e1)

T (for con-
creteness, let α be the ‘smallest’ reconstruction vector under some arbitrary
ordering of F|(ρ′)−1(T )|). For every s ∈ F, and every r such that r[1] = s, add
the constraint

(α)
T ·X(r)

T = s.

Remark 1. The characterization may be easily extended to non-linear Π with
S = F, keeping the system linear.
9 Recall that there is no dependence of this converted value on Xri, which does not

have to be the same for Xr1 and Xr2.
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Theorem 11. Let Γ be an access structure on n parties. Let Π, Π ′ be lin-
ear secret sharing schemes specified by MSPs (F,M ∈ Fm×k, ρ) and (F,M ′ ∈
Fm′×k′

, ρ′), respectively, realizing Γ . Then, Π is convertible to Π ′ if and only if
the linear system LΠ,Π′ is solvable.

Proof. In one direction, assume a share conversion function g converting Π to
Π ′ exists. Then, let X(r) = gi(Mi · r) for each r ∈ Fm. The locality constraint
is satisfied by locality of gi (the fact that sh′i depends only on shi). Correctness
follows from the correctness of share conversion. Consistency is satisfied since, for
each r ∈ Fm, there exists r′ ∈ Fm′

such that g(M · r) = M ′ · r′. The consistency
now follows from the property of M ′.

In the other direction, assume a solution to the system exists. Then, g =
(g1, . . . , gn) where for every i ∈ [n], and every value shi ∈ F|ρ−1(i)|, choose some
r ∈ Fm such that Mi·r = shi, and set gi(shi) = X

(r)
i . By locality, g is well-defined.

By consistency, for every sh = M · r such that r[1] = s, sh′ = g(sh) = M ′ · r′ for
a unique r′ ∈ Fm′

. By Correctness, r′[1] = s.

Theorems 7 and 10 may be viewed as a result of an inconsistency in the char-
acterization equations. In particular, in both the above cases, the inconsistent
subset of equations supported only on X(r1), X(r2) for a pair r1, r2 as chosen in
the proof. Lemma 1 is applied to these two randomness values’ induced shares,
specifically locality and correctness. Theorem 10 finds an inconsistency relying
only on this type of equations, while Theorem 7 additionally uses consistency-
type equations to obtain the contradiction.

We believe that there exist additional types of "inconsistencies" in the linear
equations in the characterization that may result in proving non-existence of a
conversion from Π to Π ′, and it is an interesting open question to understand
all possible types of inconsistencies.

6 Impossibility of conversion to CNF for general schemes

In this section, we introduce the class of non-degenerate secret sharing schemes,
which includes CNF and Shamir schemes, and, using properties of non-degenerate
schemes, we prove a necessary condition of convertibility to CNF from any (not
necessarily linear) secret sharing scheme.

Definition 15. Let Π be a secret sharing scheme with secret domain S and
randomness domain R realizing an access structure Γ . Π is non-degenerate if the
following condition is met: If Π ′ is a secret sharing scheme with secret domain
S and randomness domain R′ realizing Γ such that, for all s ∈ S, r′ ∈ R′, there
exists r ∈ R such that Π ′(s; r′) = Π(s; r), then

(Π ′(s; r′)|r′ ← R′) ≡ (Π(s; r)|r ← R) ,∀s ∈ S. (3)

Suppose Π is a non-degenerate secret sharing scheme. If a secret sharing
scheme Π ′ is locally convertible to Π, then the secret sharing scheme induced
by the applying the share conversion function to Π ′ coincides with Π.
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Proposition 2. Let Π be a non-degenerate secret sharing scheme with secret
domain S and randomness domain R realizing access structure Γ over n parties.
Suppose Π ′ be a secret sharing scheme with same secret domain and access
structure and randomness domain R′ that admits share conversion to Π using
a share conversion function g = (g1, . . . , gn). Then, for all s ∈ S,

(g(Π ′(s; r′))|r′ ← R′) ≡ (Π(s; r)|r ← R) . (4)

Proof. Consider the secret sharing scheme in which s ∈ S is secret shared as
(sh1, . . . , shn) = g(Π ′(s, r′)) where r′ ← R′. Since g is a share conversion func-
tion that converts Π ′ to Π, this induces secret sharing scheme with secret do-
main S realizing the access structure Γ . Further, for each s ∈ S and r′ ∈ R′,
g(Π ′(s; r′)) = Π(s; r) for some r ∈ R. The proposition now follows from the fact
that Π is a non-degenerate secret sharing scheme (See definition 15).

Theorem 12. For any finite group G, and access structure Γ over n parties,
the CNF secret sharing scheme for secrets in G realizing Γ is non-degenerate.

Proof. Denote the set of max-terms of Γ is by F = {F ⊆ [n] : F /∈ Γ, F ′ ⊃
F =⇒ F ′ ∈ Γ}. Let Π be any secret sharing scheme with secret domain G and
randomness domain R realizing the access structure Γ that satisfies the following
condition: for any s ∈ G and r ∈ R, let (sh1, . . . , shn) = Π(s; r). Then, there
exist {γF ∈ G : F ∈ F} such that

∑
F γF = s and shi = {γF : F ∈ F , i /∈ F}

for all i ∈ [n]. We will show that, for any s, when r ← R, Π(s; r) is identically
distributed as secret sharing of s under the CNF secret sharing scheme. This
will prove the theorem.

Let s ← G, r ← R and (sh1, . . . , shn) = Π(s; r). Let shi = {γF : i /∈ F ∈
Fmax} for each i ∈ [n]. We claim, for each F ∈ Fmax,

H (γF | {γF ′}F ′ ̸=F ) = log |G|. (5)

We first prove the theorem assuming the above equality: Let {F : F ∈ F , F ̸=
F ∗} = {F1, . . . , Fk}, where F ∗ is some arbitrary member of F . Then, by chain
rule of entropy,

H({γF }F ̸=F∗) = H(γF1 , . . . , γFk
)

=

k∑
i=1

H
(
γFi
| γF1

, . . . , γFi−1

)
≥

k∑
i=1

H (γFi
| {γF }F ̸=Fi

) = k log |G|.

Since each γF is distributed over G, this implies that {γF }F ̸=F∗ is uniformly
and independently distributed over G. Finally, by the correctness of Π, γF∗ =
s−

∑
F ̸=F∗ γF . Thus, as required in the statement of the theorem, for each s ∈ G,(

sh1, . . . , shn
∣∣r ← R, (sh1, . . . , shn) = Π(s; r)

)
≡(

sh1, . . . , shn

∣∣∣∣γF ← G,∀F ∈ F subj to
∑

F∈F γF = s
shi = {γF : i ∈ F, F ∈ F}

)
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We conclude by showing eq. (5). Fix F ∈ F . By definition of maximal forbidden
sets, for each F ′ ̸= F , there exists some i ∈ F such that i /∈ F ′; in other words,
γF ′ ∈ shi for some i ∈ F . But then,

H(s|{γ̂F ′}F ′ ̸=F ) = H(s|{shi}i∈F ) = H(s) = log |G|,

where the second equality follows from F being a forbidden set, and the perfect
privacy of Π; third equality follows from s be uniformly distributed over G.
Furthermore, H(s|{γF ′}F ′∈F ) = 0 since

∑
F ′ γF ′ = s. Hence,

H (γF | {γF ′}F ′ ̸=F ) = H (γF | {γF ′}F ′ ̸=F ) +H(s|{γF ′}F ′ ̸=F , γF )

= H(s, γF |{γF ′}F ′ ̸=F ) ≥ H(s|{γF ′}F ′ ̸=F ) = log |G|.

