
Õptimal Adaptively Secure Hash-based
Asynchronous Common Subset

Hanwen Feng, Zhenliang Lu, and Qiang Tang

∗ School of Computer Science,
The University of Sydney, Australia

{hanwen.feng, zhenliang.lu, qiang.tang}@sydney.edu.au

Abstract. Asynchronous multiparty computation (AMPC) requires an
input agreement phase where all participants have a consistent view of
the set of private inputs. While the input agreement problem can be
precisely addressed by a Byzantine fault-tolerant consensus known as
Asynchronous Common Subset (ACS), existing ACS constructions with

potential post-quantum security have a large Õ(n3) communication com-
plexity for a network of n nodes. This poses a bottleneck for AMPC in the
same setting. In contrast, ACS has optimal constructions with quadratic
communication complexity based on bilinear map assumptions.
In this paper, we bridge this gap by introducing a nearly optimal ACS,
which solely relies on the blackbox use of collision-resistant hash func-
tions. It exhibits Õ(n2) communication complexity, expected constant
round complexity, and security against adaptive adversaries who can
corrupt up to n/3 nodes and perform “after-fact-removal” attacks.
At the core of our new ACS is the first nearly optimal hash-based Multi-
valued Validated Byzantine Agreement (MVBA). To reduce cubic com-
munication while avoiding heavy cryptographic tools, we introduce a new
design paradigm, with several new components. We define and analyze
our MVBA and components within the UC-framework, facilitating their
modular use in broader applications, particularly in AMPC.

1 Introduction

Input agreement challenge in asynchronous MPC. In secure multiparty
computation (MPC), it is essential for all parties to reach an agreement on the
set of “privately committed” inputs first [1], over which the subsequent compu-
tation should be carried out. For instance, in MPC based on (threshold) fully
homomorphic encryption [43, 50], participants must agree on the same set of
ciphertexts at the outset, while subsequent computation can be performed lo-
cally. Similar challenges exist in secret-sharing-based MPCs [5], where the parties
need to decide on the set of secretly shared values. Under the synchronous net-
work assumption, existing MPC protocols handle the input agreement issue by
leveraging broadcast channels. On the other hand, since the broadcast channel
is unavailable in the asynchronous network where messages may be arbitrarily
delayed but eventually delivered, asynchronous MPC protocols [8, 27] (AMPC)

have to apply dedicated asynchronous Byzantine fault-tolerant (BFT) protocols
to facilitate the process, which, however, may incur significant overhead and
sometimes even dominate the overall communication cost of AMPC.

The core asynchronous BFT protocols employed in all existing AMPC proto-
cols [8,23,27,44] include reliable broadcast (RBC) [14] and agreement on a core set
(ACoreSet) [1, 8]. RBC can be seen as the asynchronous analog of the broadcast
channel, but cannot guarantee termination in the face of a malicious sender. To
patch the non-termination issue, the n participants of the AMPC, after dissem-
inating their inputs (e.g., homomorphic ciphertexts, or shares of private inputs)
via n RBC instances, will jointly execute an ACoreSet to decide which n − f
RBC instances have terminated. Here f is the maximal number of nodes that
an adversary is allowed to corrupt, and we consider the optimal resilience of
f = ⌈n3 ⌉− 1 throughout this paper. However, running n instances of RBC 1, and
ACoreSet used in existing works will each incur O

(
n3

)
-bits communication cost,

which is prohibitive when the AMPC is deployed on a moderate scale.
While much MPC research focuses on reducing communication, they are

mostly on the parts relevant to the computation task, (while ignoring the cost
of the input agreement phase first). However, the actual dominating complexity
remains in the input agreement phase. For example, evaluating a circuit with
M multiplication gates and D layers can only incur O

(
M · n+D · n2

)
commu-

nication complexity 2, as shown in many AMPC protocols [24–27]. For compu-
tational tasks of interest, such as oblivious message permutation for anonymous
communication [44], M is merely Õ(n) and D is O(log2 n), making the cubic
communication cost resulting from input agreement a bottleneck.

Asynchronous common subset. The input agreement problem that arises
in the literature of AMPC indeed has broader connections. A BFT consensus
primitive, Asynchronous Common Subset (ACS), which allows a network of n
nodes, each with input, to eventually agree on a set of n − f input values,
solves exactly the input agreement problem (and can replace the paradigm of
using n RBC instances plus an ACoreSet altogether). Historically, Ben-Or et
al. [9] directly used ACS to denote agreement on a core set. Recent asynchronous
consensus studies [34, 39, 40, 46, 57] distilled the notion into its current form,
and demonstrated it as a core tool for realizing a public distributed ledger in
asynchronous networks. Indeed, several ACS constructions [46,57] directly follow
similar approaches of using n RBC plus an ACoreSet, which still suffers from
the high communication and round costs. However, better ACS constructions
beyond this traditional path could, in turn, have implications on the classical
input agreement problem, which has not been well explored in AMPC.

MVBA: the only known way towards optimal ACS. Multi-valued Vali-
dated Byzantine Agreement (MVBA), originally proposed by Cachin et al [16],
allows n parties to jointly decide one common output, which will be guaranteed

1 In this work, we focus on strong adaptive adversaries as per [2], and O
(
n2

)
-bit com-

munication cost is necessary for an adaptively secure RBC and any other consensus.
2 Here we do not count the communication cost incurred in the offline phase for
generating the Beaver triples, which can be performed via pre-processing.

2

valid (according to a predefined predicate), when all honest parties input valid
values. As hinted implicitly in [16], an MVBA protocol can easily imply an ACS
protocol by letting each party multicast its input value, and then they jointly
execute an MVBA, each using a vector of received values as input. Here, the
predicate could simply be that the vector contains values from n − f parties
(e.g., endorsed by digital signatures.). MVBA was long considered of theoretical
interest (since the original MVBA [16] itself has a cubic communication complex-
ity), until recently, a sequence of progress re-establish it as a critical component
for practical asynchronous consensus [37–40] and beyond [32, 33, 38]. Notably,
exciting recent progress on MVBA itself also significantly reduced the commu-
nication complexity: Abraham et al. constructed a protocol called VABA that
achieved quadratic communication [3], yet it still left the gap for ACS, as now
the input (vector) size itself becomes O(n) when compiling MVBA to ACS, still
resulting a O

(
n3

)
communication for ACS. Finally, Lu et al [45] expanded the

communication complexity into detailed terms, and presented an MVBA with
optimal communication complexity of O

(
nℓ+ n2λ

)
(called Dumbo-MVBA, and

an extension framework), where ℓ is the input size 3. Incorporating Dumbo-
MVBA into Cachin et al.’s framework finally yields the first ACS with quadratic
communication complexity of O

(
n2ℓ+ n2λ

)
; and it is also applicable to AMPC.

Striving for post-quantum or information-theoretic security. The com-
plexity reductions in [3, 45] do not come for free. They heavily rely on crypto-
graphic tools, particularly non-interactive threshold signature, (e.g., BLS from
pairing-based assumptions) to generate succinct proofs to compress communica-
tion. This puts several restrictions on applying them to AMPC. (1) Besides the
need for private setup, one particular constrain is (in)security against quantum
attackers, as we do not have any candidate yet for post-quantum non-interactive
threshold signatures; while the traditional approach (with high cubic communi-
cation) of using RBC and ACoreSet can be information-theoretically (IT) secure
or using collision-resistant hash only. And other parts of AMPC, for example,
the secret-sharing based framework [7,24,27], the other parts of the online phase
besides input agreement, and the whole offline phase could also be information-
theoretically secure. In principle, we may consider interactive threshold signa-
tures with post-quantum security, however, this itself is a special form of AMPC
that may require the input agreement phase to begin with, thus causing a cir-
cular problem. (2) Those algebraic operations can introduce substantial compu-
tational overhead. For instance, pairing operations are significantly more costly,
being approximately 105 times slower than hash computations.

There are recently renewed interests in exploring ACS and MVBA in the
setting solely using hash functions [31,34,35,42], and information-theoretic set-

3 Due to the FLP impossibility, all asynchronous Byzantine agreement protocols are
randomized. This also applies to MVBA, which can be easily shown to imply an
asynchronous Byzantine agreement [16]. Throughout this paper, we assume a com-
mon coin, and omit its cost when computing complexity metrics; jumping ahead,
in AMPC applications, a common coin can be easily implemented with the help of
offline pre-processing, thus having no impact on the communication of online phase.

3

tings. Unfortunately, without the help of threshold signatures, existing hash-
based optimal-resilient constructions [31,34] suffer from large cubic communica-
tion complexity. On the other hand, Feng et al. [35] presented a hash-based and
quadratic-communication MVBA at the cost of offering sub-optimal resilience 4.
This poses a natural question:

Is it possible to design an optimal (and adaptively secure) ACS without
public-key cryptography?

1.1 Our Contributions

We answer the above question affirmatively by presenting a near-optimal hash-
based MVBA, which allows us to obtain a near-optimal hash-based ACS. We
detail our contributions in the following.

Table 1. Comparison of the MVBA protocols

Protocol Resilience Communication Message Round Crypto Tool

CKPS-MVBA [16] f < n/3 O(ℓn2 + λn2 + n3) O(n2) O(1) thld. sig.

VABA [3] f < n/3 O(ℓn2 + λn2) O(n2) O(1) thld. sig.

sMVBA [39] f < n/3 O(ℓn2 + λn2) O(n2) O(1) thld. sig.

Dumbo-MVBA [45] f < n/3 O(ℓn + λn2) O(n2) O(1) thld. sig.

DYX+22 [33] f < n/3 O(ℓn2 + λn3) O(n3) O(logn) DDH, hash

Trivial hash-MVBA† f < n/3 O(ℓn + λn3) O(n2) O(1) hash

Fin-MVBA-1 [34] f < n/3 O(ℓn2 + λn3) O(n3) O(1) hash

Fin-MVBA-2 [34] f < n/3 O(ℓn2 + n3 logn) O(n3) O(1) none

FLMT24 [35] f < n/5 O
(
ℓn + λn2 logn

)
O(n2) O(1) hash

Reducer [42] f < n/4 O
(
ℓn + λn2 logn

)
O(n2) O(1) hash

Reducer++ [42]∗ f < (1
3 − ϵ)n O

(
γϵ(ℓn + λn2 logn)

)
O(n2) O(γϵ) hash

Our hash-MVBA f < n/3 O
(
ℓn + λn2 logn + κλn2

)
O(κn2) O(log κ) hash

Our IT-MVBA f < n/3 O
(
ℓκn2

)
O(κn2) O(log κ) none

κ is the statistical security parameter, and λ is the computational security parameter.
In practice, we usually use κ = 40 and λ = 128, which are constants independent of
n. Following the standard practice in asynchronous consensus literature, we assume a
common coin and consistently discount the cost of it for all protocols. † “Trivial
hash-MVBA” denotes a variant of Dumbo-MVBA protocol where the threshold
signature is instantiated with a concatenation of hash-based digital signatures. ∗ In
Reducer++, γϵ = (⌈ 12

ϵ2
⌉+ ⌈ 7

ϵ
⌉)2.

Nearly optimal hash-based MVBA, ACS and better AMPC. We present
the first nearly optimal MVBA protocols with optimal resilience of f < n/3,
constant rounds, quadratic message complexity, and O

(
nℓ+ λn2 log n+ κn2λ

)
communication complexity. Here, κ is the statistical security parameter, and
λ is the computational security parameter. In practice, κ, λ are usually small
constants independent of the number of nodes n. These protocols solely make
use of collision-resistant hash functions and achieve security against strongly

4 While [35] assumes f < n/5, a concurrent work by Komatovic et al. [42] improves
the resilience to f < n/4 or f < (1

3
− ϵ)n for a constant ϵ > 0, still sub-optimal.

4

adaptive attackers. The gap towards the optimal quadratic complexity5 is at the
small factor of max{log n, κ}. Our MVBA can easily be adapted to be IT secure,
at the cost of increasing the communication to O

(
ℓκn2

)
, which still outperforms

all existing IT-secure MVBA and may be of independent interest. Please see
Sect.6.3 for more discussions. We summarize MVBA constructions in Table 1.

We can then instantiate the general compilation to obtain a hash-based ACS,
with optimal resilience of f < n/3, constant round complexity, O

(
κn2

)
message

complexity, and O
(
n2ℓ+ λn2 log n+ κn2λ

)
communication complexity, by using

hash-based signatures like [10]. In Table 2, we compare our ACS with existing
optimally resilient ACS schemes, where the cost of common coin generation is
consistently discounted for all schemes.

Table 2. Comparison of ACS protocols

Protocol Resilience Communication Message Round Crypto Tool

CKPS-ACS [16] f < n/3 O(ℓn2 + λn3) O(n2) O(1) thld. sig.

Dumbo2 [40] f < n/3 O(ℓn2 + λn3 logn) O(n3) O(1) thld. sig.

sDumbo [39] f < n/3 O(ℓn2 + λn3 logn) O(n2) O(1) thld. sig.

via Dumbo-MVBA
[45]

f < n/3 O(ℓn2 + λn2) O(n2) O(1) thld. sig.

HBBFT [46] f < n/3 O(ℓn2 + λn3 logn) O(n3) O(logn) hash

{HBBFT [46] or
PACE [57]}

with RBC from [4]
f < n/3 O(ℓn2 + n3 logn) O(n3) O(logn) none

Fin-ACS [34] f < n/3 O(ℓn2 + λn3) O(n3) O(1) hash

Fin-ACS [34]
with RBC from [4]

f < n/3 O(ℓn2 + n3 logn) O(n3) O(1) none

DDL+24 [31]† f < n/3 O(ℓn2 + λn3) O(n3) O(1) hash

Our ACS f < n/3 O
(
ℓn2 + λn2 logn + κλn2

)
O(κn2) O(log κ) hash

† Das et al. (DDL+24) can be interpreted as a hash-based ACS protocol (with
communication complexity of O

(
ℓn2 + λn3

)
) and a hash-based (weak) coin protocol

(with communication complexity of O
(
λn3

)
), while other hash-based or IT protocols

focus on the “ACS” part and assume a coin oracle.

We then demonstrate how to use ACS to solve the input agreement problem
in secret-sharing-based AMPC. Combining this with existing techniques on func-
tion evaluation [7,30], we obtain the first hash-based online-phase AMPC proto-
col with a quadratic communication of O

(
M · n+ ℓ · n2

)
+O

(
λn2 log n+ κn2

)
,

while the previous best one has to include an extra cubic term O
(
n3

)
due to the

input agreement. Here, M is the number of multiplicative gates in the circuit C,
n is the number of nodes, and ℓ is the input size.

In the context of online/offline AMPC, the common coins required by our
ACS can be easily implemented using the built-in pre-processing phase. Specifi-
cally, all participants can obtain sufficient Beaver triples and pre-shared random
values during the offline pre-processing phase (for example, by using protocols
such as those in [27]). Then, during the online phase, they can simply multicast

5 Since every node will receive O(ℓ) bits, and O
(
n2

)
communication is necessary for

any adaptively secure consensus, a lower bound on MVBA is O
(
ℓn+ n2

)
.

5

their shares and reconstruct a random value that serves as a coin. This approach
incurs only an O(n2) communication cost in the online phase and does not rely
on algebraic operations.

A new framework, new components, and UC security. Our advancements
in MVBA, to be detailed in Sect.1.2, stem from a novel framework significantly
divergent from the ones in existing MVBA protocols, and multiple new tools we
propose. As we briefly mentioned above, translating the design methodology of
existing optimalMVBA in [45] directly into the hash-based setting would result in
cubic communication complexity. We present the construction in a modular way,
and illustrate how to construct a nearly optimal MVBA using three novel com-
ponents: somewhat-good multi-dealer information dispersal (SMID, see Sect.3),
synchronized multi-valued broadcast (SMB, see Sect.4), and asynchronous reli-
able consensus (ARC, see Sect.5), along with established components like asyn-
chronous binary agreement (ABA) [48] and common coins.

Notably, ARC was explored in a recent work [12] for different purposes; how-
ever, our new construction is a deterministic protocol with IT security against
strong adaptive adversaries, while theirs is randomized and computationally se-
cure and cannot withstand strongly adaptive adversaries. Additionally, SMB
generalizes the synchronized binary-value broadcast in [48], a core component in
the seminal ABA protocol [48].

Also, to facilitate their modular uses in future applications, particularly in
AMPC, we also formulate all these concepts as ideal functionalities within the
Universal Composability (UC) framework [20], in contrast with all existing treat-
ments in the literature that are property based. Because of asynchronous com-
munication and adaptive corruption, and inherent limitations of several compo-
nents, describing those ideal functionalities precisely requires care. We demon-
strate that all constructions presented in this paper UC-realize the corresponding
functionalities, enabling the protocols to be flexibly composed in larger proto-
col designs. We believe those new components as well as the simulation-based
formulations are of independent interests and could be more broadly useful.

1.2 Challenges and Technical Overview

Conventional design of MVBA. Recall the objective of MVBA, which is to reach
consensus and terminate on a “valid” input (when all honest nodes contribute
valid inputs). One intuitive approach is to randomly select a node Pi to provide
its input, and let all nodes converge on Pi’s input (e.g., letting Pi to reliably
broadcast his value). This way, there is a constant probability that the selected
value is valid, which may be amplified easily, say sample κ nodes to make sure at
least one of them is honest and will respond. However, this approach will fail in
the face of adaptive adversaries which can corrupt all κ (as usually κ is a small
constant that could be significantly smaller than n/3) selected nodes, prevent
them from providing valid inputs, or simply all mute.

To counter the adaptive corruption, existing MVBA protocols [3,16,34,39,45]
let all nodes “provably disseminate” their inputs to the network before the elec-
tion, such that (1) a disseminated input value from an honest node is always

6

𝑃𝑃2

𝑃𝑃1

…

𝑣𝑣1
𝑃𝑃1

𝑃𝑃2

𝑃𝑃𝑛𝑛

𝑃𝑃3

…

𝑃𝑃2
𝑣𝑣2

𝑃𝑃3
𝑣𝑣3

𝑃𝑃𝑛𝑛
𝑣𝑣𝑛𝑛

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛

Election

doneProvable
dispersal

done

done

done

Provable
dispersal

Provable
dispersal

Provable
dispersal

…

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛

Finish

𝑃𝑃1

𝑃𝑃𝑛𝑛

𝑃𝑃3

…

ABA Recast(s)
output 1

𝑃𝑃1

𝑃𝑃2

𝑃𝑃𝑛𝑛

𝑃𝑃3
…

𝑣𝑣 is invalid

output 0

1.Dissemiante: Provable Dispersal 2. Elect 3. Agree 4. Recast

……

Fig. 1. The execution flow of Dumbo-MVBA [45].

available (even if corrupted later after selection), as it can be consistently recon-
structed by all others; (2) the “proof” of dissemination also needs to be delivered
to all nodes, which will later inform the nodes whether to repeat or not after a
random selection. Doing such procedures in a communication efficient way re-
quires care. Particularly, the“optimal” dissemination of Dumbo-MVBA [45] is
achieved delicately by provable dispersal, which makes careful uses of the thresh-
old signature, vector commitment (VC) [21], and the erasure code [11]. Each
node shall encode its input into n smaller fragments via an erasure code scheme,
and use VC to commit all fragments into a short vc while generating a validity
proof for each fragment. Then, each node sends its vc, along with a fragment
and the validity proof, to each other node. When receiving a valid fragment from
another sender, each node will respond with a partial signature on vc, so each
honest node will be able to obtain a threshold signature on his vc as proof to
show his dispersal is completed. See Figure 1 as a pictorial illustration.

Challenges of using hash alone to reduce communication.Note that threshold sig-
nature plays a vital role in Dumbo-MVBA, forming a certificate to show the
availability of a dispersed value, so that nodes know how to proceed after se-
lection. In the hash-based setting, one might consider using a concatenation of
n− f hash-based signatures instead of a threshold signature, to use the optimal
ACS obtained via Dumbo-MVBA, however, it will lead to cubic communication.

Now without threshold signatures, we must deviate from the traditional ap-
proach to attain the desired communication complexity. Instead, we start with
a “weak” dissemination (without a strong proof), but augment the latter phase
to be “strong” to still enable nodes to gradually figure out how to proceed after
selection, with only some minimal and unreliable hint. Specifically, as outlined in
Figure 2, we begin with a “somewhat-good” information dispersal (SMID) as our
dissemination phase. SMID replaces partial signatures with simple echomessages.
However, it does not serve as proof that can be publicly verified, thus cannot
even inform the nodes whether a selected node actually completed the dispersal,
let alone ensuring there is only one consistent value if jointly reconstructed. The
strengthening of the “Agree” part turns out to be highly non-trivial.

Further challenges of adaptive security with sub-cubic communication.Adaptive
corruption makes it even more challenging. In the election phase, even if we se-
lect a “so-far-honest” node Ps that honestly sent fragments to n−f nodes, once
the adaptive adversary learns that Ps has been selected (when there could still

7

𝑃𝑃1

…

𝑣𝑣1 𝑃𝑃1

𝑃𝑃2

𝑃𝑃𝑛𝑛

𝑃𝑃3

… …

𝑃𝑃2
𝑣𝑣2

𝑃𝑃3

𝑣𝑣3

𝑃𝑃𝑛𝑛

𝑣𝑣𝑛𝑛

𝑃𝑃1

𝑃𝑃2

𝑃𝑃3

𝑃𝑃𝑛𝑛

Election

dispersal-done

… …

𝑆𝑆𝑆𝑆𝑆𝑆1

𝑆𝑆𝑆𝑆𝑆𝑆2

𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘

𝐴𝐴𝐴𝐴𝐴𝐴1,1

𝐴𝐴𝐴𝐴𝐴𝐴1,2

𝐴𝐴𝐴𝐴𝐴𝐴2,1

𝐴𝐴𝐴𝐴𝐴𝐴2,2

𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘,1

𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘,2

…

𝐴𝐴𝑆𝑆𝐴𝐴1,1

𝐴𝐴𝑆𝑆𝐴𝐴1,2

𝐴𝐴𝑆𝑆𝐴𝐴2,1

𝐴𝐴𝑆𝑆𝐴𝐴2,2

𝐴𝐴𝑆𝑆𝐴𝐴𝑘𝑘,1

𝐴𝐴𝑆𝑆𝐴𝐴𝑘𝑘,2

…

SMID
recast(𝑠𝑠𝑘𝑘)

SMID
recast(s1)

SMID
recast(s2)SMID

dispersal

dispersal-done

dispersal-done

dispersal-done

Recast

𝑃𝑃1

𝑃𝑃2

𝑃𝑃𝑛𝑛

𝑃𝑃3
…

1. “weak” Dissemiante 2. Elect 3. “strong” Agree 4. Recast

Fig. 2. The execution flow of our MVBA.

f honest nodes that have not received anything yet), it can immediately corrupt
Ps, and modify the remaining f fragments yet to be delivered. It follows that
the remaining f honest nodes will receive fragments corresponding to different
values. Now, during recast, it is possible that f + 1 honest nodes recast and
obtain original vs, while another f honest nodes may recast different values. 6

To enable nodes to converge to the same output value (for agreement &
termination), we proceed in multiple steps:

We first introduce a new primitive called SMB (Synchronized Multi-valued
Broadcast) and give an efficient construction. An SMB ensures that, if n − 2f
honest nodes have the same input v, then all honest nodes can output a set
with size at most 2. And, for any two honest nodes Pi and Pj , if Pi outputs
a set vali = {v′}, then v′ must be subset of Pj ’s output set valj . Additionally,
if |vali| = |valj | = 2, then vali = valj . The SMB acts as a robust filtering
mechanism, limiting the input values for the next step (vc of an elected node)
among all honest nodes to be at most two. For details about SMB, please see
Sec.4.

Next, to select one of these values to recast the final output, we make use
of and construct an asynchronous reliable consensus (ARC). This is like a con-
sensus analog of reliable broadcast that ensures agreement, and a conditional
termination, if all honest nodes have the same input value v, they terminate and
output v. Considering there are at most two values after SMB, hence, we let all
honest nodes participate in two ARC protocols.

Now note that, there is a possibility that one of the two values is not held
by all honest nodes, introducing a further termination issue. To help with the
further decision, we employ an ABA (Asynchronous Binary Agreement) protocol
after each ARC to “vote”. The input for Pi of each ABA instance is 1 if Pi already
outputs in the corresponding ARC. When Pi outputs 1 in one ABA instance, he
will assign 0 as inputs for all remaining ABA instances, if their corresponding
ARC instances have not terminated. The discussion above assumes a “so-far-
honest” node having completed its dispersal before the election phase and being
elected. To ensure this, we adjust the election phase to choose κ random nodes,
ensuring that at least one of them to be honest, where κ is a statistical security
parameter (usually a small constant). Now since at least one node is “so-far-

6 We remark that dealing with adaptive corruption with cubic communication could
be easy, as we can simply let each node reliably broadcast its full value (without
erasure encoding) at the beginning.

8

honest” thus for one ARC instance, sufficient (n−2f) honest nodes will have the
same vc as input, thus the corresponding ARC and ABA will terminate, which
in turn helps other remaining instances to terminate.

2 Model, Goal and Preliminary

2.1 System Model

We consider an asynchronous network where nodes are pairwise connected via
authenticated channels, and we assume the identities of all participating nodes
are publicly known. We focus on optimal resilience, meaning that the total num-
ber of corrupted nodes is at most f < n/3, where the adversary A is adaptive
and can corrupt nodes at any point during the protocol’s execution. An adap-
tive adversary can retract any undelivered messages that were sent by a newly
corrupted node. During execution, the nodes that have remained honest up to
a given point are referred to as so-far-honest nodes, while those that remain
honest until the end of execution are called forever-honest nodes. For simplicity,
when we refer to honest nodes in this paper, we mean forever-honest nodes. Ad-
ditionally, in this paper, we use the terms “node” and “party” interchangeably,
both referring to a participant in the protocol.

To precisely describe the threat model and support the modular use of our
protocols and components, we define all concepts and analyze the constructions
presented in this paper within the UC framework [20]. Specifically, we adopt the
formulation language from [28], which accurately captures the adversary’s ability
to delay messages in an asynchronous network. For a background introduction
to UC security, we refer readers to Appendix.B.

Setup-wise, a standard PKI setup is needed for some protocols. The sys-
tem also needs a common random string as the key of a collision-resistant hash
function; However, the hash key can be generated by a common coin protocol.

2.2 Design Goals

In this paper, we focus on constructing a communication-efficient Asynchronous
Common Subset (ACS) [9,46] and Multi-valued Validated Byzantine Agreement
(MVBA) [3,16,45], by solely using collision-resistant hash functions. In this sec-
tion, we present the ideal functionalities for the two primitives, which capture
their existing security properties and can directly serve as subroutines in design-
ing larger protocols.

Asynchronous common subset. ACS enables n nodes each having an input
value to eventually agree on the same set of n − f values, where f is the max-
imal number of nodes an adversary can corrupt. We formulate ACS as an ideal
functionality FACS

7 in Fig. 3, and FACS satisfies all the security properties listed
below that are considered in ACS.

7 We remark that in a concurrent work Shoup [54] formalized the ideal functionality
of ACS, which, however, is for index-ACS, a special variant introduced in [31] where

9

FACS proceeds as follows, running with (P1, . . . ,Pn) and the advesary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of nodes.
Initialize: participatedi = 0, vi = ⊥ and Dinput

i = Doutput
i = 1 for all i ∈ [n];

commonSet = ∅.
• Upon receiving (delay, sid,Pi, type, D) from the adversary for any i ∈ [n], if

type ∈ {input, output} and D ∈ Z represented in unary notation, then update
Dtype

i = max{1,Dtype
i +D}, and provide (delay-set, sid) to the adversary.

• Upon receiving (input, sid, v′) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and provide (input, sid, v′,Pi)
to the adversary.

• Upon receiving (fetch, sid) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and the Output Release Pro-
cedure, and provide (fetch, sid,Pi) to the adversary.

Input Submission Procedure: If participatedi = 0, and (input, sid, v′) has been
provided by Pi, do the following:

• Update Dinput
i = Dinput

i − 1;
• If Dinput

i = 0, update participatedi = 1, and record vi = v′. If |commonSet| <
n− f , then update commonSet = commonSet ∪ {vi}.

Output Release Procedure: If
∑

j∈[n] participatedj ≥ n− f , do the following:

• Update Doutput
i = Doutput

i − 1;
• if Doutput

i = 0, set (output, sid, commonSet) to be sent to Pi.

Functionality FACS

Fig. 3. The asynchronous common subset functionality FACS

• Agreement. The outputs of any two honest nodes must be the same.
• Validity. The output set must contain at least n − f values including the
inputs of at least n− 2f honest nodes.

• Totality. All honest nodes can eventually output, as long as there are n− f
honest nodes participating in the protocol with an input.

FACS, as well as the other ideal functionalities defined in this paper, captures
the adversary’s capabilities of adaptively corrupting honest nodes based on their
inputs and of retracting the inputs. Particularly, the input value of an honest
node is leaked to the adversary, and then the adversary may corrupt the node
based on the input value, and subsequently, provide a new input value on behalf
of this node. Following [5] and also [27], we consider the corruption-aware func-
tionalities, namely, the functionality knows which node has been corrupted by
the adversary, and thus allows the simulator to submit a different input value
on behalf of a corrupted node. Nonetheless, as honest nodes do not have private
states in ACS, FACS does not need to explicitly handle a corruption request from
the adversary, except keeping track of the set of corrupted nodes.

the inputs are restricted to be validated indexes in [n]. Moreover, the modelings
in [54] directly allow the adversary to specify the “core set”, which, as discussed
in [28], may fail to mimic a real-world execution; In contrast, ours follows Cohen et
al.’s approach [28] to avoid potential simulation failures.

10

FMVBA proceeds as follows, running with (P1, . . . ,Pn) and the adversary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of nodes.
Initialize: participatedi = 0, vi = ⊥ and Dinput

i = Doutput
i = 1 for all i ∈ [n];

y = a = ⊥.
• Upon receiving (delay, sid,Pi, type, D) from the adversary for any i ∈ [n], if

type ∈ {input, output} and D ∈ Z represented in unary notation, then update
Dtype

i = max{1,Dtype
i +D}, and provide (delay-set, sid) to the adversary.

• Upon receiving (input, sid, v′) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and provide (input, sid, v′,Pi)
to the adversary.

• Upon receiving (decide-output, sid, v′) from the adversary, if Predicate(v′) = 1,
then record a = v′; otherwise, ignore this message.

• Upon receiving (fetch, sid) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and the Output Release Pro-
cedure, and provide (fetch, sid,Pi) to the adversary.

Input Submission Procedure: If participatedi= 0, and (input, sid, v′) has been
provided by Pi, do the following:

• Update Dinput
i = Dinput

i − 1;
• If Dinput

i = 0, update participatedi = 1, and record vi = v′.

Output Release Procedure: If there exists a subset I ⊂ [n] such that |I| ≥ n− f
and Predicate(vi) = 1 for all i ∈ I, do the following:

• Update Doutput
i = Doutput

i − 1;
• if Doutput

i = 0, then do the following. If y = ⊥: if a = ⊥, sample j ←$ I, and
set y = vj ; if a ̸= ⊥, set y = a; provide (output, sid, y) to the adversary. Set
(output, sid, y) to be sent to Pi.

Functionality FMVBA

Fig. 4. The asynchronous multi-valued validated byzantine agreement functionality
FMVBA with predicate function Predicate

Multi-valued Validated Byzantine Agreement. MVBA is defined w.r.t. a
binary predicate Predicate. When each honest node Pi provides a valid input
vi, i.e., Predicate(vi) = 1, MVBA ensures all honest nodes output a same valid
value. Formally, an MVBA protocol satisfies the following properties with all but
negligible probability:

• Termination. If every honest node pi inputs an externally valid value vi,
then every honest node outputs a value.

• External-Validity. If a honest node outputs a value v, then Q(v) = 1.
• Agreement. Any two distinct honest nodes always output the same value.

We formulate MVBA as an ideal functionality FMVBA in Fig. 4. Similarly, this
functionality captures various security properties of MVBA used in the literature.
Particularly, the agreement can be implied since FMVBA returns the same value to
all nodes. Since the output must satisfy the predicate in the ideal functionality,
this inherently ensures that external validity is also enforced. Moreover, as there
are n− f valid inputs, the functionality will provide an output to all, implying

11

the termination property. On the other hand, since FMVBA allows the adversary
to specify a valid output, we cannot guarantee the quality considered in [3],
which requires that the output is the input of an honest node with constant
probability. Nonetheless, it suffices for many applications, including ACS.

2.3 Preliminary
Our protocols utilize several cryptographic primitives and protocols. Details and
the relevant notations used throughout the paper can be found in Appendix C.
Asynchronous binary agreement (FABA). In FABA among n nodes, if the
honest nodes input a single bit, either 0 or 1, then all honest nodes will output
a common bit b ∈ {0, 1}, where b corresponds to the input of some honest node.
The ideal functionality FABA is described in Fig. 10.
Erasure code. A (k, n)-erasure code [11] comprises two deterministic algo-
rithms: EC.Encode and EC.Decode. The EC.Encode takes a value m as input
and outputs n fragments c = (c1, . . . , cn). Any k elements in c can reconstruct
the m using the EC.Decode.
Vector commitment (VC). A VC scheme [21] consists of a tuple of algorithms:
(VC.Setup,VCom,Open,VerifyOpen). Throughout this paper, we focus on the
Merkle-tree-based deterministic VC scheme, whose security is solely based on the
collision resistance of the underlying hash function. Particularly, the commitment
size of vc is O(λ) bits, and the witness size π is O(λ log n).

3 Somewhat-good Multi-dealer Information Dispersal

In this section, we introduce our first component: Somewhat-good Multi-dealer
Information Dispersal (SMID). Similar to other information dispersal proto-
cols [18, 45], in SMID, it also contains two phases: dispersal and recast. In the
dispersal phase, each dealer encodes its input into multiple fragments and sub-
sequently transmits these fragments across the network. This allows a receiver
to collect sufficient fragments from the network and reconstruct the input. Our
SMID is designed to replace the concurrent n instances of asynchronous verifiable
information dispersal (AVID) [18], where there are f malicious senders. However,
while AVID makes significant efforts to ensure the “availability” of any dispersed
data, ensuring that any honest node can always retrieve the same data value,
our SMID is merely a “best-effort dispersal”. In our approach, an honest sender
disseminates the fragments across the network, allowing at least f + 1 honest
nodes to retrieve the same value, rather than ensuring that all honest nodes
can do so. Weakening the security allows us to design a more communication-
efficient protocol than n concurrent AVID instances, without relying on heavy
cryptographic tools. Formally, the SMID has the following properties:

• Termination. Every honest node can complete the dispersal phase of the
SMID instance if every honest node Pi inputs a value vi.

• Validity. Let {Pi}i∈H be the set of initially honest nodes, and each Pi has
an input value vi. If one honest node has completed the dispersal phase, then

12

there exists a subset I ⊂ H s.t. |I| ≥ f + 1. During the recast phase, if all
honest nodes with index i ∈ I as input, then at least n − 2f honest nodes
can reconstruct the initial input value vi other f Pi.

3.1 Ideal Functionality of SMID FSMID

In this section, we first formulate SMID as an ideal functionality FSMID, capturing
all security properties SMID can provide. Then, we present Algorithm 1 which
indeed UC-realizes FSMID.

The classical AVID ensures that all honest nodes can retrieve the same value,
as long as an honest node has finished the dispersal phase, regardless of whether
the dealer was honest or not. Its security guarantee is in the flavor of reliable
broadcast [14], and for similar reasons, dispersing ℓ-bit value via AVID will incur
at least O

(
ℓn+ n2

)
bit cost [4]. Considering concurrent n instances of AVID

where each node acts as a dealer, the communication cost is cubic. To eliminate
the cubic communication, we relinquish all security guarantees for the values
dispersed by malicious dealers.

With this weakening, we may define the ideal functionality of SMID as fol-
lows: it stores every value provided by each node, and whenever an honest node
requests the value stored by another honest node, the functionality returns that
value. However, the adversary can specify what will be returned when someone
attempts to retrieve a value “stored” by a corrupted node. The asynchronous na-
ture and adaptive corruption introduce subtleties that require further weakening
of the functionality to make it easy to implement.

One significant subtlety is that the adversary can essentially alter the value
retrieved by an honest node, even when the value was dispersed by another hon-
est node. To see this, consider the best-effort dispersal, where an honest node
Pi sends fragments to all other nodes. Pi will consider the fragments have been
delivered to honest nodes if Pi receives responses from n − f distinct nodes.
However, among the responses, there might be only n− 2f of them from honest
nodes, while up to f honest but “unfortunate” nodes have not received the cor-
responding fragments. When the network decides to retrieve the value dispersed
by Pi, an adaptive adversary can corrupt Pi and send different fragments to
those f “unfortunate” nodes, causing them to recast a different value.