This proves eq. (5) concluding the proof.

Theorem 13. For any finite field F such that |F| > n, and 1 ≤ t ≤ n, a t-private
n-party Shamir secret sharing scheme over F is non-degenerate.

Proof. Let Π be any t-private n-party threshold secret sharing scheme with
secret domain F and randomness domain R that satisfies the following condition:
for any s ∈ F and r ∈ R, let (sh1, . . . , shn) = Π(s; r). Then, there exists a
polynomial p(x) of degree at most t such that p(0) = s and shi = p(i) for each i ∈
[n]. We will show that, for any s, when r ← R, Π(s; r) is identically distributed
as secret sharing of s under the t-private n-party Shamir secret sharing scheme
over F. This will prove the theorem.

Let s← G, r ← R and (sh1, . . . , shn) = Π(s; r). We claim, for each i ∈ [t+1],

H (shi | sh1, . . . , shi−1, shi+1, . . . , sht+1) = log |F|. (6)

We first prove the theorem assuming the above equality. By chain rule of entropy,

H(sh1, . . . , sht) =
t∑

i=1

H (shi | sh1, . . . , shi−1) ≥

≥
t∑

i=1

H (shi | sh1, . . . , shi−1, shi+1, . . . , sht+1) = t log |F|.

Since each shi is distributed over F, this implies that {shi}1≤i≤t is uniformly and
independently distributed over F. Finally, by the correctness of Π, there exists
a polynomial p(x) of degree at most t–i.e., p(s) ← F≤t[x] such that shi = p(i)
for each 1 ≤ i ≤ n and p(0) = s. Since this polynomial is uniquely determined
by s and {shi}1≤i≤t, for each s ∈ G, as required by the theorem,(

sh1, . . . , shn
∣∣r ← R, (sh1, . . . , shn) = Π(s; r)

)
≡(

sh1, . . . , shn
∣∣p(x)← F≤d[x] subj to p(0) = s, shi = p(i)

)
We conclude by showing eq. (6). Fix 1 ≤ i ≤ t+ 1.

H(s|sh1, . . . , shi−1, shi+1, . . . , sht+1) = H(s) = log |F|,
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where the first equality follows from the perfect privacy of Π; second equal-
ity follows from s be uniformly distributed over F. Furthermore, sh1, . . . , sht+1

uniquely determine the polynomial p(x) of degree at most d such that p(0) = s
and shi = p(i) for all i ∈ [n]. Hence, H(s|sh1, . . . , sht+1) = 0. Hence,

H (shi | sh1, . . . , shi−1, shi+1, . . . , sht+1)

= H (shi | sh1, . . . , shi−1, shi+1, . . . , sht+1) +H (s | sh1, . . . , sht+1)

= H (s, shi | sh1, . . . , shi−1, shi+1, . . . , sht+1)

≥ H(s|sh1, . . . , shi−1, shi+1, . . . , sht+1) = log |F|.

This proves eq. (6) concluding the proof.

Theorem 14. Let Π be a secret sharing scheme with secret domain G and ran-
domness domain R realizing an n-party access structure Γ . There is a share
conversion from Π to CNF secret sharing over G realizing Γ only if, for each
i ∈ [n], size of the share i in Π is at least log |G| · |{F ∈ F s.t. i /∈ F}|, where F
is the set of all maximal forbidden sets associated with Γ .

Proof. By theorem 12, the CNF secret sharing scheme is non-degenerate. Let g =
(g1, . . . , gn) be the share conversion function that induces the share conversion
from Π to the CNF secret sharing scheme. By proposition 2, for any s ∈ G,
when r ← R, g(Π(s; r)) is identically distributed as CNF secret sharing of s.
Hence, gi(Π(s; r)) corresponds to the share of party i in CNF secret sharing:
{γF : F ∈ F , i /∈ F} where γF is uniformly chosen from G for each F ∈ F
subject to

∑
F γF = s. Theorem follows immediately from this observation.

7 Results for Evolving Linear Secret-Sharing Schemes

In this section, we extend the notion of Monotone Span Programs and the in-
duced notion of a linear secret sharing scheme to the evolving setting. We then
apply our impossibility results obtained is Sections 4 and 6 for the finite case to
study the convertibility hierarchy in this setting.

Monotone span programs [15] were used to construct linear secret-sharing
schemes in [4]. In this section, we extend Definition 8 to define infinite monotone
span programs and cast a few constructions from the literature as instances of
this notion. We define the product of an infinite matrix K ∈ F[n]×N+

by a finite
vector r ∈ F[m] as K ′r, where K ′ is obtained by keeping the first m columns of
K. We will typically use such products for matrices where all but the first m
columns are 0. We next introduce extension of MSP to the infinite case.10
10 We use a ‘working definition’ of linear evolving secret sharing schemes specified by

an IMSP, which is a natural extension of the finite case. An arguably more intuitive
definition is requiring that all shares are linear combinations of the ri’s and s (over
a field F) without the restriction on reconstruction. Beimel has demonstrated in [3]
that linear schemes imply MSPs of similar share complexity, so the definitions are
equivalent. We do not demonstrate such a result in this paper, as it is outside of its
main scope, but an analog of this result would be useful to demonstrate in a future
paper focusing on the theory of linear evolving schemes.
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Definition 16 (Infinite Monotone Span Program– IMSP). An IMSP is
a tripleM = (F,M, ρ), where F is a finite field, M ∈ FN×N is an infinite matrix
over F, and ρ : N+ → N+ labels each row of M by a party. There is finite number
of non zero elements each row in M , and ρ−1(x) is finite for every x ∈ N+, that
is, each party get finite number of rows (shares). For any finite set A ⊆ [n] of
party indices, let MA denote the sub-matrix obtained by restricting M to the rows
i, with ρ(i) ∈ A. We say that M accepts B if the rows of MB span the vector
e1 = (1, 0, 0, . . .).11 We say that M implements an evolving access structure Γ
if M accepts a set B if and only if B ∈ Γ .

In the following theorem, we generalize the MSP-based linear secret sharing
schemes to the evolving setting, essentially giving each party the linear combi-
nations of a randomness vector (that also defines the secret s), as specified by
the IMSP. As in the finite case, every finite subset A ⊆ N+ either reconstructs
the secret, or learns nothing about it.

Theorem 15. Let M = (F,M, ρ) be an IMSP accepting an access structure Γ .
Then, there exists an evolving secret sharing scheme realizing Γ .