Considering this subtlety and many others, we formulate the ideal functional-
ity FSMID in Fig. 5. Specifically, we allow the adversary to alter a retrieved value
for up to f honest nodes (as captured by the configure-output instructions).
We also permit the adversary to send a configure-done instruction, which rep-
resents the adversary’s capability of allowing some honest nodes to finish the
dispersal phase earlier than others. Nonetheless, this ideal functionality guaran-
tees the properties of SMID.

3.2 Details of the SMID protocol

We now present SMID. The detailed procedure for SMID can be found in Algo-
rithm 1. The only cryptographic tool in the construction is a vector commitment

13

FSMID proceeds as follows, running with (P1, . . . ,Pn) and the adversary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of nodes.
Initialize: dispersedi = 0, vi = ⊥, C-counteri = 0, Dinput

i = Doutput
i = 1, donei = 0,

ai,j = (0,⊥), requestedi,j = 0, and Dinput
i,j = Doutput

i,j = 1 for all i, j ∈ [n] and i ̸= j. Let
H be the set of “so-far-honest” nodes, and C be the set of corrupted nodes.

• Upon receiving (delay, sid,Pi, type, D) (or (delay, sid,Pi,Pj , type, D)) from
the adversary for i, j ∈ [n], if type ∈ {input, output} and D ∈ Z represented in
unary notation, then update Dtype

i = max{1,Dtype
i +D} (or Dtype

i,j = max{1,Dtype
i,j +

D}), and provide (delay-set, sid) to the adversary.
• Upon receiving (disperse, sid, v′ ̸= ⊥) from Pi (or the adversary on behalf

of a corrupted node), run the Input Submission Procedure and provide
(disperse, sid, v′,Pi) to the adversary.

• Upon receiving (configure-done, sid,Pi) from the adversary, update donei = 1
if
∑

j∈H dispersedj + |C| ≥ n− f .

• Upon receiving (configure-output, sid,Pi,Pj , v
′) from the adversary, do the

following: If (recast-output, sid, i, v) has been delivered to Pj , or Pi is not
corrupted, ignore this message. If vi = ⊥, then record ai,j = (1, v′). If vi ̸=
⊥, and C-counteri < f , then record ai,j = (1, v′), and update C-counteri =
C-counteri + 1. Otherwise, ignore this message. Here v′ can be ⊥.

• Upon receiving (fetch, status, sid) from Pi (or the adversary on behalf of a
corrupted node), run the Input Submission Procedure-I and the Output
Release Procedure-I, and provide (fetch, status, sid,Pi) to the adversary.

• Upon receiving (recast, sid, j) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure-II.

• Upon receiving (fetch, recast-output, sid, j) from Pi (or the adversary on be-
half of a corrupted node), run the Input Submission Procedure-II and the
Output Release Procedure-II, and provide (fetch, recast-output, sid, j) to
the adversary.

Input Submission Procedure-I: If dispersedi = 0, and (disperse, sid, v′) has
been provided by Pi, do the following: (1) Update Dinput

i = Dinput
i −1; (2) If Dinput

i = 0,
update dispersedi = 1, and record vi = v′.
Output Release Procedure-I: If

∑
j∈[n] dispersedj ≥ n− f , update donei = 1; if

donei = 1, do the following: (1) Update Doutput
i = Doutput

i − 1; (2) If Doutput
i = 0, set

(disperse-done, sid) to be sent to Pi.
Input Submission Procedure-II: If donej = 1, and (recast, sid, j) has been
provided by Pi, do the following: (1) Update Dinput

i,j = Dinput
i,j − 1; (2) If Dinput

i,j = 0,
update requestedi,j=1.
Output Release Procedure-II: If aj,i = (1, v′) ∧ v′ ̸= ⊥, or

∑
i∈H requestedi,j ≥

n − f , do the following: (1) Update Doutput
i,j = Doutput

i,j − 1; (2) if Doutput
i,j = 0, do the

following: If aj,i = (1, v′), then set (recast-output, j, v′) to be sent to Pi. Otherwise,
if vj ̸= ⊥, then set (recast-output, j, vj) to be sent to Pi.

Functionality FSMID

Fig. 5. The somewhat-good multi-dealer information dispersal functionality FSMID

scheme that helps the network identify the correct fragments sent by an hon-
est sender. The technique is standard and has been employed in many previous
designs [45,51]. The details of SMID-dispersal and SMID-recast are as follows:

14

Algorithm 1 The ΠSMID protocol with identify id for Pi

Initialize: fragment[j]← ⊥ for j ∈ [n]
. .

1: upon receiving input vi s.t. Predicate(vi) = true do � SMID-dispersal(id, vi)
2: Let c := [c1, c2, . . . , cn]← EC.Encode(vi, n, f + 1)
3: Let vc← VCom(c)
4: for j ∈ [n], πj ← Open(vc, cj , j)
5: send (Fragment, vc, cj , πj) to Pj for every j = 1, . . . , n

6: upon receiving (Fragment, vc, ci, πi) from Pj for the first time do
7: if VerifyOpen(vc, ci, i, πi) = 1 then
8: fragment[j]← (vc, ci, πi)
9: send Ok to Pj

10: upon receiving Ok from Pj for the first time do
11: Sok ← Sok ∪ {j}
12: if |Sok| = n− f then
13: multicast Completed to all
14: upon receiving Completed from Pj for the first time do
15: Scomp ← Scomp ∪ {j}
16: if |Scomp| = n− f then
17: return (disperse-done, id)

. .
18: upon receiving input s do � SMID-recast(id, s)
19: if fragment[s] := (vc, ci, πi) then
20: multicast (Recast, s, vc, ci, πi) to all
21: upon receiving (Recast, s, vc′, cj , πj) from Pj for the first time do
22: if vc = vc′ and VerifyOpen(vc, cj , j, πj) = 1 then
23: Recasts ← Recasts ∪ {(j, cj)}
24: upon |Recasts| = f + 1 do
25: vs ← EC.Decode(Recasts, n, f + 1)
26: return (recast-output, s, vs)

1. Fragment phase (lines 1-5). When an honest node Pi receives a valid input
value v, it initially computes the codewords of value v using EC.Encode. Sub-
sequently, it computes the corresponding vector commitment and position
proofs. Pi then disperses its input value v through Fragment messages,
which include a vector commitment, a codeword, and a position proof.

2. Ok phase (lines 5-9). For any honest node Pi, upon receiving a valid Fragment
message from Pj , it records the content of the message as fragment[j] and
subsequently sends an Ok back to Pj .

3. Completed phase (lines 10-13). For any honest node Pi, upon receiving n−f
Ok messages from distinct nodes, it multicasts a Completed message.

4. Output phase (lines 14-17). For any honest node Pi, upon receiving n − f
Completed messages from distinct nodes, it returns (disperse-done, id).

5. recast phase (lines 18-26). For any honest node Pi, if it decides to recast Ps’s
input, it first checks whether fragment[s] ̸= ⊥. If yes, it multicasts it via
a Recast message and then waits for f + 1 valid Recast messages from
distinct nodes. Afterward, it decodes these received codewords and outputs

15

the result. If fragment[s] = ⊥, then the honest node doesn’t produce any
output when invoking SMID-recast(id, s).

In the following theorem, we establish that Πsmid can UC-realizes FSMID,
while a formal proof is deferred to Appendix D.

Theorem 1. Assuming the underlying hash function is collision resistant, the
protocol ΠSMID in Algorithm 1 UC-realizes FSMID, in the presence of a computa-
tionally bounded and adaptive adversary who may corrupt up to f < n/3 parties.

Complexity analysis. In SMID-dispersal, each honest node can send at most
O(n) Fragment messages, O(n) Ok messages, and O(n) Completed mes-
sages. Here, the size of the input value v is ℓ, and the size of a Fragment
is O(ℓ/n+ log nλ), while both Ok and Completed messages have a size of
O(1). Consequently, the message complexity is O

(
n2

)
, and the communication

complexity is O
(
nℓ+ n2 log nλ

)
. In SMID-recast, for any single input index s,

each honest node sends at most O(n) Recast messages, where the size of a
Recast is O(ℓ/n+ log nλ). As a result, the message complexity is O

(
n2

)
, and

the communication complexity is O
(
nℓ+ n2 log nλ

)
.

Information-theoretic instantiation. In Algorithm 1, we leverage a vector
commitment such that the construction Πsmid is computationally secure. If each
node simply multicasts its input value, instead of doing information dispersal, the
vector commitment scheme is no longer needed. The resulting protocol will be
information-theoretically secure, with the communication complexity of O

(
n2ℓ

)
,

which may be good enough for small input sizes.

4 Synchronized Multi-valued Broadcast

In this section, we introduce our main new ingredient of MVBA: the Synchro-
nized Multi-valued Broadcast (SMB), which is a generalization of Synchronized
Binary-value Broadcast (SBV), a core component of a classic ABA protocol [48].

4.1 Overview of SMB

Intuition and a property-based definition. Assume that n nodes have dis-
persed their inputs through FSMID. When the network is trying to recast a value,
it could result in f+1 honest nodes having the correct value while other f honest
nodes have arbitrary values provided by the adversary; thus, there could be up
to f + 1 different values held by honest nodes. Looking ahead, in our MVBA
construction, we hope the network will agree on one valid value. SMB is the tool
we utilize to “winnow” the values, such that only a few values are left after SMB.
At the same time, we hope that, after SMB, the nodes have been “synchronized”
about the input values, i.e., if an honest node terminates on a single value val,
then this value must appear in any other honest node’s output.

Specifically, in SMB with n nodes, each node Pi participates and may be
provided with some input vi (which could initially be empty for some node
when he joins an SMB instance), and finally, each Pi shall output a set of values
vali. We require the following properties:

16

• Justification. If Pi is an honest node, then for every v ∈ vali, v is the input
of some honest node.

• Termination. If at least n− 2f honest nodes have the same input value v,
then every honest node Pi will terminate and output a set vali.

• Obligation. If at least n − 2f honest nodes have the same input value v,
then the set vali returned by an honest node Pi is not empty, and |vali| ≤ 2.

• Validity. If at least n−2f honest nodes have the same input value v, and Pi

and Pj are honest nodes with |vali| ≤ |valj |, then vali ⊂ valj . Additionally,
if |vali| = 2, then v ∈ vali.

Construction Overview. Our construction can be viewed as a generalization
of the SBV [48], which exhibits the following functionality: each node inputs a
binary value and outputs a set of binary values. The main challenge of SMB lies
in the multi-valued setting, where there could be many different input values,
whereas SBV is designed to handle only two possible inputs. To address this, we
introduce a “filter” mechanism to reduce the number of values, which works as
follows: every node multicasts its input and will echo the values sent by at least
f+1 nodes; then, only the values echoed by at least n−f nodes will be processed
after the filter. In the case that f + 1 of all honest nodes share the same input
value, it is easy to argue that there are at most two values after filtering.

Assume v1 and v2 are the values left. Now, different honest nodes may have
{v1}, {v2}, or {v1, v2}, while their outputs are supposed to be “inclusive”. In
other words, we should avoid the case where an honest node outputs {v1} while
another honest node outputs {v2}. We adopt the techniques from SBV to guaran-
tee the inclusion property, which works as follows: First, each node will maintain
a local set of candidate values. Then, each node will endorse exactly one candi-
date value through an Aux message. Finally, an honest node will output a subset
of candidate values endorsed by n− f Aux messages. If an honest node outputs
a single value v1, there must be n− f Aux messages carrying v1. Consequently,
every other node must include v1 in its output, ensuring its inclusion.
Comparison with MV-broadcast [49].Another generalization to SBV, known
as multi-valued validated all-to-all broadcast (MV-broadcast), was introduced
in [49]. Different from our SMB, MV-broadcast ensures all the above properties
without the condition that at least n − 2f honest nodes have the same input
value. Therefore, MV-broadcast is stronger than SMB. However, the communi-
cation complexity of MV-broadcast can be as high as O

(
n3ℓ

)
, assuming the size

of the input value is ℓ, while we can have an SMB with quadratic communication.

4.2 Ideal functionality of SMB FSMB

We formulate SMB as an ideal functionality in Fig. 6. Particularly, since each
output value v nominated by the adversary must fulfill the requirement that
|Jv|+ |C| ≥ n− 2f , which means that at least n− 3f honest nodes input v, thus
implying the justification. Termination is implied by the fact that the terminate
will be updated to be 1 whenever there are n− 2f honest inputs. Obligation is
from the fact that the adversary is only allowed to nominate the third output

17

FSMB proceeds as follows, running with (P1, . . . ,Pn) and the adversary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of nodes.
Initialize: participatedi = 0, vi = ⊥, subseti = ⊥ and Dinput

i = Doutput
i = 1 for all

i ∈ [n]; terminate = 0, singleInx = ⊥, and v̂1 = v̂2 = v̂3 = ⊥. Let H be the set of
“so-far-honest” nodes, and C be the set of corrupted nodes.

• Upon receiving (delay, sid,Pi, type, D) from the adversary for any i ∈ [n], if
type ∈ {input, output} and D ∈ Z represented in unary notation, then update
Dtype

i = max{1,Dtype
i +D}, and provide (delay-set, sid) to the adversary.

• Upon receiving (input, sid, v′) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and provide (input, sid, v′,Pi)
to the adversary.

• Upon receiving (terminate, sid, v′ ̸= ⊥) from the adversary, if terminate = 0,
update terminate = 1; Use Jv to denote the set {j ∈ H, vj = v} for any v ̸= ⊥.
– if v̂1 = ⊥, and |Jv′ |+ |C| ≥ n− 2f , update v̂1 = v′;
– if v̂2 = ⊥, v′ ̸= v̂1, and there exists c1, c2, such that c1+ c2 = |C|, |Jv̂1 |+ c1 ≥

n− 2f , and |Jv′ |+ c2 ≥ n− 2f , update v̂2 = v′;
– if v′ ̸= v̂1 ̸= v̂2,

∑
j∈H participatedj ≥ n− f , and there is no v∗ s.t. vj = v∗

for at least n− 2f different j ∈ H, then then update v̂3 = v′.
• Upon receiving (decide-output, sid,Pi, subset ⊂ {1, 2, 3}) from the adversary, if

terminate = 1, and Pi has not received its output, update subseti = subset.
• Upon receiving (fetch, sid) from Pi (or the adversary on behalf of a corrupted

node), run the Input Submission Procedure and the Output Release Pro-
cedure, and provide (fetch, sid,Pi) to the adversary.

Input Submission Procedure: If participatedi = 0, and (input, sid, v′) was the
latest input provided by Pi, do the following:

• Update Dinput
i = Dinput

i − 1;
• If Dinput

i = 0, update participatedi = 1, and record vi = v′.

Output Release Procedure: If (1) terminate = 1, or (2) there exists a subset J ⊂ H
such that |J| ≥ n− 2f , and ∃ v = vj ̸= ⊥ for all j ∈ J, do the following:

• If (2) and v̂1 = ⊥, update v̂1 = v and terminate = 1. Provide (leakage, sid, v̂1)
to the adversary.

• If v̂1 ̸= ⊥, do the following:
– Update Doutput

i = Doutput
i − 1;

– if Doutput
i = 0, do the following: if subseti = {k∗} and singleInx = ⊥, update

singleInx = k∗. If subseti ̸= ⊥, v̂j ̸= ⊥,∀ j ∈ subseti, and singleIdx ∈ subseti,
set (output, sid, {v̂j}j∈subseti) to be sent to Pi; otherwise, update singleInx = 1
if it is ⊥, and set (output, sid, v̂singleInx) to be sent to Pi.

Functionality FSMB

Fig. 6. The synchronized multi-valued broadcast functionality FSMB

when there are no f + 1 honest nodes having the same inputs. Validity directly
follows how the functionality returns the output to each node.

4.3 Details of the SMB protocol

According to the definition of SMB, except for the Justification property, all other
properties are satisfied under the condition that at least n − 2f honest nodes

18

Algorithm 2 The SMB protocol ΠSMB with identifier id for Pi

valuesi ← {}, and auxsi ← {}
1: upon receiving input vi do
2: multicast (Filter, id, vi) to all

3: upon receiving (Filter, id, v′) from n− 2f distinct nodes do
4: multicast (FilterEcho, id, v′) to all

5: upon receiving (FilterEcho, id, v) from n− f distinct nodes do
6: multicast (Val, id, v) to all

7: upon receiving (Val, id, v) from n− 2f distinct nodes do
8: if (Val, id, v) not yet sent then
9: multicast (Val, id, v) to all

10: upon receiving (Val, id, v) from n− f distinct nodes and v /∈ valuesi do
11: valuesi ← valuesi ∪ {v}
12: wait until valuesi ̸= ∅
13: multicast (Aux, id, ω), where ω ∈ valuesi

14: upon receiving (Aux, id, ω) from Pj for the first time do
15: if weightω has not been initialized then
16: Let weightω ← 0

17: auxsi ← auxsi ∪ {ω}, and weightω = weightω + 1

18: wait until
∑

ω∈vali
weightω ≥ n− f , for vali = valuesi ∩ auxsi

19: return vali

have the same input value. Although it is a weaker version of MV-broadcast,
it is sufficient for us to build our MVBA in the Section 6. In this section, we
provide a construction for SMB with IT-security, and the detailed procedure for
SMB can be found in Algorithm 2. Here is a comprehensive description:

1. Filter phase (lines 1-2). All honest nodes multicast their input via Filter
messages.

2. FilterEcho phase (lines 3-4). For any honest node Pi, if it receives n − 2f
Filter messages carrying the same value v′ from distinct nodes, then it will
multicast the value v′ via a FilterEcho message.

3. Val phase (lines 5-9). For any honest node Pi, if it receives n−f FilterEcho
messages carrying the same value v from distinct nodes, then it will multicast
the value v via a Val message. Besides, upon receiving n−2f Val messages
carrying the same value v from distinct nodes and not having multicast
(Val, id, v), it will multicast a Val message along with the value v.

4. Aux phase (lines 10-13). For any honest node Pi, if it receives n − f Val
messages carrying the same value v from distinct nodes, then it will add the
value v to the valuei set. If the valuei set is not empty, it will multicast
(Aux, id, ω) to all, where ω ∈ valuesi.

5. Output phase (lines 14-19). For any honest node Pi, it counts the number
weightw of Aux messages carrying the value w, and records all received w
in the set auxi. Pi outputs the intersection vali of auxi and valuesi, only
when it has received at least n− f Aux messages that carry values already
in valuesi, i.e.,

∑
w∈vali

weightw >= n− f .

19

In our protocol, it is crucial to emphasize that each honest node Pi can
multicast at most two FilterEcho messages. Furthermore, if at least n − 2f
honest nodes multicast the same value via Filter, then every honest node Pi is
allowed to multicast at most two Val messages, resulting in at most two distinct
Val messages being sent among all honest nodes. Additionally, the set of valuei
can be updated even if Pi multicasts a Aux message. Regarding security, we
establish the following result, with the full proof provided in Appendix D.

Theorem 2. The protocol ΠSMB in Algorithm 2 perfectly UC-realizes FSMB, in
the presence of any adaptive corruptions up to f < n/3 nodes.

Complexity analysis. In Algorithm 2, each honest node has the capability to
multicast Filter, FilterEcho, Val, and Aux messages, each of which has a
size of ℓ corresponding to the input value v of size ℓ. In the worst case, each
honest node multicasts one Filter message, two different FilterEcho mes-
sages, at most three different Val messages, and one Aux message. Each party
processes these messages from other parties accordingly. It is evident that each
node multicasts each type of message only O(1) times in the worst case, resulting
in a message complexity of O

(
n2

)
and a communication complexity of O

(
n2ℓ

)
.

5 Asynchronous Reliable Consensus

In this section, we introduce our last component of MVBA: Asynchronous Reli-
able Consensus (ARC). ARC was first studied and constructed by Blum et al. [12]
for different purposes. In contrast, our protocol is information-theoretically se-
cure and deterministic, designed to resist an adaptive adversary, whereas the
ARC in [12] is computationally secure, randomized, and cannot withstand the
adaptive adversary considered in this work. Our construction is similar to the
one-sided voting introduced in [55]; however, it only considers unitary inputs 8.
We defer the details of ARC construction to Appendix F.

Formally, in the ARC protocol, each node takes a value as input and col-
laboratively decides on a common value. The protocol is designed to satisfy the
following properties, except with negligible probability:

• Totality. If an honest node outputs v, then all honest nodes output v′.
• Agreement. If any two honest nodes output v and v′ respectively, then
v = v′.

• Validity. If all honest nodes with the same input value v, then all honest
nodes output v.

• Justification. If an honest node outputs v, then v is the input of at least
n− 2f honest node.

5.1 Ideal Functionality of ARC FARC

We formulate the ideal functionality FARC in Fig. 7. Note that FARC captures all
properties of ARC. Particularly, due to how the functionality returns output, it

8 A concurrent work [31] also introduces an ARC protocol that achieves the same goal
as our work, while we also provide the ARC ideal functionality.

20

FARC proceeds as follows, running with (P1, . . . ,Pn) and the adversary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of nodes.
Initialize: participatedi = 0, vi = ⊥ and Dinput

i = Doutput
i = 1 for all i ∈ [n]; y = ⊥.

• Upon receiving (delay, sid,Pi, type, D) from the adversary for any i ∈ [n], if
type ∈ {input, output} and D ∈ Z represented in unary notation, then update
Dtype

i = max{1,Dtype
i +D}, and provide (delay-set, sid) to the adversary.

• Upon receiving (input, sid, v′) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and provide (input, sid, v′,Pi)
to the adversary.

• Upon receiving (fetch, sid) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and the Output Release Pro-
cedure, and provide (fetch, sid,Pi) to the adversary.

Input Submission Procedure: If participatedi = 0, and (input, sid, v′) has been
provided by Pi, do the following:

• Update Dinput
i = Dinput

i − 1;
• If Dinput

i = 0, update participatedi = 1, and record vi = v′.

Output Release Procedure: If ∃ I ⊂ [n] such that |I| ≥ n − f and ∃ v = vi ̸= ⊥
for all i ∈ I, do the following:

• If y = ⊥, set y = v, provide (output, sid, y) to the adversary;
• Update Doutput

i = Doutput
i − 1;

• if Doutput
i = 0, set (output, sid, y) to be sent to Pi.

Functionality FARC

Fig. 7. The aynchronous reliable consensus functionality FARC

ensures that as long as an honest node outputs v, all other honest nodes eventu-
ally output v, implying totality and agreement. If all honest nodes have the same
input value, they will output that value, thereby satisfying validity. Additionally,
the protocol guarantees that the output value must be the input of at least n−2f
honest nodes, fulfilling the requirement of justification. Regarding security, we
establish the following theorem, whose full proof is deferred to Appendix F.

Theorem 3. The protocol ΠARC in Algorithm 5 perfectly UC-realizes FARC, in
the presence of adaptive corruptions of up to f < n/3 nodes.

Complexities of ARC protocol. In Algorithm 5, each honest node can mul-
ticast Diffusion and Echo messages, each having a size of ℓ corresponding to
the input value v of size ℓ. As a result, the message complexity is O

(
n2

)
, and

the communication complexity is O
(
n2ℓ

)
.

6 Near-optimal Hash Based MVBA

In this section, we present a protocol for achieving MVBA with adaptive security,
leveraging only hash functions. Our approach attains subcubic communication
complexity of O

(
nℓ+ n2 log nλ+ κn2λ

)
, and optimal fault tolerance with n ≥

3f + 1, where ℓ represents the size of the input values, κ is a statistical security

21

parameter, λ denotes the size of a hash value, and n refers to the number of nodes.
Specifically, if the input size ℓ exceeds O((κ+ log n)nλ), our MVBA protocol
achieves O(nℓ) optimal communication complexity.

6.1 Overview of our MVBA protocol

As shown in Fig.2 in the introduction, our construction revolves around the
properties of the Somewhat-good Multi-dealer Information Dispersal, particu-
larly focusing on its validity. The fundamental ideas of our MVBA protocol are
as follows: all honest nodes participate in the SMID-dispersal instance to disperse
their own input values, and they wait until the SMID-dispersal has been success-
fully completed. During this time, the entire network ensures that there exists a
set I with at least n/3 indexes, and if all honest nodes with index i(∈ I) as input,
then at least n − 2f honest nodes can reconstruct the same value that satisfies
the Predicate function. Afterward, a common coin protocol coin is invoked to ran-
domly elect κ nodes {Ps1 , . . . ,Psκ} such that one of the nodes belongs to the set
I. Subsequently, all honest nodes participate in the κ SMID-recast subprotocols.
For an honest node Pi, if the corresponding SMID-recast subprotocol returns a
value, then Pi inputs the value into the SMBk. If the SMBk returns a valid set
vset (i.e., |vset| ≤ 2), then the element of vset is input to the corresponding ARC
protocol. All honest nodes await the output of 2κ ARC instances, and if any ARC
protocol produces an output, then 1 is input into the corresponding ABA. For an
honest node Pi, if any of the ABA instances outputs 1, then Pi inputs 0 into the
remaining ABA instances that do not have an input. The termination condition
for the entire protocol is the termination of the 2κ ABA instances.

6.2 Details of the MVBA protocol

The flow of our MVBA is outlined in Fig. 2. We now provide a detailed descrip-
tion. Specifically, an MVBA instance with identifier id proceeds as follows:

1. SMID-dispersal phase (lines 1-2). All honest nodes disperse their input values
vi to the entire network by sending (disperse, sid, vi) to FSMID.

2. Election phase (lines 3-4). Upon Pi receiving (disperse-done, sid) from
FSMID, indicating that at least n − 2f honest nodes have completed their
dispersal, Pi will multicast (request, sid) to FV

coin to select κ distinct nodes.
3. SMID-recast phase (lines 5-6). If FV

coin returns κ values {s1, . . . , sκ}, then all
honest nodes send (recast, sid, sz) to FSMID for every z ∈ [κ] to attempt to
recast the inputs of these nodes {Ps1 , . . . ,Psκ}.

4. SMB phase (lines 7-12). If honest node Pi receives (recast-output, sz, vsz)
from FSMID for any z ∈ [κ], and the value vsz satisfies the predicate Predicate,
then Pi computes the corresponding vector commitment vcz and position
proofs {πz,j}j∈[n]. Pi subsequently sends (input, sid|z, vcz) to FSMB.

5. ARC phase (lines 13-17). Suppose FSMB returns (output, sid|z, vset) to hon-
est node Pi. If the size of the set vset is no more than 2, then Pi considers
the elements of vset as the input for FARC.

22

Algorithm 3 The MVBA protocol ΠMVBA for Pi

Initialize valuez = vcz = vcz,a = ⊥, πz,i = cz,i = ⊥, for z ∈ [κ], a ∈ {1, 2}, and
i ∈ [n]; terminate = 0 and Fragments = ∅; keep sending (fetch, ⋆) message to each
ideal functionality until receiving the desired output.

1: upon receiving input vi s.t. Predicate(vi) = true do
2: send (disperse, sid, vi) to FSMID � dispersal

3: upon receiving (disperse-done, sid) from FSMID do
4: send (request, sid) to FV

coin � election

5: upon receiving (output, sid, s1, . . . , sκ) ∈ [n]κ from FV
coin do

6: send (recast, sid, sz) to FSMID, for each z ∈ [κ] � recast

7: upon receiving (recast-output, sz, vsz) from FSMID for any z ∈ [κ] do
8: if Predicate(vsz) = 1 then
9: Let cz := [cz,1, cz,2, . . . , cz,n]← EC.Encode(vsz , n, f + 1)
10: record vcz := VCom(cz) and valuez = vsz
11: for j ∈ [n], record πz,j ← Open(vcz, cj , j)
12: send (input, sid|z, vcz) to FSMB � SMB

13: upon receiving (output, sid|z, vset) from FSMB for any z ∈ [κ] do
14: if Parse vset = {vc′, vc′′} or vset = {vc} then � vc equals to vc′ or vc′′

15: if |vset| = 1 then Let vc′ ← vc and vc′′ ← vc

16: send (input, sid|z|1, vc′) to FARC � ARC
17: send (input, sid|z|2, vc′′) to FARC

18: upon receiving (output, sid|z|a, vc) from FARC for any z ∈ [κ] and a ∈ {1, 2} do
19: record vcz,a = vc
20: if have not sent input message (input, sid|z|a, ⋆) to FABA then
21: send (input, sid|z|a, 1) to FABA � ABA

22: upon receiving (output, sid|z|a, 1) from FABA for any z ∈ [κ] and a ∈ {1, 2} do
23: for z′ ∈ [κ] and a′ ∈ {1, 2} do
24: if have not sent input message (input, sid|z′|a′, ⋆) to FABA then
25: send (input, sid|z′|a′, 0) to FABA

26: wait receiving (output, sid|z|a, ⋆) from FABA for all z ∈ [κ] and a ∈ {1, 2}
27: Let (z∗, a∗) be the smallest pair such that FABA outputs (output, sid|z∗|a∗, 1)
28: if vcz∗,a∗ = ⊥ then
29: wait receiving (output, sid|z∗|a∗, vc) from FARC

30: record vcz∗,a∗ = vc

31: if vcz∗ = vcz∗,a∗ then
32: send (fragment, sid, vcz∗ , cz∗,j , πz∗,j) to Pj for every j ∈ [n]

33: upon receiving (fragment, sid, vc′, c′i, π
′
i) such that vcz∗,a∗ = vc′ do

34: if VerifyOpen(vc′, c′i, i, π
′
i) = 1 and have not send forward message then

35: send (forward, sid, vc′, c′i, π
′
i) to all parties; Update terminate = 1

36: upon receiving (forward, sid, vc′, c′j , π
′
j) from Pj for the first time do

37: if vc′ = vcz∗,a∗ and VerifyOpen(vc′, c′j , j, π
′
j) = 1 then

38: Update Fragments← Fragments ∪ {(j, c′j)}
39: upon |Fragments| = f + 1 do
40: Update valuez∗ ← EC.Decode(Fragments, n, f + 1) � recovery

41: wait until valuez∗ ̸= ⊥ and terminate = 1
42: return (output, sid, valuez∗) � output

23

6. ABA phase (lines 18-25). If FARC returns (output, sid|z|a, vc) to Pi, then he
sends (input, sid|z|a, 1) to FABA if he hasn’t done so already. Furthermore,
if Pi receives (output, sid|z|a, 1) from FABA, then for any z′ ∈ [κ] and
a′ ∈ {1, 2}, Pi sends (input, sid|z′|a′, ⋆) to FABA if he has not sent it yet.

7. Output phase (lines 26-42). Wait until FABA returns 2κ values, then, an
honest node Pi outputs the value corresponding to the vc in the output of
FARC with identifier sid|z∗|a∗, where (z∗, a∗) is the smallest pair among all
FABA outputs (output, sid|z∗|a∗, 1). It’s possible that some honest nodes
have not received the corresponding value. To help these nodes receive it,
two additional types of messages are introduced: fragment and forward.
Specifically, if some honest nodes have the corresponding value, they send
a fragment to every node. If a node receives a valid fragment message for
the first time, it sends a forward message to all nodes. Then, if some honest
nodes have not received the value, they will wait for f + 1 valid forward

messages from distinct nodes. After decoding, they output the decoded value.

Regarding security, we present the following theorem.

Theorem 4. Assuming the underlying hash function is collision resistant, the

protocol ΠMVBA in Algorithm 3 UC-realizes FMVBA in the (F [n]κ

coin ,FABA,FSMID,
FARC,FSMB)-hybrid model, in the presence of a computationally bounded and
adaptive Byzantine adversary who may corrupt up to f < n/3 nodes.

Proof (sketch). For any adversaryA, a simulator S can be constructed as follows:

it runs a copy of A, simulates all subroutines including F [n]κ

coin ,FABA,FSMID, FARC,
and FSMB, and honestly plays the roles of all honest nodes after learning their
input values from FMVBA. In general, S forwards the messages between A and the
environment, and adjusts the delay counters based on the simulation execution
influenced by A. S runs the copies of FABA,FSMID,FARC, and FSMB honestly. For

F [n]κ

coin , S runs a modified version where a node Ps, which has finished dispersal
in FSMID, is included in the output.

It is straightforward to argue that, from the perspective of A, the simu-
lated execution by S is indistinguishable from a real execution. It remains to
show that the output of the simulated execution matches the output of the ideal

functionality FMVBA. Note that F [n]κ

coin only produces output when at least f + 1
nodes have queried, which implies that at least one honest node has received
(disperse-done, sid) from FSMID. According to the specification of FSMID, be-

fore F [n]κ

coin returns, there exists a subset I such that |I| ≥ f + 1. For each i ∈ I,
at least n− 2f honest nodes can reconstruct the initial input value vi of Pi.

Moreover, in F [n]κ

coin , an index z ∈ I is included in the coin output. This implies
that at least f + 1 honest nodes will have the same input value vz for the same
SMB instance with identifier sid|z. According to the description of FSMB, there
will be two values, v′1 and v′2, such that every honest node Pi will receive a set
vali ⊆ {v′1, v′2} from FSMB with identifier sid|z. Moreover, if |valj | ≤ |vali|, then
valj ⊆ vali. Hence, one of the following cases must occur: (1) all honest nodes
input v′1 into the instance with identifier (sid|z|1), or (2) all honest nodes input

24

v′2 into FARC with identifier (sid|z|2). As a result, all honest nodes will receive
the same output from one session of FARC, which implies that all honest nodes
will input 1 into the corresponding session of FABA. For any honest node Pi,
once a session of FABA returns 1, it will input 0 into all other FABA sessions if it
has not yet provided inputs. Consequently, all FABA sessions can terminate.

According to FABA, all nodes will receive the same outputs. For any FABA

session, if it outputs (output, sid|z|a, 1), then, according to the protocol descrip-
tion, at least one honest node has received a valid vcz,a from the corresponding
FARC session. Based on the descriptions of FARC and FSMV, at least one node
holds the corresponding value v. Due to the collision resistance of the hash func-
tion, all honest nodes will eventually output the same value. For brevity, the
formal proof is deferred to Appendix.G. ⊓⊔

Complexities of MVBA protocol. In Algorithm 3, illustrated in Figure 2,
all honest nodes engage in one SMID-dispersal, one election protocol FV

coin, and
subsequently, κ instances of SMID-recast, κ instances of SMB, 2κ instances of
ARC, and 2κ instances of ABA. The input size of SMID-dispersal is ℓ, while
the input size of SMB and ARC is λ. Throughout this paper, we assume the
use of an ideal common coin, and thus, we omit its associated cost. The cost
performance of a single instance/phase is as follows: (1) both SMID-dispersal
and SMID-recast have a message complexity of O

(
n2

)
and a communication

complexity of O
(
nℓ+ n2 log nλ

)
; (2) both SMB and ARC exhibit the same cost

performance, with a message complexity of O
(
n2

)
and communication complex-

ity of O
(
n2λ

)
; (3) each ABA instance has a message complexity of O

(
n2

)
and

communication complexity of O
(
n2

)
; (4) in the output phase, each honest node

sends n fragment and n forward messages, so the total number of exchanged
messages is O

(
n2

)
, and the bit communication cost is O

(
nℓ+ n2 log nλ

)
.

As a result, the overall message complexity of MVBA is O
(
κn2

)
, and the

communication complexity is O
(
nℓ+ n2 log nλ+ κn2λ

)
.

6.3 MVBA with information-theoretic security

As discussed in Section 3, if each node multicasts its input value without execut-
ing the information dispersal, the vector commitment scheme becomes unneces-
sary. Then, the SMID protocol would be information-theoretically secure with a
communication complexity of O

(
n2ℓ

)
. Consequently, by making minor modifica-

tions to Algorithm 3 as follows: employing the information-theoretically-secure
SMID protocol and skipping the SMID-recast phase after the election phase, all
honest nodes directly participate in the SMB phase with the received actual
data from SMID. The output of SMB is then taken as the input of ARC in
the ARC phase. In the output phase, there is no need to send fragment and
forward messages; the output of ARC serves as the final output. Based on these
modifications, we have the following theorem.

Theorem 5. Following the above described modifications in Section 3, the ad-

justed protocol ΠMVBA UC-realizes FMVBA in the (F [n]κ

coin ,FABA,FIT−SMID,FARC,

25

FSMB)-hybrid model. This holds in the presence of an unbounded and adaptive
Byzantine adversary with the ability to corrupt up to f < n/3 nodes.

7 Optimal Hash-based ACS and Applications to
Asynchronous MPC

In this section, we present a direct application of our MVBA to ACS, and then
show how we can improve the state-of-art asynchronous MPC using our ACS.