For the proof of this theorem, we refer the reader to Appendix B. The proof spec-
ifies a generic Construction 25. We define evolving linear secret-sharing schemes
as the set of schemes so specified by an IMSP.

Theorem 16. Let Γ denote an evolving access structure. Then GIDT [1, Con-
struction 3.9] for S = F2 and Γ instantiated so that edge predicates are imple-
mented by linear schemes over F2 is (evolving) linear.

The proof immediately follows from observing the GIDT [1] given for complete-
ness in Appendix A as Construction 23 .

The following theorem states that for a large class of evolving access struc-
tures there is no minimal linear evolving secret sharing scheme. This proof fol-
lows from Theorem 7 applied to any specific evolving scheme and a tailor crafted
GIDT scheme [1, Construction 3.9].

Theorem 17. Consider an evolving access structure Γ such that there exists
h̃ ∈ [n], and an infinite collection of minterms A = {Ti}i∈N where h̃ ∈ Ti for
all i ∈ N. Then, for any linear scheme Π̃ specified by M over F2, there exists
an evolving linear scheme Π̃ ′ specified by M ′ over F2 for Γ , such that Π̃ ′ is not
convertible to Π̃.

Proof. First observe that, by the assumption in Theorem 7, and the pigeon
hole principle, there exists a pair of minterms Ti, Tj or size at least 2 each with
h̃ ∈ Ti∩Tj , and reconstruction vectors αi, αj corresponding to Ti, Tj respectively,
that satisfy αi

h̃
= αj

h̃
. Let n is the last party in Ti ∪ Tj , and let d ∈ Ti denote a

11 Generally, it is possible to take any vector with a finite positive number of non-zero
entries as a target vector.



New Results in Share Conversion with Applications 23

party in Ti \ (Tj ∪{h̃}). First, observe that
(
αi
d

)T ·Md is not spanned by Ti \{d}
(or else Ti \ {d} would be qualified). As

(
αi
)T ·MTi

=
(
αi
)T ·MTj

= ei, we have

(
αi
d

)T·Md+
(
αi
Ti\{d,h̃}

)T

·MTi\{d,h̃}+
(
αi
h̃

)T·Mh̃ =
(
αi
Tj\{h̃}

)T

·MTj\{h̃}+
(
αj

h̃

)T

·Mh̃

(7)
Here we use the fact that αj

h̃
= αi

h̃
. Thus, it follows from Equation (7) that

(
αi
d

)T ·Md =
(
αj

Tj\{h̃}

)T

·MTj\{h̃}F −
(
αi
Ti\{d,h̃}

)T

·MTi\{d,h̃}. (8)

This implies that
(
αi
d

)T ·Md is spanned by the rows of M(Ti∪Tj)\{d,h̃}. Now, let
us take Π̃ ′ the GIDT-based scheme from Construction 23 where the first gener-
ation is [n], and the predicate at the edge going from the root into a leaf is im-
plemented via a DNFΓ,F2

scheme (other edges’ predicates may be implemented
by an arbitrary linear scheme over F2). Let Π ′ = Π̃, Π = Π̃ ′, T = Ti \ {d},
T ′ = (Tj ∪ Ti) \ d, h̃, h = d, α′ = αi. Let α be a reconstruction function that
picks from MTi

the rows corresponding to rTi,w’s (each party w ∈ Ti holds a
single matrix row of the form rTi,w, which is either a fresh random value or
s −

∑
w>w′ rTi,w, for the minimal w′ ∈ Ti). The conditions of Thm. 7 are sat-

isfied, implying that Π̃ ′ is not convertible to Π̃. This follows directly from the
above equations, and the following observation on DNF and the evolving scheme.

Note that (αd)
T ·M ′

d /∈ Rowspan(M ′
d)∩Rowspan(M ′

Ti\{d})+Rowspan(M ′
d)∩

Rowspan((M ′
Ti∪Tj)−d). To see this, observe that the DNF part contributes to

Rowspan(M ′
d)∩Rowspan(M ′

Ti\{d}) only the vector 0. The non-DNF parts (cor-
responding to edges going into non-leaf nodes), contribute a vector space V
consisting entirely of vectors spanned by a set of random elements (vectors) dis-
joint of the randomness used by the DNF part (including s). This is the case,
as the other edges share fresh random labels (of the corresponding edges), us-
ing fresh randomness. Rowspan(M ′

d) ∩ Rowspan(M ′
(Ti∪Tj)\{d,h̃}

) does not span

(αd)
T ·M ′

d by properties of DNF, and the fact that (Ti ∪Tj) \ {d, h̃} misses both
d and h̃ from Ti (even if it contains other minterms, thus spanning s). Over-
all, V + Rowspan(M(Ti∪Tj)\{d,h̃}) therefore does not contain (αd)

T ·M ′
d. This

concludes the proof.

Next, using results obtained in Section 6, we prove the absence of a maximal
evolving scheme in a wide class of evolving secret sharing schemes, even not
necessarily linear.

Definition 17 (Trivial Evolving Access Structures). An evolving access
structure Γ is said to be trivial if there exists N ∈ N such that, for all n > N ,
{n} ∈ Γ or for all finite set A, A ∈ Γ only if A \ {n} ∈ Γ .

Theorem 18. Any non-trivial evolving access structure Γ and finite field F has
no maximal evolving secret sharing scheme over F.
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Proof. We will use the following claim to prove the theorem.

Claim 3. If Γ is non-trivial, then for any k ∈ N, there exists n ∈ N such that,
when Fn is the set of max-terms of Γn, |{F ∈ Fn : 1 /∈ F}| ≥ k.

Before we prove the claim, we will use this claim to prove the theorem. Let
Π be a purported maximal secret sharing scheme for one bit secrets realizing
the access structure Γ . Let |sh1| be the share size of the share assigned to party
1 by Π. By the above claim, there exists n such that, when Fn is the set of max-
terms of Γn, |{F ∈ Fn : 1 /∈ F}| > |sh1|. Consider the GIDT-based construction
Π ′ for Γ of [1] with the first generation consisting of n parties, and a CNF
implementation of Γn, in the edge going from the root to a leaf. By Theorem 14,
Π does not have a share conversion to Π ′ since the size of share i is less than
|{F ∈ Fn : 1 /∈ F}| > |sh1|. We conclude the proof by proving the claim.

Proof of the claim. Assume towards a contradiction that there exist k, n∗ such
that, for all n ≥ n∗, |{F ∈ Fn : 1 /∈ F}| = k, where Fn are maxterms of Γn.