7.1 Optimal Asynchronous Common Subset from MVBA

Our ACS essentially follows Cachin et al.’s framework [16], which builds an ACS
protocol from a MVBA protocol using digital signatures (and thus assuming a
bare PKI). In the framework, each node firstly multicasts its input value along
with its signature for the value, then after collecting n − f signed values from
distinct nodes, invokes anMVBA instance with a vector of received signed values,
to agree on one vector. It is easy to argue the elegant construction satisfies all
security properties of ACS. At a high level, the termination and agreement

of MVBA guarantee the totality and agreement of ACS, while the external
validity of MVBA plus the unforgeability of the underlying signature ensures the
validity of ACS. Due to the space limit, we demonstrate the formal construction
in the (FMVBA, FPKI)-hybrid model in Algorithm 6 in Appendix H, and prove it
UC-realizes FACS. The full proof is deferred to Appendix H.

Theorem 6. Assuming the underlying signature scheme satisfies the existential
unforgeability, the protocol ΠACS UC-realizes FACS in the (FMVBA,FPKI)-hybrid
model, against any computationally bounded adaptive Byzantine adversary who
may corrupt up to f < n/3 nodes.

Instantiation and complexity analysis. Using ΠMVBA in Algorithm 3 (along
with our ΠSMID, ΠARC and ΠSMB protocols, and the ABA protocol from [48]), we
then obtain an input protocol in the (FPKI,Fcoin)-hybrid model, while assuming
a digital signature scheme and a collision-resistant hash function. As there are
hash-based digital signature schemes (for example, [10]), the only computational
assumption will be the existence of collision-resistant hash.

Regarding the communication cost, the multicast phase incurs O
(
(ℓ+ λ)n2

)
bits communication for n nodes each with ℓ-bit input. The input of MVBA is n−
f values along with the corresponding signatures, whose length is O((ℓ+ λ)n).
Therefore, the overall communication complexity is O

(
ℓn2 + λn2 log n+ κn2λ

)
.

7.2 Applications to Asynchronous MPC

Next, we show how our ACS could solve the input agreement problem in AMPC.

Overview of offline-online AMPC. Almost all existing AMPC protocols
[6,9,13,19,22,24–26,44] follow the offline-online paradigm. As the name suggests,

26

Algorithm 4 The ΠInput protocol

Preprocessing: For each i ∈ [n], uniformaly sample ri from the input space, and
generate (ri,1, . . . , ri,n)← SS(ri). Send (ri, (rj,i)j∈[n]) to each Pi.
. .

1: upon receiving input xi do � For any Pi

2: Compute x̄i = ri + xi

3: send (input, sid, x̄i) to FACS

4: wait receiving (output, sid, commonSet) from FACS

5: Parse commonSet = {(j, x̄j)}j∈J
6: Compute xj,i = x̄j − rj,i, for each j ∈ J
7: return (output, sid, J, {xj,i}j∈J).

the offline phase is independent of the function and the data to be evaluated and
thus can be executed before the actual computation. The correlated randomness
generated in the offline phase will be utilized in the subsequent online phase. The
online phase will be invoked when the data and the computation task are known,
which consists of an input sub-phase and a function evaluation sub-phase.
In the input sub-phase, Each node Pi on input a private value xi distributes
secret shares of xi to other nodes. After the execution of this phase, honest
nodes should have consistent secret shares of the same set of n− f input values.
Then, in the function evaluation phase, the nodes jointly evaluate a function f
on the shared inputs (x1, . . . , xn) and finally obtain a set of consistent secret
shares on f(x1, . . . , xn).

In general, as the offline phase can be executed prior to the actual computa-
tion, it can accept an expensive offline protocol. On the other hand, the online
phase, including both the input phase and the function evaluation phase, is al-
ways expected to be efficient. Moreover, there is a lot of work pushing down
the communication complexity of the functional evaluation phase. Notably, in
the information-theoretical setting, we know solutions to evaluate a function f
(modeled as a circuit C) at the cost of O

(
M · n+D · n2

)
[24–27], where M is

the number of multiplicative gates in the circuit C, n is the number of nodes, and
D is the depth of the circuit. Existing AMPC protocols apply n instances of reli-
able broadcast [15] or asynchronous completed secret sharing [27] to disseminate
the private inputs, causing Ω(n3) communication cost already; An agreement on
core set protocol is further employed to decide which n− f broadcast instances
have terminated, incurring another O

(
n3

)
communication cost. In summary,

the current input agreement employed in existing AMPC constitutes a bottle-
neck in terms of communication complexity, particularly when the number of
multiplicative gates to be evaluated is not very large, e.g., O

(
n2

)
.

The input functionality FInput and its realization from ACS. To formally
study the input phase, we present the ideal functionality FInput of the input phase
in Fig. 11 in Appendix I. FInput is defined w.r.t. any secret sharing scheme SS.
Moreover, different from other ideal functionalties of the consensus primitives
considered in this paper, it captures the private input, i.e., when a node sends an
input to the ideal functionality, only the input length is leaked to the simulator.

27

On the other hand, it explicitly considers adaptive corruption, as the private
input should be leaked to the adversary when the node gets corrupt.

We focus on the Shamir sharing, as it is employed in almost all AMPC
protocols with a liveness guarantee. Particularly, we leverage Choudhury et al.’s
[23] trick of using a preshared random value r to mask the real input x, such
that each node can obtain a secret share of x by combining the share of r and
the masked x̄. The masked value x̄ will not leak any information about x, and
thus we can employ FACS and let all honest nodes agree on a set of masked
values. Remark that the input protocol can be easily generalized to AMPC
protocols not based on Shamir’s secret sharing. For example, in the threshold
fully homomorphic encryption based MPC, we can use FACS to let all nodes agree
on a set of ciphertexts such that further computation can be carried out on them.
We present an input phase protocol in the FACS-hybrid model in Algorithm 4,
and the full proof is deferred to Appendix I.

Theorem 7. The protocol Πinput UC-realizes FInput in the FACS-hybrid model,
against any adaptive Byzantine adversary who corrupts up to n/3 nodes.

Instantiation and complexity analysis. Using our ΠACS in Algorithm 6 to
instantiate Πinput gives us an input protocol in the (FMVBA,PKI)-hybrid model,
which further relies a digital signature scheme from collision-resistant hash func-
tions. Since we already assume the correlated randomness, Fcoin comes “for free”.
I.e., the nodes can simply reconstruct a pre-shared random value as the coin.

Combining the existing function evaluation protocols with our input proto-
col, we have an online-phase AMPC protocol in the FPKI-hybrid model against
adaptive Byzantine adversaries which corrupts up to n/3 nodes, with the commu-
nication complexity ofO

(
Mn+Dn2 + λn2 log n+ κn2

)
, whereM is the number

of multiplicative gates in the circuit C, n is the number of nodes, and D is the
depth of the circuit.

References

1. Abraham, I., Asharov, G., Patra, A., Stern, G.: Perfectly secure asynchronous
agreement on a core set in constant expected time. IACR Cryptol. ePrint Arch.
p. 1130 (2023)

2. Abraham, I., Chan, T.H., Dolev, D., Nayak, K., Pass, R., Ren, L., Shi, E.: Com-
munication complexity of byzantine agreement, revisited. In: PODC. pp. 317–326.
ACM (2019)

3. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asyn-
chronous byzantine agreement. In: Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing. pp. 337–346 (2019)

4. Alhaddad, N., Das, S., Duan, S., Ren, L., Varia, M., Xiang, Z., Zhang, H.: Balanced
byzantine reliable broadcast with near-optimal communication and improved com-
putation. In: Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing. pp. 399–417 (2022)

5. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptol. 30(1), 58–151 (2017)

28

6. Backes, M., Bendun, F., Choudhury, A., Kate, A.: Asynchronous mpc with a strict
honest majority using non-equivocation. In: Proceedings of the 2014 ACM sympo-
sium on Principles of distributed computing. pp. 10–19 (2014)

7. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO. Lecture Notes in Computer Science, vol. 576, pp. 420–432. Springer
(1991)

8. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing.
pp. 52–61 (1993)

9. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: PODC. pp. 183–192. ACM (1994)

10. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: EUROCRYPT (1). Lecture Notes in
Computer Science, vol. 9056, pp. 368–397. Springer (2015)

11. Blahut, R.E.: Theory and practice of error control codes. Addison-Wesley (1983)
12. Blum, E., Katz, J., Liu-Zhang, C.D., Loss, J.: Asynchronous byzantine agreement

with subquadratic communication. In: Theory of Cryptography: 18th International
Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings,
Part I 18. pp. 353–380. Springer (2020)

13. Blum, E., Liu-Zhang, C.D., Loss, J.: Always have a backup plan: fully secure
synchronous mpc with asynchronous fallback. In: Annual International Cryptology
Conference. pp. 707–731. Springer (2020)

14. Bracha, G.: An asynchronous [(n-1)/3]-resilient consensus protocol. In: Proceedings
of the third annual ACM symposium on Principles of distributed computing. pp.
154–162. ACM (1984)

15. Bracha, G.: Asynchronous byzantine agreement protocols. Information and Com-
putation 75(2), 130–143 (1987)

16. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Annual International Cryptology Conference. pp. 524–541.
Springer (2001)

17. Cachin, C., Mićić, J., Steinhauer, N., Zanolini, L.: Quick order fairness. In: Inter-
national Conference on Financial Cryptography and Data Security. pp. 316–333.
Springer (2022)

18. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: 24th
IEEE Symposium on Reliable Distributed Systems (SRDS’05). pp. 191–201. IEEE
(2005)

19. Canetti, R.: Studies in secure multiparty computation and applications. Scientific
Council of The Weizmann Institute of Science (1996)

20. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS. pp. 136–145. IEEE Computer Society (2001)

21. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Public Key
Cryptography. Lecture Notes in Computer Science, vol. 7778, pp. 55–72. Springer
(2013)

22. Chopard, A., Hirt, M., Liu-Zhang, C.D.: On communication-efficient asynchronous
mpc with adaptive security. In: Theory of Cryptography: 19th International Con-
ference, TCC 2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part
II 19. pp. 35–65. Springer (2021)

23. Choudhury, A., Orsini, E., Patra, A., Smart, N.P.: Linear overhead optimally-
resilient robust MPC using preprocessing. In: SCN. Lecture Notes in Computer
Science, vol. 9841, pp. 147–168. Springer (2016)

29

24. Choudhury, A., Pappu, N.: Perfectly-secure asynchronous mpc for general adver-
saries. In: Progress in Cryptology–INDOCRYPT 2020: 21st International Confer-
ence on Cryptology in India, Bangalore, India, December 13–16, 2020, Proceedings
21. pp. 786–809. Springer (2020)

25. Choudhury, A., Patra, A.: Optimally resilient asynchronous mpc with linear com-
munication complexity. In: Proceedings of the 16th International Conference on
Distributed Computing and Networking. pp. 1–10 (2015)

26. Choudhury, A., Patra, A.: An efficient framework for unconditionally secure mul-
tiparty computation. IEEE Transactions on Information Theory 63(1), 428–468
(2016)

27. Choudhury, A., Patra, A.: On the communication efficiency of statistically secure
asynchronous MPC with optimal resilience. J. Cryptol. 36(2), 13 (2023)

28. Cohen, R., Forghani, P., Garay, J.A., Patel, R., Zikas, V.: Concurrent asynchronous
byzantine agreement in expected-constant rounds, revisited. In: TCC (4). Lecture
Notes in Computer Science, vol. 14372, pp. 422–451. Springer (2023)

29. Coretti, S., Garay, J.A., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: ASIACRYPT (2). Lecture
Notes in Computer Science, vol. 10032, pp. 998–1021 (2016)

30. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty compu-
tation. In: CRYPTO. Lecture Notes in Computer Science, vol. 4622, pp. 572–590.
Springer (2007)

31. Das, S., Duan, S., Liu, S., Momose, A., Ren, L., Shoup, V.: Asynchronous consensus
without trusted setup or public-key cryptography. IACR Cryptology ePrint Archive
(2024), https://eprint.iacr.org/2024/677

32. Das, S., Xiang, Z., Kokoris-Kogias, L., Ren, L.: Practical asynchronous high-
threshold distributed key generation and distributed polynomial sampling. In: 32nd
USENIX Security Symposium (USENIX Security 23). pp. 5359–5376 (2023)

33. Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias, L., Ren, L.: Practical
asynchronous distributed key generation. In: 2022 IEEE Symposium on Security
and Privacy (SP). pp. 2518–2534. IEEE (2022)

34. Duan, S., Wang, X., Zhang, H.: Fin: Practical signature-free asynchronous common
subset in constant time. In: Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security. pp. 815–829 (2023)

35. Feng, H., Lu, Z., Mai, T., Tang, Q.: Making hash-based MVBA great again. Cryp-
tology ePrint Archive, Paper 2024/479 (2024), https://eprint.iacr.org/2024/479

36. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Tech. rep., Massachusetts Inst of Tech Cambridge lab for
Computer Science (1982)

37. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo-ng: Fast asynchronous
bft consensus with throughput-oblivious latency. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1187–1201
(2022)

38. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Efficient asynchronous byzan-
tine agreement without private setups. In: ICDCS. pp. 246–257. IEEE (2022)

39. Guo, B., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Speeding dumbo: Push-
ing asynchronous bft closer to practice. In: The Network and Distributed System
Security Symposium (NDSS) (2022)

40. Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: Faster asynchronous bft
protocols. In: Proc. ACM CCS 2020. ACM (2020)

30

https://eprint.iacr.org/2024/677
https://eprint.iacr.org/2024/479

41. Hu, B., Zhang, Z., Chen, H., Zhou, Y., Jiang, H., Liu, J.: DyCAPS: Asynchronous
proactive secret sharing for dynamic committees. IACR Cryptology ePrint Archive
(2022), https://eprint.iacr.org/2022/1169

42. Komatovic, J., Neu, J., Roughgarden, T.: Toward optimal-complexity hash-based
asynchronous MVBA with optimal resilience. Cryptology ePrint Archive, Paper
2024/1682 (2024), https://eprint.iacr.org/2024/1682

43. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC. pp. 1219–1234.
ACM (2012)

44. Lu, D., Yurek, T., Kulshreshtha, S., Govind, R., Kate, A., Miller, A.: Honey-
badgermpc and asynchromix: Practical asynchronous mpc and its application to
anonymous communication. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 887–903 (2019)

45. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-mvba: Optimal multi-valued validated
asynchronous byzantine agreement, revisited. In: Proceedings of the 39th sympo-
sium on principles of distributed computing. pp. 129–138 (2020)

46. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft pro-
tocols. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 31–42. ACM (2016)

47. Mostefaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous byzantine
consensus with t < n/3 and O(n2) messages. In: Proceedings of the 2014 ACM
symposium on Principles of distributed computing. pp. 2–9. ACM (2014)

48. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous binary
byzantine consensus with t < n/3, o(n2) messages, and O(1) expected time. J.
ACM 62(4), 31:1–31:21 (2015)

49. Mostéfaoui, A., Raynal, M.: Signature-free asynchronous byzantine systems: from
multivalued to binary consensus with t¡ n/3 t¡ n/3, o (nˆ 2) o (n 2) messages, and
constant time. Acta Informatica 54, 501–520 (2017)

50. Myers, S., Sergi, M., et al.: Threshold fully homomorphic encryption and secure
computation. Cryptology ePrint Archive (2011)

51. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols
for byzantine broadcast and agreement. In: DISC. LIPIcs, vol. 179, pp. 28:1–28:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

52. Patra, A., Choudhury, A., Pandu Rangan, C.: Efficient asynchronous verifiable se-
cret sharing and multiparty computation. Journal of Cryptology 28, 49–109 (2015)

53. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (JACM) 27(2), 228–234 (1980)

54. Shoup, V.: A theoretical take on a practical consensus protocol. IACR Cryptol.
ePrint Arch. p. 696 (2024)

55. Shoup, V., Smart, N.P.: Lightweight asynchronous verifiable secret sharing with
optimal resilience. Journal of Cryptology 37(3), 27 (2024)

56. Yurek, T., Xiang, Z., Xia, Y., Miller, A.: Long live the honey badger: Robust
asynchronous DPSS and its applications. In: USENIX Security. pp. 5413–5430
(2023)

57. Zhang, H., Duan, S.: Pace: Fully parallelizable bft from reproposable byzantine
agreement. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. pp. 3151–3164 (2022)

31

https://eprint.iacr.org/2022/1169
https://eprint.iacr.org/2024/1682

A Related Work

Byzantine Agreement (BA) [53] is a fundamental problem in Byzantine Fault-
Tolerant (BFT) distributed computing. The primary objective of BA is to enable
all nodes in a distributed system to reach consensus on their initial input values,
even when there is a malicious adversary with control over up to f nodes. This
problem has been extensively studied by researchers, leading to investigations
in various network models and adversary assumptions. One of the important
variants of the BA problem is the Asynchronous Common Subset (ACS) [9]. It
plays a crucial role in solving asynchronous Multi-Party Computation (MPC)
problems. All existing asynchronous MPC protocols [6, 9, 13, 19, 22, 24–27, 44]
utilize ACS to achieve consensus on which private inputs can be used as input
for a computation circuit [52].

The earliest ACS protocol relied on n concurrent ABA sub-protocols, result-
ing in high communication complexity and sub-linear time complexity. Despite
the high cost, HBBFT [46] demonstrated certain advantages compared to ACS
constructions that reduce to MVBA [16]. The most recent work, Dumbo [40],
introduced an improved approach to applying MVBA for constructing ACS,
achieving better performance both theoretically and practically. Due to the ad-
vantageous features of MVBA, it has become a versatile and widely applicable
primitive in various cryptographic protocols, serving as an essential underlying
component, including State Machine Replication (SMR) or Atomic Broadcast
(ABC) [17, 37, 39, 46], Distributed Key Generation [32, 33, 38], and Dynamic-
committee Proactive Secret Sharing (DPSS) [41,56].

As a powerful underlying tool, the performance of MVBA significantly in-
fluences the efficiency of applications relying on it. Initially proposed in [16]
with a communication complexity of O

(
n2ℓ+ n2λ+ n3

)
, substantial progress

has been made to enhance its performance. Initially, Abraham et al. [3] removed
a O

(
n3

)
-term, achieving quadratic communication complexity for the first time

at O
(
ℓn2 + λn2

)
. Later, Lu et al. [45] further reduced the O

(
ℓn2

)
-term to O(ℓn)

for optimal communication complexity when ℓ ≥ λn. The MVBA work in [45]
marked a milestone for achieving the first optimal ACS with quadratic com-
munication complexity, leveraging the approach presented in [16]. This enabled
the realization of ACS with O

(
n2

)
communication complexity, benefiting from

the improved performance of MVBA. Additionally, Guo et al. [39] presented an
MVBA with significantly fewer rounds. However, all these MVBA efforts rely on
threshold signatures, which are vulnerable to quantum attacks and necessitate
a trusted setup, posing challenges in various applications, such as Distributed
Key Generation (DKG).

In the hash-based setting, recent MVBA protocols like Fin-MVBA [34] have
been introduced. However, they exhibit cubic communication complexity. There-
fore, achieving sub-cubic communication complexity for hash-based MVBA pro-
tocols remains an open challenge.

32

B UC Model

Simulation-based security. We analyze our protocols using the standard
simulation-based security, which aligns with the design of most cryptographic
protocols. This approach allows us to comprehensively capture all security goals
of a primitive by comparing it with an “ideal” version of some desirable func-
tionality. It eliminates the need to enumerate a list of potentially overlapping
properties and is particularly useful when arguing the security of a protocol that
utilizes other protocols as sub-routines. The simulation-based security is formu-
lated with a real world and an ideal world. In the real world, the protocol is
executed by nodes that exchange messages among themselves according to the
protocol specification, while an adversary can interfere with the protocol execu-
tion within certain rules. In the ideal world, all nodes only communicate with
a trusted third party, referred to as an ideal functionality, which assists them
in obtaining the desired output based on their inputs. Informally, a protocol is
considered secure if whatever an adversary can do in the real world can also be
achieved in the ideal world.

In the following, we provide a brief overview of the formal description of simulation-
based security, which takes into account both adaptive adversaries and asyn-
chronous networks within the Universal Composability (UC) framework.

The real world. An n-party protocol Π consists of an n-tuple of probabilistic
polynomial time (PPT) interactive Turing machines (ITMs), representing the
parties P1, . . . ,Pn, respectively. Additionally, there are two ITMs representing
the adversary A and the environment Z. An execution of the protocol Π con-
sists of a series of activations of these ITMs. It starts with the environment Z
providing inputs to and collecting outputs from the nodes and the adversary.
Upon receiving inputs or other messages, a node is activated and can perform
local computations, write on its output tape, or send messages to other nodes.

Network Model. We consider an asynchronous network where nodes are pair-
wise connected with authenticated channels. To model the worst-case scenario,
we let A be responsible for delivering messages between honest nodes. The ad-
versary cannot omit, change, or inject these messages. However, the adversary
can reorder the messages and arbitrarily delay them, although it cannot delay
them indefinitely. These requirements are formalized using the eventual-delivery
secure message-transmission (ED-SMT) ideal functionality in [29]. Throughout
this paper, whenever we say a node Pi sends a message to another node Pj , we
implicitly mean that Pi and Pj are invoking the ED-SMT ideal functionality
involving the adversary A. When we say a node Pi multicasts a message, we
mean Pi sends the message to all nodes in the network.

Corruption Model. The adversary A is adaptive, which can corrupt the nodes at
any time during the protocol execution. Once a node Pi is corrupted, Pi sends
its entire local state to A, and in all future activations follows the instructions
from A. Throughout this paper, we focus on optimal resilience, which means
the total number of corrupted nodes is at most f < n/3. At any time of the
execution, the nodes that remain honest so far are referred to as so-far-honest

33

nodes, and the nodes that remain honest till the end of the execution are referred
to as forever-honest nodes. Particularly, recall that the messages are delivered
by A. If A corrupts a node that just sent a message, A can choose not to deliver
this message if it has not been delivered before corruption. Such an ability of
A is also known as after-the-fact removal [2], which is also captured by the
ED-SMT functionality. During the protocol execution, the environment Z can
arbitrarily communicate with the adversary A for an arbitrary number of times.
The execution is complete when all forever-honest nodes obtain their respective
outputs; the outputs are then returned to Z. We use EXECΠ,A,Z to denote the
distribution ensemble corresponding to the binary output of Z at the end of an
execution of Π with the adversary A (in the real world).

The ideal world. A computation in the ideal world consists of n dummy nodes
and an ideal functionality F modeled as an ITM. There is also an adversary
(or called a simulator) S, which, interacting with F in a restricted and clearly
defined way, is supposed to mimic an adversary A in the real world. In the begin-
ning, the environment Z provides the initial inputs to the dummy nodes and S.
The dummy nodes provide inputs to F and wait to collect outputs. Z can com-
municate with S arbitrarily. At the end of execution, Z collects the outputs of
dummy nodes and returns a binary value. There is no restriction on how an envi-
ronment provides input/output requests. However, by the protocol description,
an honest node will ignore other types of messages and only accept one input. In
the ideal world, the ideal functionality in general only accepts one input message
from a dummy party unless it has been corrupted. We use IDEALF,S,Z to denote
the distribution ensemble with respect to the binary output of Z.

Modeling Delayed Input And Output.An ideal functionality should explicitly cap-
ture how an adversary might interfere with the protocol execution and thus ex-
clude all unspecified interference. Due to the asynchronous nature of the network,
an adversary inherently possesses the ability to arbitrarily delay messages. Con-
versely, an asynchronous protocol (if it satisfies termination) typically needs to
progress upon being provided with n− f “valid-looking” messages since waiting
for the last f messages can result in indefinite waiting. Translating these facts
into the ideal world, an ideal functionality should expect at most n−f inputs or
participants (referred to as the “core set”) and proceed based on them. The “core
set” is somehow selected by the adversary from those who have been activated
by the environment. To capture this, Cohen et al.’s [28] approach allows the
adversary to specify a delay counter for each input procedure. A node will keep
pinging the ideal functionality to fetch the output across its activations until it
receives an output from the ideal functionality. The delay counter is decremented
every time the node pings the ideal functionality; once the counter becomes 0,
the corresponding input will be included in the “core set”. Similarly, the output
from the ideal functionality to a node may be delayed by the adversary, and we
use the delay counter to capture it as well. It’s important to note that the delay
counter has to be encoded in unary, ensuring that the delay must be bound
by the adversary’s computational resources. We follow Cohen et al.’s approach
and include the delay counter for both the input process and the output process

34

in the descriptions of all asynchronous ideal functionalities in this paper. For
further discussion, refer to [28].

Modeling Adaptive Corruption in The Ideal World. In the ideal world, we allow
the simulator S to send corruption messages of the form (corruption, sid,Pi)
to the ideal functionality F , indicating that the node Pi is to be corrupted. S
maintains a set C that keeps track of all corrupted nodes. When receiving such
a message, F first checks whether the number of corrupted nodes has reached
the threshold f ; if not, it updates C ← C ∪ {Pi} and allows S to send future
messages on behalf of Pi. In this paper, since most functionalities do not capture
the secrecy of inputs, these ideal functionalities do not need to provide the
internal states of a corrupted party to the simulator. In this case, for the sake
of notational simplicity, we omit the corruption message from the simulator to
the ideal functionality in the description of each ideal functionality.

UC security. With the real world and the ideal world, we can define the UC
security of a protocol. In particular, we say a protocol Π UC-realizes an ideal
functionality F if, for any PPT adversary A, there exists a PPT simulator S
such that, for any PPT environment Z, it holds that EXECΠ,A,Z ≈ IDEALF,S,Z .

Hybrid Model. Let G be an ideal functionality. In the G-hybrid model, we can
design a protocol ΠF in which the nodes have access to G. The UC framework
guarantees that all security properties of ΠF can be preserved if we replace G
with any protocol that UC-realizes G. The hybrid model captures the essence of
modular protocol design. Formally, we have the following results from [20].

Lemma 1 ([20]). Suppose ΠF is a protocol that UC-realizes an ideal function-
ality F in the G-hybrid model, and ΠG is a protocol that UC-realizes G. If ΠG

F is
a protocol obtained by replacing every call to G in ΠF with an execution of ΠG,
then ΠG

F UC-realizes F without access to G.

Asynchronous consensus in Fcoin-hybrid model. As emphasized by the
well-known FLP impossibility result [36], randomness is necessary for asyn-
chronous Byzantine agreement. In the computational setting, an efficient MVBA
protocol can easily imply an asynchronous Byzantine agreement [16], so it is also
subjected to the impossibility. This approach distills coin generation as an in-
dependent problem and focuses on the consensus part. Most asynchronous con-
sensus protocols are typically described within the Fcoin-hybrid model, where
participants have access to the common coin ideal functionality Fcoin. This ideal
functionality provides a uniformly random value to all nodes upon receiving a
sufficient number of requests. We define FV

coin in Fig. 9 (in Appendix C), param-
eterized by V , the domain of random values, which is adapted from [27, Fig. 3
Frand]. In the rest of the paper, we follow the standard approach and present our
consensus protocols in Fcoin-hybrid model.

C Preliminary

Notations. We express our protocols through a series of numbered steps. Dur-
ing the execution of such a protocol, a node is expected to iteratively follow these

35

FPKI proceeds as follows, running with (P1, . . . ,Pn) and S. At the first activation,
verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of node. Initialize: vki = ⊥
for all i ∈ [n].

• Upon receiving (register, sid, vk) from Pi (or S on behalf of a corrupted node),
record vkj = vk.

• Upon receiving (retrive, sid, j) from Pi (or S on behalf of a corrupted node), if
vkj ̸= ⊥, return (retrived, sid, j, vkj).

Functionality FPKI

Fig. 8. The PKI functionality FPKI

steps in a sequential order, executing each instruction. Certain instructions may
have specific preconditions, and if these conditions are not met, the node will
skip the corresponding steps. When we say “Upon{Condition}{Instruction}”,
we mean the instruction should be executed every time the condition is trig-
gered. When we say “Wait{Condition}{Instruction}”, the instruction is sup-
posed to be only executed once no matter how many times the condition may
be triggered. In a protocol Π a message with the format (MsgType, sid, . . .)
indicates that the message is associated with an instance of the protocol Π
identified by sid. Any message exchanged between two parties follows the for-
mat (MsgType, sid, . . .), where sid denotes the identifier associated with the
protocol instance, and MsgType indicates the type of message. We denote the
computational security parameter and the statistical security parameter by λ
and κ, respectively. We say a function F defined over positive integers is negli-
gible in λ, denoted by |F (λ)| < negl(λ), if for any polynomial function P , there
exists a positive integer N , such that for any λ > N , it holds that |F (λ)| < 1

P (λ) .

We say a probability p is overwhelming, if p > 1− negl(λ).

C.1 Ideal Functionalities for Standard Primitives

Public Key Infrastructure (FPKI). We introduce the ideal functionality FV
PKI

(see Fig. 8) to provide support for digital signatures, as utilized in Section 7.

Asynchronous binary agreement (FABA). Asynchronous Binary Agreement
(ABA) [47] stands as the fundamental primitive in asynchronous consensus. On
rough terms, it enables a collection of participants, each equipped with a binary
input, to eventually converge on a binary output. It ensures that the output is
b ∈ {0, 1} if all honest nodes input b. The ideal functionality FABA is outlined
in Fig. 10, which is adapted from [28, Fig 4] by focusing on the case of binary
inputs. It is easy to argue that the ABA protocols from [48] can UC-realize FABA

in Fcoin-hybrid model, with communication cost of O
(
n2

)
bits and the expected

round complexity of O(1).

C.2 Other Primitives

Erasure code. A (k, n)-erasure code [11] comprises two deterministic algo-
rithms, denoted as EC.Encode and EC.Decode. The EC.Encode algorithm takes a

36

Fcoin proceeds as follows, running with (P1, . . . ,Pn) and the adversary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of nodes.
Initialize: participatedi = 0 and Dinput

i = Doutput
i = 1 for all i ∈ [n]; r = ⊥.

• Upon receiving (delay, sid,Pi, type, D) from the adversary for any i ∈ [n], if
type ∈ {input, output} and D ∈ Z represented in unary notation, then update
Dtype

i = max{1,Dtype
i +D}, and provide (delay-set, sid) to the adversary.

• Upon receiving (request, sid) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and provide (request, sid,Pi)
to the adversary.

• Upon receiving (fetch, sid) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and the Output Release Pro-
cedure, and provide (fetch, sid,Pi) to the adversary.

Input Submission Procedure: If participated = 0, and (request, sid) has been
provided by Pi, do the following:

• Update Dinput
i = Dinput

i − 1;
• If Dinput

i = 0, update participatedi = 1.

Output Release Procedure: If
∑

j∈[n] participatedj ≥ f + 1, do the following:

• Update Doutput
i = Doutput

i − 1;
• if Doutput

i = 0, then do the following. If r = ⊥, r ←$ V , provide (output, sid, r)
to the adversary. Set (output, sid, r) to be sent to Pi.

Functionality Fcoin

Fig. 9. The common coin functionality FV
coin for the randomness domain of V

data value m with k data fragments (m1, · · · ,mk) as input and outputs n coded
fragments c = (c1, . . . , cn). Any k elements in the code vector c can reconstruct
the original data m using the EC.Decode algorithm. Formally, a (k, n)-erasure
code involves two deterministic algorithms:

1. EC.Encode(m, n, k) → c: Given a data m ∈ Bk as input, this deterministic
encoding algorithm outputs a vector c := {c1, · · · , cn}.

2. EC.Decode({(i, ci)}i∈S , n, k) → m: Given a set {(i, ci)}i∈S where S ⊂ [n]
and |S| = k as input, this deterministic decoding algorithm outputs m.

Correctness. Assuming B is the field of each fragment, for any m ∈ Bk and any
I ⊂ [n] with |I| = k, then

Pr[EC.Decode({(i, ci)}i∈I) = m | c := (c1, · · · , cn)← EC.Encode(m)] = 1.

Throughout the paper, our focus is on optimally-resilient scenarios. Therefore,
we consider a (f + 1, n)-erasure code where n ≥ 3f + 1.

Vector commitment (VC). A VC scheme [21] consists of a tuple of algorithms:
(VC.Setup,VCom,Open,VerifyOpen), where VC.Setup produces a public parame-
ter p, VCom produces a vector commitment by committing to any n-sized vectors,
Open is used to generate a proof for its specified position value, and VerifyOpen
is used to verify that the given value indeed is the specified position value corre-
sponding to the vector commitment. Formally, a VC scheme can be abstracted
as a tuple comprising the following algorithms:

37

FABA proceeds as follows, running with (P1, . . . ,Pn) and the adversary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of node.
Initialize: participatedi = 0, bi = ⊥ and Dinput

i = Doutput
i = 1 for all i ∈ [n]; y = ⊥.

• Upon receiving (delay, sid,Pi, type, D) from the adversary for any i ∈ [n], if
type ∈ {input, output} and D ∈ Z represented in unary notation, then update
Dtype

i = max{1,Dtype
i +D}, and provide (delay-set, sid) to the adversary.

• Upon receiving (input, sid, b′) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and provide (input, sid, b′,Pi)
to the adversary.

• Upon receiving (fetch, sid) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and the Output Release Pro-
cedure, and provide (fetch, sid,Pi) to the adversary.

Input Submission Procedure: If participatedi = 0, and (input, sid, b′) has been
provided by Pi, do the following:

• Update Dinput
i = Dinput

i − 1;
• If Dinput

i = 0, update participatedi = 1, and record bi = b′.

Output Release Procedure: If
∑

j∈[n] participatedj ≥ n− f , do the following:

• Update Doutput
i = Doutput

i − 1;
• if Doutput

i = 0, then do the following. If y = ⊥, set y = b for a binary value b such
that b = bi for at least n− 2f input values bi, and provide (output, sid, y) to the
adversary. Set (output, sid, y) to be sent to Pi.

Functionality FABA

Fig. 10. The aynchronous binary agreement functionality FABA

1. VC.Setup(λ, n,M) → p. Given the security parameter λ, the size n of the
input vector, and the message space M of each vector element, it outputs
the public parameter p, which is an implicit input to all other algorithms.

2. VCom(m) → vc. Taking a vector m = (m1, ...,mn) as input, this algorithm
produces a commitment vc.

3. Open(vc,mi, i) → πi. Given mi, position i, and commitment vc, this algo-
rithm generates an opening string πi serving as proof that mi is the i-th
committed element.

4. VerifyOpen(vc,mi, i, πi) → 0/1. Given mi, i, commitment vc, and opening
proof πi, it outputs 1 if Open(vc,mi, i) = πi, otherwise, it outputs 0.

Correctness. VC is correct, if for all m ∈Mn and i ∈ [n],

Pr[VerifyOpen(vc,mi, i,Open(vc,mi, i)) = 1 | vc← VCom(m)] = 1.

Position binding. VC is position binding, if for any PPT adversary A,

Pr

[
(vc, i,m,π,m′, π′)← A(1λ) : VerifyOpen(vc,m, i, π) = 1

∧ m ̸= m′ ∧ VerifyOpen(vc,m′, i, π′) = 1

]
≤ negl(λ).

38

D Security proof of SMID

Theorem 8. Assuming the underlying hash function is collision resistant, the
protocol ΠSMID in Algorithm 1 UC-realizes FSMID, in the presence of a com-
putationally bounded and adaptive Byzantine adversary who may corrupt up to
f < n/3 parties.

Proof. Let A be an adversary in the real world. We construct a simulator S
in the ideal world, such that no environment Z can distinguish whether it is
interacting with the protocol ΠSMID and A, or with FSMID and S.

Here are some “general principles” S will follow. S runs a copy of A, and
plays the role of all “so-far-honest” parties (and hybrids if any) in a simulated
execution of the protocol. All inputs from Z to A are forwarded to A, and all out-
puts from A to Z are forwarded to Z. Additionally, whenever A corrupts a party
in the simulation, S corrupts the same party in the ideal world by interacting
with FSMID, and sends A the party’s state and thereafter follows A’s instructions
for that party. Moreover, S adjust delay counters for both input submission and
output release procedures based on the simulated execution influenced by the
adversary. Typically, the simulator delays all inputs to the ideal functionality
until the first so-far-honest party outputs in the simulated execution. Whenever
the so-far-honest party outputs, (1) the simulator, if it has not, delivers enough
inputs to the ideal functionality so that it determines the correct output value
for the party. Then, (2) the output delay for the corresponding party is set to
zero. This ensures that the order of outputs seen by the environment in the ideal
world is indistinguishable from that in the real world.