We will first show that there exists ñ > n∗ such that {ñ} /∈ Γñ, and there
exists a max-term F̃ ∈ Fñ−1 such that F̃ ∪{ñ} ∈ Γñ. Since Γ is non-trivial, there
exists n > n∗ such that {n} /∈ Γ , and for some finite set A ̸= {n}, A \ {n} /∈ Γ
but A ∈ Γ . Let ñ > n∗ be the largest value in A. Note, {ñ} /∈ Γ . This can
be seen as follows: the statement holds if ñ = n, otherwise ñ ∈ A \ {n} /∈ Γ .
Since {ñ} is not authorized, max(A) = ñ, and A ∈ Γ , we reach the following
conclusions: (i). {ñ} /∈ Γñ, (ii). there exists F̃ ⊇ A \ {ñ} such that F̃ ∈ Fñ−1

and F̃ ∪ {ñ} ∈ Γñ.
Let Sñ−1 = {F ∈ Fñ−1 : 1 /∈ F}, and Sñ = {F ∈ Fñ : 1 /∈ F}. We will

show that |Sñ| > |Sñ−1|, reaching a contradiction. For this, consider the map τ
that takes any F ∈ Sñ−1 to τ(F ) = F ∪ {ñ} if F ∪ {ñ} ∈ Fñ and to τ(F ) = F
otherwise. Observe that, for all F ∈ Sñ−1, τ(F ) ∈ Fñ, and τ is one-to-one.
Suppose 1 /∈ F̃ . Then, since 1 /∈ F̃ ∪{ñ} ∈ Γñ, there exists a non-empty F ′ such
that {ñ} ∈ F ′ ⊂ F̃ ∪ {ñ} and F ′ ∈ Sñ. Since τ(F̃ ) = F̃ , and F ′ \ {ñ} ⊂ F̃ , F ′ is
not in the co-domain of τ . Since τ is one-to-one, we conclude |Sñ| > |Sñ−1|.

Next, let 1 ∈ F̃ . Since F̃∪{ñ} ∈ Γñ, there exists F ′ such that 1 /∈ F ′ ⊂ F̃∪{ñ}
such that F ′ ∈ Fñ. Since 1 /∈ F ′, F ′ ∈ Sñ. However, we observe that for any
F ∈ Sñ−1, and F ′\{ñ} ⊊ F̃ \{1}, holds F̃ \{1} ̸⊇ F . Hence, there is no F ∈ Sñ−1

such that F ′ \{ñ} = F . In other words, F ′ \{ñ} /∈ Sñ−1. Thus, F ′ ∈ Sñ but F ′ is
not in the co-domain of τ . Since τ is one-to-one, we conclude |Sñ| > |Sñ−1|.

This completes the proof of the theorem.

8 Extensions and applications

It is often useful in applications to perform share conversion between schemes
over different fields. A natural choice of a secret domain for such a conversion is
{0, 1}, as these values belong to all finite fields. Furthermore, these values can be
viewed as bits, which is the most useful setting for most MPC protocols. In this
section, we show that a local conversion, in general, is not possible (even from
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CNF) for many access structures. However, below we show a specially tailored
(leaky) secret sharing scheme over field Zp which allows local conversion to a
different field Zq for q < n/2 for (n, n)-threshold.

8.1 Negative result for the inter-field conversion.

Next, we observe that for all pairs p ̸= q, and many access structures Γ , one can
not convert from CNFΓ,Fp to ΠΓ,Fq , where ΠΓ,Fq is any linear scheme over q for
that share. More precisely, we have

Theorem 19. Let Γ denote an access structure for n > 1 parties, such that
for all maxterms B1, B2, B1 ∪ B2 = [n].12 Let p ̸= q be primes, and CNFΓ,Fp

and ΠΓ,Fq
linear schemes for Γ over Fp,Fq respectively. Then CNFΓ,Fp

is not
convertible to ΠΓ,Fq

for secret domain S = {0, 1} (that is, we do not care how
other secrets are converted).

The theorem follows almost immediately from a variant of Lemma 1 for
different fields p, q which we provide and prove below.

Claim 4. Let Π = (Fp,M ∈ Fm×ℓ
p , ρ), Π ′ = (Fq,M

′ ∈ Fm′×ℓ′

q , ρ′) for a pair
of primes p ̸= q, and let T ∪ {h} denote a minterm of Γ . Let αT∪h, α

′
T∪h be

reconstruction functions for T ∪ {h} in Π and Π ′ respectively. Assume L =
Rowspan(MT )∩Rowspan(Mh) = {0}. Then for every conversion scheme g from
Π to Π ′ there exists a sequence r1, . . . , ri, . . . ∈ Zℓ and constant c ∈ Z such that
(1) (α′

h)
T
gh(Mhri mod p) ≡ i+ c (mod q); (2) (αh)

T
Mhri ≡ i (mod p) for all

i ∈ N+, and (3) ⟨ri, e1⟩ mod p ∈ {0, 1}. We conclude that such a g does not
exist if p ̸= q.

Proof. Let us consider some r1, r2 ∈ Zℓ such that

MT r1 ≡MT r2(mod p); Mhr2 ≡Mhr1 + 1(mod p), (9)

and such that r1 encodes s = 0 (⟨e1, r1⟩ mod p = 0) and r2 encodes s = 1. For
simplicity, let us fix r1 = 0. Since (αh)

T
Mh is linearly independent of MT , and

the fact that T ∪ {h} is a minterm, such r1, r2 exist. Assume a conversion g
between the schemes exists. By Equation (9) and correctness we have that

(αh)
T
Mhr2 − (αh)

T
Mhr1 ≡ 1(mod p).

By correctness of Π ′ and g, and locality of g, we have

(α′
h)

T
gh(Mhr1 mod p) + (α′

T )
T
g(MT r1 mod p) ≡ 0 (mod q),

(α′
h)

T
gh(Mhr2 mod p) + (α′

T )
T
g(MT r2 mod p) ≡ 1 (mod q).

We conclude that

(α′
h)

T
gh(Mhr2)− (α′

h)
T
gh(Mhr1) ≡ 1 (mod q) (10)

We use the following technical observation, to be proven in the sequel.
12 For instance, the (⌈n/2⌉+ 1, n)-threshold access structure.
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Observation 20. (α′
h)

T
gh(Mhr mod p)mod q depends only on (αh)

T
Mhr mod p.

Thus, for brevity, we replace (α′
h)

T
gh(Mhr (p)) (q) with (α′

h)
T
gh((αh)

T
Mhr (p)) (q).

Now, consider r′1 and r′2 such that (αh)
T
Mhr

′
1 ≡ (αh)

T
Mhr2(mod p), ⟨r′1, e1⟩ mod p

= 0, (αh)
T
Mhr

′
2 ≡ (αh)

T
Mhr

′
1+1(mod p), and (αT )

T
MT r

′
1 ≡ (αT )

T
MT r

′
2(mod p).

Such r′1, r′2 exist by arguments similar to the above, and we have
(αh)

T
Mhr

′
2 − (αh)

T
Mhr

′
1 = 1(mod p).

By correctness and locality, we have
(α′

h)
T
gh((αh)

T
Mhr

′
1 mod p) + (α′

T )
T
gT ((αT )

T
MT r

′
1 mod p) ≡ 0 (mod q),

(α′
h)

T
gh((αh)

T
Mhr

′
2 mod p) + (α′

T )
T
gT ((αT )

T
MT r

′
1 mod p) ≡ 1 (mod q).

Concluding by correctness for s = 0, 1

(α′
h)

T
gh((αh)

T
Mhr

′
2 mod p)−(α′

T )
T
gT ((αh)

T
Mhr

′
1 mod p) ≡ 1 (mod q) (11)

By (αh)
T
Mhr

′
1 ≡ (αh)

T
Mhr2 (mod p) and locality, we have

(α′
h)

T
gh((αh)

T
Mhr

′
2 mod p)−(α′

h)
T
gh((αh)

T
Mhr2 mod p) ≡ 1 (mod q). (12)

Combining Equation 10 with Equation 12, we conclude that
(α′

h)
T
gh((αh)

T
Mhr

′
2 mod p)− (α′

h)
T
gh((αh)

T
Mhr1 mod p) ≡ 2 (mod q).

Generally, proceeding in a similar manner, for i ≥ 0 (where r
(0)
b = rb, r

(1)
b = r′b

and r−1
2 is defined as r1 for convenience) we conclude that

(α′
h)

T
g((αh)

T
Mhr

(i)
2 mod p) ≡ i+ 1 + (α′

h)
T
g((αh)

T
Mhr1 mod p) (mod q)

(13)
This proves the claim, taking r2, r

′
2, r

(2)
2 , . . . as the required sequence. This holds,

as for c ≡ (α′
h)

T
g((αh)

T
Mhr1 mod p) (mod q), vectors r(−1)

2 , r2, r
′
2, r

(2)
2 , . . . cor-

respond to values c, (c+1)mod q, (c+2)mod q,. . . of (α′
h)

T
g((αh)

T
Mhr mod p),

and values 0, 1, 2, 3, . . . of (αh)
T
Mhr mod p.

Finally, we prove that g does not exist for p ̸= q. It holds that
(α′

h)
T
gh((αh)

T
Mhrp+1 mod p)− (α′

h)
T
gh((αh)

T
Mhr1 mod p) ≡ p ̸≡ 0 (mod q)

since p ̸= q. On the other hand, (αh)
T
Mhrp+1 − (αh)

T
Mhr1 ≡ p (mod p),

which means these values are the same mod p, so by Observation 20 we have
(α′

h)
T
g((αh)

T
Mhrp+1 mod p) ≡ (α′

h)
T
g((αh)

T
Mhr1 mod p) (mod q) – a con-

tradiction.

Proof of Observation 20. Let B ∪ (αh)
T
Mh be a basis for Rowspan(Mh) and

H be a basis for Rowspan(MT ). Had (α′
h)

T
gh(Mhr mod p)mod q depend on

Br there would exist a pair r1, r2 of random vectors such that a = Br1 ̸≡
Br2 = b (mod p) and (αh)

T
MT∪hr1 ≡ (αh)

T
Mhr2 (mod p), and (αT )

T
MT r1 ≡

(αT )
T
MT r2 (mod p) are such that overall ⟨e1, r1⟩ = ⟨e1, r2⟩ = 0, such that

(α′
h)

T
gh(Mhr1 mod p) ̸≡ (α′

h)
T
gh(Mhr2 mod p) (mod q). Thus, by locality on

T , had (α′
h)

T
gh(Mhr mod p)mod q depended on Br, at most one of the secrets

recovered from g(Mr1), g(Mr2) would equal 0 - a contradiction.

Now, we are ready to prove Theorem 19.
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Proof of theorem 19. Finally, the theorem follows from Claim 4 by observing
that for n > 2, in CNFΓ,Fp

each party pi gets a subset of independent random
vectors over Fp, namely rT of each maxterm T such that i /∈ T . The sets of rH ’s
that h holds, vs those T holds. Assume the contrary - that h /∈ H and T ∩H = ∅.
In that case i /∈ T ∪H, contradicting the assumptions that T ∪H = [n] (as T,H
are maxterms). This implies that for CNFΓ,Fp

, L = {0}, so the conditions of
Claim 4 are indeed satisfied by Π = CNFΓ,Fp

and Π ′ = ΠΓ,Fq
.

8.2 The specially tailored additive secret sharing scheme allowing
inter-field conversion.

Next, we build the secret sharing scheme over the field Zp, and define the con-
version function to the field Zq. The scheme implies some restrictions on the
randomness of the dealer, and also is not information-theoretical secure. How-
ever it’s existence raises a question if there are statistical secure secret sharing
schemes allowing an inter-field conversion, and how small the leakage could be.

The n-party additive convertible scheme ADDp→q: Parameters: p ̸= q are
primes such that q < n/2. Sharing algorithm: (1) the dealer for each i ∈ [n]
samples ri ← Zp. (2) If

∑n
i=1 ri = kpq + s, where s ∈ {0, 1} for some k then

output shi := ri and terminate. Otherwise go to Step 1. Conversion function:
Each pi computes sh′i = shi mod q.

Correctness of this scheme obviously follows from the construction.

Efficiency: The dealer is PPT, since the probability of r =
∑n

i=1 ri be equal
to kpq + s, for s ∈ {0, 1} and some integer k, where ri is chosen uniformly at
random from Zp, is polynomial. Hence, in average, the dealer’s algorithm does
polynomial number of iterations, namely O(pq/

√
n) (see appendix D).

Leakage: The randomness choice of the dealer entails the statistical leakage in
this scheme, which is less or equal to pleak = 1

p + o
(

1
p2n

)
(see appendix D).

Applications: the convertible additive scheme is the basic case for creating the
convertible CNF and DNF schemes. However, even directly it could have several
applications, similar to applications of dBits.
– In generic MPC circuits combining computations in different fields. Say,

having a convertible sharing of a random bit s denoted by [s]p→q, one can
convert the sharing of a bit b in Zp denoted as [b]p in a following way: (1)
parties compute and recover in MPC mod-p circuit ∆ = b ⊕ s. (2) Convert
[s]p→q to [s]q by a modular reduction and set locally [b]p := [s]q ⊕ ∆. In a
similar way, one can convert [b]q to [b]p by comparing [b]q to [s]q.

– It is the useful type of correlated randomness for arithmetic garbled circu-its
[2,6,19,23], and for MPC-friendly symmetric LPN primitives [8,11,12].

We leave the existence of practical inter-field convertible secret sharing schemes
with the statistical, or even computational security, as the open question for the
future research.
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Definition 18 (Evolving Threshold Access Structures). Let k ∈ N. The
evolving k-threshold access structure is the evolving access structure Γ , where
Γ t is the k-out-of-t threshold access structure.

Komargodski et al. [16] showed that any evolving threshold access structure
can be realized by an efficient evolving secret-sharing scheme.

Theorem 21 ([16]). For every k ∈ N, there is a secret-sharing scheme realiz-
ing the evolving k-threshold access structure such that the share size of party pt
is (k − 1) · log t+ poly(k) · o(log t).

Definition 19 (Evolving Undirected st-connectivity Access Structures).
An evolving undirected st-connectivityaccess structure is defined as follows. The
parties in the access structure are the edges of an undirected graph G = (V,E),
where V is countably infinite, with some order on the edges that specifies the or-
der that the parties arrive. There are two fixed vertices in the graph us, ut ∈ V ,
where us is called the source vertex and ut the target vertex. A finite set of par-
ties (i.e., edges) is authorized if and only if they contain an undirected path from
us to ut.