The simulated execution begins when the ideal functionality FSMID provides
the messages (disperse, sid, ·, ·) to S. These messages leak the input values of
“so-far-honest” parties to the simulator. Based on these values, S simulates the
execution for A and interacts with FSMID as follows, while following the general
principles introduced above.
Simulating a“so-far-honest” party Pi. Upon receiving the input of Pi from FSMID,
run the code of Pi with the input (as specified in Algorithm 5), until Pi returns
the output or becomes corrupted by A.
Further interaction with FSMID. When an honest party Pi in the simulated exe-
cution multicasts Completed to all (i.e., executing the code in line 13), man-
age the delay such that dispersedi = 1 in the ideal world. When an honest
node Pi returns (disperse-done, id), send (configure-done, sid,Pi) to FSMID.
When an honest party Pi returns (recast-output, s, v

′), then he sends message
(configure-output, sid,Ps,Pi, v

′) to FSMID.
Note that at the point of A’s view, the simulated execution is perfectly

indistinguishable from a real execution. Since S just forwards the communication
between A and Z, it remains to show that the outputs from FSMID to honest
Pi’s are identical to those in the simulated execution (and thus distinguishable
with those in a real execution).

To demonstrate this, we establish the following facts: (1) Lemma 2: When an
honest node Pi returns (disperse-done, id), S can manage to set donei = 1 in

39

the ideal world. Moreover, when at least n−f honest parties have participated in
the dispersal phase, all honest parties eventually return (disperse-done, id). (2)
Lemma 3: For each “so-far-honest” party Pj who has multicasted theCompleted
message, at most f honest nodes may receive a different value other than Pj ’s
input; Moreover, when at least n− f honest parties have participated the recast
phase for Pj ’s value and vj ̸= ⊥, at least n − 2f honest parties could receive
vj . The first guarantees the honest parties’ outputs in the dispersal phase of the
simulated execution are identical to the outputs from FSMID. The second one en-
sures that S can always configure the output of an honest party according to its
output in the simulated execution, thus the honest parties’ outputs in the recast
phase of the simulated execution are identical to the outputs from FSMID. ⊓⊔

Lemma 2. When an honest node Pi returns (disperse-done, id), S can man-
age to set donei = 1 in the ideal world. Moreover, when at least n − f honest
parties have participated in the dispersal phase, all honest parties eventually re-
turn (disperse-done, id).

Proof. Since an honest party Pi outputs (disperse-done, id) only after receiv-
ing n − f Completed messages. If an honest party Pj has multicasted the
Completed message, the simulator S must have updated dispersedj = 1 in
FSMID. Therefore, when S sends (configure-done, sid,Pi) to FSMID, donei = 1
will be updated accordingly.

Since every honest node Pi has an input value vi, following the protocol,
Pi multicasts Fragment messages to all. Upon receiving a valid Fragment
message from Pi, any honest node Pj sends an Ok back to Pi. With at most
f malicious nodes, Pi can receive n − f Ok messages from distinct nodes. Af-
terward, Pi multicasts a Completed message to all. Again, since the number
of malicious nodes is at most f , so at least n − f honest nodes will multicast
Completed messages to all. Consequently, all honest nodes eventually receive
at least n−f Completed messages from distinct nodes, leading to the comple-
tion of the dispersal phase for all honest nodes in an SMID instance. ⊓⊔

Lemma 3. Given a collision-resistant hash function and an adversary with
computationally bounded power, the following holds: If a “so-far-honest” party
Pj inputs vj and multicast the Completed message, then at most f honest
nodes might receive fragments that do not correspond to the value vi. Further-
more, when at least n− f honest parties input j partake in the recast phase, at
least n− 2f honest parties could recast vj.

Proof. Following the procedure outlined in Algorithm 1, when an honest party
multicasts a Completed message, it implies that at least n− 2f honest nodes
received valid Fragment messages from Pi, and these Fragment messages
contain the same vector commitment (vc). Assuming the underlying hash func-
tion is collision-resistant, the reconstructed message is identical to the original
input message vj . Since A cannot change the received value of those n−2f hon-
est nodes, at most f honest nodes may receive a different value other than Pj ’s
initial input vj due to the adaptive adversary A. Moreover, if an honest node

40

received fragment[j] in the dispersal phase, then it will only output a message
that is reconstructed from f + 1 valid fragments, and these fragments have the
same vc as fragment[j]. Hence, during the recast phase, all honest nodes will
multicast their fragment[j] if fragment[j] ̸= ⊥. Since at least n − 2f honest
nodes received a valid fragment message from Pj , allowing them to receive at
least n−2f > f+1 valid fragment messages that share the same vc. This enables
these honest nodes to reconstruct the same vi. ⊓⊔

E Security proof of SMB

Theorem 9. The protocol ΠSMB in Algorithm 2 perfectly UC-realizes FSMB, in
the presence of any adaptive Byzantine adversary who corrupts up to f < n/3
parties.

Proof. Let A be an adversary in the real world. We construct a simulator S
in the ideal world, such that no environment Z can distinguish whether it is
interacting with the protocol ΠSMB and A, or with FSMB and S.
S follows the “general principles” outlined in the proof of Theorem 1. The

simulated execution begins when the ideal functionality FSMB provides the mes-
sages (input, sid, ·, ·) to S. These messages leak the input values of “so-far-
honest” parties to the simulator. Based on these values, S simulates the ex-
ecution for A and interacts with FSMB as follows, while following the general
principles introduced above.
Simulating a“so-far-honest” party Pi. Upon receiving the input of Pi from FSMB,
run the code of Pi with the input (as specified in Algorithm 2), until Pi returns
the output or becomes corrupted by A.
Futher Interaction with FSMB. Initialize v̂1 = v̂2 = v̂3 = ⊥.

• Upon receiving (leakage, sid, v) from FSMB, update v̂1 = v.
• Keep tracking of all valuesi (defined in Line 10-11 in Algorithm 2) of honest
parties. Whenever a new value v′ appears in any of these valuesi’s, send
(terminate, sid, v′) to FSMB, and record v̂k = v′ for the smallest k s.t.
v̂k = ⊥. Before sending a terminate message, make sure enough inputs whose
value is v′ have been recorded by FSMB. Before sending the third message,
make sure the inputs from all “so-far-honest” parties have been recorded by
FSMB.

• Upon Pi returns vali, it will send message (decide-output, sid,Pi, subseti)
to FSMB such that {v̂k}k∈subseti = vali.

Note that at the point of A’s view, the simulated execution is perfectly indis-
tinguishable from a real execution. Since S just forwards the communication
between A and Z, it remains to show that the outputs from FSMB to honest Pi’s
are identical to those in the simulated execution (and thus distinguishable with
those in a real execution).

To demonstrate this, we establish the following results. (1) Lemma 4: There
are at most three different values among all valuesi of honest parties. (2) Lemma

41

5: All values sent by S via the termination messages can be recorded by FSMB. (3)
Lemma 6: If an honest party outputs, all honest parties can eventually output;
All outputs are subsets of {v̂1, v̂2, v̂3}. (4) Lemma 7: If there exists an honest
party that outputs a single value v∗, then v∗ is included in all other honest
parties’ outputs. (5) Lemma 8: If at least n − 2f honest parties have the same
input value v, the protocol always terminates.

The first two results ensure that the list (v̂1, v̂2, v̂3) maintained by S is iden-
tical to that maintained by FSMB. Results (3) and (4) ensure that the output
of an honest party by FSMB is always identical to its output in the simulated
execution, once terminate is set to be 1. Result (5) ensures the protocol must
terminate, if n − 2f honest parties have provided the inputs of the same value
to FSMB. Combined them, we can conclude that outputs from FSMB to honest
Pi’s are always identical to those in the simulated execution, and thus complete
the proof. ⊓⊔

Lemma 4. In the worst case, there are at most three different values in all
valuesi among honest parties.

Proof. If a value v is in valuesi of an honest party, according to the code, this
honest party received n− f (Val, id, v) messages from distinct parties. This im-
plies that at least n−2f honest parties multicast (Val, id, v) to all honest parties.
It follows that at least n− 3f honest parties have received (FilterEcho, id, v)
from at least n − f distinct parties, among which at least n − 2f messages are
from honest parties. Note that each party can send at most two FilterEcho
messages, and thus there are at most 2(n− f) FilterEcho messages from hon-
est parties. Therefore, the number of values that can be recorded in valuesi is

at most 2(n−f)
n−2f . Recall that we consider n ≥ 3f + 1, so the number will be at

most 3. ⊓⊔

Lemma 5. When S sends (terminate, sid, v′) to FSMB, FSMB will record it as
v̂k for some k ∈ [3].

Proof. Recall that S sends at most three termination messages. For the first
value v′1 sent by S, since it is recorded in valuesi by some honest party Pi,
there are at least n− 3f honest parties have received (FilterEcho, id, v′1) from
at least n − f distinct parties. According to the code, at least n − 2f honest
parties have received (Filter, id, v′1) from n− 2f distinct parties, which include
both honest parties whose input is v′1 and corrupted parties. Therefore, when
S sends the first termination message (terminate, sid, v′1) to FSMB, it satisfies
|Jv′

1
|+ |C| ≥ n− 2f and thus could be recorded as v̂1.
Regarding the second value v′2 sent by S, for the same reason, at least n−3f

honest parties have received (FilterEcho, id, v′2) from at least n − 2f honest
distinct parties. Considering n ≥ 3f + 1, there is at least one honest party who
has sent both (FilterEcho, id, v′1) and (FilterEcho, id, v′2), which follows that
this party has received f +1 (Filter, id, v′1) messages and f +1 (Filter, id, v′2)
messages from distinct parties, including honest parties whose input value is
v′1 or v′2 and corrupted parties. Therefore, when S sends the second termination

42

message (terminate, sid, v′2) to FSMB, it satisfies |Jv′
1
|+c1 ≥ n−2f , |Jv′

2
|+c2 ≥

n− 2f , and c1 + c2 = |C|. Therefore, it could be recorded as v̂2.
Finally, if at least n − 2f honest parties have the same input value v, then

every honest party can receive n − 2f (Filter, id, v) messages from distinct
parties, resulting in every honest party multicasting (FilterEcho, id, v) to all.
Due to n ≥ 3f + 1, according to the code, every honest party can multicast at
most two different FilterEcho messages. Therefore, in this case, there is no
third value in valuesi of any honest party Pi. Thus, if S found the third value
v′3 and sent it to FSMB, at least n− f honest parties will not have n− 2f inputs
of the same value. In this case, v′3 can be recorded as v̂3. ⊓⊔

Lemma 6. If an honest party output, all honest parties can eventually output;
all outputs are subsets of {v̂1, v̂2, v̂3}.

Proof. An honest party Pi’s output is a subset of valuesi. As we shown in Lemma
4, it must be a subset of {v̂1, v̂2, v̂3}.

We then argue that every value v in valuesi will eventually appear in another
honest party Pj ’s valuesj , if Pj has not terminated. Particularly, according to
the code, Pi received n − f (Val, id, v) messages from distinct parties. This
implies that at least n − 2f honest parties multicast (Val, id, v) to all honest
parties. Subsequently, all honest parties will multicast (Val, id, v), following the
procedure outlined in Algorithm 2. It also indicates that all honest parties can
receive (Val, id, v) from n− f honest parties. Consequently, v will be added to
the set values.

Since every honest party will multicast an Aux message containing a value
in its valuesi, all other honest parties will be able to receive it. Therefore, every
honest party could eventually receive at least n− f Aux messages from honest
parties. All values in those Aux messages will eventually be included in valuesj
for any honest Pj , and thus every honest Pj can eventually terminate. ⊓⊔

Lemma 7. If there exists an honest party that outputs a single value v∗, then
v∗ is included in all other honest parties’ outputs.

Proof. According to the algorithm description, every honest party will output a
set of values that are conveyed by at least n − f Aux messages. Assume that
an honest Pi outputs accoriding the set AUXi of n− f Aux messages, while Pj

outputs according to AUXj . It is easy to see that AUXi and AUXj have at least
n−3f common messages, which means their outputs vali and valj have at least
common value. Thus, whenever one honest party outputs a single value, it is in
all other honest parties’ outputs. ⊓⊔

Lemma 8. If at least n − 2f honest parties have the same input value v, the
protocol always terminates.

Proof. If at least n− 2f honest parties have the same input value v, then every
honest party can receive n − 2f (Filter, id, v) messages from distinct parties,
resulting in every honest party multicasting (FilterEcho, id, v) to all. Due
to n ≥ 3f + 1, according to the code, every honest party can multicast at

43

most two different FilterEcho messages. Since every honest party multicasts
(FilterEcho, id, v), every honest party can receive n − f (FilterEcho, id, v)
messages from distinct parties; hence, every honest party multicast a (Val, id, v)
message to all, resulting in all honest parties eventually adding v to the set
values. However, it is possible that some honest parties multicast (Val, id, v′)
messages, where v ̸= v′. Consequently, it is also possible that v′ ∈ valuesi.
Therefore, all honest parties will multicast a Aux message. Now consider two
cases:

• Case 1: If some honest parties multicast (Aux, id, v) messages, while another
set of honest parties multicast (Aux, id, v′) messages, following the procedure
outlined in Algorithm 2, then for any honest party Pi, the set valuesi will
eventually contain both v and v′.

• Case 2: If all honest parties can multicast (Aux, id, v̄) messages, where v̄ = v
or v′, it is clear that all honest parties will have valuesi = {v̄}.

In either case, every honest party Pi will meet the condition in line 14 of
Algorithm 2. Therefore, every honest party Pi will terminate and output a set
vali. ⊓⊔

We establish the following corollary for highlighting that the number of pos-
sible outputs is only 2 in “good case”, which justifies why two ARC instances
after each SMB instance is enough. The corollary is implied by Lemma 4 and
Lemma 5.

Corollary 1. If at least n−2f honest parties have the same input value v, then
there are at most two different values in all valuesi among honest parties.

F Details and Security Proof of ARC

Following the definition of ARC, if the initial state of an ARC protocol does not
satisfy the validity condition, there is no assurance regarding the termination
of honest nodes. Consequently, our ARC protocol is deterministic, eliminating
the need for reliance on randomness. In contrast to MBA, which, due to the
asynchronous network, has to depend on randomness to overcome the FLP im-
possibility [36]. We present a construction for ARC with IT-security, and the
detailed procedure for ARC can be found in Algorithm 5. Below is a detailed
description of the process of the ARC protocol:

1. Diffusion phase (lines 1-2). All honest nodes are multicast their input vi via
a Diffusion message.

2. Echo phase (lines 3-10). For any honest node Pi, if it receives n−f Diffusion
messages carrying the same value v from distinct nodes, then it will multicast
the value v via an Echo message. If it receives f+1 Echo messages carrying
the same value v from distinct nodes and has not multicast an Echomessage,
then it will multicast an Echo message along with the value v.

44

Algorithm 5 The ARC protocol ΠARC with identifier id for Pi

1: upon receiving input vi do
2: multicast (Diffusion, id, vi) to all

3: upon receiving (Diffusion, id, v) from node Pj for the first time do
4: Dv ← Dv ∪ {j}
5: if |Dv| = n− f and Echo has not been sent yet then
6: multicast (Echo, id, v)

7: upon receiving (Echo, id, v) from node Pj for the first time do
8: EHv ← EHv ∪ {j}
9: if |EHv| = f + 1 and Echo has not been sent yet then
10: multicast (Echo, id, v)

11: if |EHv| = n− f then
12: return v

3. output phase (lines 11-12). For any honest node Pi, if it receives n−f Echo
messages carrying the same value v from distinct nodes, then it outputs v.

Theorem 10. The protocol ΠARC in Algorithm 5 perfectly UC-realizes FARC, in
the presence of any adaptive Byzantine adversary who corrupts up to f < n/3
parties.

Proof. Let A be an adversary in the real world. We construct a simulator S
in the ideal world, such that no environment Z can distinguish whether it is
interacting with the protocol ΠARC and A, or with FARC and S.
S follows the “general principles” outlined in the proof of Theorem 1. The

simulated execution begins when the ideal functionality FARC provides the mes-
sages (input, sid, ·, ·) to S. These messages leak the input values of “so-far-
honest” parties to the simulator. Based on these values, S simulates the ex-
ecution for A and interacts with FARC as follows, while following the general
principles introduced above.
Simulating a“so-far-honest” party Pi. Upon receiving the input of Pi from FARC,
run the code of Pi with the input (as specified in Algorithm 5), until Pi returns
the output or becomes corrupted by A.
Further interaction with FARC: When an honest party outputs a value v, send
(input, sid, v) on behalf of all corrupted parties, and make sure that all honest
parties have participated, i.e., participatedi = 1 for all honest Pi.

Note that at the point of A’s view, the simulated execution is perfectly
indistinguishable from a real execution. Since S just forwards the communication
between A and Z, it remains to show that the outputs from FARC to honest Pi’s
are identical to those in the simulated execution (and thus distinguishable with
those in a real execution).

To demonstrate this, we establish the following facts: (1)Lemma 9: When
an honest party outputs v, S can make sure at least n − f parties (including
corrupted and honest ones) have participated with v in the ideal functionality. (2)
Lemma 10: When an honest party outputs v, all other honest parties eventually
output the same v. (3) Lemma 11: If there are n − f “forever-honest” parties
with the input v, all honest parties will output v. The first two ensure whenever

45

an honest party outputs in a real execution, the dummy parties output the same
in the ideal world. The last one ensures that whenever the parties should output
in the ideal world, they also output in the real execution. ⊓⊔

Lemma 9. When an honest party outputs v, S can make sure at least n − f
parties (including corrupted and honest ones) have participated with v in the
ideal functionality.

Proof. If an honest node Pi outputs v, according to the Algorithm 5, then Pi

received n − f (Echo, id, v) messages from distinct nodes. Thus, at least one
honest node received n − f identical (Diffusion, id, v) messages from distinct
nodes. The senders of those Diffusion messages include both honest parties
with v as inputs or corrupted parties. Therefore, S will be able to make at least
n− f parties participate the ideal functionality with input v. ⊓⊔

Lemma 10. When an honest party outputs v, all other honest parties eventually
output the same v.

Proof. First, we show that when one honest node Pi multicasts (Echo, id, v) and
another honest node Pj multicasts (Echo, id, v′), then v = v′. If an honest node
Pi multicasts (Echo, id, v), according to the code, Pi received (Diffusion, id, v)
from n − f distinct nodes. If another honest node Pj multicasts (Echo, id, v′),
it implies that Pj received (Diffusion, id, v′) from n − f distinct nodes. Since
there are at most f malicious nodes, at least n − f ≥ 2f + 1 honest nodes
multicast (Echo, id, v) and (Echo, id, v′). If v ̸= v′, based on the assumption
n ≥ 3f + 1, it implies that one honest node multicasts two different Diffusion
messages, leading to a contradiction. Therefore, v = v′.