Komargodski et al. [16] showed that every undirected st-connectivity access
structure can be realized by an evolving secret-sharing scheme in which the share
of each party is a bit.

Definition 20 (Infinite decision trees – IDT). An infinite decision tree
T = (G = (V,E), u0 = 0, µ) is a special case of GIDT, where each edge (u, v)
is either labeled by the constant 1 or by a variable xv, where for simplicity we
assume that V = N∪{0} (i.e., a vertex is a non-negative integer). As G is a tree,
each variable labels at most one edge. Furthermore, we assume that the vertices
are ordered by the layers, i.e., L0 = {0}, L1 = {1, . . . , w(1)}, and so on (where
w(i) is the width of layer Li). The variables in generation i are {xj : j ∈ Li}
(thus, we do not need to specify h for an IDT).

Construction 22 (An Evolving Secret-Sharing Scheme ΠIDT for an IDT
T = (G, u0, µ)).
Input: s ∈ {0, 1}.
The sharing algorithm:

– For i = 1 to ∞:
• For every vertex u ∈ Li−1 and v ∈ Li, when party pv arrives choose a

bit rv as follows:
∗ If v is a leaf, then let u0, v1, . . . , vt−1, v be the path from the root u0

to v in G and assign rv ← s⊕
⊕t−1

j=1 rvj .
∗ If v is not a leaf and µ(u,v) = xv, then rv is a uniformly distributed

random bit.
∗ If v is not a leaf and µ(u,v) = 1, then rv ← 0.

• The share of pv is shv = rv.

Alon et al. [1] showed how to construct secret-sharing schemes for IDT.



New Results in Share Conversion with Applications 31

Claim 5 ([1]). The evolving secret-sharing scheme ΠIDT realizes the infinite de-
cision tree T = (G, u0, µ), where the share of pt is a bit.

Construction 23 (An Evolving Secret-Sharing Scheme ΠGIDT for a GIDT
T = (G = (V,E), u0, µ, h)).
Input: s ∈ {0, 1}.

– Construct from the GIDT T = (G = (V,E), u0, µ, h) an IDT T ′ = (G =
(V,E), u0, µ

′) whose variables are {yi : i ∈ N}, where for every edge (u, v) ∈
E if the predicate µ(u,v) is the constant predicate 1, then µ′(u, v) = 1; other-
wise µ′(u, v) = yv.

– Execute the scheme ΠIDT for T ′ and use its shares as follows:
(∗ Recall that in ΠIDT the the parties arrive according to layers, where inside
a layer the order is some arbitrary fixed order ∗)

– For i = 1 to ∞ do:
• When party ph(i−1)+1 arrives do:

∗ For every (u, v) ∈ E, where u ∈ Li−1, v ∈ Li, and µ(u,v) ̸= 1,
generate the share rv of yv in the scheme ΠIDT and share rv using a
secret-sharing scheme realizing the access structure defined by µ(u,v)

among the parties ph(i−1)+1, . . . , ph(i).
∗ Let sht, for h(i−1)+1 ≤ t ≤ h(i), be the concatenation of the shares

of pt in all these schemes.
∗ Give party ph(i−1)+1 the share shh(i−1)+1.

• For t = h(i− 1) + 2 to h(i) do:
∗ When party pt arrives give it the share sht.

Alon et al. [1] showed how to construct secret-sharing schemes for GIDT.

B Additional details about linear evolving secret sharing

Theorem 24. Let M = (F,M, ρ) be an IMSP accepting an access structure Γ .
Then, Construction 25 instantiated with M implements Γ .

Proof. Given an IMSPM = (F,M, ρ), we define an evolving linear secret-sharing
scheme as follows:

For a finite set of parties A, denote by CA = {j|∃i, ρ−1(i) ∈ A,Mi,j ̸= 0},
the set of non-zero entries it holds.

Construction 25. Consider an IMSP M(F,M, ρ).

– INPUT: a secret s ∈ F.
We determine r0 = s and define r = (s, r1, r2 . . .).

– SHARE: To generate shi the dealer does the following:
1. Gets as input (s, sh1, . . . , shi−1), that is, a secret s and the shares of

parties p1, . . . , pi−1. For convenience, we assume it in fact receives the
set of r1, . . . , rj’s sampled so far, for j = max(C[i−1]). It samples random
independent elements rj+1, . . . , rj+d ∈ F for j + d = max(C[i]).

2. Set shi = Mir, where r is the prefix of r sampled so far.
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– RECON: Let α denote the (finite) reconstruction vector such that αTMB =
e1. Return < α,Π(B) >.

Correctness and privacy of this scheme follow similarly to the correctness
and privacy of the standard scheme in [4], by considering the finite submatrices
corresponding to finite subsets [n] of parties.

We now describe some known constructions as instances of our framework of
linear evolving secret-sharing schemes.

First, we describe the evolving linear secret-sharing for the evolving undi-
rected st-connectivity access structure family [16], presented as an IMSP.13

Example 1. Consider an evolving undirected st-connectivity access structure
specified by a graph (G(V,E), us, ut), as in Definition 19. We construct an IMSP
(F2,M, ρ) for it as follows (giving rise to a secret sharing scheme for secrets in
S = F2). In the randomness vector r = (r0 = s, r1, . . .) each element ri, i ≥ 1 is
associated with vi ∈ V \ {us, ut}. For v ∈ V , let v′ = v if v ̸= ut, and v′ = s oth-
erwise. We have a row in M for each party (u, v) ∈ E. For (u, v) where u ̸= us,
M [(u, v)] satisfies M [(u, v), u] = 1,M [(u, v), v′] = 1 and is 0 elsewhere. If u = us,
M [(u, v), v′] = 1, and is 0 elsewhere, where v′ = v if v ̸= ut and v′ = s otherwise.

Fig. 1. An example for an infinite undirected graph.

For details, for the infinite undirected graph in Figure 1 that defines specific
evolving undirected st-connectivity access structure, we construct an IMSP over
F2. We obtain the submatrix contributing to the IMSP.

13 Linear secret sharing schemes were previously implicitly used in the evolving secret
sharing literature, using the term ‘linear’ without a formal definition, which we first
provide here.
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
Edges
(us, r1)
(r1, r2)
(r1, r3)
(r3, r4)
(r5, ut)




s r1 r2 r3 r4 r5 · · ·
0 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 1 0 1 0 0 · · ·
0 0 0 1 1 0 · · ·
1 0 0 0 0 1 · · ·


One class of linear schemes falling into our framework in the general GIDT-

based constructions.
In the following example we present the constructing for the evolving k-

threshold access structure that described in Definition 18 with the scheme
ΠLin−GIDT.

Example 2. We construct an IMSP for k-threshold over F2. We use a GIDT for
k-threshold, where every node u in the tree ‘remembers’ the number of parties,
#u, that have arrived so far (and was still smaller than k). Thus, the predicate on
every edge (u, v), where u is in layer i of the tree, is (#v−#u, |Gi|)-threshold. The
threshold predicate for (u, v) are then implemented by Shamir over sufficiently
large extensions of the field S = F2, among the parties in Gi. The resulting
scheme may be viewed as a linear scheme over F2 (that is, a scheme induced by
a suitable IMSP), by considering multiplication over an extension field as several
linear operations over the base field F2. Let us spell out the first two generations
of resulting scheme for k = 3. Note that the generation choice is not optimized
for share complexity here, and is chosen for presentation purposes. Specifically,
we choose |G1| = 3, |G2| = 7.

We show how to construct the relevant submatrix contributing to the IMSP
for the red, blue and green edge in Figure 2.

For the red edge, each of the parties that belongs to generation 1 gets r1.
This can be seen in the first part of Table 1.

For the blue edge we realize 2-out-of-3 Shamir scheme with the secret r2.
The smallest possible extension field is F4. We get the following matrix for that
Shamir:

1 1
1 1 + x
1 x

[
r2

a1 + b1x

]
.

In order to represent the elements over F2, we use modulo the irreducible poly-
nomial 1+x+x2. This can be seen in the second part of Table 1. The blue cells
in Table 1 mark one element in F4 which is now shown in the 2 × 2 matrix in
F2.

For the green edge we realize 2-out-of-7 Shamir scheme with the secret r2−s.
The smallest possible extension field is F8. Like the previous case, we represent
the elements over F2 modulo the irreducible polynomial 1+ x+ x3. This can be
seen in the third part of Table 1. The green cells in Table 1 mark one element
in F8 which is now shown in the 3× 3 matrix in F2.
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Fig. 2. The GIDT for 3-threshold access structure and generations G1, G2, such that
|G1| = 3, |G2| = 7. The predicates on the edges (k, n) denote as k-out-of-n Shamir
scheme.

C Extending Lemma 7 to schemes over different fields
and applications

The third condition in Lemma 7, is somewhat difficult to verify. A sufficient
condition that is easier to verify derived from it is as follows.

Proposition 3. Let Γ be an access structure on n parties. Let Π,Π ′ be lin-
ear secret sharing schemes specified by MSP (M ∈ (F)m×k, ϕ) and (M ′ ∈
(F′)m

′×k′
, ϕ′), respectively, where F,F′ are extension fields for Fp, realizing Γ .

Let the secret domain S = Fp (hence a conversion between them is meaning-
ful). Assume the schemes have the following properties. There exists h ∈ [n],
and minterms T, T1 containing h with reconstruction functions α and α′ for
M and M ′ such that Rowspan(Mh) ∩ Rowspan(MT\{h}) = Rowspan(Mh) ∩
Rowspan(MT1\{h}), and (α′

h)
T · M ′

h ∈ Rowspan(MT1\{h}). Then, there is no
share conversion from Π to Π ′.

Proof. To prove the proposition, it suffices to observe that

(αh)
T ·Mh /∈ Rowspan(MT\{h}) = Rowspan(MT1\{h})

as these are minterms, and α is a reconstruction function, and thus,

(αh)
T ·Mh /∈ Rowspan(MT\{h}) + Rowspan(MT1\{h}),

as required in Lemma 7. The condition on M ′ in Lemma 7 is directly required
here. Note that here we generalize the setup of Lemma 7 somewhat, by allowing
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s r1 a1 b1 r2 a2 b2 c2 a3 b3 c3 · · ·

0 1 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 · · ·

0 0 1 0 1 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 0 0 · · ·
0 0 1 1 1 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0 · · ·
0 0 0 1 1 0 0 0 0 0 0 · · ·
0 0 1 1 0 0 0 0 0 0 0 · · ·

1 1 0 0 0 1 0 0 1 0 0 · · ·
0 0 0 0 0 0 1 0 0 1 0 · · ·
0 0 0 0 0 0 0 1 0 0 1 · · ·
1 1 0 0 0 0 1 0 0 0 1 · · ·
0 0 0 0 0 0 0 1 1 1 0 · · ·
0 0 0 0 0 1 1 0 0 1 1 · · ·
1 1 0 0 0 0 0 1 0 1 1 · · ·
0 0 0 0 0 1 1 0 1 1 1 · · ·
0 0 0 0 0 0 1 1 1 0 1 · · ·
1 1 0 0 0 1 1 0 1 0 1 · · ·
0 0 0 0 0 0 1 1 1 0 0 · · ·
0 0 0 0 0 1 1 1 0 1 0 · · ·
1 1 0 0 0 0 1 1 0 1 0 · · ·
0 0 0 0 0 1 1 1 0 0 1 · · ·
0 0 0 0 0 1 0 1 1 1 0 · · ·
1 1 0 0 0 1 1 1 1 1 0 · · ·
0 0 0 0 0 1 0 1 0 1 1 · · ·
0 0 0 0 0 1 0 0 1 1 1 · · ·
1 1 0 0 0 1 0 1 1 1 1 · · ·
0 0 0 0 0 1 0 0 1 0 1 · · ·
0 0 0 0 0 0 1 0 1 0 0 · · ·

Table 1. The obtained submatrix contributing to the IMSP for the red, blue and green
edge in Figure 2. The · · · in all depicted rows stand for 0’s from that point on.

F,F′, S = Fp to differ. However, examining the proof of Lemma 7, we note that
we only use the fact that F ⊆ F ∩ F′, and F = F′ is not required.14

We rely on the above proposition to prove the following impossibility result
for conversion from certain linear schemes to CNF. Note that this result is not
subsumed by Theorem 14, as it allows F to be much larger than F′.

14 In fact, using S = {0, 1} for example, would allow F,F′ to be arbitrary unrelated
fields.
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Corollary 1. Let Γ denote an access structure on n parties, such that there
exists a party h and two minterms Ta, Tb of size ≥ 2 each, such that (Ta∪Tb)\{h}
is qualified. Let Π = (M ∈ Fm,k, ρ) be a linear scheme with secret domain
S = Fp, where F is an extension field Fp, and Mh consists of a single row. Then
Π is not convertible to Π ′ = CNFΓ,F′ , where F′ is some extension field of Fp,
and Π ′ is viewed as a scheme for secrets in S.15

Proof. We apply Proposition 3 to Π,Π ′ and T = Ta, T1 = Tb. As to the first
condition, we must have

Rowspan(Mh) ∩ Rowspan(MT\{h}) = {0},

since T is a minterm, any reconstruction function α for T in Π must have αh ̸= 0
(or else T \ {h} would reconstruct by itself). The same holds for T1, so

Rowspan(Mh) ∩ Rowspan(MT1\{h}) = {0}

also holds. Thus, αTMh /∈ Rowspan(Mh)∩Rowspan(MT\{h})+Rowspan(Mh)∩
Rowspan(MT1\{h}).