Then, when an honest node Pi outputs v, according to the code, Pi received
n − f identical (Echo, id, v) messages from distinct nodes. Due to the pres-
ence of at most f malicious nodes, at least f + 1 honest nodes have multicast
(Echo, id, v) messages to all. As a result, all honest nodes will receive at least
f+1 (Echo, id, v) messages from distinct nodes, leading to all honest nodes mul-
ticasting an Echo message to all. Given the previous analysis, since all Echo
messages carry the same values, so all honest nodes can receive n − f Echo
messages carrying the same value v. Consequently, all honest nodes output v.

Lemma 11. If there are n − f “forever-honest” parties with the input v, all
honest parties will output v.

Proof. If n−f “forever-honest” parties have the same input value v, by the code,
every honest node will multicast (Echo, id, v) messages to all nodes. Hence, every
honest node will receive at least n − f (Echo, id, v) messages, resulting in all
honest nodes outputting v. ⊓⊔

G Security proof of MVBA

Theorem 11. Assuming the underlying hash function is collision resistant, the

protocol ΠMVBA in Algorithm 3 UC-realizes FMVBA in the (F [n]κ

coin ,FABA,FSMID,

46

FARC,FSMB)-hybrid model, in the presence of a computationally bounded and
adaptive Byzantine adversary who may corrupt up to f < n/3 nodes.

Proof. Let A be an adversary in the real world. We construct a simulator S in
the ideal world, such that no PPT environment Z can distinguish whether it
is interacting with the protocol ΠMVBA and A, or with the ideal functionality
FMVBA and S.
S follows the “general principles” outlined in the proof of Theorem 1. The

simulated execution begins when the ideal functionality FMVBA provides the
messages (input, sid, ·, ·) to S. These messages leak the input values of “so-far-
honest” nodes to the simulator. Based on these values, S simulates the execution
for A and interacts with FMVBA as follows, while following the general principles
introduced above.
Simulating a “so-far-honest” node Pi. Upon receiving (input, sid, v′,Pi) from
FMVBA, run the code of Pi with the input v′ (as specified in Algorithm 3), until
Pi returns the output or becomes corrupted by A.
Simulating FSMID. Run the hybrid FSMID as an ITM by follwoing the code in
Fig.5. Moroever, upon receiving (disperse, sid, v′) from the adversary A on
behalf of a corrupted node, send (input, sid, v′) to FMVBA on behalf of the
corrupted node. Additionally, keep track of the set of nodes ISMID who have
dispersed valid values, i.e., for i ∈ ISMID, Predicate(vi) = 1 and dispersedi = 1.
Simulating FV

coin. Run a modified copy of the hybrid FV
coin as an ITM. The

modified copy almost follows the specification in Fig.9, except that the out-
put (s1, . . . , sκ) is uniformly sampled from V = [n]κ under the condition that at
least one sz ∈ ISMID.
Simulating other hybrids. Run FABA,FARC and FSMB as ITMs by following the
theirs codes in Fig.10, 7, and 6, respectively.
Further interaction with FMVBA. Upon an honest node returns (output, sid, v)
for the first time, send (set-output, sid, v) to FMVBA. Make sure no nodes have
received their output message in the ideal world before the set-output message
is sent.

Given the above simulator S, in Lemma 12, we prove that at the point
of A’s view, the simulated execution is statistically indistinguishable from a
real execution. Denoting the output distribution of all honest nodes in the real
execution (resp. the simulated execution) by Distreal (resp. Distsim), and the view
of adversary in the real execution (resp. the simulated execution) by Aviewreal

(resp. Aviewsim). It holds the following equation:

(Distreal,AViewreal)
s
≈ (Distsim,AViewsim). (1)

In Lemma 13, we prove that all honest nodes eventually terminate in the sim-
ulated execution, and that all honest nodes will output the same valid value in
the simulated execution, such that the output of FMVBA is identical to that of
the simulated execution. Denoting the output distribution of dummy nodes in
the ideal world by Distideal, it holds the following equation:

(Distideal,AViewsim)
c
≈ (Distsim,AViewsim). (2)

47

Note that the simulator S always forwards the message between A and the en-
vironment Z. Without loss of generality, for any polynomial-time environment
Z, we consider there is a PPT algorithm ZOutput, such that the binary out-
put of Z is the output of ZOutput on inputs the output of honest nodes and
the adversary’s view. Namely, EXECΠMVBA,A,Z = ZOutput(Distreal,AViewreal), and
IDEALF,S,Z = ZOutput(Distideal,AViewsim). Putting Eq.1 and 2 together, we have
the following results:

EXECΠMVBA,A,Z
c
≈ IDEALF,S,Z , (3)

which completes the proof of the theorem. ⊓⊔

Lemma 12. For any A, in the simulated execution provided by S, the view of
A, denoted by AViewsim, and the output distribution of honest nodes, denoted by
Distsim, are statistically indistinguishable with the view and the distribution in a

real execution. Namely, (Distreal,AViewreal)
s
≈ (Distsim,AViewsim).

Proof. Note that at the point of A’s view, the only difference between the sim-
ulated execution and a real execution is how FV

coin returns the common random-
ness r ∈ [n]κ. In a real execution of ΠMVBA in FV

coin-hybrid model, r is from the
uniform distribution over V = [n]κ, which we denote by UV . In the simulated

execution, r is from the uniform distribution over B̂SMID = V \ BSMID, denoted

by UB̂SMID
, where BSMID is the subset of V such that any b⃗ does not contain any

index in ISMID (which is the set of nodes who have successfully dispersed valid
values in FSMID). Note that the size of BSMID is bounded by (2f)κ. The statistical
distance between UV and UB̂SMID

is therefore bounded by

∆UV ,UB̂SMID
=

1

2
((

1

|B̂SMID|
− 1

|V |
) · |B̂SMID|+

1

|V |
· |BSMID|) < (

f

n
)κ,

which is negligible in the security parameter κ. Note that the statistical distance
between (Distreal,AViewreal) and (Distsim,AViewsim) is bounded by ∆UV ,UB̂SMID

,

which is therefore negligible. ⊓⊔

Lemma 13. For any polynomial-time adversary A, all honest nodes in the sim-
ulated execution provided by S will terminate eventually and output the same
valid value, with an overwhelming probability, under the condition that all hon-
est nodes provide valid inputs.

Proof. First, by the description of FSMID, all “so-far-honest” nodes can even-
tually receive (disperse-done, sid) from FSMID, as long as there are n − f
nodes having sent (disperse, sid, ·) to FSMID. By the protocol description in
Algorithm 3 (line 3-4), all “so-far-honest” nodes should send (request, sid) to
FV

coin. By the description of FV
coin and S, all “so-far-honest” nodes will receive

a vector of κ indexes (s1, . . . , sκ), among which there is at least one sẑ such
that vsẑ has been dispersed in FSMID and Predicate(vsẑ) = 1. We assume the
number of “so-far-honest” nodes is H, which is always not less than n − f .

48

By the description of FSMID, at least H − f “so-far-honest” nodes can receive
(recast-output, sid, sẑ, vsẑ) from FSMID.

We now focus on the sub-sessions with the prefix of sid|ẑ, and argue how
these sub-sessions can guarantee termination of the execution. Following line
7-12 in Algorithm 3, these H − f “so-far-honest” nodes encode vsẑ via erasure
code, apply the hash-based vector commitment to the code blocks, and send
(input, sid|ẑ, vcẑ) to FSMB, where vcẑ is the vector commitment value of the
code blocks. For other “so-far-honest” nodes who did not receive vsẑ but received
other valid values, they follow the same steps. By the description of FSMB, since
these H−f nodes can provide the same input to FSMB, all “so-far-honest” nodes
will receive either {vc} or {vc′, vc′′}, where vc equals to either vc′ or vc′′, and
both vc′ and vc′′ have been provided as inputs to FSMV by at least n−2f nodes,
which means at least n− 3f “forever-honest” nodes have the entire messages of
the outputted vector commitments.

Next, by the code, all “so-far-honest” nodes will send (input, sid|ẑ|1, vc′)
and (input, sid|ẑ|2, vc′′) to FARC. Note that at least for one â ∈ {1, 2}, all
“so-far-honest” nodes send the same vc to FARC. By the description of FARC, all
“so-far-honest” nodes will eventually receive the same (output, sid|ẑ|â, vc) from
FARC.

Next, we argue that all “so-far-honest” nodes will receive (output, sid|z|a,)̇
from FABA for all z ∈ [κ] and a ∈ {1, 2}. By the description of Algorithm 3
(line 25), all “so-far-honest” nodes will provide inputs with all the session IDs
to FABA, under the condition that FABA already outputs (output, sid|z|a, 1) for
some z and a. Meanwhile, according to line 21, all “so-far-honest” will send
(input, sid|ẑ|â, 1) to FABA, if FABA has not returned 1. Putting them together,
all “so-far-honest” nodes eventually provide inputs with all the session IDs to
FABA, and thus will be able to receive (output, sid|z|a,)̇ from FABA for all z ∈ [κ]
and a ∈ {1, 2}. In other words, all “so-far-honest” nodes can execute the code
block starting from line 26 in Algorithm 3.

Next, we show that for the smallest (z∗, a∗) such that (output, sid|z∗|a∗, 1) is
returned by FABA, all “so-far-honest” nodes will eventually receive the same vec-
tor commitment vcz∗,a∗ . Note that at least n−2f nodes have sent (input, sid|z∗|a∗, 1)
to FABA, such that at least n−3f “forever-honest” nodes sent this message. Ac-
cording to line 21 in Algorithm 3, at least n−3f “forever-honest” nodes received
(output, sid|z∗|a∗, vcz∗,a∗) from FARC. By the description of FARC, all “so-far-
honest” nodes will eventually receive the same output (output, sid|z∗|a∗, vcz∗,a∗).

Then, we show at least n−3f “forever-honest” nodes have the entire message
v∗ whose vector commitment value is vcz∗,a∗ . By the description of FARC, at least
n−f nodes have sent (output, sid|z∗|a∗, vcz∗,a∗) to FARC, which means at least
n − 2f “forever-honest” nodes have sent this message. According to line 16-17,
at least n− 2f “forever-honest” nodes have received (output, sid|z∗, vset) from
FSMB, such that vcz∗,a∗ ∈ vset. By the description, the FSMB, vcz∗,a∗ must be
provided by n−2f−|C| “so-far-honest” nodes, such that at least n−3f “forever-
honest” nodes provided it to FSMB. According to line 8-12, at least n − 3f

49

Algorithm 6 ACS protocol (for each party Pi), adapted from Fig 3 in [16]

Let Σ = {KeyGen, Sign,Vrfy} be the underlying signature scheme.
Initialize: S ← ∅, VK ← ∅, registered = 0. Define Predicate of FMVBA as follows:
Predicate({(j, vj , σj)}j∈J) = 1, if and only if: (1) J ⊂ [n]; (2) |J| = n − f ; and (3)
Σ.Vrfy(vkj , vj , σj) = 1 for all j ∈ J.
. .

1: if registered = 0 then � PKI-Setup
2: (vki, ski)← KeyGen(1λ)
3: send (register, sid, vki) to FPKI, update registered = 1
4: send (retrive, sid, j) to FPKI for all j ∈ [n]

5: upon receiving (retrieved, sid, j, vkj) from FPKI do
6: Update VK = VK ∪ {(j, vkj)}

. .
7: upon receiving input vi do
8: Sign vi: σi ← Σ.Sign(vki, ski, vi)
9: multicast (Diffusion, (vi, σi)) to all

10: upon receive (Diffusion, (vj , σj)) message from Pj for the first time do
11: if Σ.Vrfy(vkj , vj , σj) = 1 and |S| < n− f then
12: Update S = S ∪ {(j, vj , σj)}
13: wait until |S| = n− f
14: send (input, sid, S) to FMVBA

15: wait receiving (output, sid, S′) from FMVBA

16: Parse S′ = {(j, vj , σj)}j∈J, and let commonSet = {(j, vj)}j∈J.
17: return commonSet.

“forever-honest” nodes have the entire valid message v∗ for the commitment
vcz∗,a∗ .

Finally, we show all “so-far-honest” nodes eventually terminate and output
the same valid value. Since there exist at least n−3f “forever-honest” nodes who
have a valid value v∗ whose commitment is vcz∗,a∗ , every “so-far-honest” node Pj

can eventually receive the (fragment, sid, vcz∗,a∗ , cj , πj) which contains a valid
fragment, and thus multicasts this fragment to all (line 33-35). Finally, all “so-
far-honest” nodes can receive f + 1 valid fragments and reconstruct a message.
By the security of the vector commitment, all honest nodes reconstruct the same
message, which is identical to the one held by those n−3f “forever-honest” nodes
and thus is valid. We therefore completed the proof. ⊓⊔

H The Implementation and Security Proof of ACS

Theorem 12. Assuming the underlying signature scheme satisfies the existen-
tial unforgeability, the protocol ΠACS UC-realizes FACS in the (FMVBA,FPKI)-
hybrid model, against any computationally bounded adaptive Byzantine adver-
sary who may corrupt up to f < n/3 nodes.

Proof. Let A be an adversary in the real world. We construct a simulator S in
the ideal world, scuh that no polynomial-time environment Z can distinguish
whether it is interacting with the protocol ΠACS and A, or with FACS and S.

50

S follows the “general principles” outlined in the proof of Theorem 1. In the
simulated execution, S honestly executes the codes of honest nodes, FPKI and
FMVBA. Moreover, it interacts with FACS as follows: When the hybrid FMVBA

returns (output, sid,S = {(j, vj , σj)}j∈J) to an honest node, S identifies the
subset JH = J ∩ H, where H is the set of all “so-far-honest” nodes. Then, S
manages the delay to make sure all Pj for j ∈ JH have participated in FACS, i.e.,
participatedj = 1, while sending (input, sid, vk) on behalf of all corrupted Pk

for k ∈ J \ JH without delays. All other inputs from Pj for j /∈ J are delayed.
As S honestly executes the codes of honest nodes and hybrids, at the point

of A’s view, the simulated execution is identical to a real execution. Thus, it
remains to show if the outputs of honest nodes from FACS are identical to those
in the simulated execution.

By the description, with n− f nodes following the protocol, all honest nodes
can eventually receive n − f signed values and thus send the values to FMVBA.
By the description of FMVBA, all honest nodes will receive the same output
from FMVBA which satisfies the predicate, i.e., it contains n− f value/signature
pairs created by distinct nodes. Ensured by the existential unforgeability of the
underlying signature scheme, among the n− f values, each signed by an honest
node must be the input value of the node. According to how S specifies the
inputs of corrupted nodes to FACS, it follows that an honest node’s output in
the simulated execution is identical to the output from FACS. ⊓⊔

I The functionality and security Proof of Πinput

Theorem 13. The protocol Πinput UC-realizes FInput in the FACS-hybrid model,
against any adaptive Byzantine adversary who corrupts up to n/3 nodes.

Proof. For any A, we build a simulator S, such that any environment Z cannot
decide whether it is interacting with Πinput and A, or with FInput.

The simulator S follows the “general principles” outlined in the proof of
Theorem 1. In the simulated execution, S honestly executes the code of FACS.
In the following, we detail how S simulates the preprocessing phase and a “so-
far-honest” node, handles adaptive corruptions, and interacts with FInput.
Simulating the preprocessing phase. For every corrupted node Pi, uniformly sam-
ple {ri, {rj,i}j∈[n]} and sent them to Pi. Send {ri,j}i∈C to each honest node Pj ,
where C is the set of corrupted nodes.
Simulating a “so-far-honest” node Pi. Upon receiving (input, sid, |v′|,Pi) from
FMVBA, uniformly samples a value x̄ from the domain of v′, and send (input, sid, x̄)
to FACS on behalf of Pi.
Handling adaptive corruption. When an honest node Pi becomes corrupted,
send (corrupt, sid,Pi) to FInput and obtain (corrupted, sid,Pi, x). Then, if
(input, sid, x) has been sent to FACS on behalf of Pi, let ri ← x̄ − x, and gen-
erate the secret shares of ri for honest nodes {ri,j}j∈H such that the shares are
consistent with {ri,j}j∈C, where H and C are the set of honest nodes and the set
of corrupted nodes, respectively. Moreover, uniformly sample {rj,i}j∈H. Finally,
return (x, ri, {rj,i}j∈[n]) to the adversary.

51

FInput proceeds as follows, running with (P1, . . . ,Pn) and the adversary. At the first
activation, verify (sid, {P1, . . . ,Pn}) for the session ID sid and the set of nodes.
Initialize: participatedi = 0, xi = ⊥ and Dinput

i = Doutput
i = 1 for all i ∈ [n];

xi,j = ⊥, for all i, j ∈ [n]; participants = ∅. Let C be the set of corrupted nodes.

• Upon receiving (delay, sid,Pi, type, D) from the adversary for any i ∈ [n], if
type ∈ {input, output}, and D ∈ Z represented in unary notation, then update
Dtype

i = max{1,Dtype
i +D}, and provide (delay-set, sid) to the adversary.

• Upon receiving (corrupt, sid,Pi) from the adversary, if |C| < f , then C = C∪{i},
and return (corrupted, sid,Pi, x) to the adversary, where x is the input from Pi.

• Upon receiving (input, sid, v′) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and provide (input, sid, |v′|,Pi)
to the adversary.

• Upon receiving (fetch, sid) from Pi (or the adversary on behalf of a corrupted
node), run the Input Submission Procedure and the Output Release Pro-
cedure, and provide (fetch, sid,Pi) to the adversary.

Input Submission Procedure: If participatedi = 0, and (input, sid, v′) has been
provided by Pi, do the following:

• Update Dinput
i = Dinput

i − 1;
• If Dinput

i = 0, update participatedi = 1; If |participants| < n − f , update
participants ← participants ∪ {i}; Record xi = v′, and update (xi,1, . . . , xi,n) ←
SS(xi).

Output Release Procedure: If |participants| = n− f , do the following:

• Update Doutput
i = Doutput

i − 1;
• if Doutput

i = 0, set (output, sid, participants, {(xj,i)}j∈participants) to be sent to Pi.

Functionality FInput

Fig. 11. The input functionality FInput w.r.t a secret sharing scheme SS

Interaction with FInput. After receiving message (output, sid, commonSet) from

FACS, parse commonSet = {j, x̄j}j∈J. For J1 = J∩H and j ∈ J1, manage the delay
such that participatedj = 1 in FInput. For J2 = C ∩ J, compute xj = x̄j − rj
for all j ∈ J2, and send (input, sid, xj) to FInput on behalf of Pj without any
delays.

It is easy to verify the simulated execution is perfectly indistinguishable from
a real execution, and the output of a dummy node from FInput is also identical
to its output in a real execution. ⊓⊔

52

	O"0365Optimal Adaptively Secure Hash-based Asynchronous Common Subset