Let us pick α′, such that (α′)
T ·MT · r =

∑
H is a maxterm of Γi

rH = s where
a copy of rT is contributed by some party i ∈ Ta that holds it as follows.
Each rT for T for which Ta \ {h} ⊆ T are held by party h, while all other
copies are held by Ta \ {h}. Let us denote the set of maxterms of the first
kind by A. Note that A is not empty, since Ta \ {h} is unqualified. Also, every
rT for T ∈ A is indeed held by party h by construction of CNF, as every
T ∈ A does not include h, since Ta is qualified. Also, each rT for T /∈ A indeed
belongs to some j ∈ Ta \ {h}, by construction of CNF. In particular, we have
(αh)

T ·M ′
h ·r =

∑
T∈A rT . αh is independent of M ′

Ta\{h}, by the choice of A, and
construction of CNF. This proves the existence of α′ as required by the second
condition in the proposition.

D Characteristics of the convertible inter-field additive
scheme ADDp→q.

In order to calculate the main characteristics of the leaked secret sharing scheme
ADDp→q given in section 8.2 we consider the probability distribution of the
value r =

∑n
i=1 ri, where ri is chosen uniformly at random from Zp. As the

sum of independent uniformly distributed variables, according to the Central
Limit Theorem, it tends to the normally distributed value with the mean µr =

15 As in the proposition, the scheme works for sharing secrets in the larger domain F,
but is used only to share secrets in the base field Fp. In fact, any such scheme may be
viewed as a scheme over the smaller field S, where each party, including h receives
several field elements, which correspond to operations over Fp. Shamir over a large
extension field of Fp is one example of such a scheme.
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(p−1)n/2 and variance σ2
r = (p2−1)n/12. The closeness of the distribution of r

to the normal distribution N (µr, σ
2
r) is defined by the Berry-Esseen inequality:

δBE = |Fn(r)−N (µr, σ
2
r)| ≤

Cρ

σ3
√
n
, (14)

where Fn(r) and N (µr, σ
2
r) are cumulative distribution functions for r and the

normal distribution respectively, σ and ρ are the deviation and the third moment

of the distribution of ri’s, and C < 0.4748 is a constant, σ =
√

(p2−1)
12 , and

ρ = (p2−1)2

32p . We can accept the estimation δBE ≤
3C
√

p2−1

2p
√
2n

< 3C
2
√
2n

< 0.51√
n

.
Therefore, for the probability pr(x) of r to be equal to some x for 0 ≤ x ≤
(p − 1)n, the estimation bias ∆BE in comparison to the normally distributed
variable, is

∆BE =
δBE

(p− 1)n+ 1
<

0.51

pn
√
n
. (15)

The estimation pN (x) for the probability Pr[r = x] obtained from the normal
distribution is

pN (x) =
1

2

(
erf

(
x+ 1− µr√

2σr

)
− erf

(
x− µr√

2σr

))
, (16)

where erf(x) = 2x√
π
− 2x3

3
√
π
+ o(x5) for x→ 0.

Probability of a successful termination. The sharing of s ∈ {0, 1} is obtained
successfully if r gets in one of the windows {wk, wk + 1} where wk = kpq, and
k ∈ {0, . . . , kmax} for kmax = ⌊ (p−1)n

pq ⌋. Next we compute the probability of a
successful termination of the dealer’s algorithm in one iteration. For this, let
wk = µr + i, and then

From (16) for i ≥ 0 it follows that

pN (µr + i) =
1

2

(
erf

(
i+ 1√
2σr

)
− erf

(
i√
2σr

))
= (17)

=
i+ 1√
2πσr

− i√
2πσr

− (i+ 1)3

6
√
2πσ3

r

+
i3

6
√
2πσ3

r

+ o
(
σ−5
r

)
= (18)

=
1√
2πσr

(
1− i(i+ 1)

2σ2
r

)
+ o

(
σ−5
r

)
, (19)

and, similarly,

pN (µr + i+ 1) =
1√
2πσr

(
1− (i+ 1)(i+ 2)

2σ2
r

)
+ o

(
σ−5
r

)
. (20)

From (17) and (20) it follows that

Pr[r ∈ {µr + i, µr + i+ 1}] = pN (µr + i) + pN (µr + i+ 1)± 2∆BE =

1√
2πσr

(
2− i+ 1

σ2
r

)
± 2∆BE + o

(
σ−5
r

)
. (21)
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For negative i the distribution is symmetric, hence in (21) there should be |i| in
the bracket.

From the fact that there are kmax +1 ≈ n
q windows, on the distance pq from

each other, it follows that

Pr[r ∈ {wk, wk+1}|0 ≤ k ≤ kmax] = 2

kmax/2∑
k=0

Pr[r ∈ {µr+kpq, µr+kpq+1}] =

=
2
√
2kmax√
πσr

−
√
2√

πσ3
r

kmax/2∑
k=0

(kpq + 1)± 2kmax∆BE + o(nσ−5
r /q) =

=
2
√
2kmax√
πσr

− pqkmax

2
√
2πσ3

r

± 2kmax∆BE + o(nσ−5
r /q) =

= O

(√
n

pq

)
−O

(
1

p2
√
n

)
±O

(
1

pq
√
n

)
+ o

(
1

p5qn
√
n

)
= O

(√
n

pq

)
. (22)

Leakage in ADDp→q. In ADDp→q, corrupt parties, given their shares ri’s, and
the fact that the protocol was terminated successfully, i.e. r ∈ {wk, wk + 1}
for some k ∈ {0, . . . , ⌊ (p−1)n

pq ⌋}, could learn the information about the shares of
honest parties. The maximal leakage is obtained when the number of corrupt
parties is (n− 1), i.e. there is only one honest party Pi, in case when r′ = r− ri
equals to wk − (p − 1) (and then they know that s = 0, and ri = p − 1), or
when r′ = wk + 1 (then s = 1, and ri = 0). Next we estimate the probability of
leakage, i.e. the probability that the shared bit is known to the adversary. This
probability is

pleak = Pr[r′ ∈ {wk − (p− 1), wk + 1}|r ∈ {wk, wk + 1}] =

(23)

=
Pr[r ∈ {wk, wk + 1}|r′ ∈ {wk − (p− 1), wk + 1}] Pr[r′ ∈ {wk − (p− 1), wk + 1}]

Pr[r ∈ {wk, wk + 1}
.

(24)

Taking into account that ri is uniformly distributed in Zp, and from equation
(21) it follows that

pleak =
1

p
· Pr[r

′ ∈ {wk − (p− 1), wk + 1}]
√
2√

πσr
+ o(σ−3

r )
, (25)

where, from (16) it follows that

Pr[r′ ∈ {wk − (p− 1), wk + 1}] ≤ 1

2

(
erf

(
wk − p+ 1− µr′√

2σr′

)
−

−erf
(
wk − p+ 1− µr′√

2σr′

)
+ erf

(
wk + 2− µr′√

2σr′

)
− erf

(
wk + 1− µr′√

2σr′

))
+

+2∆BE =

√
2√

πσr′
+ o(σ−3

r′ ),
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Thus,

pleak =
1

p
+ o(σ−2

r ) =
1

p
+ o

(
1

p2n

)
, (26)

and the adversary knows the shared bit s with the probability less or equal to
pleak.
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